JP7073304B2 - Shock absorption mechanism - Google Patents

Shock absorption mechanism Download PDF

Info

Publication number
JP7073304B2
JP7073304B2 JP2019102724A JP2019102724A JP7073304B2 JP 7073304 B2 JP7073304 B2 JP 7073304B2 JP 2019102724 A JP2019102724 A JP 2019102724A JP 2019102724 A JP2019102724 A JP 2019102724A JP 7073304 B2 JP7073304 B2 JP 7073304B2
Authority
JP
Japan
Prior art keywords
shock absorbing
absorbing material
axial direction
bolt
shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019102724A
Other languages
Japanese (ja)
Other versions
JP2020196307A (en
Inventor
豪軌 杉浦
義輝 水谷
寿久 三浦
拓也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyota Auto Body Co Ltd
Priority to JP2019102724A priority Critical patent/JP7073304B2/en
Publication of JP2020196307A publication Critical patent/JP2020196307A/en
Application granted granted Critical
Publication of JP7073304B2 publication Critical patent/JP7073304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、車両に加わる衝撃を吸収する衝撃吸収機構に関する。 The present invention relates to a shock absorbing mechanism that absorbs a shock applied to a vehicle.

車両の衝突時の衝突荷重を受けてその衝撃を吸収できるように構成された衝撃吸収機構に関する技術が、特許文献1、2に記載されている。 Patent Documents 1 and 2 describe techniques relating to an impact absorbing mechanism configured to receive an impact load at the time of a vehicle collision and absorb the impact.

特許文献1、2には、車両前方衝突時にバンパーリインフォースがサイドメンバ側に押された際に、バンパーリインフォースとサイドメンバの間に設けた木材がボルト等の連結材に押されて部材軸方向に圧縮するか、または当該木材に部材軸方向のせん断が生じることで衝撃が吸収される衝撃吸収機構について記載されている。 According to Patent Documents 1 and 2, when the bumper shear is pushed toward the side member during a vehicle front collision, the wood provided between the bumper shear and the side member is pushed by a connecting material such as a bolt and is pushed in the member axial direction. A shock absorbing mechanism is described in which a shock is absorbed by compression or shearing in the wood in the axial direction of the member.

国際公開第2014/077314号International Publication No. 2014/077314 特開2017-7598号公報Japanese Unexamined Patent Publication No. 2017-7598

これらの衝撃吸収機構では木材に部材軸方向の圧縮やせん断が生じる際に衝撃が吸収されるが、このような衝撃吸収機構では、より効果的に衝撃を吸収し、車両の衝突時の被害を軽減できる工夫が求められている。 These shock absorbing mechanisms absorb the shock when the wood is compressed or sheared in the axial direction of the member, but such a shock absorbing mechanism absorbs the shock more effectively and causes damage in the event of a vehicle collision. Ingenuity that can be reduced is required.

本発明は前述した問題点に鑑みてなされたものであり、より効果的に衝撃吸収を行うことのできる衝撃吸収機構を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a shock absorbing mechanism capable of more effectively absorbing shocks.

前述した目的を達成するための第1の発明は、車両に加わる衝突荷重を軽減するための衝撃吸収機構であって、衝突荷重を受ける荷重受け部材と前記衝突荷重が前記荷重受け部材から伝達される被伝達部材の間に設けられ、部材軸方向の一方の端部が前記荷重受け部材と前記被伝達部材のうち一方の部材の内部空間に挿入された木製の柱状の衝撃吸収材と、前記一方の部材に連結され、衝突時に前記衝撃吸収材を押圧する第1の連結材と、を具備し、衝突時に前記衝撃吸収材が前記第1の連結材に押し分けられ、前記第1の連結材から見て前記衝撃吸収材の部材軸直交方向の側方にある空間に進入し、前記部材軸直交方向に沿った前記第1の連結材の幅を2D、前記荷重受け部材と前記被伝達部材のうち他方の部材側に面した前記第1の連結材の平面部または凹面部の幅を2Cとして、前記第1の連結材の前記部材軸方向に沿った断面の中心を通る前記部材軸方向の断面中心線と、前記衝撃吸収材の前記第1の連結材に近い方の側面との間の距離Xが、X≦{D-(1-ε)C}/εにより定められ、εは、前記衝撃吸収材を前記部材軸直交方向に圧縮した際の応力とひずみの関係を示す応力-ひずみ分布において、前記衝撃吸収材の弾性変形域を超えて前記衝撃吸収材の剛性が低下した後、前記衝撃吸収材の剛性が再度上昇するひずみ硬化域に対応するひずみの値であることを特徴とする衝撃吸収機構である。 The first invention for achieving the above-mentioned object is a shock absorbing mechanism for reducing the impact load applied to the vehicle, and the load receiving member that receives the impact load and the impact load are transmitted from the load receiving member. A wooden columnar impact absorbing material provided between the members to be transmitted and having one end in the axial direction of the member inserted into the internal space of the load receiving member and one of the members to be transmitted, and the above. A first connecting material that is connected to one member and presses the impact absorbing material at the time of collision is provided, and the shock absorbing material is pushed against the first connecting material at the time of collision, and the first connecting material is pressed. The impact absorbing material enters the space on the side perpendicular to the member axis, and the width of the first connecting member along the member axis orthogonal direction is 2D 1 , the load receiving member and the transmitted object. The member that passes through the center of the cross section of the first connecting member along the axial direction of the member, where the width of the flat surface portion or the concave surface portion of the first connecting member facing the other member side of the member is 2C1. The distance X 1 between the center line of the cross section in the axial direction and the side surface of the impact absorbing material closer to the first connecting member is X 1 ≤ {D 1 − (1-ε) C 1 } / ε. In the stress-strain distribution showing the relationship between stress and strain when the impact absorbing material is compressed in the direction perpendicular to the member axis, ε is defined by It is a shock absorbing mechanism characterized by having a strain value corresponding to a strain hardening region in which the rigidity of the impact absorbing material increases again after the rigidity of the impact absorbing material decreases.

第2の発明は、車両に加わる衝突荷重を軽減するための衝撃吸収機構であって、衝突荷重を受ける荷重受け部材と前記衝突荷重が前記荷重受け部材から伝達される被伝達部材の間に設けられ、部材軸方向の一方の端部が前記荷重受け部材と前記被伝達部材のうち一方の部材の内部空間に挿入された木製の柱状の衝撃吸収材と、前記一方の部材に連結され、衝突時に前記衝撃吸収材を押圧する複数の第1の連結材と、を具備し、衝突時に前記衝撃吸収材が前記第1の連結材に押し分けられ、前記第1の連結材から見て前記衝撃吸収材の部材軸直交方向の側方にある空間に進入し、前記部材軸直交方向に沿った前記第1の連結材の幅を2D、前記荷重受け部材と前記被伝達部材のうち他方の部材側に面した前記第1の連結材の平面部または凹面部の幅を2Cとして、前記第1の連結材の前記部材軸方向に沿った断面の中心を通る前記部材軸方向の断面中心線と、隣り合う前記第1の連結材の間を二等分する前記部材軸方向の線分との間の距離Xが、X≦{D-(1-ε)C}/εにより定められ、εは、前記衝撃吸収材を前記部材軸直交方向に圧縮した際の応力とひずみの関係を示す応力-ひずみ分布において、前記衝撃吸収材の弾性変形域を超えて前記衝撃吸収材の剛性が低下した後、衝撃吸収材の剛性が再度上昇するひずみ硬化域に対応するひずみの値であることを特徴とする衝撃吸収機構である。 The second invention is a shock absorbing mechanism for reducing a collision load applied to a vehicle, which is provided between a load receiving member that receives a collision load and a transmitted member to which the collision load is transmitted from the load receiving member. One end in the axial direction of the member is connected to the wooden columnar shock absorber inserted into the internal space of the load receiving member and one of the members to be transmitted, and collides with the one member. A plurality of first connecting materials that sometimes press the shock absorbing material are provided, and the shock absorbing material is pushed by the first connecting material at the time of collision, and the shock absorbing material is viewed from the first connecting material. Enter the space on the side of the member axis orthogonal to the member axis, set the width of the first connecting member along the member axis orthogonal direction to 2D 1 , the other member of the load receiving member and the transmitted member. The width of the flat surface portion or the concave surface portion of the first connecting material facing the side is 2C 1 , and the cross-sectional center line in the member axial direction passing through the center of the cross section of the first connecting material along the member axial direction. And the distance X 1 between the adjacent first connecting member and the line segment in the axial direction of the member that divides the first connecting member into two equal parts is X 1 ≤ {D 1 − (1-ε) C 1 } / ε. In the stress-strain distribution showing the relationship between stress and strain when the shock absorber is compressed in the direction perpendicular to the member axis, ε is defined by It is a shock absorbing mechanism characterized by having a strain value corresponding to a strain hardening region in which the rigidity of the shock absorbing material increases again after the rigidity of the shock absorbing material decreases.

本発明では、上記の連結材と衝撃吸収材の側面との間の距離(第1の発明)や、隣り合う連結材間の距離(第2の発明)を、衝撃吸収材の圧縮時の上記したひずみの値εに基づき定める所定値以下とする。こうしてこれらの距離を狭めることにより、衝突時に連結材によって押し分けられた衝撃吸収材の通り道が狭くなり、部材軸直交方向に発生する圧縮により衝撃吸収材が硬化して高い衝撃吸収効果が得られ、連結材の位置を適切に設定するだけの簡易な構成にて効果的に衝撃吸収を行うことが可能になる。 In the present invention, the distance between the connecting material and the side surface of the shock absorbing material (first invention) and the distance between adjacent connecting materials (second invention) are determined as described above when the shock absorbing material is compressed. It shall be less than or equal to the predetermined value determined based on the strain value ε. By narrowing these distances in this way, the path of the shock absorbing material pushed by the connecting material at the time of collision is narrowed, and the shock absorbing material is hardened by the compression generated in the direction orthogonal to the member axis, and a high shock absorbing effect is obtained. It is possible to effectively absorb shocks with a simple configuration that only sets the position of the connecting material appropriately.

前記第1の連結材の前記断面が略円形であり、前記距離Xが、C=0としてX≦D/εにより定められることも望ましい。
連結材に通常のボルトのような断面円形の部材を用いる場合、C=0とし、前記の距離XをD/ε以下とすればよい。連結材の断面を円形とすることにより衝撃吸収材の押し分けが生じやすく、上記した衝撃吸収効果を発揮させやすくなる。
It is also desirable that the cross section of the first connecting member is substantially circular and the distance X 1 is determined by X 1 ≤ D 1 / ε with C 1 = 0.
When a member having a circular cross section such as a normal bolt is used as the connecting material, C 1 = 0 and the distance X 1 may be D 1 / ε or less. By making the cross section of the connecting material circular, the shock absorbing material is likely to be pushed separately, and the above-mentioned shock absorbing effect is easily exerted.

前記第1の連結材は、例えば前記衝撃吸収材の端面に突き当てられる。あるいは、前記第1の連結材が、前記衝撃吸収材を貫通してもよい。
前者の場合、衝撃吸収材に孔を空ける必要が無く簡易な構成となる。後者の場合、連結材により衝撃吸収材を好適に保持できる。
The first connecting material is abutted against, for example, the end face of the shock absorbing material. Alternatively, the first connecting material may penetrate the shock absorbing material.
In the former case, there is no need to make a hole in the shock absorbing material, and the structure is simple. In the latter case, the impact absorbing material can be suitably held by the connecting material.

前記衝撃吸収材の前記部材軸方向の他方の端部は、前記他方の部材の内部空間に挿入され、前記他方の部材に連結され、衝突時に前記衝撃吸収材を押圧する複数の第2の連結材を更に具備し、前記第1、第2の連結材は、前記部材軸方向から見た時に異なる位置に配置され、衝突時に前記衝撃吸収材が前記第2の連結材に押し分けられ、前記第2の連結材から見て前記部材軸直交方向の側方にある空間に進入し、前記部材軸直交方向に沿った前記第2の連結材の幅を2D、前記一方の部材側に面した前記第2の連結材の平面部または凹面部の幅を2Cとして、前記第2の連結材の前記部材軸方向に沿った断面の中心を通る前記部材軸方向の断面中心線と、隣り合う前記第2の連結材の間を二等分する前記部材軸方向の線分との間の距離Xが、X≦{D-(1-ε)C}/εにより定められることも望ましい。
この場合、衝撃吸収材の部材軸方向のせん断による衝撃吸収が可能になるが、この場合も、衝突時に連結材によって押し分けられる衝撃吸収材の通り道を上記のように狭くすることで、部材軸直交方向に発生する圧縮によって衝撃吸収材が硬化し、高い衝撃吸収効果が得られる。
The other end of the shock absorber in the axial direction of the member is inserted into the internal space of the other member, connected to the other member, and a plurality of second connections that press the shock absorber in the event of a collision. The first and second connecting materials are further provided with materials, and the first and second connecting materials are arranged at different positions when viewed from the axial direction of the member. Entering the space on the side in the direction orthogonal to the member axis when viewed from the connecting member of 2, the width of the second connecting material along the direction perpendicular to the member axis is 2D 2 and faces the one member side. The width of the flat surface portion or the concave surface portion of the second connecting member is 2C 2 , and the width thereof is adjacent to the cross-sectional center line in the member axial direction passing through the center of the cross section of the second connecting member along the member axial direction. The distance X 2 between the member axial line segment that divides the second connecting member into two equal parts is determined by X 2 ≦ {D 2- (1-ε) C 2 } / ε. Is also desirable.
In this case, shock absorption by shearing in the member axial direction of the shock absorbing material becomes possible, but in this case as well, by narrowing the path of the shock absorbing material pushed by the connecting material at the time of collision as described above, the member axis is orthogonal to each other. The shock absorbing material is hardened by the compression generated in the direction, and a high shock absorbing effect can be obtained.

本発明によれば、より効果的に衝撃吸収を行うことのできる衝撃吸収機構を提供できる。 According to the present invention, it is possible to provide a shock absorbing mechanism capable of more effectively absorbing shocks.

衝撃吸収機構2の配置を示す概略図。The schematic which shows the arrangement of the shock absorption mechanism 2. 衝撃吸収機構2を示す図。The figure which shows the shock absorption mechanism 2. 応力-ひずみ分布の概略を示す図。The figure which shows the outline of the stress-strain distribution. 衝突荷重が加わった状態の衝撃吸収機構2を示す図。The figure which shows the shock absorption mechanism 2 in the state which the collision load is applied. バンパーリインフォース11の変位と衝撃吸収材1の圧縮によって吸収される荷重の関係を示す図。The figure which shows the relationship between the displacement of a bumper reinforce 11 and the load absorbed by the compression of a shock absorbing material 1. 平面部5と凹面部6の例。An example of a flat surface portion 5 and a concave surface portion 6. 衝撃吸収機構2’を示す図。The figure which shows the shock absorption mechanism 2'. 衝撃吸収機構2aを示す図。The figure which shows the shock absorption mechanism 2a. 衝突荷重が加わった状態の衝撃吸収機構2aを示す図。The figure which shows the shock absorption mechanism 2a in the state which the collision load is applied. 衝撃吸収機構2bを示す図。The figure which shows the shock absorption mechanism 2b. 衝撃吸収機構2cを示す図。The figure which shows the shock absorption mechanism 2c. 衝突荷重が加わった状態の衝撃吸収機構2cを示す図。The figure which shows the shock absorption mechanism 2c in the state which the collision load is applied. 衝撃吸収機構2c’を示す図。The figure which shows the shock absorption mechanism 2c'. 衝撃吸収機構2dを示す図。The figure which shows the shock absorption mechanism 2d. 衝突荷重が加わった状態の衝撃吸収機構2dを示す図。The figure which shows the shock absorption mechanism 2d in the state which the collision load is applied.

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
図1は本発明の実施形態に係る衝撃吸収機構2の配置を示す概略図である。衝撃吸収機構2は車両10に設けられ、衝突時に車両10に加わる衝撃を吸収して衝突荷重を軽減するためのものである。衝撃吸収機構2は、フロントバンパー(不図示)のバンパーリインフォース11と車両10のサイドメンバ9の間に配置される。
[First Embodiment]
FIG. 1 is a schematic view showing an arrangement of a shock absorbing mechanism 2 according to an embodiment of the present invention. The impact absorbing mechanism 2 is provided on the vehicle 10 and is for absorbing the impact applied to the vehicle 10 at the time of a collision to reduce the collision load. The shock absorbing mechanism 2 is arranged between the bumper reinforce 11 of the front bumper (not shown) and the side member 9 of the vehicle 10.

図1の左右は車両前後方向に対応し、図1の上下は車両幅方向に対応する。以下、「前」というときは車両10の前側を指し、図1の左側に対応する。「後」は車両10の後側を指し、図1の右側に対応する。 The left and right sides of FIG. 1 correspond to the front-rear direction of the vehicle, and the top and bottom of FIG. 1 correspond to the width direction of the vehicle. Hereinafter, the term "front" refers to the front side of the vehicle 10 and corresponds to the left side of FIG. "Rear" refers to the rear side of the vehicle 10 and corresponds to the right side of FIG.

バンパーリインフォース11は車両前方衝突時の衝突荷重を受ける荷重受け部材であり、車両10の前部で車両幅方向に延びるように配置される。 The bumper reinforce 11 is a load receiving member that receives a collision load at the time of a frontal collision of the vehicle, and is arranged so as to extend in the vehicle width direction at the front portion of the vehicle 10.

サイドメンバ9はバンパーリインフォース11で受けた衝突荷重が伝達される被伝達部材である。サイドメンバ9は車両幅方向の左右に配置され、各サイドメンバ9とバンパーリインフォース11の間に衝撃吸収機構2が設けられる。 The side member 9 is a transmitted member to which the collision load received by the bumper reinforce 11 is transmitted. The side members 9 are arranged on the left and right in the vehicle width direction, and a shock absorbing mechanism 2 is provided between each side member 9 and the bumper reinforcement 11.

図2は衝撃吸収機構2を示す図である。図2(a)は衝撃吸収機構2の水平方向の断面を示す図であり、図2(b)は図2(a)の線a-aに沿った鉛直方向の断面を示す図である。 FIG. 2 is a diagram showing a shock absorbing mechanism 2. FIG. 2A is a diagram showing a horizontal cross section of the shock absorbing mechanism 2, and FIG. 2B is a diagram showing a vertical cross section along the line aa of FIG. 2A.

図2に示すように、衝撃吸収機構2は、衝撃吸収材1、ボルト3等を有する。 As shown in FIG. 2, the shock absorbing mechanism 2 has a shock absorbing material 1, a bolt 3, and the like.

衝撃吸収材1は木製の柱状部材であり、部材軸方向を車両前後方向(図2(a)、(b)の左右方向に対応する)として、部材軸方向の両端部がそれぞれバンパーリインフォース11側、サイドメンバ9側となるように配置される。本実施形態では衝撃吸収材1の部材軸方向が木材の年輪の軸心方向(木材の繊維方向)に対応しているが、これに限ることはない。 The shock absorbing material 1 is a wooden columnar member, and the member axial direction is the vehicle front-rear direction (corresponding to the left-right directions of FIGS. , Arranged so as to be on the side member 9 side. In the present embodiment, the axial direction of the member of the shock absorbing material 1 corresponds to the axial direction of the annual ring of the wood (the fiber direction of the wood), but the present invention is not limited to this.

衝撃吸収材1の前端部はバンパーリインフォース11に当接し、ブラケット13によりバンパーリインフォース11に固定される。 The front end portion of the shock absorbing material 1 abuts on the bumper reinforce 11 and is fixed to the bumper reinforce 11 by the bracket 13.

サイドメンバ9の前端部は筒状となっており、衝撃吸収材1の後端部(一方の端部)はサイドメンバ9(一方の部材)の筒状部分の内部空間に挿入される。 The front end portion of the side member 9 has a cylindrical shape, and the rear end portion (one end portion) of the shock absorbing material 1 is inserted into the internal space of the tubular portion of the side member 9 (one member).

ボルト3は金属製の頭付ボルトであり、衝撃吸収材1の後方で衝撃吸収材1の後端面に突き当てて配置される。ボルト3はサイドメンバ9の前端部に連結される棒状の連結材であり、衝突時に衝撃吸収材1を前方に押圧する。ボルト3は長手方向を鉛直方向(図2(b)の上下方向に対応する)に合わせて配置され、車両幅方向に複数本設けられる。車両幅方向は図2(a)の上下方向に対応し、衝撃吸収材1の部材軸方向と直交する部材軸直交方向である。図の例ではボルト3が2本配置されるが、その本数は特に限定されず、1本のみでもよい。 The bolt 3 is a metal headed bolt, and is arranged behind the shock absorbing material 1 against the rear end surface of the shock absorbing material 1. The bolt 3 is a rod-shaped connecting member connected to the front end portion of the side member 9, and presses the shock absorbing material 1 forward at the time of a collision. The bolts 3 are arranged so that the longitudinal direction is aligned with the vertical direction (corresponding to the vertical direction in FIG. 2B), and a plurality of bolts 3 are provided in the vehicle width direction. The vehicle width direction corresponds to the vertical direction of FIG. 2A, and is a member axis orthogonal direction orthogonal to the member axis direction of the shock absorber 1. In the example of the figure, two bolts 3 are arranged, but the number of the bolts 3 is not particularly limited, and only one bolt may be used.

ここで、衝撃吸収材1の部材軸方向から見た時(図2(a)の矢印参照)に、ボルト3とバンパーリインフォース11(他方の部材)の間では、ボルト3と重複する位置にサイドメンバ9に連結された他のボルト3等が存在せず、このボルト3が衝撃吸収に大きく寄与することとなる。 Here, when viewed from the member axial direction of the shock absorber 1 (see the arrow in FIG. 2A), the side between the bolt 3 and the bumper reinforce 11 (the other member) is located at a position overlapping with the bolt 3. There is no other bolt 3 or the like connected to the member 9, and this bolt 3 greatly contributes to shock absorption.

ボルト3の軸部はサイドメンバ9の下面からサイドメンバ9を貫通し、軸部の先端がナット4によってサイドメンバ9の上面に固定される。これによりボルト3がサイドメンバ9の前端部に連結固定される。 The shaft portion of the bolt 3 penetrates the side member 9 from the lower surface of the side member 9, and the tip of the shaft portion is fixed to the upper surface of the side member 9 by the nut 4. As a result, the bolt 3 is connected and fixed to the front end portion of the side member 9.

ボルト3の軸部の車両幅方向の中央部には、バンパーリインフォース11側に面した平面部5が形成される。本実施形態では、衝撃吸収材1の部材軸方向に沿ったボルト3の断面(以下、単に断面ということがある)が略正六角形状となっており、平面部5はその一辺に対応する。平面部5の両側には部材軸方向に対して傾斜した傾斜面が形成される。平面部5はボルト3の軸部を加工して形成されるが、これに限ることはない。例えば平面部5を有する別部品をボルトの軸部に別途取付けてもよい。 A flat surface portion 5 facing the bumper reinforce 11 side is formed at the central portion of the shaft portion of the bolt 3 in the vehicle width direction. In the present embodiment, the cross section of the bolt 3 along the member axial direction of the shock absorbing material 1 (hereinafter, may be simply referred to as a cross section) has a substantially regular hexagonal shape, and the flat surface portion 5 corresponds to one side thereof. Inclined surfaces inclined with respect to the member axial direction are formed on both sides of the flat surface portion 5. The flat surface portion 5 is formed by processing the shaft portion of the bolt 3, but is not limited to this. For example, another component having the flat surface portion 5 may be separately attached to the shaft portion of the bolt.

衝撃吸収機構2では、車両幅方向に沿ったボルト3の幅(最大幅)を2D、平面部5の幅を2Cとした時に、ボルト3の断面中心を通る部材軸方向の断面中心線Lと、衝撃吸収材1の当該ボルト3に近い方の側面との間の距離Xを{D-(1-ε)C}/ε以下とする。なお、本実施形態では衝撃吸収材1の当該側面がサイドメンバ9の内面に接する。 In the shock absorbing mechanism 2, when the width (maximum width) of the bolt 3 along the vehicle width direction is 2D 1 and the width of the flat surface portion 5 is 2C 1 , the cross-sectional center line in the member axial direction passing through the cross-sectional center of the bolt 3 The distance X 1 between L and the side surface of the shock absorber 1 closer to the bolt 3 is {D 1 − (1-ε) C 1 } / ε or less. In this embodiment, the side surface of the shock absorbing material 1 is in contact with the inner surface of the side member 9.

ここで、εは衝撃吸収材1を車両幅方向に圧縮した際のひずみによって定める値である。ひずみとは、図3(a)に示すように、圧縮による衝撃吸収材1の幅の減少分の元の幅に対する割合をいうものとする。 Here, ε is a value determined by the strain when the shock absorber 1 is compressed in the vehicle width direction. As shown in FIG. 3A, the strain means the ratio of the decrease in the width of the impact absorbing material 1 due to compression to the original width.

図3(b)は、木材(衝撃吸収材1)を車両幅方向に圧縮した際の応力とひずみの関係を示す応力-ひずみ分布の概略を示す図である。図に示すように、木材の弾性変形域では応力の上昇に伴いひずみが直線状に増加する関係となり、弾性変形域におけるひずみの最大値εに達した後は、木材の剛性が低下し、応力がほぼ一定の状態でひずみが進行する。この領域を高原域とし、高原域のひずみの最大値εに達した後は、木材が硬化して剛性が再度上昇するひずみ硬化域となる(例えば、棚橋、大岡、伊津野、鈴木「木材のめり込み降伏メカニズムと均等めり込み弾塑性変位の定式化」、日本建築学会構造系論文集、Vol.76、No.662、pp.811-819や劉、則元、師岡「木材の横圧縮大変形(II)応力-ひずみ繰返し図」、木材研究・資料、No.31、44-55などの文献参照)。 FIG. 3B is a diagram showing an outline of a stress-strain distribution showing the relationship between stress and strain when wood (impact absorber 1) is compressed in the vehicle width direction. As shown in the figure, in the elastic deformation region of wood, the strain increases linearly as the stress increases, and after reaching the maximum strain value ε 0 in the elastic deformation region, the rigidity of the wood decreases. Strain progresses with the stress being almost constant. This area is the plateau area, and after the maximum strain value ε 1 in the plateau area is reached, the wood becomes a strain hardening area where the wood hardens and the rigidity rises again (for example, Tanahashi, Ooka, Ituno, Suzuki "Wood digging". Formulation of yield mechanism and uniform elasto-plastic displacement ”, Proceedings of the Structural Society of Japan, Vol.76, No.662, pp.811-819, Liu, Norimoto, Shikaoka“ Large lateral compression deformation of wood (II) ) Stress-Strain Repeat Diagram ”, Wood Research and Materials, No.31, 44-55, etc.).

本実施形態では前記のεを上記のε以上とし、ひずみ硬化域に対応する値とする。例えば図3(b)のεで示すようなひずみ硬化域中のひずみの値や、ε’で示すように応力が上昇してもひずみがほぼ増加しなくなる最大ひずみの値を用いる。これらの値は、例えば図2等に示す衝撃吸収機構2の使用状態を反映した条件下で前記の文献で示されたような圧縮試験を予め行うことによって得られる。あるいは木材の種類に応じて公知の値を用いたりすることも可能である。 In the present embodiment, the above-mentioned ε is set to the above-mentioned ε 1 or more, and is a value corresponding to the strain hardening region. For example, the strain value in the strain hardening region as shown by ε in FIG. 3 (b) and the maximum strain value in which the strain hardly increases even if the stress increases as shown by ε'are used. These values are obtained, for example, by performing a compression test as shown in the above-mentioned document in advance under the conditions reflecting the usage state of the shock absorbing mechanism 2 shown in FIG. 2 and the like. Alternatively, a known value may be used depending on the type of wood.

図4は衝突荷重が加わった状態の衝撃吸収機構2を示す図である。図4(a)は衝撃吸収機構2の水平方向の断面を示し、図4(b)はボルト3付近の拡大図を示す。 FIG. 4 is a diagram showing a shock absorbing mechanism 2 in a state where a collision load is applied. FIG. 4A shows a horizontal cross section of the shock absorbing mechanism 2, and FIG. 4B shows an enlarged view of the vicinity of the bolt 3.

衝撃吸収機構2では、図4(a)の矢印Aに示す方向に衝突荷重が加わりバンパーリインフォース11がサイドメンバ9側に押されると、ボルト3が衝撃吸収材1を前方に押圧し、ボルト3の平面部5に当たる部分では衝撃吸収材1が部材軸方向に圧縮されて木材が硬化し、圧縮部15aが形成される。一方、平面部5の両側の傾斜面に当たる部分では、衝撃吸収材1が図4(b)の矢印Bに示すように押し分けられ、ボルト3から見て車両幅方向の側方にある空間からサイドメンバ9内へと進入する。 In the shock absorbing mechanism 2, when a collision load is applied in the direction indicated by the arrow A in FIG. 4A and the bumper reinforcement 11 is pushed toward the side member 9, the bolt 3 pushes the shock absorbing material 1 forward and the bolt 3 In the portion corresponding to the flat surface portion 5, the shock absorbing material 1 is compressed in the axial direction of the member, the wood is hardened, and the compressed portion 15a is formed. On the other hand, in the portion corresponding to the inclined surfaces on both sides of the flat surface portion 5, the shock absorbing material 1 is pushed apart as shown by the arrow B in FIG. Enter into member 9.

この時、ボルト3で押し分けられた衝撃吸収材1がボルト3とサイドメンバ9との間の狭い空間を通り、当該空間において車両幅方向に圧縮され、木材が硬化して圧縮部15が形成される。 At this time, the shock absorbing material 1 pushed by the bolt 3 passes through a narrow space between the bolt 3 and the side member 9, and is compressed in the vehicle width direction in the space, the wood is hardened, and the compressed portion 15 is formed. To.

図4(b)を参照して、衝撃吸収材1のうちボルト3で押し分けられてボルト3とサイドメンバ9との間を通る部分について考えると、ボルト3で押し分けられる前にボルト3の平面部5と衝撃吸収材1の側面との間の幅(X-C)の範囲にある衝撃吸収材1が、ボルト3とサイドメンバ9の間を通るときに車両幅方向に圧縮され、幅(X-D)となる。 Considering the portion of the shock absorber 1 that is pushed apart by the bolt 3 and passes between the bolt 3 and the side member 9, with reference to FIG. 4B, the flat surface portion of the bolt 3 before being pushed by the bolt 3 The impact absorber 1 in the width range (X1 - C 1 ) between the 5 and the side surface of the impact absorber 1 is compressed in the vehicle width direction as it passes between the bolt 3 and the side member 9, and has a width. It becomes (X1 - D1 ).

この時、車両幅方向の圧縮による衝撃吸収材1の幅の減少分(D-C)の元の幅(X-C)に対する割合(D-C)/(X-C)がε以上であれば、車両幅方向の圧縮により木材が硬化して高い衝撃吸収効果が得られる。 At this time, the ratio (D1 - C 1 ) / (X 1- ) of the decrease in the width of the shock absorber 1 due to the compression in the vehicle width direction to the original width (X 1 - C 1 ). When C 1 ) is ε or more, the wood is hardened by compression in the vehicle width direction, and a high impact absorption effect can be obtained.

すなわち、前記の距離Xについて下式(1)が成り立てば、衝撃吸収材1が車両幅方向に充分に圧縮され、ひずみ硬化現象が生じて衝突荷重が吸収される。
≦{D-(1-ε)C}/ε…(1)
That is, if the following equation (1) holds for the distance X 1 , the impact absorber 1 is sufficiently compressed in the vehicle width direction, a strain hardening phenomenon occurs, and the collision load is absorbed.
X 1 ≤ {D 1- (1-ε) C 1 } / ε ... (1)

図5は、上記の衝突過程におけるバンパーリインフォース11の変位と衝撃吸収材1の圧縮によって吸収される荷重の関係を、縦軸を荷重、横軸をバンパーリインフォース11のサイドメンバ9側への変位として示した図である。 In FIG. 5, the relationship between the displacement of the bumper reinforce 11 in the above collision process and the load absorbed by the compression of the impact absorbing material 1 is defined as the vertical axis as the load and the horizontal axis as the displacement of the bumper reinforce 11 toward the side member 9. It is a figure shown.

実線19は本実施形態のように距離Xを{D-(1-ε)C}/ε以下とした場合であり、本実施形態では前記の圧縮部15aに加え、衝撃吸収材1がボルト3で押し分けられてボルト3とサイドメンバ9との間の狭い空間に進入し、この時衝撃吸収材1が車両幅方向に圧縮されて圧縮部15が形成されることにより、衝突直後から大きな荷重を安定して受け止めることができる。 The solid line 19 is a case where the distance X 1 is {D 1 − (1-ε) C 1 } / ε or less as in the present embodiment. In this embodiment, in addition to the compression portion 15a, the shock absorber 1 Is pushed by the bolt 3 and enters the narrow space between the bolt 3 and the side member 9. At this time, the shock absorber 1 is compressed in the vehicle width direction to form the compression portion 15, so that immediately after the collision. It can stably receive a large load.

一方、点線17は距離Xが{D-(1-ε)C}/εより大きい場合であり、ボルト3で押し分けられてボルト3とサイドメンバ9との間に進入した衝撃吸収材1が充分に圧縮されず、実線19の例に比べて低荷重で変位が進む。衝撃吸収材1の衝撃吸収量は変位による荷重の積分値で表され、実線19で示す衝撃吸収機構2では、点線17で示す例と比較して衝撃吸収量が大幅に増加する。 On the other hand, the dotted line 17 is a case where the distance X 1 is larger than {D 1 − (1-ε) C 1 } / ε, and the impact absorbing material pushed by the bolt 3 and entered between the bolt 3 and the side member 9. 1 is not sufficiently compressed, and the displacement proceeds with a lower load than the example of the solid line 19. The impact absorption amount of the impact absorber 1 is represented by an integrated value of the load due to displacement, and in the impact absorption mechanism 2 shown by the solid line 19, the impact absorption amount is significantly increased as compared with the example shown by the dotted line 17.

以上説明したように、第1の実施形態では、ボルト3と衝撃吸収材1の側面との間の距離Xを、式(1)のように衝撃吸収材の車両幅方向の圧縮時の前記したひずみの値εに基づき定める所定値以下とする。こうしてこれらの間隔を狭めることにより、衝突時にボルト3によって押し分けられた衝撃吸収材1の通り道が狭くなり、車両幅方向に発生する圧縮によって衝撃吸収材1が硬化し高い衝撃吸収効果が得られる。本実施形態ではボルト3の位置を適切に設定するだけの簡易な構成にて効果的に衝撃吸収を行うことが可能になり、工程やコストが増加することも無い。 As described above, in the first embodiment, the distance X1 between the bolt 3 and the side surface of the shock absorber 1 is the above-mentioned when the shock absorber is compressed in the vehicle width direction as in the equation (1). It shall be less than or equal to the predetermined value determined based on the strain value ε. By narrowing these intervals in this way, the path of the shock absorbing material 1 pushed by the bolt 3 at the time of a collision is narrowed, and the shock absorbing material 1 is hardened by the compression generated in the vehicle width direction, and a high shock absorbing effect can be obtained. In the present embodiment, shock absorption can be effectively performed with a simple configuration in which the position of the bolt 3 is appropriately set, and the process and cost do not increase.

しかしながら本発明はこれに限らない。例えば本実施形態では金属製のボルト3を連結材として用いているが、連結材はサイドメンバ9に連結されたものであればよく、ボルトに限らずピン等でもよい。その材質も金属に限らず、セラミックなどでもよい。 However, the present invention is not limited to this. For example, in the present embodiment, the metal bolt 3 is used as the connecting material, but the connecting material may be any material connected to the side member 9, and may be a pin or the like as well as a bolt. The material is not limited to metal, but may be ceramic or the like.

また連結材の断面形状も特に限定されない。例えば図6(a)に示すように円の一部を直線で切り欠いた形状としてもよく、この場合、直線部分が平面部5となる。その他、断面を五角形としたり、七角形以上の多角形状としてその直線部分を平面部5とすることなども可能である。 Further, the cross-sectional shape of the connecting material is not particularly limited. For example, as shown in FIG. 6A, a part of the circle may be cut out by a straight line, and in this case, the straight line portion becomes the flat surface portion 5. In addition, it is also possible to make the cross section pentagonal, or to make the straight line portion a flat surface portion 5 as a heptagon or more polygonal shape.

あるいは、平面部5の代わりに凹面部を設けてもよく、例えば図6(b)のように円の一部を円弧で切り取った断面形状として凹面部6を設けることができる。また凹面部6は円弧状に限らず、例えば図6(c)のように円の一部を楔形に切り取った断面形状とし、直線によって楔状に形成された凹面部6を設けてもよい。この場合、図6(b)で例示するように前記した幅2Cを凹面部6の幅とすればよい。 Alternatively, a concave surface portion may be provided instead of the flat surface portion 5, and the concave surface portion 6 can be provided as a cross-sectional shape obtained by cutting a part of a circle with an arc as shown in FIG. 6 (b), for example. Further, the concave surface portion 6 is not limited to an arc shape, and may be provided with a concave surface portion 6 formed in a wedge shape by a straight line, for example, having a cross-sectional shape obtained by cutting a part of a circle into a wedge shape as shown in FIG. 6 (c). In this case, as illustrated in FIG. 6B, the width 2C 1 described above may be the width of the concave surface portion 6.

さらに、図7(a)の衝撃吸収機構2’に示すように、衝撃吸収材1を被覆材1aで被覆してもよい。衝撃吸収機構2’では、衝撃吸収材1の全面が樹脂などの被覆材1aにより被覆され、衝撃吸収材1が外界から保護される。この場合も、図7(b)に示すように前記の距離Xをボルト3の断面中心線Lとボルト3に近い方の衝撃吸収材1の側面との間の距離とし、前記の式(1)によりボルト3の位置を設定することができる。 Further, as shown in the shock absorbing mechanism 2'in FIG. 7 (a), the shock absorbing material 1 may be covered with the covering material 1a. In the shock absorbing mechanism 2', the entire surface of the shock absorbing material 1 is covered with a covering material 1a such as resin, and the shock absorbing material 1 is protected from the outside world. Also in this case, as shown in FIG. 7B, the distance X 1 is defined as the distance between the cross-sectional center line L of the bolt 3 and the side surface of the impact absorber 1 closer to the bolt 3, and the above equation ( The position of the bolt 3 can be set by 1).

以下、本発明の別の例について、第2~第5の実施形態として説明する。各実施形態はそれまでに説明した実施形態と異なる点について説明し、同様の構成については図等で同じ符号を付すなどして説明を省略する。また、第1の実施形態も含め、各実施形態で説明する構成は必要に応じて組み合わせることができる。 Hereinafter, another example of the present invention will be described as the second to fifth embodiments. The differences between the embodiments and the embodiments described so far will be described, and the same configurations will be omitted with reference to the same reference numerals in the drawings and the like. Further, the configurations described in each embodiment including the first embodiment can be combined as necessary.

[第2の実施形態]
図8は本発明の第2の実施形態に係る衝撃吸収機構2aを示す図である。衝撃吸収機構2aは、ボルト3aの断面が略円形であり、前記の平面部5や凹面部6を有していない点で第1の実施形態と主に異なる。
[Second Embodiment]
FIG. 8 is a diagram showing a shock absorbing mechanism 2a according to a second embodiment of the present invention. The shock absorbing mechanism 2a is mainly different from the first embodiment in that the cross section of the bolt 3a is substantially circular and does not have the flat surface portion 5 or the concave surface portion 6.

図9は衝突荷重が加わった状態の衝撃吸収機構2aを示す図である。図9(a)は衝撃吸収機構2aの水平方向の断面を示し、図9(b)はボルト3a付近の拡大図を示す。 FIG. 9 is a diagram showing a shock absorbing mechanism 2a in a state where a collision load is applied. FIG. 9A shows a horizontal cross section of the shock absorbing mechanism 2a, and FIG. 9B shows an enlarged view of the vicinity of the bolt 3a.

衝撃吸収機構2aでは、図9(a)の矢印Aに示す方向に衝突荷重が加わりバンパーリインフォース11がサイドメンバ9側に押されると、ボルト3aが衝撃吸収材1を前方に押圧し、衝撃吸収材1がボルト3aの断面中心線Lの両側で図9(b)の矢印Bに示すように押し分けられ、ボルト3aから見て車両幅方向の側方にある空間からサイドメンバ9内に進入する。 In the shock absorbing mechanism 2a, when a collision load is applied in the direction indicated by the arrow A in FIG. 9A and the bumper reinforce 11 is pushed toward the side member 9, the bolt 3a pushes the shock absorbing material 1 forward to absorb the shock. The material 1 is pushed apart as shown by the arrow B in FIG. 9B on both sides of the cross-sectional center line L of the bolt 3a, and enters the side member 9 from the space on the side in the vehicle width direction when viewed from the bolt 3a. ..

この時、ボルト3aで押し分けられた衝撃吸収材1がボルト3aとサイドメンバ9との間の狭い空間を通り、当該空間において車両幅方向に圧縮され、木材が硬化して圧縮部15が形成される。 At this time, the impact absorbing material 1 pushed by the bolt 3a passes through a narrow space between the bolt 3a and the side member 9, and is compressed in the vehicle width direction in the space, the wood is hardened, and the compressed portion 15 is formed. To.

図9(b)を参照して、衝撃吸収材1のうちボルト3aで押し分けられてボルト3aとサイドメンバ9との間を通る部分について考えると、ボルト3aで押し分けられる前にボルト3aの断面中心線Lと衝撃吸収材1の側面との間の幅Xの範囲にある衝撃吸収材1が、ボルト3aとサイドメンバ9の間を通るときに車両幅方向に圧縮され、幅(X-D)となる。 With reference to FIG. 9B, considering the portion of the shock absorber 1 that is pushed apart by the bolt 3a and passes between the bolt 3a and the side member 9, the center of the cross section of the bolt 3a before being pushed by the bolt 3a. The impact absorber 1 in the range of width X 1 between the wire L and the side surface of the impact absorber 1 is compressed in the vehicle width direction as it passes between the bolt 3a and the side member 9, and the width (X 1 − It becomes D 1 ).

この時、車両幅方向の圧縮による衝撃吸収材1の幅の減少分Dの元の幅Xに対する割合D/Xがε以上であれば、車両幅方向の圧縮により木材が硬化して高い衝撃吸収効果が得られる。 At this time, if the ratio of the decrease in the width of the shock absorber 1 due to the compression in the vehicle width direction to the original width X 1 of D 1 is ε or more , the wood is hardened by the compression in the vehicle width direction. High shock absorption effect can be obtained.

すなわち、前記の距離Xについて下式(2)が成り立てば、衝撃吸収材1が車両幅方向に充分に圧縮され、ひずみ硬化現象が生じて衝突荷重が吸収され、第1の実施形態と同様の効果が得られる。また本実施形態ではボルト3aの断面が円形なので、衝撃吸収材1を容易に押し分けることができ、上記の衝撃吸収効果を発揮させやすい。
≦D/ε…(2)
That is, if the following equation (2) holds for the distance X 1 , the impact absorber 1 is sufficiently compressed in the vehicle width direction, a strain hardening phenomenon occurs, and the collision load is absorbed, as in the first embodiment. The effect of is obtained. Further, in the present embodiment, since the cross section of the bolt 3a is circular, the impact absorbing material 1 can be easily pushed separately, and the above-mentioned impact absorbing effect can be easily exerted.
X 1 ≤ D 1 / ε ... (2)

なお、式(2)は、前記の式(1)においてC=0としたものに等しい。すなわち、前記の式(1)は、C=0として、本実施形態のようにボルト3aに平面部5や凹面部6が存在しない(C=0)場合にも適用できる式となっている。 The equation (2) is equivalent to the equation (1) in which C 1 = 0. That is, the above equation (1) is an equation that can be applied even when C 1 = 0 and there is no flat surface portion 5 or concave surface portion 6 on the bolt 3a as in the present embodiment (C 1 = 0). There is.

[第3の実施形態]
図10は本発明の第3の実施形態に係る衝撃吸収機構2bを示す図である。衝撃吸収機構2bは、ボルト3aが衝撃吸収材1を貫通するように設けられる点で第2の実施形態と主に異なる。
[Third Embodiment]
FIG. 10 is a diagram showing a shock absorbing mechanism 2b according to a third embodiment of the present invention. The shock absorbing mechanism 2b is mainly different from the second embodiment in that the bolt 3a is provided so as to penetrate the shock absorbing material 1.

このようにボルト3aが衝撃吸収材1を貫通する場合でも、前記の式(2)によりボルト3aの位置を定めることで第1の実施形態と同様の効果が得られる。また、ボルト3aが衝撃吸収材1を貫通することで、ボルト3aにより衝撃吸収材1を好適に保持できる。一方、第2の実施形態のようにボルト3aを衝撃吸収材1の端面に突き当てる場合、衝撃吸収材1に孔を空ける必要が無く簡易な構成となる。 Even when the bolt 3a penetrates the impact absorbing material 1 in this way, the same effect as that of the first embodiment can be obtained by determining the position of the bolt 3a by the above formula (2). Further, since the bolt 3a penetrates the shock absorbing material 1, the shock absorbing material 1 can be suitably held by the bolt 3a. On the other hand, when the bolt 3a is abutted against the end face of the impact absorbing material 1 as in the second embodiment, it is not necessary to make a hole in the impact absorbing material 1 and the structure is simple.

なお、ボルト3aに代えて第1の実施形態のような平面部5を有するボルト3を衝撃吸収材1を貫通するように配置してもよく、この場合は前記の式(1)によりボルト3の位置を定めればよい。 In addition, instead of the bolt 3a, the bolt 3 having the flat surface portion 5 as in the first embodiment may be arranged so as to penetrate the impact absorbing material 1. In this case, the bolt 3 may be arranged by the above formula (1). You just have to determine the position of.

[第4の実施形態]
図11は本発明の第4の実施形態に係る衝撃吸収機構2cを示す図である。この衝撃吸収機構2cは、ボルト3aの断面中心線Lと、隣り合うボルト3aの間を二等分する部材軸方向の線分Laとの間の距離Xを前記の式(2)により定める点で第2の実施形態と主に異なる。
[Fourth Embodiment]
FIG. 11 is a diagram showing a shock absorbing mechanism 2c according to a fourth embodiment of the present invention. In this shock absorbing mechanism 2c, the distance X1 between the cross - sectional center line L of the bolt 3a and the line segment La in the axial direction of the member that bisects between the adjacent bolts 3a is determined by the above equation (2). It differs mainly from the second embodiment in that it is different from the second embodiment.

図12は衝突荷重が加わった状態の衝撃吸収機構2cを示す図である。図12(a)は衝撃吸収機構2cの水平方向の断面を示し、図12(b)はボルト3a付近の拡大図を示す。 FIG. 12 is a diagram showing a shock absorbing mechanism 2c in a state where a collision load is applied. FIG. 12A shows a horizontal cross section of the shock absorbing mechanism 2c, and FIG. 12B shows an enlarged view of the vicinity of the bolt 3a.

衝撃吸収機構2cでは、図12(a)の矢印Aに示す方向に衝突荷重が加わりバンパーリインフォース11がサイドメンバ9側に押されると、各ボルト3aが衝撃吸収材1を前方に押圧し、衝撃吸収材1が各ボルト3aの断面中心線Lの両側で図12(b)の矢印Bに示すように押し分けられ、各ボルト3aから見て車両幅方向の側方にある空間からサイドメンバ9内に進入する。 In the shock absorbing mechanism 2c, when a collision load is applied in the direction indicated by the arrow A in FIG. 12A and the bumper reinforce 11 is pushed toward the side member 9, each bolt 3a pushes the shock absorbing material 1 forward and impacts. The absorbent material 1 is pushed separately on both sides of the cross-sectional center line L of each bolt 3a as shown by the arrow B in FIG. Enter into.

この時、ボルト3aで押し分けられた衝撃吸収材1が両ボルト3aの間の狭い空間を通り、当該空間において車両幅方向に圧縮され、木材が硬化して圧縮部15が形成される。 At this time, the impact absorbing material 1 pushed by the bolts 3a passes through a narrow space between the bolts 3a and is compressed in the vehicle width direction in the space, and the wood is hardened to form the compressed portion 15.

図12(b)を参照して、衝撃吸収材1のうちボルト3aで押し分けられて両ボルト3aの間を通る部分について考えると、ボルト3aで押し分けられる前に両ボルト3aの断面中心線Lの間の幅2Xの範囲にある衝撃吸収材1が、両ボルト3aの間を通るときに車両幅方向に圧縮され、幅(2X-2D)となる。 Considering the portion of the shock absorbing material 1 that is pushed by the bolt 3a and passes between the two bolts 3a with reference to FIG. 12B, the cross-sectional center line L of both bolts 3a before being pushed by the bolt 3a. When the shock absorber 1 in the range of the width 2 × 1 is compressed in the vehicle width direction when passing between the bolts 3a, the width (2X 1-2D 1 ) is obtained.

この時、車両幅方向の圧縮による衝撃吸収材1の幅の減少分2Dの元の幅2Xに対する比2D/2Xがε以上であれば、車両幅方向の圧縮により木材が硬化して高い衝撃吸収効果が得られる。 At this time, if the ratio of the decrease in the width of the shock absorber 1 due to the compression in the vehicle width direction to the original width 2X 1 of 2D 1 is ε or more , the wood is hardened by the compression in the vehicle width direction. High shock absorption effect can be obtained.

すなわち、前記の距離Xについて下式(2’)が成り立てば、衝撃吸収材1が車両幅方向に充分に圧縮され、ひずみ硬化現象が生じて衝突荷重が吸収され、第1の実施形態と同様の効果が得られる。この式(2’)は、前記の式(2)と同じ式である。
≦D/ε…(2’)
That is, if the following equation (2') holds for the distance X 1 , the impact absorber 1 is sufficiently compressed in the vehicle width direction, a strain hardening phenomenon occurs, and the collision load is absorbed, as in the first embodiment. A similar effect can be obtained. This equation (2') is the same as the above equation (2).
X 1 ≤ D 1 / ε ... (2')

これは、図13の衝撃吸収機構2c’に示すように平面部5を有するボルト3を用いる場合も同様であり、この場合は、前記の式(1)によりボルト3の位置を定めればよい。 This also applies to the case where the bolt 3 having the flat surface portion 5 is used as shown in the impact absorption mechanism 2c'in FIG. 13, and in this case, the position of the bolt 3 may be determined by the above equation (1). ..

なお、ボルト間の距離をこのように設定すると同時に、ボルトと衝撃吸収材1の側面との間の距離についても第1、第2の実施形態で説明したように定めることで、ボルト間、およびボルトとサイドメンバ9の間で衝撃吸収材1が圧縮されることによる衝撃吸収効果を同時に生じさせることも可能である。 At the same time as setting the distance between the bolts in this way, the distance between the bolts and the side surface of the shock absorbing material 1 is also determined as described in the first and second embodiments, so that the distance between the bolts and the distance between the bolts can be determined. It is also possible to simultaneously generate a shock absorbing effect by compressing the shock absorbing material 1 between the bolt and the side member 9.

[第5の実施形態]
図14は本発明の第5の実施形態の衝撃吸収機構2dを示す図である。図14(a)は衝撃吸収機構2dの水平方向の断面を示す図であり、図14(b)、(c)はそれぞれ図14(a)の線b-b、c-cに沿った鉛直方向の断面を示す図である。
[Fifth Embodiment]
FIG. 14 is a diagram showing a shock absorbing mechanism 2d according to a fifth embodiment of the present invention. 14 (a) is a diagram showing a horizontal cross section of the shock absorbing mechanism 2d, and FIGS. 14 (b) and 14 (c) are vertical along the lines bb and cc of FIG. 14 (a), respectively. It is a figure which shows the cross section in the direction.

この衝撃吸収機構2dは、衝撃吸収材1のせん断による衝撃吸収を行う点で第1の実施形態と主に異なる。すなわち、衝撃吸収機構2dでは、衝撃吸収材1の前端部(他方の端部)が筒状のバンパーリインフォース11aの後壁に設けられた開口110からバンパーリインフォース11a(他方の部材)の内部空間に挿入される。 This shock absorbing mechanism 2d is mainly different from the first embodiment in that shock absorbing by shearing of the shock absorbing material 1 is performed. That is, in the shock absorbing mechanism 2d, the front end portion (the other end portion) of the shock absorbing material 1 is inserted into the internal space of the bumper reinforce 11a (the other member) from the opening 110 provided in the rear wall of the tubular bumper reinforce 11a. Will be inserted.

衝撃吸収機構2dは、第1の実施形態の衝撃吸収機構2の構成に加え、バンパーリインフォース11aに連結されるボルト3を有する。当該ボルト3の軸部はバンパーリインフォース11aの下面からバンパーリインフォース11aを貫通し、軸部の先端がナット4によってバンパーリインフォース11aの上面に固定される。ボルト3は衝撃吸収材1の前端面に突き当てて配置され、サイドメンバ9側に面した平面部5を有する。 The shock absorbing mechanism 2d has a bolt 3 connected to the bumper reinforce 11a in addition to the configuration of the shock absorbing mechanism 2 of the first embodiment. The shaft portion of the bolt 3 penetrates the bumper reinforce 11a from the lower surface of the bumper reinforce 11a, and the tip of the shaft portion is fixed to the upper surface of the bumper reinforce 11a by the nut 4. The bolt 3 is arranged so as to abut against the front end surface of the shock absorbing material 1 and has a flat surface portion 5 facing the side member 9.

ここで、部材軸方向から見た時(図14(a)の矢印参照)に、衝撃吸収材1の前端部のボルト3と後端部のボルト3は異なる位置に配置される。また部材軸方向から見た時に、衝撃吸収材1の前端部のボルト3とサイドメンバ9の間では、前端部のボルト3と重複する位置にバンパーリインフォース11aに連結された他のボルト3等が存在しない。 Here, when viewed from the member axial direction (see the arrow in FIG. 14A), the bolt 3 at the front end portion and the bolt 3 at the rear end portion of the impact absorbing material 1 are arranged at different positions. Further, when viewed from the member axial direction, between the bolt 3 at the front end of the shock absorber 1 and the side member 9, another bolt 3 or the like connected to the bumper reinforce 11a is located at a position overlapping the bolt 3 at the front end. not exist.

バンパーリインフォース11aの前壁において衝撃吸収材1の後端部のボルト3と車両幅方向に対応する位置には開口111が形成される。 An opening 111 is formed on the front wall of the bumper reinforce 11a at a position corresponding to the bolt 3 at the rear end of the shock absorbing material 1 in the vehicle width direction.

衝撃吸収材1の後端部のボルト3は、ボルト3の断面中心線Lと、ボルト3に近い方の衝撃吸収材1の側面との間の距離Xが、第1の実施形態と同様に定められる。 The bolt 3 at the rear end of the shock absorbing material 1 has the same distance X1 between the cross-sectional center line L of the bolt 3 and the side surface of the shock absorbing material 1 closer to the bolt 3 as in the first embodiment. It is stipulated in.

一方、衝撃吸収材1の前端部のボルト3は、ボルト3の断面中心線Lと、隣り合うボルト3の間を二等分する部材軸方向の線分Laとの距離Xを、図13等で説明したものと同様、式(1)により{D-(1-ε)C}/ε以下となるように定める。ここで、衝撃吸収材1の前端部のボルト3の幅が2Dであり、その平面部5の幅が2Dである。 On the other hand, for the bolt 3 at the front end of the shock absorbing material 1, the distance X 2 between the cross-sectional center line L of the bolt 3 and the line segment La in the member axial direction that bisects between the adjacent bolts 3 is shown in FIG. Etc., it is determined to be {D 2- (1-ε) C 2 } / ε or less by the equation (1). Here, the width of the bolt 3 at the front end portion of the shock absorbing material 1 is 2D 2 , and the width of the flat surface portion 5 thereof is 2D 2 .

衝撃吸収機構2dでは、図15の矢印Aに示す方向に衝突荷重が加わりバンパーリインフォース11aがサイドメンバ9側に押されると、前端部のボルト3が衝撃吸収材1を後方に押圧し、後端部のボルト3が衝撃吸収材1を前方に押圧することで、前端部のボルト3と後端部のボルト3の車両幅方向の間で衝撃吸収材1のせん断が誘発される。 In the shock absorbing mechanism 2d, when a collision load is applied in the direction shown by the arrow A in FIG. 15 and the bumper shear 11a is pushed toward the side member 9, the bolt 3 at the front end pushes the shock absorbing material 1 backward, and the rear end. When the bolt 3 of the portion presses the impact absorbing material 1 forward, shearing of the impact absorbing material 1 is induced between the bolt 3 at the front end portion and the bolt 3 at the rear end portion in the vehicle width direction.

せん断が誘発されると、前端部のボルト3と車両幅方向に対応する位置の衝撃吸収材1-1の後端部はサイドメンバ9内に進入する。衝撃吸収材1-1の前端部は前端部のボルト3で押し分けられ、前端部のボルト3間の狭い空間で車両幅方向の圧縮部15が形成される。 When shearing is induced, the bolt 3 at the front end and the rear end of the impact absorber 1-1 at a position corresponding to the vehicle width direction enter the side member 9. The front end portion of the shock absorbing material 1-1 is pushed apart by the bolt 3 at the front end portion, and the compression portion 15 in the vehicle width direction is formed in a narrow space between the bolts 3 at the front end portion.

一方、後端部のボルト3と車両幅方向において対応する位置の衝撃吸収材1-2の前端部は、開口111に向かってバンパーリインフォース11a内に進入する。衝撃吸収材1-2の後端部は後端部のボルト3で押し分けられ、ボルト3とサイドメンバ9の間の狭い空間で車両幅方向の圧縮部15が形成される。 On the other hand, the front end portion of the impact absorbing material 1-2 at the position corresponding to the bolt 3 at the rear end portion in the vehicle width direction enters the bumper reinforce 11a toward the opening 111. The rear end portion of the shock absorbing material 1-2 is pushed apart by the bolt 3 at the rear end portion, and the compression portion 15 in the vehicle width direction is formed in the narrow space between the bolt 3 and the side member 9.

第5の実施形態でも、後端部のボルト3を衝撃吸収材1の側面に近づけて配置し、前端部の隣り合う2本のボルト3を近づけて配置する構成とすることにより、圧縮部15の形成により高い衝撃吸収効果が得られる。これは断面円形のボルト3aを用いた場合も同様であり、この場合、前端部のボルト3aの位置は前記の式(2’)すなわち式(2)により定めればよい。 Also in the fifth embodiment, the compression portion 15 is configured by arranging the bolt 3 at the rear end portion close to the side surface of the shock absorbing material 1 and arranging the two adjacent bolts 3 at the front end portion close to each other. A high impact absorption effect can be obtained by the formation of. This also applies when a bolt 3a having a circular cross section is used. In this case, the position of the bolt 3a at the front end may be determined by the above equation (2'), that is, the equation (2).

以上、添付図面を参照しながら、本発明に係る好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiment of the present invention has been described above with reference to the accompanying drawings, the present invention is not limited to such an example. It is clear that a person skilled in the art can come up with various modified examples or modified examples within the scope of the technical idea disclosed in the present application, and these also naturally belong to the technical scope of the present invention. Understood.

例えば前記の各実施形態では車両10のバンパーリインフォースとサイドメンバの間に衝撃吸収機構を設置しているが、衝撃吸収機構は車両10において衝突時の荷重を受ける荷重受け部材と当該荷重が伝達される被伝達部材の間に設ければよく、上記のバンパーリインフォースとサイドメンバの間に設けるものに限らない。例えば車両側突時の衝突荷重を軽減することを目的として、車両側部のボディー本体と車両内部のバッテリーケース等の間に設けてもよい。また車両10の種類も特に限定されない。 For example, in each of the above embodiments, a shock absorbing mechanism is installed between the bumper reinforce and the side member of the vehicle 10, but the shock absorbing mechanism transmits the load to the load receiving member that receives the load at the time of collision in the vehicle 10. It may be provided between the members to be transmitted, and is not limited to the one provided between the bumper reinforce and the side member. For example, for the purpose of reducing the collision load at the time of a collision on the vehicle side, it may be provided between the body body on the side of the vehicle and the battery case inside the vehicle. Further, the type of the vehicle 10 is not particularly limited.

1、1-1、1-2:衝撃吸収材
2、2’、2a、2b、2c、2c’、2d:衝撃吸収機構
3、3a:ボルト
4:ナット
5:平面部
6:凹面部
9:サイドメンバ
10:車両
11、11a:バンパーリインフォース
15、15a:圧縮部
L:断面中心線
La:線分
、X:距離
1, 1-1, 1-2: Impact absorber 2, 2', 2a, 2b, 2c, 2c', 2d: Impact absorption mechanism 3, 3a: Bolt 4: Nut 5: Flat surface portion 6: Concave surface portion 9: Side member 10: Vehicle 11, 11a: Bumper reinforcement 15, 15a: Compression part L: Cross-section center line La: Line segment X 1 , X 2 : Distance

Claims (6)

車両に加わる衝突荷重を軽減するための衝撃吸収機構であって、
衝突荷重を受ける荷重受け部材と前記衝突荷重が前記荷重受け部材から伝達される被伝達部材の間に設けられ、
部材軸方向の一方の端部が前記荷重受け部材と前記被伝達部材のうち一方の部材の内部空間に挿入された木製の柱状の衝撃吸収材と、
前記一方の部材に連結され、衝突時に前記衝撃吸収材を押圧する第1の連結材と、
を具備し、
衝突時に前記衝撃吸収材が前記第1の連結材に押し分けられ、前記第1の連結材から見て前記衝撃吸収材の部材軸直交方向の側方にある空間に進入し、
前記部材軸直交方向に沿った前記第1の連結材の幅を2D、前記荷重受け部材と前記被伝達部材のうち他方の部材側に面した前記第1の連結材の平面部または凹面部の幅を2Cとして、
前記第1の連結材の前記部材軸方向に沿った断面の中心を通る前記部材軸方向の断面中心線と、前記衝撃吸収材の前記第1の連結材に近い方の側面との間の距離Xが、
≦{D-(1-ε)C}/ε
により定められ、
εは、前記衝撃吸収材を前記部材軸直交方向に圧縮した際の応力とひずみの関係を示す応力-ひずみ分布において、前記衝撃吸収材の弾性変形域を超えて前記衝撃吸収材の剛性が低下した後、前記衝撃吸収材の剛性が再度上昇するひずみ硬化域に対応するひずみの値であることを特徴とする衝撃吸収機構。
It is a shock absorbing mechanism for reducing the collision load applied to the vehicle.
A load receiving member that receives a collision load and a transmitted member to which the collision load is transmitted from the load receiving member are provided.
A wooden columnar shock absorber whose one end in the axial direction of the member is inserted into the internal space of the load receiving member and one of the members to be transmitted,
A first connecting material that is connected to the one member and presses the impact absorbing material in the event of a collision.
Equipped with
At the time of a collision, the impact absorbing material is pushed by the first connecting material, and enters the space on the side of the impact absorbing material in the direction orthogonal to the member axis when viewed from the first connecting material.
The width of the first connecting member along the member axis orthogonal direction is 2D 1 , and the flat surface portion or concave portion of the first connecting member facing the other member side of the load receiving member and the transmitted member. With a width of 2C 1
The distance between the cross-sectional center line in the axial direction of the member passing through the center of the cross section along the axial direction of the member of the first connecting material and the side surface of the shock absorbing material closer to the first connecting member. X 1 is
X 1 ≤ {D 1- (1-ε) C 1 } / ε
Determined by
In the stress-strain distribution showing the relationship between stress and strain when the shock absorber is compressed in the direction perpendicular to the member axis, ε exceeds the elastic deformation range of the shock absorber and the rigidity of the shock absorber decreases. A shock absorbing mechanism characterized by having a strain value corresponding to a strain hardening region in which the rigidity of the shock absorbing material increases again.
車両に加わる衝突荷重を軽減するための衝撃吸収機構であって、
衝突荷重を受ける荷重受け部材と前記衝突荷重が前記荷重受け部材から伝達される被伝達部材の間に設けられ、
部材軸方向の一方の端部が前記荷重受け部材と前記被伝達部材のうち一方の部材の内部空間に挿入された木製の柱状の衝撃吸収材と、
前記一方の部材に連結され、衝突時に前記衝撃吸収材を押圧する複数の第1の連結材と、
を具備し、
衝突時に前記衝撃吸収材が前記第1の連結材に押し分けられ、前記第1の連結材から見て前記衝撃吸収材の部材軸直交方向の側方にある空間に進入し、
前記部材軸直交方向に沿った前記第1の連結材の幅を2D、前記荷重受け部材と前記被伝達部材のうち他方の部材側に面した前記第1の連結材の平面部または凹面部の幅を2Cとして、
前記第1の連結材の前記部材軸方向に沿った断面の中心を通る前記部材軸方向の断面中心線と、隣り合う前記第1の連結材の間を二等分する前記部材軸方向の線分との間の距離Xが、
≦{D-(1-ε)C}/ε
により定められ、
εは、前記衝撃吸収材を前記部材軸直交方向に圧縮した際の応力とひずみの関係を示す応力-ひずみ分布において、前記衝撃吸収材の弾性変形域を超えて前記衝撃吸収材の剛性が低下した後、衝撃吸収材の剛性が再度上昇するひずみ硬化域に対応するひずみの値であることを特徴とする衝撃吸収機構。
It is a shock absorbing mechanism for reducing the collision load applied to the vehicle.
A load receiving member that receives a collision load and a transmitted member to which the collision load is transmitted from the load receiving member are provided.
A wooden columnar shock absorber whose one end in the axial direction of the member is inserted into the internal space of the load receiving member and one of the members to be transmitted,
A plurality of first connecting members that are connected to the one member and press the impact absorbing material in the event of a collision.
Equipped with
At the time of a collision, the impact absorbing material is pushed by the first connecting material, and enters the space on the side of the impact absorbing material in the direction orthogonal to the member axis when viewed from the first connecting material.
The width of the first connecting member along the member axis orthogonal direction is 2D 1 , and the flat surface portion or concave portion of the first connecting member facing the other member side of the load receiving member and the transmitted member. With a width of 2C 1
A line in the axial direction of the member that bisects between the center line of the cross section in the axial direction of the member passing through the center of the cross section of the first connecting member along the axial direction of the member and the adjacent first connecting member. The distance X 1 between the minutes is
X 1 ≤ {D 1- (1-ε) C 1 } / ε
Determined by
In the stress-strain distribution showing the relationship between stress and strain when the shock absorber is compressed in the direction perpendicular to the member axis, ε exceeds the elastic deformation range of the shock absorber and the rigidity of the shock absorber decreases. A shock absorbing mechanism characterized by having a strain value corresponding to a strain hardening region in which the rigidity of the shock absorbing material rises again.
前記第1の連結材の前記断面が略円形であり、前記距離Xが、C=0として
≦D/ε
により定められることを特徴とする請求項1または請求項2記載の衝撃吸収機構。
The cross section of the first connecting material is substantially circular, and the distance X 1 is X 1 ≤ D 1 / ε with C 1 = 0.
The shock absorbing mechanism according to claim 1 or 2, wherein the shock absorbing mechanism is defined by the above.
前記第1の連結材が、前記衝撃吸収材の端面に突き当てられることを特徴とする請求項1から請求項3のいずれかに記載の衝撃吸収機構。 The shock absorbing mechanism according to any one of claims 1 to 3, wherein the first connecting material is abutted against an end surface of the shock absorbing material. 前記第1の連結材が、前記衝撃吸収材を貫通することを特徴とする請求項1から請求項3のいずれかに記載の衝撃吸収機構。 The shock absorbing mechanism according to any one of claims 1 to 3, wherein the first connecting material penetrates the shock absorbing material. 前記衝撃吸収材の前記部材軸方向の他方の端部は、前記他方の部材の内部空間に挿入され、
前記他方の部材に連結され、衝突時に前記衝撃吸収材を押圧する複数の第2の連結材を更に具備し、
前記第1、第2の連結材は、前記部材軸方向から見た時に異なる位置に配置され、
衝突時に前記衝撃吸収材が前記第2の連結材に押し分けられ、前記第2の連結材から見て前記部材軸直交方向の側方にある空間に進入し、
前記部材軸直交方向に沿った前記第2の連結材の幅を2D、前記一方の部材側に面した前記第2の連結材の平面部または凹面部の幅を2Cとして、
前記第2の連結材の前記部材軸方向に沿った断面の中心を通る前記部材軸方向の断面中心線と、隣り合う前記第2の連結材の間を二等分する前記部材軸方向の線分との間の距離Xが、
≦{D-(1-ε)C}/ε
により定められることを特徴とする請求項1から請求項5のいずれかに記載の衝撃吸収機構。
The other end of the shock absorber in the axial direction of the member is inserted into the internal space of the other member.
Further comprising a plurality of second connecting members that are coupled to the other member and press the impact absorbing material in the event of a collision.
The first and second connecting members are arranged at different positions when viewed from the member axial direction.
At the time of a collision, the impact absorbing material is pushed by the second connecting material, and enters the space on the side orthogonal to the member axis when viewed from the second connecting material.
The width of the second connecting member along the member axis orthogonal direction is 2D 2 , and the width of the flat surface portion or the concave surface portion of the second connecting member facing the one member side is 2C 2 .
A line in the axial direction of the member that bisects between the center line of the cross section in the axial direction of the member passing through the center of the cross section of the second connecting member along the axial direction of the member and the adjacent second connecting member. The distance X 2 between the minutes is
X 2 ≤ {D 2- (1-ε) C 2 } / ε
The shock absorbing mechanism according to any one of claims 1 to 5, wherein the shock absorbing mechanism is defined by the above-mentioned method.
JP2019102724A 2019-05-31 2019-05-31 Shock absorption mechanism Active JP7073304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019102724A JP7073304B2 (en) 2019-05-31 2019-05-31 Shock absorption mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102724A JP7073304B2 (en) 2019-05-31 2019-05-31 Shock absorption mechanism

Publications (2)

Publication Number Publication Date
JP2020196307A JP2020196307A (en) 2020-12-10
JP7073304B2 true JP7073304B2 (en) 2022-05-23

Family

ID=73647651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102724A Active JP7073304B2 (en) 2019-05-31 2019-05-31 Shock absorption mechanism

Country Status (1)

Country Link
JP (1) JP7073304B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113767A (en) 2007-11-09 2009-05-28 Toyota Motor Corp Vehicle body front structure
US20150158443A1 (en) 2012-08-20 2015-06-11 Bayerische Motoren Werke Aktiengesellscharft Vehicle Having Impact Protection
JP2015155704A (en) 2012-04-24 2015-08-27 トヨタ車体株式会社 Shock absorption mechanism
US20150321631A1 (en) 2013-01-17 2015-11-12 Bayerische Motoren Werke Aktiengesellschaft Energy Absorption Structure for a Motor Vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354677B2 (en) * 2015-06-25 2018-07-11 トヨタ車体株式会社 Vehicle shock absorption structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113767A (en) 2007-11-09 2009-05-28 Toyota Motor Corp Vehicle body front structure
JP2015155704A (en) 2012-04-24 2015-08-27 トヨタ車体株式会社 Shock absorption mechanism
US20150158443A1 (en) 2012-08-20 2015-06-11 Bayerische Motoren Werke Aktiengesellscharft Vehicle Having Impact Protection
US20150321631A1 (en) 2013-01-17 2015-11-12 Bayerische Motoren Werke Aktiengesellschaft Energy Absorption Structure for a Motor Vehicle

Also Published As

Publication number Publication date
JP2020196307A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US10293857B2 (en) Reach vehicle-body structure of vehicle
US10604092B2 (en) Bumper beam structure
KR20120099067A (en) Energy absorber with lobes providing uniform pedestrian impact
US20060066115A1 (en) Shock absorbing device for vehicle and shock absorbing structure for vehicle
CN110431045B (en) Impact absorbing member for vehicle
US10286955B2 (en) Rear vehicle-body structure of vehicle
KR101527338B1 (en) Vehicle frame member structure with excellent impact resistance performance
US20100314905A1 (en) Vehicle body structure
JP2008024084A (en) Connecting structure of bumper reinforcement and shock absorbing member
JP2012035691A (en) Towing hook mounting structure of vehicle
JP7073304B2 (en) Shock absorption mechanism
JP7089412B2 (en) Shock absorption mechanism
JP2007112212A (en) Body frame structure of vehicle
US20180265132A1 (en) Vehicle front structure with splayed variable gage rail tip
JP2010158954A (en) Impact absorbing device for vehicle
US9744996B2 (en) Vehicle front structure
JP6999448B2 (en) Impact absorption mechanism
KR102145485B1 (en) Front Bumper and Front Side Member Module
JP6827973B2 (en) Shock absorption mechanism
JP7111590B2 (en) Shock absorption mechanism
JP2004314790A (en) Bumper for automobile
JP7339773B2 (en) Shock absorption mechanism
JP2019108974A (en) Shock absorbing mechanism
JP2009096225A (en) Energy absorbing member
KR20070055014A (en) Front impact absorption means of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220511

R150 Certificate of patent or registration of utility model

Ref document number: 7073304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150