JP6827973B2 - Shock absorption mechanism - Google Patents

Shock absorption mechanism Download PDF

Info

Publication number
JP6827973B2
JP6827973B2 JP2018114334A JP2018114334A JP6827973B2 JP 6827973 B2 JP6827973 B2 JP 6827973B2 JP 2018114334 A JP2018114334 A JP 2018114334A JP 2018114334 A JP2018114334 A JP 2018114334A JP 6827973 B2 JP6827973 B2 JP 6827973B2
Authority
JP
Japan
Prior art keywords
shock absorbing
load
collision
collision load
bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018114334A
Other languages
Japanese (ja)
Other versions
JP2019217800A (en
Inventor
豪軌 杉浦
豪軌 杉浦
義輝 水谷
義輝 水谷
三浦 寿久
寿久 三浦
西村 拓也
拓也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyota Auto Body Co Ltd
Priority to JP2018114334A priority Critical patent/JP6827973B2/en
Publication of JP2019217800A publication Critical patent/JP2019217800A/en
Application granted granted Critical
Publication of JP6827973B2 publication Critical patent/JP6827973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Description

本発明は、車両に加わる衝撃を吸収する衝撃吸収機構に関する。 The present invention relates to a shock absorbing mechanism that absorbs a shock applied to a vehicle.

車両の衝突時の衝突荷重を受けてその衝撃を吸収できるように構成された衝撃吸収機構に関する技術が、特許文献1、2に記載されている。 Patent Documents 1 and 2 describe techniques relating to an impact absorbing mechanism configured to receive an impact load at the time of a vehicle collision and absorb the impact.

特許文献1、2には、車両前方衝突時にバンパーリインフォースがサイドメンバ側に押された際に、バンパーリインフォースとサイドメンバの間に設けた木材がボルト等の連結材に押されて圧縮するかまたはせん断が生じることで衝撃が吸収される衝撃吸収機構について記載されている。 According to Patent Documents 1 and 2, when the bumper shear is pushed toward the side member during a vehicle front collision, the wood provided between the bumper shear and the side member is pushed by a connecting material such as a bolt to be compressed. A shock absorbing mechanism in which a shock is absorbed by shearing is described.

国際公開第2014/077314号International Publication No. 2014/077314 特開2017-7598号公報JP-A-2017-7598

これらの衝撃吸収機構では、バンパーリインフォースが変位する間、連結材にほぼ一定の衝突荷重が加わり木材の圧縮やせん断が安定して進行する。ただし、衝突初期に連結材が受ける衝突荷重の変動は大きく、上記した一定の衝突荷重に比べて大きな衝突荷重が発生する。 In these shock absorbing mechanisms, while the bumper reinforce is displaced, a substantially constant collision load is applied to the connecting material, and the compression and shearing of the wood proceed stably. However, the fluctuation of the collision load received by the connecting material at the initial stage of the collision is large, and a large collision load is generated as compared with the above-mentioned constant collision load.

連結材を複数配置し、木材の圧縮面積を大きくしたりせん断箇所を増やしたりすることで大きな衝撃吸収効果が得られるが、衝突初期にこれらの連結材が衝突荷重を同時に受け止める場合、機構全体として受ける衝突荷重の変動はより大きくなり、発生する衝突荷重もより大である。その結果、意図した衝撃吸収効果が得られない恐れがあった。 A large impact absorption effect can be obtained by arranging multiple connecting materials and increasing the compression area of the wood or increasing the shear points. However, if these connecting materials simultaneously receive the collision load at the initial stage of collision, the mechanism as a whole The fluctuation of the collision load received is larger, and the collision load generated is also larger. As a result, there is a risk that the intended shock absorbing effect cannot be obtained.

本発明は前述した問題点に鑑みてなされたものであり、好適に衝撃吸収を行うことのできる衝撃吸収機構を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a shock absorbing mechanism capable of suitably performing shock absorption.

前述した目的を達成するための本発明は、車両に加わる衝突荷重を軽減するための衝撃吸収機構であって、衝突荷重を受ける荷重受け部材と衝突荷重が前記荷重受け部材から伝達される被伝達部材の間に設けられ、部材軸方向の一方の端部が前記荷重受け部材と前記被伝達部材のうち一方の部材の内部空間に挿入された、木製の衝撃吸収材を含む柱状の衝撃吸収部と、前記一方の部材に連結された複数の第1の連結材と、を具備し、前記衝撃吸収部の端面からの部材軸方向の距離を複数の前記第1の連結材で異ならせることにより、複数の前記第1の連結材が当該端面から衝突荷重を受けるタイミングがずらされ、複数の前記第1の連結材は、前記部材軸方向から見た時に隙間を空けて設けられ、前記隙間は、前記第1の連結材の前記端面側とその反対側とを連通させるものであり、先に衝突荷重を受ける前記第1の連結材の前記端面と反対側の端部が、後に衝突荷重を受ける前記第1の連結材の前記端面と反対側の端部よりも前記端面側に位置することを特徴とする衝撃吸収機構である。 The present invention for achieving the above-mentioned object is a shock absorbing mechanism for reducing a collision load applied to a vehicle, and is a load receiving member that receives a collision load and a load receiving member that transmits the collision load from the load receiving member. A columnar shock absorbing portion including a wooden shock absorbing material, which is provided between the members and has one end in the axial direction of the member inserted into the internal space of one of the load receiving member and the transmitted member. And a plurality of first connecting members connected to the one member, and the distance in the member axial direction from the end face of the shock absorbing portion is different among the plurality of first connecting members. , The timing at which the plurality of the first connecting members receive the impact load from the end face is shifted, and the plurality of the first connecting members are provided with a gap when viewed from the member axial direction, and the gap is provided. , The end face side of the first connecting member and the opposite side thereof are communicated with each other, and the end portion of the first connecting member opposite to the end face, which receives the collision load first, later applies the collision load. It is a shock absorbing mechanism characterized in that it is located closer to the end face side than the end portion on the side opposite to the end face of the first connecting member to be received.

本発明では、複数の連結材が衝撃吸収部の端面から衝突荷重を受けるが、これらの連結材が当該端面から異なる距離で配置される構成となっている。これにより、各連結材が衝突荷重を受けるタイミングをずらすことができ、衝突初期に機構全体が受ける荷重の変動を小さくし、大きな衝突荷重の発生を抑制することができる。 In the present invention, a plurality of connecting members receive a collision load from the end face of the shock absorbing portion, but these connecting members are arranged at different distances from the end face . As a result, the timing at which each connecting member receives the collision load can be shifted, the fluctuation of the load received by the entire mechanism at the initial stage of the collision can be reduced, and the generation of a large collision load can be suppressed.

また本発明では、衝突荷重を受ける前記衝撃吸収部の端面であることにより、衝撃吸収機構を簡易な構成とできる。
また前記第1の連結材は棒状の部材であることが望ましい。
In the present invention, by surface receiving the collision load is an end of the shock absorber, the shock absorbing mechanism can with a simple configuration.
Further, it is desirable that the first connecting member is a rod-shaped member.

前記第1の連結材は、前記荷重受け部材と前記被伝達部材のうち他方の部材に面した平面部または凹面部を有することが望ましい。
連結材の平面部や凹面部によって衝突荷重を安定して受けとめることができ、衝撃吸収効果が大きくなる。
It is desirable that the first connecting member has a flat surface portion or a concave surface portion facing the other member of the load receiving member and the transmitted member.
The flat surface portion and concave surface portion of the connecting material can stably receive the collision load, and the impact absorption effect is enhanced.

複数の前記第1の連結材が前記端面から衝突荷重を受けるタイミングの差を、1/1000秒以下とすることが望ましい。
本発明では各連結材が衝突荷重を受けるタイミングをずらすことで衝突初期に機構全体が受ける荷重の変動を小さくするが、そのタイミングは大きくずらす必要は無く、例えば上記のように必要な分だけずらせばよい。これにより、機構全体で受ける衝突荷重を早い段階で安定させることができる。
It is desirable that the difference in timing at which the plurality of first connecting members receive the collision load from the end face is 1/1000 second or less.
In the present invention, by shifting the timing at which each connecting member receives the collision load, the fluctuation of the load received by the entire mechanism at the initial stage of the collision is reduced, but the timing does not need to be greatly shifted. For example, the timing is shifted by the required amount as described above. Just do it. As a result, the collision load received by the entire mechanism can be stabilized at an early stage.

前記衝撃吸収部の部材軸方向の他方の端部は、前記荷重受け部材と前記被伝達部材のうち他方の部材の内部空間に挿入され、前記他方の部材に連結された複数の第2の連結材を更に具備し、前記第1の連結材と前記第2の連結材は、前記衝撃吸収部の部材軸方向から見た時に異なる位置に配置され、前記衝撃吸収部の所定の面からの部材軸方向の距離を複数の前記第2の連結材で異ならせることにより、複数の前記第2の連結材が当該所定の面から衝突荷重を受けるタイミングがずらされることも望ましい。
これにより衝撃吸収材のせん断による衝撃吸収が可能になり、この場合も連結材が衝突荷重を受けるタイミングをずらすことで、衝突初期に機構全体が受ける衝突荷重の変動を小さくすることができる。
The other end portion of the shock absorbing portion in the member axial direction is inserted into the internal space of the other member of the load receiving member and the transmitted member, and is connected to the other member. The first connecting material and the second connecting material are further provided with materials, and the first connecting material and the second connecting material are arranged at different positions when viewed from the member axial direction of the shock absorbing portion, and the members from a predetermined surface of the shock absorbing portion. It is also desirable that the timing at which the plurality of the second connecting members receive the collision load from the predetermined surface is shifted by making the distance in the axial direction different among the plurality of the second connecting members.
This makes it possible to absorb the shock by shearing the shock absorbing material. In this case as well, by shifting the timing at which the connecting material receives the collision load, it is possible to reduce the fluctuation of the collision load received by the entire mechanism at the initial stage of the collision.

本発明によれば、好適に衝撃吸収を行うことのできる衝撃吸収機構を提供できる。 According to the present invention, it is possible to provide a shock absorbing mechanism capable of suitably performing shock absorption.

衝撃吸収機構2の配置を示す概略図。The schematic which shows the arrangement of the shock absorption mechanism 2. 衝撃吸収機構2を示す図。The figure which shows the shock absorption mechanism 2. 衝突荷重が加わった状態の衝撃吸収機構2を示す図。The figure which shows the shock absorption mechanism 2 in the state which the collision load is applied. バンパーリインフォース11の変位と衝撃吸収機構2が受ける荷重の関係を示す図。The figure which shows the relationship between the displacement of a bumper reinforce 11 and the load which a shock absorbing mechanism 2 receives. 平面部5の断面形状の例。An example of the cross-sectional shape of the flat surface portion 5. 凹面部6の断面形状の例。An example of the cross-sectional shape of the concave surface portion 6. 衝撃吸収機構2’を示す図。The figure which shows the shock absorption mechanism 2'. 衝撃吸収機構2aを示す図。The figure which shows the shock absorption mechanism 2a. 衝撃吸収機構2bを示す図。The figure which shows the shock absorption mechanism 2b. 衝突荷重が加わった状態の衝撃吸収機構2bを示す図。The figure which shows the shock absorption mechanism 2b in the state which the collision load is applied.

以下、図面に基づいて、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
図1は本発明の実施形態に係る衝撃吸収機構2の配置を示す概略図である。衝撃吸収機構2は車両10に設けられ、衝突時に車両10に加わる衝撃を吸収して衝突荷重を軽減するためのものである。衝撃吸収機構2は、フロントバンパー(不図示)のバンパーリインフォース11と車両10のサイドメンバ9の間に配置される。
[First Embodiment]
FIG. 1 is a schematic view showing the arrangement of the shock absorbing mechanism 2 according to the embodiment of the present invention. The shock absorbing mechanism 2 is provided on the vehicle 10 and is for absorbing the shock applied to the vehicle 10 at the time of a collision to reduce the collision load. The shock absorbing mechanism 2 is arranged between the bumper reinforce 11 of the front bumper (not shown) and the side member 9 of the vehicle 10.

図1の左右は車両前後方向に対応し、図1の上下は車両幅方向に対応する。以下、「前」というときは車両10の前側を指し、図1の左側に対応する。「後」は車両10の後側を指し、図1の右側に対応する。 The left and right sides of FIG. 1 correspond to the front-rear direction of the vehicle, and the top and bottom of FIG. 1 correspond to the width direction of the vehicle. Hereinafter, the term "front" refers to the front side of the vehicle 10 and corresponds to the left side of FIG. “Rear” refers to the rear side of the vehicle 10 and corresponds to the right side of FIG.

バンパーリインフォース11は車両前方衝突時の荷重を受ける荷重受け部材であり、車両10の前部で車両幅方向に延びるように配置される。 The bumper reinforce 11 is a load receiving member that receives a load at the time of a vehicle front collision, and is arranged so as to extend in the vehicle width direction at the front portion of the vehicle 10.

サイドメンバ9はバンパーリインフォース11で受けた衝突荷重が伝達される被伝達部材である。サイドメンバ9は車両幅方向の左右に配置され、各サイドメンバ9とバンパーリインフォース11の間に衝撃吸収機構2が設けられる。 The side member 9 is a transmitted member to which the collision load received by the bumper reinforce 11 is transmitted. The side members 9 are arranged on the left and right in the vehicle width direction, and a shock absorbing mechanism 2 is provided between each side member 9 and the bumper reinforcement 11.

図2は衝撃吸収機構2を示す図である。図2(a)は衝撃吸収部12の部材軸方向に沿った鉛直断面を示す図であり、図2(b)は図2(a)の線a−aに沿った水平断面を示す図である。なお図2(a)は図2(b)の線b−bに沿った断面である。 FIG. 2 is a diagram showing a shock absorbing mechanism 2. FIG. 2A is a diagram showing a vertical cross section of the shock absorbing portion 12 along the member axial direction, and FIG. 2B is a diagram showing a horizontal cross section along the line aa of FIG. 2A. is there. Note that FIG. 2A is a cross section taken along the line bb of FIG. 2B.

図2に示すように、衝撃吸収機構2は、衝撃吸収部12、ボルト3等を有する。 As shown in FIG. 2, the shock absorbing mechanism 2 has a shock absorbing portion 12, a bolt 3, and the like.

衝撃吸収部12は、木製の柱状体である衝撃吸収材1(木材)を被覆材7で覆って構成された柱状部材であり、部材軸方向を車両前後方向(図2(a)、(b)の左右方向に対応する)として、部材軸方向の両端部がそれぞれバンパーリインフォース11側、サイドメンバ9側となるように配置される。また、本実施形態ではこの部材軸方向が木材の年輪の軸心方向(木材の繊維方向)に対応している。 The shock absorbing portion 12 is a columnar member formed by covering the shock absorbing material 1 (wood), which is a wooden columnar body, with a covering material 7, and the member axial direction is the vehicle front-rear direction (FIGS. 2A and 2B). ) Corresponding to the left-right direction), both ends in the member axial direction are arranged so as to be on the bumper reinforcement 11 side and the side member 9 side, respectively. Further, in the present embodiment, the axial direction of the member corresponds to the axial direction of the annual ring of wood (the fiber direction of wood).

被覆材7は衝撃吸収部12の側面および両端面に設けられ、衝撃吸収材1の全面を覆うものである。本実施形態では被覆材7を樹脂製のものとする。なお、衝撃吸収部12の側面は部材軸方向に沿った面であり、衝撃吸収部12の端面は部材軸方向と直交する面である。 The covering material 7 is provided on the side surface and both end surfaces of the shock absorbing material 12 and covers the entire surface of the shock absorbing material 1. In this embodiment, the covering material 7 is made of resin. The side surface of the shock absorbing portion 12 is a surface along the member axial direction, and the end surface of the shock absorbing portion 12 is a surface orthogonal to the member axial direction.

衝撃吸収部12の前端部はバンパーリインフォース11に当接し、ブラケット13によりバンパーリインフォース11に固定される。 The front end portion of the shock absorbing portion 12 comes into contact with the bumper reinforce 11 and is fixed to the bumper reinforce 11 by the bracket 13.

サイドメンバ9の前端部は筒状となっており、衝撃吸収部12の後端部(一方の端部)はサイドメンバ9(一方の部材)の筒状部分の内部空間に挿入される。 The front end portion of the side member 9 has a tubular shape, and the rear end portion (one end portion) of the shock absorbing portion 12 is inserted into the internal space of the tubular portion of the side member 9 (one member).

ボルト3(3−1、3−2)は金属製の頭付ボルトであり、衝撃吸収部12の後方に配置される。ボルト3はサイドメンバ9の前端部に連結される棒状の連結材である。ボルト3は、車両幅方向(図2(b)の上下方向に対応する)に複数本配置される。本実施形態では2本のボルト3が配置されるが、これに限ることはない。 Bolts 3 (3-1, 3-2) are metal headed bolts and are arranged behind the shock absorbing portion 12. The bolt 3 is a rod-shaped connecting member connected to the front end portion of the side member 9. A plurality of bolts 3 are arranged in the vehicle width direction (corresponding to the vertical direction in FIG. 2B). In this embodiment, two bolts 3 are arranged, but the present invention is not limited to this.

ここで、衝撃吸収部12の部材軸方向から見た時(図2(b)の矢印参照)に、ボルト3とバンパーリインフォース11(他方の部材)の間では、ボルト3と重複する位置にサイドメンバ9に連結された他のボルト3等が存在せず、このボルト3が衝撃吸収に大きく寄与することとなる。 Here, when viewed from the member axial direction of the shock absorbing portion 12 (see the arrow in FIG. 2B), the side between the bolt 3 and the bumper reinforce 11 (the other member) is located at a position overlapping the bolt 3. There is no other bolt 3 or the like connected to the member 9, and this bolt 3 greatly contributes to shock absorption.

ボルト3の軸部はサイドメンバ9の下面からサイドメンバ9を貫通し、軸部の先端がナット4によってサイドメンバ9の上面に固定される。これによりボルト3がサイドメンバ9の前端部に固定される。 The shaft portion of the bolt 3 penetrates the side member 9 from the lower surface of the side member 9, and the tip of the shaft portion is fixed to the upper surface of the side member 9 by the nut 4. As a result, the bolt 3 is fixed to the front end portion of the side member 9.

ボルト3の軸部には、バンパーリインフォース11側に面した平面部5が形成される。本実施形態では、ボルト3の軸部の長手方向と直交する断面(以下、単に断面という)が半円形と矩形を組み合わせた形状となっており、平面部5は矩形部分に形成される。平面部5はボルト3の軸部を加工して軸部と一体に形成されるが、これに限ることはない。例えば平面部5を有する別部品をボルトの軸部に別途取付けてもよい。 A flat surface portion 5 facing the bumper reinforce 11 side is formed on the shaft portion of the bolt 3. In the present embodiment, the cross section (hereinafter, simply referred to as a cross section) orthogonal to the longitudinal direction of the shaft portion of the bolt 3 has a shape that is a combination of a semicircle and a rectangle, and the flat surface portion 5 is formed in a rectangular portion. The flat surface portion 5 is formed integrally with the shaft portion by processing the shaft portion of the bolt 3, but the present invention is not limited to this. For example, another component having the flat surface portion 5 may be separately attached to the shaft portion of the bolt.

図2(b)に示すように、2本のボルト3は、衝撃吸収部12の後端面(所定の面)から部材軸方向に異なる距離で配置される。この距離の差を図中Dで示す。本実施形態では衝撃吸収部12の後端面に近い方のボルト3−1が当該後端面に接しており、当該後端面からの距離が0であるが、若干の離隔はあってもよい。 As shown in FIG. 2B, the two bolts 3 are arranged at different distances in the member axial direction from the rear end surface (predetermined surface) of the shock absorbing portion 12. This difference in distance is indicated by D in the figure. In the present embodiment, the bolt 3-1 closer to the rear end surface of the shock absorbing portion 12 is in contact with the rear end surface, and the distance from the rear end surface is 0, but there may be a slight separation.

図3は、矢印Aに示す方向に衝突荷重が加わった状態の衝撃吸収機構2を示す図である。図3(a)、(b)は前記の図2(b)で示した断面に対応する。 FIG. 3 is a diagram showing a shock absorbing mechanism 2 in a state where a collision load is applied in the direction indicated by the arrow A. 3 (a) and 3 (b) correspond to the cross section shown in FIG. 2 (b) above.

衝突荷重が加わりバンパーリインフォース11がサイドメンバ9側に押されると、衝突初期において、図3(a)に示すように衝撃吸収部12の後端面に近い方のボルト3−1が先に後端面から衝突荷重を受け、衝撃吸収材1を押圧する。これにより、衝撃吸収材1のうち車両幅方向においてボルト3−1と対応する位置にある部分が、ボルト3−1の平面部5によって前方に押圧されて圧縮される。 When a collision load is applied and the bumper reinforce 11 is pushed toward the side member 9, at the initial stage of the collision, the bolt 3-1 closer to the rear end surface of the shock absorbing portion 12 is first placed on the rear end surface as shown in FIG. 3A. It receives a collision load from and presses the shock absorber 1. As a result, the portion of the shock absorbing material 1 at the position corresponding to the bolt 3-1 in the vehicle width direction is pressed forward by the flat surface portion 5 of the bolt 3-1 and compressed.

その後、衝撃吸収部12の後端面から遠い方のボルト3−2が後端面から衝突荷重を受け、衝撃吸収材1を押圧する。これにより、図3(b)に示すように衝撃吸収材1のうち車両幅方向においてボルト3−2と対応する位置にある部分が、ボルト3−2の平面部5によって前方に押圧されて圧縮される。 After that, the bolt 3-2 farther from the rear end surface of the shock absorbing portion 12 receives a collision load from the rear end surface and presses the shock absorbing material 1. As a result, as shown in FIG. 3B, the portion of the shock absorbing material 1 at the position corresponding to the bolt 3-2 in the vehicle width direction is pressed forward by the flat surface portion 5 of the bolt 3-2 and compressed. Will be done.

このように、各ボルト3によって衝撃吸収材1に局所的な圧縮が発生して木材が硬化し、圧縮部19が形成される。以降、衝撃吸収材1は各ボルト3の平面部5によってせん断変形しながらサイドメンバ9の内部に進入する。バンパーリインフォース11が変位する間、各ボルト3にはほぼ一定の衝突荷重(以下、単に荷重ということがある)が加わり、衝撃吸収材1の圧縮は安定して進行する。 In this way, each bolt 3 causes local compression in the shock absorbing material 1, the wood is hardened, and the compressed portion 19 is formed. After that, the shock absorbing material 1 enters the inside of the side member 9 while being sheared and deformed by the flat surface portion 5 of each bolt 3. While the bumper reinforce 11 is displaced, a substantially constant collision load (hereinafter, may be simply referred to as a load) is applied to each bolt 3, and the compression of the shock absorbing material 1 proceeds stably.

図4(a)の実線21は、上記の衝突過程におけるバンパーリインフォース11の変位と衝撃吸収機構2が受ける荷重(衝撃吸収材1の圧縮によって吸収される荷重)の関係を、縦軸を荷重、横軸をバンパーリインフォース11のサイドメンバ9側への変位として示したグラフである。 The solid line 21 in FIG. 4A shows the relationship between the displacement of the bumper reinforce 11 in the collision process and the load received by the shock absorbing mechanism 2 (the load absorbed by the compression of the shock absorbing material 1), with the vertical axis representing the load. It is a graph which showed the horizontal axis as the displacement of the bumper reinforcement 11 toward the side member 9.

また図4(b)の実線23は、衝突初期にボルト3−1、3−2が同じタイミングで荷重を受ける(ボルト3−1、3−2の衝撃吸収部12の後端面からの距離が同じ)場合のグラフであり、比較対象として示すものである。 Further, in the solid line 23 of FIG. 4B, the bolts 3-1 and 3-2 receive the load at the same timing at the initial stage of the collision (the distance from the rear end surface of the shock absorbing portion 12 of the bolts 3-1 and 3-2). It is a graph of the same case) and is shown as a comparison target.

図4(b)の点線25は、ボルト1本あたりが受ける荷重の推移を示したものであり、衝突初期には荷重の変動があって最大荷重が発生し、その後荷重は最大荷重より低い値で安定する。仮に衝突初期に2本のボルト3が同じタイミングで荷重を受け止める場合、図4(b)の実線23のように、機構全体として受ける荷重(各ボルト3が受ける荷重の和)は衝突初期に鋭く立ちあがってその変動が大きくなり、荷重の安定前に大きな最大荷重が発生する。 The dotted line 25 in FIG. 4B shows the transition of the load received per bolt, and the maximum load is generated due to the fluctuation of the load at the initial stage of the collision, and then the load is lower than the maximum load. Stable with. If the two bolts 3 receive the load at the same timing at the beginning of the collision, the load received by the entire mechanism (the sum of the loads received by each bolt 3) is sharp at the beginning of the collision, as shown by the solid line 23 in FIG. 4 (b). When it stands up, the fluctuation becomes large, and a large maximum load is generated before the load stabilizes.

一方、本実施形態では、2本のボルト3−1、3−2の衝撃吸収部12の後端面からの距離が異なっており、図4(a)に示すように、その距離の差Dに相当する分だけ各ボルト3−1、3−2が荷重を受け止めるタイミングにずれが生じる。このようなタイミングのずれを設けることで各ボルト3−1、3−2における最大荷重の発現時期がずれ、その結果、実線21で示すように衝突初期に機構全体として受ける荷重の変動が小さくなり、大きな荷重の発生が抑えられる。 On the other hand, in the present embodiment, the distances of the two bolts 3-1 and 3-2 from the rear end surface of the shock absorbing portion 12 are different, and as shown in FIG. 4A, the difference D of the distances The timing at which the bolts 3-1 and 3-2 receive the load is deviated by the corresponding amount. By providing such a timing shift, the time when the maximum load is generated in each bolt 3-1 and 3-2 is shifted, and as a result, as shown by the solid line 21, the fluctuation of the load received by the entire mechanism at the initial stage of collision becomes small. , The generation of large load is suppressed.

上記のタイミングのずれは例えば1/1000秒以下とし、上記の差Dはバンパーリインフォース11が衝突想定速度で1/1000秒の間に進む距離以下とする。衝突想定速度は車両10の衝突時の速度であり、例えば一般道や高速道路の法定速度に準じて定め、60(km/h)程度、80(km/h)程度、100(km/h)程度などとできる。衝突想定速度を60(km/h)とする場合、上記の差Dは100/6≒16.7(mm)以下となる。 The timing deviation is, for example, 1/1000 second or less, and the difference D is the distance that the bumper reinforce 11 travels in 1/1000 second at the assumed collision speed. The estimated collision speed is the speed at the time of collision of the vehicle 10, for example, determined according to the legal speed of general roads and highways, about 60 (km / h), about 80 (km / h), 100 (km / h). It can be a degree. When the assumed collision speed is 60 (km / h), the above difference D is 100/6 ≈ 16.7 (mm) or less.

以上説明したように、第1の実施形態の衝撃吸収機構2によれば、複数のボルト3が、衝撃吸収部12の後端面から異なる距離で配置される構成となっている。これにより、各ボルト3が衝撃吸収部12の後端面から衝突荷重を受けるタイミングをずらすことができ、衝突初期に機構全体が受ける荷重の変動を小さくし、大きな衝突荷重の発生を抑制することができる。 As described above, according to the shock absorbing mechanism 2 of the first embodiment, the plurality of bolts 3 are arranged at different distances from the rear end surface of the shock absorbing portion 12. As a result, the timing at which each bolt 3 receives the collision load from the rear end surface of the shock absorbing portion 12 can be shifted, the fluctuation of the load received by the entire mechanism at the initial stage of the collision is reduced, and the generation of a large collision load can be suppressed. it can.

その後は衝撃吸収材1のボルト3による圧縮が安定して進み、衝突荷重の変動が少ないという木材の利点を生かしてより大きな衝撃を吸収できる。特に本実施形態ではボルト3の平面部5によって衝突荷重を安定して受けとめることができ、衝撃吸収効果が大きくなる。 After that, the compression of the shock absorbing material 1 by the bolt 3 proceeds stably, and a larger shock can be absorbed by taking advantage of the wood that the fluctuation of the collision load is small. In particular, in the present embodiment, the flat surface portion 5 of the bolt 3 can stably receive the collision load, and the impact absorption effect is enhanced.

また本実施形態では、各ボルト3が衝突荷重を受けるタイミングをずらすことで衝突初期に機構全体が受ける荷重の変動を小さくするが、そのタイミングは大きくずらす必要は無く、例えば前記のように1000分の1秒以下とし、必要な分だけずらせばよい。これにより、機構全体で受ける荷重を早い段階で安定させることができる。 Further, in the present embodiment, the fluctuation of the load received by the entire mechanism at the initial stage of the collision is reduced by shifting the timing at which each bolt 3 receives the collision load, but the timing does not need to be greatly shifted, for example, 1000 minutes as described above. It should be 1 second or less, and should be shifted by the required amount. As a result, the load received by the entire mechanism can be stabilized at an early stage.

しかしながら本発明はこれに限らない。例えば本実施形態では衝撃吸収材1の年輪の軸心方向が部材軸方向に対応しているが、部材軸方向と異なる方向であってもよい。 However, the present invention is not limited to this. For example, in the present embodiment, the axial direction of the annual ring of the shock absorbing material 1 corresponds to the member axial direction, but the direction may be different from the member axial direction.

また本実施形態では金属製のボルトを連結材として用いているが、連結材はサイドメンバ9に連結されたものであればよく、ボルトに限らずピン等でもよい。その材質も金属に限らず、セラミックなどでもよい。 Further, in the present embodiment, a metal bolt is used as a connecting material, but the connecting material may be any one connected to the side member 9, and may be a pin or the like as well as a bolt. The material is not limited to metal, but may be ceramic or the like.

また連結材の断面形状も本実施形態で説明したものに限らない。例えば本実施形態ではボルト3の軸部の断面に平面部5を設けているが、当該断面を通常のボルトのように円形としてもよい。 Further, the cross-sectional shape of the connecting material is not limited to that described in this embodiment. For example, in the present embodiment, the flat surface portion 5 is provided on the cross section of the shaft portion of the bolt 3, but the cross section may be circular like a normal bolt.

また平面部5を設ける場合も、図5(a)のように円の一部を直線で切り取った断面形状としたり、図5(b)、(c)のように断面を多角形状(図5(b)は四角形状、図5(c)は六角形状)としたりできる。 Further, when the flat surface portion 5 is provided, a cross-sectional shape obtained by cutting a part of a circle with a straight line as shown in FIG. 5 (a) or a polygonal shape (FIG. 5) as shown in FIGS. 5 (b) and 5 (c). (B) may be rectangular, and FIG. 5 (c) may be hexagonal).

あるいは、平面部5の代わりに凹面部を設けてもよく、例えば図6(a)のように円の一部を円弧で切り取った断面形状としたり、図6(b)のように矩形の一部を円弧で切り取った断面形状とするなどして凹面部6を設けることができる。また凹面部6は円弧状に限らず、例えば図6(c)のように矩形の一部を楔形に切り取った断面形状とし、直線によって楔状に形成された凹面部6を設けてもよい。 Alternatively, a concave portion may be provided instead of the flat portion 5, for example, a cross-sectional shape obtained by cutting a part of a circle with an arc as shown in FIG. 6A, or a rectangular portion as shown in FIG. 6B. The concave surface portion 6 can be provided by forming the portion into a cross-sectional shape cut out by an arc. Further, the concave surface portion 6 is not limited to an arc shape, and may be provided with a concave surface portion 6 formed in a wedge shape by a straight line, for example, having a cross-sectional shape obtained by cutting a part of a rectangle into a wedge shape as shown in FIG. 6 (c).

また図7の衝撃吸収機構2’に示すように、衝撃吸収部12’の衝撃吸収材1に設けられた孔14にボルト3を通し、衝撃吸収材1を貫通するようにボルト3を配置することも可能である。この場合も、2本のボルト3は、各孔14の前壁面141(所定の面)からそれぞれ異なる距離をおいて配置され、その距離の差Dに相当する分だけ各ボルト3が荷重を受け止めるタイミングをずらすことで前記と同様の効果が得られる。 Further, as shown in the shock absorbing mechanism 2'in FIG. 7, the bolt 3 is passed through the hole 14 provided in the shock absorbing material 1 of the shock absorbing portion 12', and the bolt 3 is arranged so as to penetrate the shock absorbing material 1. It is also possible. Also in this case, the two bolts 3 are arranged at different distances from the front wall surface 141 (predetermined surface) of each hole 14, and each bolt 3 receives the load by the amount corresponding to the difference D of the distances. The same effect as described above can be obtained by shifting the timing.

ただし、本実施形態のようにボルト3を衝撃吸収部12の後方に配置し、衝撃吸収部12の後端面からボルト3が衝突荷重を受ける構成とする場合、衝撃吸収材1に孔14を設ける必要が無い等、衝撃吸収機構2を簡易な構成とできる利点がある。 However, when the bolt 3 is arranged behind the shock absorbing portion 12 as in the present embodiment and the bolt 3 receives a collision load from the rear end surface of the shock absorbing portion 12, a hole 14 is provided in the shock absorbing material 1. There is an advantage that the shock absorbing mechanism 2 can have a simple configuration, such as no need.

以下、本発明の別の例について、第2、第3の実施形態として説明する。各実施形態はそれまでに説明した実施形態と異なる点について説明し、同様の構成については図等で同じ符号を付すなどして説明を省略する。また、第1の実施形態も含め、各実施形態で説明する構成は必要に応じて組み合わせることができる。 Hereinafter, another example of the present invention will be described as a second and third embodiment. The differences between the embodiments and the embodiments described so far will be described, and the same configurations will be omitted by adding the same reference numerals in the drawings and the like. In addition, the configurations described in each embodiment, including the first embodiment, can be combined as needed.

[第2の実施形態]
図8は第2の実施形態の衝撃吸収機構2aを示す図である。図8(a)は衝撃吸収部12の部材軸方向に沿った鉛直断面を示す図であり、図8(b)は図8(a)の線c−cに沿った水平断面を示す図である。なお図8(a)は図8(b)の線d−dに沿った断面である。
[Second Embodiment]
FIG. 8 is a diagram showing a shock absorbing mechanism 2a of the second embodiment. FIG. 8A is a diagram showing a vertical cross section of the shock absorbing portion 12 along the member axial direction, and FIG. 8B is a diagram showing a horizontal cross section along the line cc of FIG. 8A. is there. Note that FIG. 8A is a cross section taken along the line dd of FIG. 8B.

この衝撃吸収機構2aは、連結材としてボルト3の代わりに板材3aが用いられる点で第1の実施形態と異なる。 This shock absorbing mechanism 2a differs from the first embodiment in that a plate material 3a is used as the connecting material instead of the bolt 3.

板材3a(3a−1、3a−2)は車両幅方向(図8(b)の上下方向に対応する)に複数枚配置される。本実施形態では2枚の帯状の板材3aが配置されるが、これに限ることはない。 A plurality of plate members 3a (3a-1, 3a-2) are arranged in the vehicle width direction (corresponding to the vertical direction in FIG. 8B). In the present embodiment, two strip-shaped plate members 3a are arranged, but the present invention is not limited to this.

板材3aはサイドメンバ9の前端部に連結され、バンパーリインフォース11側に平面部5を有する。2枚の板材3aは、図8(b)に示すように、衝撃吸収部12の後端面から部材軸方向に異なる距離で配置される。その距離の差Dは第1の実施形態と同様に設定する。 The plate member 3a is connected to the front end portion of the side member 9, and has a flat surface portion 5 on the bumper reinforcement 11 side. As shown in FIG. 8B, the two plate members 3a are arranged at different distances in the member axial direction from the rear end surface of the shock absorbing portion 12. The difference D of the distance is set in the same manner as in the first embodiment.

第2の実施形態では、衝撃吸収部12の後端面からそれぞれ異なる距離をおいて配置された2枚の板材3aが、前記した2本のボルト3と同様に機能し、衝突初期において機構全体が受ける荷重の変動を抑制できる。その後、第1の実施形態と同様に衝撃吸収材1の圧縮が進行するが、本実施形態では板材3aを用いることで衝撃吸収材1を広い面積で圧縮し、高い衝撃吸収効果を得ることができる。 In the second embodiment, the two plate members 3a arranged at different distances from the rear end surface of the shock absorbing portion 12 function in the same manner as the two bolts 3 described above, and the entire mechanism becomes the same at the initial stage of collision. Fluctuations in the received load can be suppressed. After that, the compression of the shock absorbing material 1 proceeds as in the first embodiment, but in the present embodiment, the shock absorbing material 1 can be compressed in a wide area by using the plate material 3a, and a high shock absorbing effect can be obtained. it can.

[第3の実施形態]
図9は第3の実施形態の衝撃吸収機構2bを示す図である。図9(a)は衝撃吸収機構2bの水平断面を示す図であり、図9(b)、(c)はそれぞれ図9(a)の線e−e、線f−fによる衝撃吸収部12の部材軸方向の鉛直断面を示す図である。
[Third Embodiment]
FIG. 9 is a diagram showing a shock absorbing mechanism 2b according to a third embodiment. 9 (a) is a diagram showing a horizontal cross section of the shock absorbing mechanism 2b, and FIGS. 9 (b) and 9 (c) are shock absorbing portions 12 by lines ee and ff of FIG. 9 (a), respectively. It is a figure which shows the vertical cross section in the member axial direction of.

この衝撃吸収機構2bは、衝撃吸収材1のせん断による衝撃吸収を行う点で第1の実施形態と異なる。 This shock absorbing mechanism 2b is different from the first embodiment in that shock absorption is performed by shearing the shock absorbing material 1.

すなわち、衝撃吸収機構2bでは、衝撃吸収部12の前端部(他方の端部)が筒状のバンパーリインフォース11aの後壁に設けられた開口110からバンパーリインフォース11a(他方の部材)の内部空間に挿入される。衝撃吸収部12の前端面とバンパーリインフォース11aの前壁の間には隙間が設けられる。 That is, in the shock absorbing mechanism 2b, the front end portion (the other end portion) of the shock absorbing portion 12 enters the internal space of the bumper reinforce 11a (the other member) from the opening 110 provided in the rear wall of the tubular bumper reinforce 11a. Will be inserted. A gap is provided between the front end surface of the shock absorbing portion 12 and the front wall of the bumper reinforce 11a.

衝撃吸収機構2bは、第1の実施形態の衝撃吸収機構2の構成に加え、バンパーリインフォース11aに連結されるボルト3(3−3、3−4;連結材)をさらに有する。当該ボルト3は、車両幅方向(図9(a)の上下方向に対応する)に複数本配置される。本実施形態では2本のボルト3が配置されるが、これに限ることはない。 The shock absorbing mechanism 2b further includes bolts 3 (3-3, 3-4; connecting materials) connected to the bumper reinforce 11a in addition to the configuration of the shock absorbing mechanism 2 of the first embodiment. A plurality of the bolts 3 are arranged in the vehicle width direction (corresponding to the vertical direction in FIG. 9A). In this embodiment, two bolts 3 are arranged, but the present invention is not limited to this.

これらのボルト3は衝撃吸収部12の前方に配置され、サイドメンバ9側に平面部5が位置するように設けられる。ボルト3の軸部はバンパーリインフォース11aの下面からバンパーリインフォース11aを貫通し、軸部の先端がナット4によってバンパーリインフォース11aの上面に固定される。 These bolts 3 are arranged in front of the shock absorbing portion 12 and are provided so that the flat surface portion 5 is located on the side member 9 side. The shaft portion of the bolt 3 penetrates the bumper reinforcement 11a from the lower surface of the bumper reinforcement 11a, and the tip of the shaft portion is fixed to the upper surface of the bumper reinforcement 11a by the nut 4.

衝撃吸収部12の前方のボルト3も、図9(a)に示すように、衝撃吸収部12の前端面(所定の面)から部材軸方向に異なる距離で配置される。本実施形態ではその距離の差をDとし、衝撃吸収部12の後方のボルト3の距離の差と等しくするが、これに限ることはない。また本実施形態では衝撃吸収部12の前端面に近い方のボルト3−3が当該前端面に接しており当該前端面からの距離が0であるが、若干の離隔はあってもよい。 As shown in FIG. 9A, the bolt 3 in front of the shock absorbing portion 12 is also arranged at different distances in the member axial direction from the front end surface (predetermined surface) of the shock absorbing portion 12. In the present embodiment, the difference in the distance is D, which is equal to the difference in the distance of the bolt 3 behind the shock absorbing portion 12, but is not limited to this. Further, in the present embodiment, the bolt 3-3 closer to the front end surface of the shock absorbing portion 12 is in contact with the front end surface and the distance from the front end surface is 0, but there may be a slight separation.

ここで、部材軸方向から見た時(図9(a)の矢印参照)に、衝撃吸収部12の前後のボルト3は異なる位置に配置され、これらの平面部5同士が向き合わないようになっている。また部材軸方向から見た時に、衝撃吸収材1の前方のボルト3とサイドメンバ9の間では、衝撃吸収材1の前方のボルト3と重複する位置にバンパーリインフォース11aに連結された他のボルト3等が存在しない。 Here, when viewed from the member axial direction (see the arrow in FIG. 9A), the front and rear bolts 3 of the shock absorbing portion 12 are arranged at different positions so that the flat portions 5 do not face each other. ing. Further, when viewed from the member axial direction, between the bolt 3 in front of the shock absorbing material 1 and the side member 9, another bolt connected to the bumper reinforce 11a at a position overlapping the bolt 3 in front of the shock absorbing material 1. There is no 3rd magnitude.

なお、バンパーリインフォース11aの前壁において衝撃吸収部12の後方のボルト3と車両幅方向に対応する位置には開口111が形成される。 An opening 111 is formed on the front wall of the bumper reinforce 11a at a position corresponding to the bolt 3 behind the shock absorbing portion 12 in the vehicle width direction.

図10は矢印Aに示す方向に衝突荷重が加わった状態の衝撃吸収機構2bを示す図であり、図10(a)、(b)は図9(a)に示した断面に対応する。 FIG. 10 is a diagram showing a shock absorbing mechanism 2b in a state where a collision load is applied in the direction indicated by the arrow A, and FIGS. 10 (a) and 10 (b) correspond to the cross section shown in FIG. 9 (a).

本実施形態では、衝突荷重が加わりバンパーリインフォース11aがサイドメンバ9側に押されると、衝突初期において、図10(a)に示すように、衝撃吸収部12の後方のボルト3のうち衝撃吸収部12の後端面に近い方のボルト3−1と、衝撃吸収部12の前方のボルト3のうち衝撃吸収部12の前端面に近い方のボルト3−3が先に衝突荷重を受け、衝撃吸収材1を押圧する。 In the present embodiment, when a collision load is applied and the bumper reinforce 11a is pushed toward the side member 9, as shown in FIG. 10A at the initial stage of the collision, the impact absorbing portion of the bolts 3 behind the impact absorbing portion 12 The bolt 3-1 closer to the rear end surface of the 12 and the bolt 3-3 closer to the front end surface of the shock absorbing portion 12 among the bolts 3 in front of the shock absorbing portion 12 receive the collision load first and absorb the impact. Press the material 1.

ボルト3−1、3−3の車両幅方向の位置は異なっているので、ボルト3−1によって衝撃吸収材1が前方に押され、ボルト3−3によって衝撃吸収材1が後方に押される結果、これらのボルト3−1、3−3の車両幅方向の間で衝撃吸収材1のせん断が誘発される。 Since the positions of the bolts 3-1 and 3-3 in the vehicle width direction are different, the shock absorber 1 is pushed forward by the bolt 3-1 and the shock absorber 1 is pushed backward by the bolt 3-3. , The shear of the shock absorber 1 is induced between these bolts 3-1 and 3-3 in the vehicle width direction.

本実施形態では、その後、衝撃吸収部12の後方のボルト3のうち衝撃吸収部12の後端面から遠い方のボルト3−2と、衝撃吸収部12の前方のボルト3のうち衝撃吸収部12の前端面から遠い方のボルト3−4が衝突荷重を受けて衝撃吸収材1を押圧し、上記と同様、図10(b)に示すようにボルト3−2、3−4の車両幅方向の間で衝撃吸収材1のせん断が誘発される。 In the present embodiment, thereafter, the bolt 3-2 of the bolts 3 behind the shock absorbing portion 12 farther from the rear end surface of the shock absorbing portion 12 and the shock absorbing portion 12 of the bolts 3 in front of the shock absorbing portion 12 The bolt 3-4 farther from the front end surface of the bolt 3-4 receives a collision load and presses the shock absorber 1, and similarly to the above, as shown in FIG. 10B, the bolts 3-2, 3-4 in the vehicle width direction. Shearing of the shock absorber 1 is induced between them.

その後、衝撃吸収材1において、車両幅方向にボルト3−3、3−4と対応する位置にある部分1−1は、サイドメンバ9の内部を後方に進む。一方、ボルト3−1、3−2と対応する位置にある部分1−2、1−3は、それぞれバンパーリインフォース11a内を開口111に向かって前方に進む。バンパーリインフォース11aが変位する間、各ボルト3にはほぼ一定の荷重が加わり、衝撃吸収材1のせん断は安定して進行する。 After that, in the shock absorbing material 1, the portion 1-1 at the position corresponding to the bolts 3-3 and 3-4 in the vehicle width direction advances rearward inside the side member 9. On the other hand, the portions 1-2 and 1-3 located at positions corresponding to the bolts 3-1 and 3-2 advance forward in the bumper reinforce 11a toward the opening 111, respectively. While the bumper reinforce 11a is displaced, a substantially constant load is applied to each bolt 3, and the shearing of the shock absorbing material 1 proceeds stably.

第3の実施形態では、せん断の発生によって衝撃が吸収され、サイドメンバ9側に伝達される衝突荷重を軽減することができる。この場合においても、衝突初期において、衝撃吸収部12の後端面から異なる距離をおいて配置された2本のボルト3−1、3−2、および、衝撃吸収部12の前端面から異なる距離をおいて配置された2本のボルト3−3、3−4が衝突荷重を受けるタイミングをずらすことで、第1の実施形態と同様の効果が得られる。 In the third embodiment, the impact is absorbed by the occurrence of shearing, and the collision load transmitted to the side member 9 side can be reduced. Even in this case, at the initial stage of the collision, the two bolts 3-1 and 3-2 arranged at different distances from the rear end surface of the shock absorbing portion 12 and the different distances from the front end surface of the shock absorbing portion 12 are used. By shifting the timing at which the two bolts 3-3, 3-4 arranged separately receive the collision load, the same effect as that of the first embodiment can be obtained.

以上、添付図面を参照しながら、本発明に係る好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modified examples or modified examples within the scope of the technical idea disclosed in the present application, and these also naturally belong to the technical scope of the present invention. Understood.

例えば前記の各実施形態では車両のバンパーリインフォースとサイドメンバの間に衝撃吸収機構を設置しているが、衝撃吸収機構は車両において衝突時の荷重を受ける荷重受け部材と当該荷重が伝達される被伝達部材の間に設ければよく、上記のバンパーリインフォースとサイドメンバの間に設けるものに限らない。例えば車両側突時の衝突荷重を軽減することを目的として、車両側部のボディー本体と車両内部のバッテリーケース等の間に設けてもよい。また車両の種類も特に限定されない。 For example, in each of the above embodiments, a shock absorbing mechanism is installed between the bumper reinforcement of the vehicle and the side member, but the shock absorbing mechanism is a load receiving member that receives a load at the time of a collision in the vehicle and a subject to which the load is transmitted. It may be provided between the transmission members, and is not limited to the one provided between the bumper reinforcement and the side member. For example, it may be provided between the body body on the side of the vehicle and the battery case inside the vehicle for the purpose of reducing the collision load at the time of collision on the vehicle side. The type of vehicle is also not particularly limited.

以上、添付図面を参照しながら、本発明に係る好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modified examples or modified examples within the scope of the technical idea disclosed in the present application, and these also naturally belong to the technical scope of the present invention. Understood.

1:衝撃吸収材
2、2’、2a、2b:衝撃吸収機構
3:ボルト(連結材)
3a:板材(連結材)
4:ナット
5:平面部
6:凹面部
7:被覆材
9:サイドメンバ(被伝達部材)
10:車両
11、11a:バンパーリインフォース(荷重受け部材)
12、12’:衝撃吸収部
13:ブラケット
14:孔
110、111:開口
1: Shock absorbing material 2, 2', 2a, 2b: Shock absorbing mechanism 3: Bolt (connecting material)
3a: Plate material (connecting material)
4: Nut 5: Flat part 6: Concave part 7: Coating material 9: Side member (transmitted member)
10: Vehicles 11, 11a: Bumper reinforce (load receiving member)
12, 12': Shock absorber 13: Bracket 14: Hole 110, 111: Opening

Claims (5)

車両に加わる衝突荷重を軽減するための衝撃吸収機構であって、
衝突荷重を受ける荷重受け部材と衝突荷重が前記荷重受け部材から伝達される被伝達部材の間に設けられ、
部材軸方向の一方の端部が前記荷重受け部材と前記被伝達部材のうち一方の部材の内部空間に挿入された、木製の衝撃吸収材を含む柱状の衝撃吸収部と、
前記一方の部材に連結された複数の第1の連結材と、
を具備し、
前記衝撃吸収部の端面からの部材軸方向の距離を複数の前記第1の連結材で異ならせることにより、複数の前記第1の連結材が当該端面から衝突荷重を受けるタイミングがずらされ
複数の前記第1の連結材は、前記部材軸方向から見た時に隙間を空けて設けられ、
前記隙間は、前記第1の連結材の前記端面側とその反対側とを連通させるものであり、
先に衝突荷重を受ける前記第1の連結材の前記端面と反対側の端部が、後に衝突荷重を受ける前記第1の連結材の前記端面と反対側の端部よりも前記端面側に位置することを特徴とする衝撃吸収機構。
A shock absorbing mechanism for reducing the collision load applied to the vehicle.
It is provided between the load receiving member that receives the collision load and the transmitted member that the collision load is transmitted from the load receiving member.
A columnar shock absorbing portion containing a wooden shock absorbing material, in which one end in the axial direction of the member is inserted into the internal space of the load receiving member and one of the transmitted members.
A plurality of first connecting members connected to the one member,
Equipped with
By making the distance in the member axial direction from the end face of the shock absorbing portion different for the plurality of the first connecting members, the timing at which the plurality of the first connecting members receive the collision load from the end faces is shifted .
The plurality of the first connecting members are provided with a gap when viewed from the member axial direction.
The gap communicates the end face side of the first connecting member with the opposite side thereof.
The end portion of the first connecting member that receives the collision load first and is opposite to the end face is located closer to the end face side than the end portion of the first connecting member that receives the collision load later and is opposite to the end face. A shock absorbing mechanism characterized by
前記第1の連結材は棒状の部材であることを特徴とする請求項1記載の衝撃吸収機構。 The shock absorbing mechanism according to claim 1, wherein the first connecting member is a rod-shaped member . 前記第1の連結材は、前記荷重受け部材と前記被伝達部材のうち他方の部材に面した平面部または凹面部を有することを特徴とする請求項1または請求項2記載の衝撃吸収機構。 The shock absorbing mechanism according to claim 1 or 2, wherein the first connecting member has a flat surface portion or a concave surface portion facing the other member of the load receiving member and the transmitted member. 複数の前記第1の連結材が前記端面から衝突荷重を受けるタイミングの差を、1/1000秒以下とすることを特徴とする請求項1から請求項3のいずれかに記載の衝撃吸収機構。 The shock absorbing mechanism according to any one of claims 1 to 3, wherein the difference in timing at which the plurality of first connecting members receive a collision load from the end face is 1/1000 second or less. 前記衝撃吸収部の部材軸方向の他方の端部は、前記荷重受け部材と前記被伝達部材のうち他方の部材の内部空間に挿入され、
前記他方の部材に連結された複数の第2の連結材を更に具備し、
前記第1の連結材と前記第2の連結材は、前記衝撃吸収部の部材軸方向から見た時に異なる位置に配置され、
前記衝撃吸収部の所定の面からの部材軸方向の距離を複数の前記第2の連結材で異ならせることにより、複数の前記第2の連結材が当該所定の面から衝突荷重を受けるタイミングがずらされたことを特徴とする請求項1から請求項4のいずれかに記載の衝撃吸収機構。
The other end of the shock absorbing portion in the member axial direction is inserted into the internal space of the other member of the load receiving member and the transmitted member.
A plurality of second connecting members connected to the other member are further provided.
The first connecting member and the second connecting member are arranged at different positions when viewed from the member axial direction of the shock absorbing portion.
By making the distance in the member axial direction from the predetermined surface of the shock absorbing portion different for the plurality of the second connecting members, the timing at which the plurality of the second connecting members receive the collision load from the predetermined surface can be determined. The shock absorbing mechanism according to any one of claims 1 to 4, wherein the shock absorbing mechanism is shifted.
JP2018114334A 2018-06-15 2018-06-15 Shock absorption mechanism Active JP6827973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018114334A JP6827973B2 (en) 2018-06-15 2018-06-15 Shock absorption mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018114334A JP6827973B2 (en) 2018-06-15 2018-06-15 Shock absorption mechanism

Publications (2)

Publication Number Publication Date
JP2019217800A JP2019217800A (en) 2019-12-26
JP6827973B2 true JP6827973B2 (en) 2021-02-10

Family

ID=69095369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018114334A Active JP6827973B2 (en) 2018-06-15 2018-06-15 Shock absorption mechanism

Country Status (1)

Country Link
JP (1) JP6827973B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9669787B2 (en) * 2012-11-19 2017-06-06 Toyota Shatai Kabushiki Kaisha Shock-absorbing mechanism

Also Published As

Publication number Publication date
JP2019217800A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
US10293857B2 (en) Reach vehicle-body structure of vehicle
US9211915B2 (en) Vehicle front structure
US9771106B2 (en) Vehicle body front structure
CN104884339B (en) Vehicle body front structure
US10286955B2 (en) Rear vehicle-body structure of vehicle
US9701344B2 (en) Frame structure for vehicle
KR20160042761A (en) Front structure for a motor vehicle
US20210009058A1 (en) Vehicular structure
US7264301B2 (en) Front structure of vehicle body
EP3132980B1 (en) Vehicle frame structure
US20180170294A1 (en) Energy absorption structure
JP2012035691A (en) Towing hook mounting structure of vehicle
JP6406318B2 (en) Vehicle energy absorption structure
JP6827973B2 (en) Shock absorption mechanism
JP2007112212A (en) Body frame structure of vehicle
JP7089412B2 (en) Shock absorption mechanism
JP5840519B2 (en) Bumper mounting structure
CN106428188B (en) Steering device
JP7130531B2 (en) Shock absorption mechanism
JP7073304B2 (en) Shock absorption mechanism
JP6292088B2 (en) Vehicle front structure
JP6999448B2 (en) Impact absorption mechanism
JP2007238028A (en) Vehicle body front structure
JP2020059441A (en) Bumper reinforcement structure and bumper reinforcement manufacturing method
JP2020192820A (en) Shock absorption mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R150 Certificate of patent or registration of utility model

Ref document number: 6827973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250