JP7073286B2 - データ生成装置、予測器学習装置、データ生成方法、及び学習方法 - Google Patents

データ生成装置、予測器学習装置、データ生成方法、及び学習方法 Download PDF

Info

Publication number
JP7073286B2
JP7073286B2 JP2019002436A JP2019002436A JP7073286B2 JP 7073286 B2 JP7073286 B2 JP 7073286B2 JP 2019002436 A JP2019002436 A JP 2019002436A JP 2019002436 A JP2019002436 A JP 2019002436A JP 7073286 B2 JP7073286 B2 JP 7073286B2
Authority
JP
Japan
Prior art keywords
data
perturbation
data set
training data
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019002436A
Other languages
English (en)
Other versions
JP2020112967A5 (ja
JP2020112967A (ja
Inventor
慶行 但馬
洋平 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019002436A priority Critical patent/JP7073286B2/ja
Priority to PCT/JP2019/049023 priority patent/WO2020145039A1/ja
Priority to CN201980078575.6A priority patent/CN113168589B/zh
Priority to US17/414,705 priority patent/US20220058485A1/en
Publication of JP2020112967A publication Critical patent/JP2020112967A/ja
Publication of JP2020112967A5 publication Critical patent/JP2020112967A5/ja
Application granted granted Critical
Publication of JP7073286B2 publication Critical patent/JP7073286B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、機械学習に用いるデータを生成するデータ生成装置に関する。
昨今、機械学習を応用したシステムやサービスが普及しつつある。例えば、多くの企業は、装置、設備、車両など多種多様な物理的なアセットを運用することによって経済活動を行っている。これらのアセットは電気的又は機械的な理由で不調や故障となることがある。そのため、適宜、予測的又は対処的な処置、すなわち部品や消耗品の交換、ユニットの交換や修繕などによって運用に大きな支障が生じないようすることが重要である。しかし、アセットの複雑化や、熟練した保守員や修理員の不足などから適切な処置が成されない場合がある。そこで、過去の稼働実績や修理履歴などの情報に基づいて適切な処置を推薦することで、保守員や作業員の作業を補い、アセットの安定的な運用を可能とするシステムが検討されている。
前述したような機械学習を応用したシステム・サービスにおいて、予測器は、入力及び出力に関わる訓練データ集合から、その入出力の関係性を学習する教師あり学習又は半教師有り学習と称される枠組みに基づいて構築される。この予測器には、訓練データ集合に含まれないデータに対する高い予測性能(汎化性能)が求められる。そこで、昨今ニューラルネットワークをはじめとする予測器の様々なモデルが提案されている。
一方、別のアプローチとして、訓練データ集合を適切に変形や変換をして得られる疑似データ集合をもとの訓練データ集合と合わせて学習に用いることで汎化性能向上を目指す方法がある。このような疑似データ生成をデータ拡張と称する。例えば、一般的には、画像であれば、訓練データ集合に対して回転、拡大、縮小、移動などの変形によりデータを拡張するとよい。ところが、前述した稼働実績や修理履歴など産業上で取り扱われる多くのデータは、画像のような有効に機能するヒューリスティックなデータ拡張方法が不明な場合も多い。そこで、パラメトリックな分布に従う標本ともとの訓練データ集合とを混合することによってデータを拡張する方法が採用される。例えば、小さな標準偏差の正規分布に従う標本の元をもとのデータの元に加えることでデータ拡張できる。ところが、データ拡張された訓練データ集合の分布がもとの訓練データ集合の分布と大きく異なる場合、性能は低下する場合がある。
本技術分野の背景技術として、以下の先行技術がある。特許文献1(特開2006-343124号)には、センサ応答から化学物質濃度を推定する技術として、「化学データの補間誤差を確率変数として捉え、補間誤差の確率密度関数を推定する。補間誤差の推定確率密度関数に従う擬似乱数ベクトルを生成し、補間曲面上のベクトルからランダムに選び出したベクトルに、擬似補間誤差ベクトルを足し合わせて新たなデータベクトルを生成することを多数繰り返すことで、補間曲面・補間誤差の特徴を反映した多数のデータベクトルである擬似データを生成する。擬似データをニューラルネットワークに学習させる。未知の被検試料についてセンサを適用し、センサ応答を測定する。学習済みとなったニューラルネットワークに、センサ応答を入力し、ニューラルネットワークの出力より複数の化学物質の未知濃度を推定する。」技術が開示されている。
特開2006-343124号公報
しかしながら、特許文献1に記載された技術では、出力データ集合に対する入力データ集合の回帰モデルに対して、誤差に関する分布をカーネル密度推定法で推定し、推定された誤差分布に従う標本の元を推定量に加える操作を行うので、単純に入力データ集合の元に正規分布から得られる集合の元を加える方法に比べ複雑なデータ拡張が達成されるものの、もとの入力データ集合の分布と大きく異なる疑似データ集合が生成されることがある。特に、出力データに対して入力データが1対1となる箇所(単峰的な箇所)と1対多となる箇所(多峰的な箇所)が存在する場合、前述した技術では同一の分布に基づいて変形するため、1対1の箇所では小さな変形を加えるべき箇所で比較的大きな変形がなされ、1対多の箇所では大きな変形を加えるべき箇所で比較的小さな変形がなされ、もとの分布と大きく異なる疑似データ集合となる可能性がある。また、カーネル密度推定法は、訓練データに対して種々のカーネルとカーネルパラメータ(ガウシアンカーネルであればバンド幅)を選択する必要があるなど選択すべき要素が多いという問題がある。
本発明は、上記を鑑みてなされたものであって、もとの分布と大きく異ならず、訓練データとは異なる疑似データ集合を生成する手段を提供することを目的とする。
本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、データ集合を生成するデータ生成装置であって、訓練データ集合の各元の入力及び前記訓練データ集合に関する情報の少なくとも一方に基づいて、前記元を変形するための摂動集合を生成する摂動生成部と、前記訓練データ集合及び前記摂動集合から、前記訓練データ集合と異なる新たな疑似データ集合を生成する疑似データ合成部と、前記訓練データ集合と前記疑似データ集合との分布間距離又はそれに関する推定量と、前記摂動集合から得られる訓練データに対する疑似データの摂動の大きさとを算出する評価部と、前記訓練データ集合と前記疑似データ集合との分布間距離を近づけ、摂動の大きさ又は期待値が予め定めた目標値となるように、前記摂動生成部が前記摂動集合の生成に使用するパラメータを更新するパラメータ更新部とを備えることを特徴とする。
本発明の一態様によれば、分布間距離と摂動の大きさとのバランスが取れた、目標摂動量以上に訓練データの分布と異ならない疑似データを生成できる。前述した以外の課題、構成及び効果は、以下の実施例の説明によって明らかにされる。
本実施例のリコメンドシステムの構成を示す図である。 本実施例のデータ生成・予測器学習部の操作を示す図である。 本実施例のリコメンドシステムを構成する計算機のハードウェア構成を示す図である。 本実施例の実績データの一例を示す図である。 本実施例の修理作業データの一例を示す図である。 本実施例の訓練データ集合の一例を示す図である。 本実施例におけるモデリングフェーズの処理のフローチャートである。 本実施例におけるモデリングフェーズの学習処理のフローチャートである。 本実施例におけるリコメンド処理のフローチャートである。 本実施例の訓練データ選択画面を示す図である。 本実施例の疑似データ確認画面を示す図である。
以下、適宜図面を参照しながら本発明を実施するための代表的な形態を説明する。
<概略>
本発明は、データに基づく機械学習装置に関し、特に、与えられたデータに基づいて別の疑似データを生成し、それを活用して高い汎化性能を持つ予測器を学習する装置に関するものである。本実施例では、前述したアセットが不調又は故障となった場合、アセットの稼働実績、修理履歴などの情報に基づいて適切な処置を推薦するリコメンドシステムで用いる予測器の学習に関するデータ生成・予測器学習装置の概略を説明する。
まず、図1を参照してリコメンドシステム全体の処理の流れを説明する。はじめに、稼働実績、修理履歴の収集から予測器学習までの流れ(モデリングフェーズと称する)を説明する。リコメンドシステム11は、アセット13から、アセット13を介してオペレータ16から、及び修理員端末14を介して修理員17から、稼働実績と不具合状況と修理履歴などを収集し、収集した情報を結合した実績データを収集する。ここで、実績データとは、例えばアセット13の稼働時間、アセット13に取り付けられたセンサからの情報、オペレータ16が入力した不具合状況(例えば、異音の発生)、アセット13に実施された修理作業の情報などである。次に、管理者15は、管理端末12を介して、リコメンドシステム11が収集した実績データのうち、データ生成及び予測器の学習に用いるデータを選択する。リコメンドシステム11は、その選択に従ってデータを抽出し、抽出したデータを訓練データとしてデータ生成・予測器学習装置10に送る。データ生成・予測器学習装置10は受信した訓練データを用いてデータを生成し、学習済みモデルを作成する。そして、データ生成・予測器学習装置10は、学習したモデル(学習済みモデル)をリコメンドシステムに返す。
次に、修理内容のリコメンドの流れ(リコメンドフェーズと称する)を説明する。リコメンドシステム11は、アセット13から、アセット13を介してオペレータ16から、及び修理員端末14を介して修理員17から、修理作業の情報を除く実績データを収集する。次に、リコメンドシステム11は、前記の学習済みモデルと、前記修理作業の情報を除く実績データから、推奨される1又は複数の修理作業を算出する。そして、その結果を修理員端末14を介して修理員17に提示する。
次に、データ生成・予測器学習装置10の処理の概略について説明する。データ生成・予測器学習装置10は、訓練データを受信し、学習済みモデルを作成する。その過程で、高い汎化性能を持った予測器を構築するために、データ生成、データ評価、予測器の三つの構成要素を深層学習(Deep Learning)の一種であるGAN(GenerativeAdversarial Networks)の枠組みに基づいて学習させる。その際、一般的なGANでは直接疑似データを生成するが、本実施例では、いったん摂動を生成して、生成された摂動を元の訓練データに加えることによって疑似データを生成する。
この結果、摂動に対する目的関数を追加して学習し、学習済みモデルを作成できる。特に、本実施例では、ミニバッチ学習を前提として、そのミニバッチ内での摂動の総和が一定となるようにデータ生成に関する制約を与える。これによって、疑似データが訓練データに分布間距離の観点で近づくことと、疑似データを訓練データから変形させることのトレードオフができる。この結果、疑似データは正規分布等で摂動させた場合と異なり、例えば少しでも動かすと訓練データとしてはあり得ない変数にならず、また訓練データの元をほとんど変形させず、このためデータ拡張による性能劣化を抑制できる。その際、データ拡張の度合いは前述の定数を変えることによって制御できる。
一方、予測器の素朴な学習方法は、訓練データに疑似データを混ぜたデータを新たな訓練データセットとして学習させることである。これに加え、訓練データのある元に対して摂動を与えた疑似データが得られるので、それらをラベル無しデータと見做せば半教師有り学習の各種手法が適用できる.例えば,ニューラルネットワークに入力したときの中間層の出力を一致させる処理(本稿ではImproved Techniques for Training GANsでの表現を参考にしてフィーチャーマッチングと称する)を加えることで、より汎化性能が高い予測器を得ることができる。
また、前述のフィーチャーマッチングを用いる、データ評価と予測器の一部もしくは全部のニューラルネットワークを共用する、Tiple GANなどの方法で予測器をGANの敵対的学習に参加させる、などの方法によって、ラベル無しの訓練データを有効利用できる。なお、本実施例では一貫してGANを用いたデータ生成を前提に説明するが、他の方法を用いてもよい。
<システム構成>
図1を参照して本実施例のシステム構成を説明する。本実施例のシステムは、データ生成・予測器学習装置10と、リコメンドシステム11と、管理者15が操作する管理端末12と、オペレータ16が操作するアセット13と、修理員17が操作する修理員端末14とを有する。これらのシステムの構成要素は、ネットワーク18で相互に接続される。ネットワーク18自体はLAN(Local Area Network)やWAN(Wide Area Network)などで構成できる。なお、前述したシステム構成は一例であって、構成要素は図示したものに限らない。例えば、データ生成・予測器学習装置10とリコメンドシステム11が一つの装置として構成されてもよいし、分散処理のため予測器学習装置10を複数に分けて構成してもよい。
次に、図2を参照してデータ生成・予測器学習部101の詳細について説明する。データ生成・予測器学習部101は、摂動生成部1011と、疑似データ合成部1012と、評価部1013と、予測部1014と、パラメータ更新部1015を備える。
なお、データ生成・予測器学習部101のうち、摂動生成部1011と、疑似データ合成部1012と、評価部1013と、パラメータ更新部1015とでデータ生成装置が構成され、予測部1014と、パラメータ更新部1015とで予測器学習装置が構成される。
<機能とハードウェア>
次に図1と図3を参照して、機能とハードウェアの対応を説明する。
データ生成・予測器学習装置10が有するデータ生成・予測器学習部101と、前処理部102と、学習用データ管理部103は、CPU(Central Processing Unit)1H101が、ROM(Read Only Memory)1H102又は外部記憶装置1H104に格納されたプログラムをRAM(Read Access Memory)1H103に読み込み、通信I/F(Interface)1H105、マウスやキーボードなどの入力装置1H106、ディスプレイなどの出力装置1H107を制御することによって実現される。
リコメンドシステム11が有するリコメンド部111と、データ管理部112と、集配部113は、CPU(Central Processing Unit)1H101が、ROM(Read Only Memory)1H102又は外部記憶装置1H104に格納されたプログラムをRAM(Read Access Memory)1H103に読み込み、通信I/F(Interface)1H105、マウスやキーボードなどの入力装置1H106、ディスプレイなどの出力装置1H107を制御することによって実現される。
管理端末12が有する操作部121は、CPU(Central Processing Unit)1H101が、ROM(Read Only Memory)1H102もしくは外部記憶装置1H104に格納されたプログラムをRAM(Read Access Memory)1H103に読み込み、通信I/F(Interface)1H105、マウスやキーボードなどの入力装置1H106、ディスプレイなどの出力装置1H107を制御することで実現される。
CPU1H101が実行する処理の一部又は全部をハードウェアで構成される演算装置(ASIC、FPGA等)で実行してもよい。
CPU1H101が実行するプログラムは、リムーバブルメディア(CD-ROM、フラッシュメモリなど)又はネットワークを介してデータ生成・予測器学習装置10、リコメンドシステム11及び管理端末12に提供され、非一時的記憶媒体である不揮発性の記憶装置に格納される。このため、計算機システムは、リムーバブルメディアからデータを読み込むインターフェースを有するとよい。
データ生成・予測器学習装置10、リコメンドシステム11及び管理端末12の各々は、物理的に一つの計算機上で、又は、論理的又は物理的に構成された複数の計算機上で構成される計算機システムであり、複数の物理的計算機資源上に構築された仮想計算機上で動作してもよい。
<データ構造>
次に、図4を参照して、リコメンドシステム11のデータ管理部112が管理する実績データ1D1を説明する。実績データ1D1は、アセット13や、アセット13を介してオペレータ16や、修理員端末14を介して修理員17から稼働実績・不具合状況・修理履歴などを収集し、収集したデータを結合して、アセットの修理毎に纏めたデータである。実績データ1D1は、修理単位を特定するための修理ID 1D101と、修理を実施した日時1D102と、アセットの設置やオーバーホールからの稼働時間1D103と、稼働時の平均温度1D104と、稼働時の振動レベル1D105と、不具合状況1D106と、実施した修理作業を特定するための修理作業ID 1D107とを含む。修理作業IDは、後述するが、実施した作業内容や交換部品などと関連付けられる。
なお、本実施例では実績データ1D1は、前述した項目を含むが、アセットに関する他のデータを含んでもよいし、前述した項目のうち一部の項目を含むものでもよい。
次に、図5を参照して、リコメンドシステム11のデータ管理部112が管理する修理作業データ1D2を説明する。修理作業データ1D2は、修理作業を特定する修理作業ID 1D201と、作業内容1D202と、交換部品1D203~1D205を含む。なお、図5に示す例では、交換部品は最大三つまで記録しているが、交換部品の記録数は3より大きくても小さくてもよい。また、修理作業データ1D2は、作業内容及び交換部品以外に、修理作業に関する情報、例えば、使用する工具や消耗品などの情報を含んでもよい。
次に、図6を参照して、データ生成・予測器学習装置10の学習用データ管理部103が管理する訓練データ集合1D3を説明する。訓練データ集合1D3は、管理者15の指定に基づいて選定された実績データ1D1の日時1D102や稼働時間1D103などに前処理部102が前処理を施したデータであって、データを識別するための番号1D301と、実績データが数値化された予測器の入力となる入力1から入力1000(1D302-1~1D302-1000)と、修理作業IDに対応し、予測器の出力となる出力y1D303を含む。なお、本実施例では入力は1000個としたが、入力データの数は1000よりも多くても少なくてもよい。
<処理フロー>
次に、図7、図8を参照して、本実施例におけるモデリングフェーズの処理を説明する。
図7を参照して、全体の流れを説明する。まず、リコメンドシステム11の集配部113が、アセット13及び修理員端末14から実績データ1D1を収集し、データ管理部112に蓄積する(ステップ1F101)。
次に、管理端末12の操作部121が、実績データ1D1からデータ生成及び予測器学習に用いるデータの条件(期間)と摂動パラメータ探索範囲を管理者15から受け付ける。そして、集配部113が、受け付けた探索条件に従って、データ管理部112から条件に合う実績データ1D1を選択し、摂動パラメータ探索範囲と合わせてデータ生成・予測器学習装置10の学習用データ管理部103に格納する(ステップ1F102)。なお、摂動パラメータ探索範囲とは、後述する式(5)のγの範囲である。
次に、データ生成・予測器学習装置10の前処理部102が、学習用データ管理部103に格納された選択済みの実績データ1D1に文字列やカテゴリカル変数の数値化、量的変数の標準化や正規化等の前処理を施し、訓練データ集合1D3を生成、学習用データ管理部103に格納する(ステップ1F103)。
次に、データ生成・予測器学習装置10のデータ生成・予測器学習部101が、訓練データ集合1D3に基づいて、データ生成及び予測に関する学習処理を実行し、作成されたモデル(学習済みモデルと称する)を学習用データ管理部103に格納する(ステップ1F104)。なお、学習処理は図8を参照して詳述する。
次に、データ生成・予測器学習装置10の学習用データ管理部103が、作成されたモデルをリコメンドシステム11のデータ管理部112に配信(複製を格納)する(ステップ1F105)。
最後に、管理端末12の操作部121が、学習済みモデルによって生成される疑似データ集合や、訓練データ集合と疑似データ集合の分布間距離などを管理者15に提示し、処理を終了する。管理者15は、このような提示情報によって、後述する学習パラメータを変更したり、新しく学習した学習済みモデルを採用するか、従来のモデルを継続利用するかを判断できる。
次に、図8を参照して、本実施例における学習処理について詳しく説明する。なお、本実施例ではGANの一つであるWasserstein GAN(Generative Adversarial Networks)を用いた形態を示す。まず、記号とそれに関する条件を説明する。なお、Wasserstein GANではなく、Triple GANなどのほかのGANの方法を用いてもよいし、分布間距離やそれに関する量にMMD(Maximum Mean Discrepancy)などの他の方法を用いてもよい。また、実際には指定された摂動パラメータ探索範囲についてγの指定範囲を10分割してリニアサーチする等で網羅的に探索し、最も汎化性能が高い学習済みモデルを最終的な学習済みモデルとして選択するとよいが、以下では簡単のため、γが0.2であるときの処理の流れを説明する。なお、後述する他のパラメータも、γと同様に探索してもよい。
訓練データ集合1D3の入力に関する集合をXと記し、その集合の元xが倣う分布をPrと記す。また、疑似データ集合をXgと記し、その集合の元xgが倣う分布をPgと記す。PrとPgのWasserstein距離をW(Pr、Pg)と記す。このとき、W(Pr、Pg)は、式(1)で表される。
Figure 0007073286000001
式(1)において、||fw||≦1は、関数fwがリプシッツ連続であることを表す。また、E[・]は、期待値を表す。また、関数fwはニューラルネットワークで構成され、wはそのニューラルネットワークのパラメータである。
xgはxに摂動Δxを加えたものであって、以下を満たす。
Figure 0007073286000002
この摂動Δxは、xとノイズzの条件付き確率分布Pp(Δx|x、z)に従う。ここで、ノイズzは、正規分布や一様分布に従うものとする。また、gθはあるxとzからPpに従う摂動Δxを生成する関数である。なお、関数gθはニューラルネットワークで構成され、θはそのニューラルネットワークのパラメータである。
次に、入力xに対して出力の推定値ypを算出する関数をhφ(x)と記す。なお、関数hφはニューラルネットワークで構成され、φはそのニューラルネットワークのパラメータである。前述した記号を使用して処理を説明する。
まず、データ生成・予測器学習部101の摂動生成部1011は、訓練データ集合からサンプリングした部分集合X={xm:m=1、2、3、…M}(ミニバッチ集合、本実施例ではM=100とするがほかの値でもかまわない)を抽出し、正規分布からサイズMの集合Zのサンプリングし、それらに関数gθを適用し、摂動集合ΔXを生成する(ステップ1F201)。
次に、疑似データ合成部1012は、前記XとΔXの各元の和を取ることで、疑似データ集合Xg={xgm:m=1、2、3、…M}を生成する(ステップ1F202)。
次に、評価部1013は、前記Xgに関数fwを適用し、次式によって、分布間距離の一種であるWasserstein距離の推定量Wassersteinを評価データの一つとして得る(ステップ1F203)。
Figure 0007073286000003
次に、データ生成・予測器学習部101の予測部1014は、前記XとXgに関数hφを適用し、Xに関する予測データ集合Y’={y'm、c:m=1、2、3、…M}と、Xgに関する予測出力Y’g={yg'm、c:m=1、2、3、…M}を生成する(ステップ1F204)。ここで、cはクラスのインデックスを表し、本実施例では、修理作業IDに対応する。
次に、データ生成・予測器学習部101のパラメータ更新部1015は、数式(3)で表される推定量Wassersteinを最大化する方向にパラメータwを逆誤差伝搬法で更新する。同様に、数式(4)で表される関数CrossEntorpyLossを最小化する方向にパラメータφを逆誤差伝搬法で更新する(ステップ1F205)。数式(4)の第一項及び第二項は交差エントロピーを示す。ここで、ym、cは、前述と同様に、Xに対応する訓練データの出力データ集合Y={ym、c:m=1、2、3、…M}の元であり、インデックスはy'm、c、yg'm、cと同じである。また、αは訓練データ集合由来のパラメータ更新と疑似データ集合由来のパラメータ更新とのバランスを調整するパラメータであり、本実施例では0.5とするが他の値でもよい。なお、数式(4)の第三項は摂動を与えたネットワークの内部状態(中間層の出力)を近づけるような制約を与える。ここで、up m、c及びugp m、cは、それぞれ訓練データ集合と疑似データ集合の入力に対する最終層(出力層)の直前の中間層の出力である。βは、その制約の影響を調整するパラメータであって、本実施例では0.5とするが、他の値でもよい。第三項によって、単にデータ拡張したデータを使って学習することに比べて高い汎化性能を持ったモデルを獲得できる。なお、このステップにおける逆誤差伝搬法を実行する際、摂動生成部1011のパラメータθが更新されないようにするとよい。
Figure 0007073286000004
次に、データ生成・予測器学習部101の摂動生成部1011は、ステップ1F201と同じ手順で摂動集合を生成する(ステップ1F206)。
次に、データ生成・予測器学習部101の疑似データ合成部1012は、ステップ1F202と同じ手順で疑似データ集合を生成する(ステップ1F207)。
次に、データ生成・予測器学習部101の評価部1013は、前記Xgに関数fwを適用し、数式(5)によって関数gθに関するロスAdversarialを評価データの別の一つとして得る(ステップ1F208)。ここで、gθ(xm、z)=Δxm=xgm-xmである。また、数式(5)の第一項は、通常のWasserstein GANのジェネレータのロス関数が有する項であり、疑似データ集合と訓練データ集合との分布間距離を近づけようとする。一方、第二項は、本発明で採用された項であり、ミニバッチ内の摂動の大きさ(絶対値の総和)が一定値γ・Mとなるように制約を与える。すなわち、摂動の大きさの期待値を制約している。この結果、訓練データと疑似データとに差異が生じる。これら二つの項の作用によって、本発明の目的である、元の分布と大きく異ならないが入力データとは異なる疑似データ集合を生成できる。このような疑似データ集合が、元の分布と全く異なることはなく、データ拡張による汎化性能の低下を抑制でき、元となったデータのラベルを利用できる等、使い勝手がよい疑似データを生成できる。なお、λによって、最終的にどのくらい元の訓練データと大きく異なる疑似データを生成するのかを制御できる。本実施例では、λは1.0とするが、他の値でもよい。なお、前述のとおり、γは0.2としている。また、摂動の大きさとして絶対値の総和を用いたが,L2ノルムなどほかの大きさの指標を用いてもよい。
Figure 0007073286000005
次に、データ生成・予測器学習部101のパラメータ更新部1015は、数式(5)で表されるGeneratorLossを最小化する方向にパラメータθを逆誤差伝搬法で更新する(ステップ1F209)。
次に、データ生成・予測器学習部101のパラメータ更新部1015は、終了条件を満たしているかを確認する。本実施例では、パラメータを所定回数(例えば10000回)更新したとき終了条件を満たすとする。終了条件を満たさない場合、ステップ1F201に戻り、処理を続ける。一方、終了条件を満たす場合、モデルの学習の処理を終了する(ステップ1F210)。なお、終了条件としては、数式(4)で表される、いわゆるロス関数の大きさが減少しなくなったタイミングで終了と判定してもよい。
また、摂動生成部1011は、訓練データ集合の入力に関する部分集合Xと、正規分布からサンプリングした集合Zとを用いて、摂動集合ΔXを生成するが、訓練データ集合の出力に関する部分集合を入力に加えてもよい。これによって、出力の分布を考慮するため、入力と出力の結合分布として、より妥当な疑似データを生成できる。
また、訓練データ集合の入力に関するk近傍密度推定などの確率密度関数の推定量を入力に加えてもよい。これによって、摂動生成部1011の学習を高速化かつ安定化できる。
また、前述では、特定の分布構造を仮定せずに摂動を生成する方法を説明したが、摂動に特定の分布構造(例えば、摂動集合の事後分布を表す正規分布構造などのパラメトリックな分布の母数)を仮定してもよい。その場合、その分布のパラメータ、例えば平均が0の正規分布であれば分散を、データ生成の対象とできる。低密度の部分における摂動によって、予測性能を向上でき、摂動生成部1011の学習を高速化かつ安定化できる。
また、目標摂動量を小さい値から大きい値に変えた場合、目標摂動量の変化に応じて汎化性能が落ち始める直前で止めるような線形探索によって良好な摂動量を得ることができる。
また、本実施例では、疑似データと摂動前のデータとでラベルを共用できるので、二つのデータを予測器に入力したときの中間層の出力を近づけることができ、前記フィーチャーマッチングを活用した学習が可能となる。
また、本実施例の訓練データ集合はラベル付きであるが、一部にラベルがないデータが含まれている場合、ラベルがないデータに関してもパラメータθ(摂動生成部1011)、パラメータw(評価部1013)を、ラベルがあるデータと同じで手順で学習に利用するとともに、数式(4)の第三項についてラベルがあるデータと同じ手順の学習により、パラメータθ(予測部1014)を利用することで、半教師有り学習ができる。なお、前述したTripe GANのように、予測器を敵対的学習に参加させるように目的関数を定義して半教師有り学習をしてもよい。
次に、図9を参照して、リコメンド処理の流れを説明する。
まず、リコメンドシステム11の集配部113が、修理前(将来的に修理対象となる)のアセット13に関し、アセット13及び修理員端末14から修理作業IDが未記載(None)の実績データ1D1を収集する(ステップ1F301)。
次に、リコメンドシステム11のリコメンド部111が、データ生成・予測器学習装置10の前処理部102と同様の前処理を施したうえで、学習済みモデルを使って、修理作業IDの予測値(リコメンドと称する)を生成する(ステップ1F302)。
次に、リコメンドシステム11のリコメンド部111及び集配部113がアセット13及び修理員端末14にリコメンドを送信する(ステップ1F203)。
最後に、アセット13がオペレータ16にリコメンドを提示し、修理員端末14が修理員17にリコメンドを提示して、処理を終了する(ステップ1F204)。
以上に説明したように、リコメンドシステム11は、アセット13及び修理員端末14から適宜情報を集め、修理のリコメンドを提示することによって、迅速に不調や故障に対応できる。なお、本実施例ではリコメンドシステム11が能動的にリコメンドを生成し提示する形態を示したが、オペレータ16や修理員17の要求に応じてリコメンドを生成し提示する処理を実行してもよい。
<ユーザインターフェース>
次に、図10を参照して、管理者15がデータ生成及び予測器学習に用いる実績データ1D1を選択するために使用する訓練データ選択画面1G1を説明する。訓練データ選択画面1G1は、管理端末12の操作部121に表示される。
訓練データ選択画面1G1は、期間開始日設定ボックス1G101と、期間終了日設定ボックス1G102と、摂動パラメータ探索範囲下限設定ボックス1G103と、摂動パラメータ探索範囲上限設定ボックス1G104と、設定ボタン1G105を含む。
期間開始日設定ボックス1G101で開始日を指定し、期間終了日設定ボックス1G102で終了日を指定することによって、開始日から終了日までの期間の実績データ1D1が訓練データとして選択される。
摂動パラメータ探索範囲下限設定ボックス1G103で摂動パラメータ探索範囲の下限を設定し、摂動パラメータ探索範囲上限設定ボックス1G104で摂動パラメータ探索範囲の上限を設定することによって、摂動の総量を変えて最良なモデルを学習できる。なお、図示したように摂動パラメータ探索範囲の下限及び上限を設定するのではなく、摂動パラメータを設定するための設定ボックスを設けてもよい。
設定ボタン1G105が操作(例えば、クリック)されると、前述した学習に用いる実績データ1D1の期間と摂動パラメータ探索範囲が、データ生成・予測器学習装置10の学習用データ管理部103に格納される。
次に、図11を参照して、管理者15が学習済みモデルによって生成される疑似データを目視確認するために使用する疑似データ確認画面1G2を説明する。疑似データ確認画面1G2は、管理端末12の操作部121に表示される。
疑似データ確認画面1G2は、X軸成分指定リストボックス1G201と、Y軸成分指定リストボックス1G202と、比較ビュー1G203と、分布間距離ボックス1G204を含む。
X軸成分指定リストボックス1G201には、比較ビュー1G203のX軸に割り当てられる前処理済み訓練データ1D3の入力(例えば入力1)が設定される。同様に、Y軸成分指定リストボックス1G202には、比較ビュー1G203のY軸に割り当てられる前処理済み訓練データ1D3の入力(例えば入力3)が設定される。この結果、設定された二つの入力に関する前処理済み訓練データ1D3(図中のもとデータ)と、生成された疑似データとが散布図として比較ビュー1G203に表示される。管理者15が比較ビュー1G203を見ることによって、入力されるデータがどのように拡張されたかを目視で確認できる。これは、例えば、少数のデータがよくばらついている箇所では、データを追加収集すべきという判断ができる。
一方、分布間距離ボックス1G204には、MMDで算出された全入力に関する分布間距離が表示される。これは疑似データがもとの前処理済み訓練データ1D3と異なる程度を確認するために使うことができる。ここで、評価部1013の評価結果を用いてもよいが、学習条件によって学習されるWasserstein距離の推定量が異なるため、本実施例ではMMDを用いる。
以上に説明したように、本発明の実施例によれば、パラメータ更新部1015は、訓練データ集合と疑似データ集合との分布間距離を近づけ、摂動の大きさ又は期待値が予め定めた目標値となるように、摂動生成部1011が摂動集合の生成に使用するパラメータを更新するので、与えられた訓練データ集合の各元の特徴を考慮の上、疑似データ全体として訓練データ集合に対して分布間距離もしくはそれに関する推定量が小さくなるような摂動を加えることができ、目標摂動量以上に訓練データの分布と異ならない疑似データを生成できる。
また、摂動生成部1011は、訓練データ集合の各元の入力又は訓練データ集合に関する情報、及び訓練データ集合の各元の出力又はそれに関する情報に基づいて摂動集合を生成するので、分布間距離と摂動の大きさのトレードオフの観点で、出力の分布が考慮された入力と出力の結合分布として、より妥当な疑似データを生成できる。
また、摂動生成部1011は、前記訓練データ集合の各元の入力又は前記訓練データ集合に関する情報に加えて、前記訓練データ集合の入力に関する確率密度関数(例えばk近傍密度推定)の推定量に基づいて摂動集合を生成するので、摂動生成部1011の学習を高速化かつ安定化できる。
また、摂動生成部1011は、摂動集合の事後分布を表すパラメトリックな分布(例えば正規分布)の母数を生成することによって、摂動集合を生成するので、低密度の部分における摂動によって、予測性能を向上でき、学習を高速化かつ安定化できる。
また、摂動生成部1011が使用するパラメータ値又はその範囲を入力可能なインターフェース画面の表示データ(訓練データ選択画面1G1)を生成するので、摂動量を変えて最良なモデルを学習するための条件を付与できる。
また、訓練データ集合の各元と疑似データ集合の各元とが表された散布図の表示データを生成するので、入力されるデータがどのように拡張されたかを確認できる。
また、予測部1014は、前述したデータ生成装置が生成した疑似データ及び訓練データを使用して学習をするので、予測性能を向上でき、学習を高速化かつ安定化できる。
また、予測部1014は、ニューラルネットワークで構成され、訓練データを入力したときと疑似データを入力したときの内部状態の差が小さくなることを良しとする目的関数(例えば数式(4)の第三項)を追加するので、より高い汎化性能を持ったモデルを獲得できる。なお、ある訓練データから生成した二つの疑似データの内部状態の差が小さくなることを良しとする目的関数でもよい。
なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。
また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。
各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。
10 データ生成・予測器学習装置
101 データ生成・予測器学習部
102 前処理部
1011 摂動生成部
1012 疑似データ合成部
1013 評価部
1014 予測部
1015 パラメータ更新部

Claims (13)

  1. データ集合を生成するデータ生成装置であって、
    訓練データ集合の各元の入力及び前記訓練データ集合に関する情報の少なくとも一方に基づいて、前記元を変形するための摂動集合を生成する摂動生成部と、
    前記訓練データ集合及び前記摂動集合から、前記訓練データ集合と異なる新たな疑似データ集合を生成する疑似データ合成部と、
    前記訓練データ集合と前記疑似データ集合との分布間距離又はそれに関する推定量と、前記摂動集合から得られる訓練データに対する疑似データの摂動の大きさとを算出する評価部と、
    前記訓練データ集合と前記疑似データ集合との分布間距離を近づけ、摂動の大きさ又は期待値が予め定めた目標値となるように、前記摂動生成部が前記摂動集合の生成に使用するパラメータを更新するパラメータ更新部とを備えることを特徴とするデータ生成装置。
  2. 請求項1に記載のデータ生成装置であって、
    前記摂動生成部は、前記訓練データ集合の各元の入力又は前記訓練データ集合に関する情報に加えて、前記訓練データ集合の各元の出力又はそれに関する情報に基づいて前記摂動集合を生成することを特徴とするデータ生成装置。
  3. 請求項1に記載のデータ生成装置であって、
    前記摂動生成部は、前記訓練データ集合の各元の入力又は前記訓練データ集合に関する情報に加えて、前記訓練データ集合の入力に関する確率密度関数の推定量に基づいて前記摂動集合を生成することを特徴とするデータ生成装置。
  4. 請求項1に記載のデータ生成装置であって、
    前記摂動生成部は、前記摂動集合の事後分布を表すパラメトリックな分布の母数を生成することによって、前記摂動集合を生成することを特徴とするデータ生成装置。
  5. 請求項1に記載のデータ生成装置であって、
    前記摂動生成部が使用するパラメータ値又はその範囲を入力可能なインターフェース画面の表示データを生成することを特徴とするデータ生成装置。
  6. 請求項1に記載のデータ生成装置であって、
    前記訓練データ集合の各元と前記疑似データ集合の各元とが表された散布図の表示データを生成することを特徴とするデータ生成装置。
  7. 計算機がデータ集合を生成するデータ生成方法であって、
    前記計算機は、所定の演算処理を実行する演算装置と、前記演算装置がアクセス可能な記憶装置とを有し、
    前記データ生成方法は、
    前記演算装置が、訓練データ集合の各元の入力及び前記訓練データ集合に関する情報の少なくとも一方に基づいて、前記元を変形するための摂動集合を生成する摂動生成手順と、
    前記演算装置が、前記訓練データ集合及び前記摂動集合から、前記訓練データ集合と異なる新たな疑似データ集合を生成する疑似データ合成手順と、
    前記演算装置が、前記訓練データ集合と前記疑似データ集合との分布間距離又はそれに関する推定量と、前記摂動集合から得られる訓練データに対する疑似データの摂動の大きさとを算出する評価手順と、
    前記訓練データ集合と前記疑似データ集合との分布間距離を近づけ、摂動の大きさ又は期待値が予め定めた目標値となるように、前記摂動生成手順において前記摂動集合の生成に使用するパラメータを更新するパラメータ更新手順とを含むことを特徴とするデータ生成方法。
  8. 請求項7に記載のデータ生成方法であって、
    前記摂動生成手順では、前記演算装置が、前記訓練データ集合の各元の入力又は前記訓練データ集合に関する情報に加えて、前記訓練データ集合の各元の出力又はそれに関する情報に基づいて前記摂動集合を生成することを特徴とするデータ生成方法。
  9. 請求項7に記載のデータ生成方法であって、
    前記摂動生成手順では、前記演算装置が、前記摂動集合の事後分布を表すパラメトリックな分布の母数を生成することによって、前記摂動集合を生成することを特徴とするデータ生成方法。
  10. 請求項7に記載のデータ生成方法であって、
    前記演算装置が、前記摂動生成手順で使用されるパラメータ値又はその範囲を入力可能なインターフェース画面の表示データを生成する手順を含むことを特徴とするデータ生成方法。
  11. 請求項7に記載のデータ生成方法であって、
    前記演算装置が、前記訓練データ集合の各元と前記疑似データ集合の各元とが表された散布図の表示データを生成する手順を含むことを特徴とするデータ生成方法。
  12. 計算機がデータ集合を学習する学習方法であって、
    前記計算機は、所定の演算処理を実行する演算装置と、前記演算装置がアクセス可能な記憶装置とを有し、
    前記演算装置は、請求項7から11のいずれか一つに記載のデータ生成方法によって生成された疑似データ及び前記訓練データを使用して、前記訓練データ集合に含まれないデータの入力から出力を予測する予測部における学習を実行することを特徴とする学習方法。
  13. 請求項12に記載の学習方法であって、
    前記訓練データを入力したときと前記疑似データを入力したときの内部状態の差、又は、前記訓練データから生成した二つの疑似データの内部状態の差、が小さくなることを良しとする目的関数を追加することを特徴とする学習方法。
JP2019002436A 2019-01-10 2019-01-10 データ生成装置、予測器学習装置、データ生成方法、及び学習方法 Active JP7073286B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019002436A JP7073286B2 (ja) 2019-01-10 2019-01-10 データ生成装置、予測器学習装置、データ生成方法、及び学習方法
PCT/JP2019/049023 WO2020145039A1 (ja) 2019-01-10 2019-12-13 データ生成装置、予測器学習装置、データ生成方法、及び学習方法
CN201980078575.6A CN113168589B (zh) 2019-01-10 2019-12-13 数据生成装置、预测器学习装置、数据生成方法和学习方法
US17/414,705 US20220058485A1 (en) 2019-01-10 2019-12-13 Data Generation Device, Predictor Learning Device, Data Generation Method, and Learning Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019002436A JP7073286B2 (ja) 2019-01-10 2019-01-10 データ生成装置、予測器学習装置、データ生成方法、及び学習方法

Publications (3)

Publication Number Publication Date
JP2020112967A JP2020112967A (ja) 2020-07-27
JP2020112967A5 JP2020112967A5 (ja) 2021-06-10
JP7073286B2 true JP7073286B2 (ja) 2022-05-23

Family

ID=71521271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019002436A Active JP7073286B2 (ja) 2019-01-10 2019-01-10 データ生成装置、予測器学習装置、データ生成方法、及び学習方法

Country Status (4)

Country Link
US (1) US20220058485A1 (ja)
JP (1) JP7073286B2 (ja)
CN (1) CN113168589B (ja)
WO (1) WO2020145039A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7561014B2 (ja) 2020-11-27 2024-10-03 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング データ処理装置、ニューラルネットワークの深層学習の方法及びプログラム
JP7561013B2 (ja) 2020-11-27 2024-10-03 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング データ処理装置、ニューラルネットワークの深層学習の方法及びプログラム
JP7438932B2 (ja) 2020-12-25 2024-02-27 株式会社日立製作所 訓練データセット生成システム、訓練データセット生成方法、およびリペアリコメンドシステム
KR20220120052A (ko) * 2021-02-22 2022-08-30 삼성전자주식회사 데이터를 생성하는 전자 장치 및 그 동작 방법
CN114896024B (zh) * 2022-03-28 2022-11-22 同方威视技术股份有限公司 基于核密度估计的虚拟机运行状态检测方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181508A (ja) * 2008-01-31 2009-08-13 Sharp Corp 画像処理装置、検査システム、画像処理方法、画像処理プログラム、及び該プログラムを記録したコンピュータ読み取り可能な記録媒体
JP6234060B2 (ja) * 2013-05-09 2017-11-22 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation ターゲットドメインの学習用音声データの生成方法、生成装置、および生成プログラム
US20170337682A1 (en) * 2016-05-18 2017-11-23 Siemens Healthcare Gmbh Method and System for Image Registration Using an Intelligent Artificial Agent
EP3637272A4 (en) * 2017-06-26 2020-09-02 Shanghai Cambricon Information Technology Co., Ltd DATA-SHARING SYSTEM AND RELATED DATA-SHARING PROCESS
CN108197700A (zh) * 2018-01-12 2018-06-22 广州视声智能科技有限公司 一种生成式对抗网络建模方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LOU, Huan et al.,One-dimensional Data Augmentation Using a Wasserstein Generative Adversarial Network with Supervised,IEEE,2018年07月09日,pp.1896-1901,[検索日 2020.01.27]、インターネット:<URL:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8407436>,DOI:<10.1109/CCDC.2018.8407436>
LUO, Yun et al.,EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN,IEEE,2018年10月29日,pp.2535-2538,検索日[2020.01.27]、インターネット:<URL:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8512865>,DOI:<10.1109/EMBC.2018.8512865>, 第2537ページ右カラム第20行-第2538ページ左カラム第28行
SALIMANS, Tim et al.,Improved Techniques for Training GANs,v1,2016年06月10日,pp.1-10,[検索日 2020.01.27]、インターネット:<URL:https://arxiv.org/pdf/1606.03498.pdf>,第2ページ第34-48行
VOLPI, R., et al.,Generalizing to Unseen Domains via Adversarial Data Augmentation,Advances in Neural Information Processing Systems 31 (NeurIPS 2018) [online],2018年12月03日,[retrieved on 2022-04-13], Retrieved from the Internet: <URL: https://proceedings.neurips.cc/paper/2018/hash/1d94108e907bb8311d8802b48fd54b4a-Abstract.html>

Also Published As

Publication number Publication date
CN113168589A (zh) 2021-07-23
WO2020145039A1 (ja) 2020-07-16
US20220058485A1 (en) 2022-02-24
CN113168589B (zh) 2024-06-04
JP2020112967A (ja) 2020-07-27

Similar Documents

Publication Publication Date Title
JP7073286B2 (ja) データ生成装置、予測器学習装置、データ生成方法、及び学習方法
US10977729B2 (en) Systems and methods for model fairness
US10990904B1 (en) Computer network architecture with machine learning and artificial intelligence and automated scalable regularization
Chang et al. Applying DEA to enhance assessment capability of FMEA
US8380642B2 (en) Methods and systems for self-improving reasoning tools
Khoshgoftaar et al. An empirical study of predicting software faults with case-based reasoning
JP4465417B2 (ja) 顧客セグメント推定装置
Rogers et al. On a grey box modelling framework for nonlinear system identification
Lee et al. Bayesian network approach to change propagation analysis
Salari et al. Modeling the effect of sensor failure on the location of counting sensors for origin-destination (OD) estimation
EP3828783A1 (en) Parallelised training of machine learning models
WO2021148407A1 (en) Training machine learning models
Kosanoglu et al. A deep reinforcement learning assisted simulated annealing algorithm for a maintenance planning problem
Xue et al. An instance-based method for remaining useful life estimation for aircraft engines
JP2020187417A (ja) 物性予測装置及び物性予測方法
JPWO2015146100A1 (ja) 負荷推定システム、情報処理装置、負荷推定方法、及び、コンピュータ・プログラム
GB2465861A (en) A reasoning inference making tool for recommending actions based on a hybridisation of a data driven model and knowledge based logic.
Li et al. Rough set-based approach for modeling relationship measures in product planning
Meller et al. Prescriptive analytics for inventory management: A comparison of new approaches
Miller et al. Supporting a modeling continuum in scalation: from predictive analytics to simulation modeling
US20140236667A1 (en) Estimating, learning, and enhancing project risk
Vardar et al. A framework for evaluating remote diagnostics investment decisions for semiconductor equipment suppliers
US11953862B2 (en) Optimal control configuration engine in a material processing system
Tanimoto Goal-oriented Modeling for Data-driven Decision Making
Pandey et al. Non-dominated strategies for decision based design for component reuse

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220511

R150 Certificate of patent or registration of utility model

Ref document number: 7073286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150