JP7072803B2 - How to determine the risk of developing open-angle glaucoma in a broad sense - Google Patents

How to determine the risk of developing open-angle glaucoma in a broad sense Download PDF

Info

Publication number
JP7072803B2
JP7072803B2 JP2018525042A JP2018525042A JP7072803B2 JP 7072803 B2 JP7072803 B2 JP 7072803B2 JP 2018525042 A JP2018525042 A JP 2018525042A JP 2018525042 A JP2018525042 A JP 2018525042A JP 7072803 B2 JP7072803 B2 JP 7072803B2
Authority
JP
Japan
Prior art keywords
snps
snp
risk
group
snp group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018525042A
Other languages
Japanese (ja)
Other versions
JPWO2018003523A1 (en
Inventor
啓 田代
茂 木下
和彦 森
陽子 池田
盛夫 上野
正和 中野
健悟 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO PREFECTURAL UNIVERSITY OF MEDICINE
Sysmex Corp
Santen Pharmaceutical Co Ltd
Original Assignee
KYOTO PREFECTURAL UNIVERSITY OF MEDICINE
Sysmex Corp
Santen Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO PREFECTURAL UNIVERSITY OF MEDICINE, Sysmex Corp, Santen Pharmaceutical Co Ltd filed Critical KYOTO PREFECTURAL UNIVERSITY OF MEDICINE
Publication of JPWO2018003523A1 publication Critical patent/JPWO2018003523A1/en
Application granted granted Critical
Publication of JP7072803B2 publication Critical patent/JP7072803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、広義原発開放隅角緑内障の発症リスクを判定する方法、広義原発開放隅角緑内障の発症リスク判定装置、及び該装置に実行させるためのコンピュータプログラムに関する。 The present invention relates to a method for determining the risk of developing open-angle glaucoma in a broad sense, a device for determining the risk of developing open-angle glaucoma in a broad sense, and a computer program for causing the device to execute.

緑内障は、網膜神経節細胞が障害され、不可逆的に進行し失明に至る神経変性疾患である。また、日本における中途失明原因の第1位であり、40歳以上の有病率は主病型である広義原発開放隅角緑内障(広義primary open-angle glaucoma, 広義POAG;狭義原発開放隅角緑内障と正常眼圧緑内障,日眼会誌116巻1号15頁から18頁)では3.9%にもなるが、この内の大半が自覚症状のない潜在的な緑内障患者である。緑内障は発症初期の点眼治療により進行を抑制することが可能であるため、スクリーニング検査等で発症予測が可能となれば、生涯にわたり視機能を維持することが可能であることから、各種検討が行われている。 Glaucoma is a neurodegenerative disease in which retinal ganglion cells are damaged and progress irreversibly, leading to blindness. In addition, it is the number one cause of premature blindness in Japan, and the prevalence of glaucoma over 40 years old is the main type of glaucoma in the broad sense (broad definition primary open-angle glaucoma, broad sense POAG; And normal glaucoma, Nikkei Journal Vol. 116, No. 1, pp. 15-18), which is 3.9%, but most of them are potential glaucoma patients without subjective symptoms. Since the progression of glaucoma can be suppressed by eye drop treatment in the early stage of onset, if the onset can be predicted by screening tests, etc., it is possible to maintain visual function for the rest of the life. It has been.

例えば、特許文献1では緑内障患者と緑内障家族歴を有さない非患者のゲノム(常染色体)上に存在する公知の多型部位を、特許文献2では緑内障患者であって進行が早い患者と遅い患者のゲノム上に存在する公知の多型部位を、それぞれ網羅的に解析することで、緑内障の発症/進行に関連する一塩基多型(SNP)を見出し、それらを複数組み合わせて判定を行うことにより、より高精度にサンプル提供者が緑内障を発症しやすい者であるか否か、進行しやすい者であるか否かの判定を行う方法が開示されている。 For example, in Patent Document 1, a known polymorphic site existing on the genome (autosomal chromosome) of a glaucoma patient and a non-patient who has no family history of glaucoma, and in Patent Document 2, a glaucoma patient with fast progression and a slow progression. By comprehensively analyzing each known polymorphism site existing on the patient's genome, single nucleotide polymorphisms (SNPs) associated with the onset / progression of glaucoma can be found, and multiple combinations thereof can be used for determination. Discloses a method for determining whether or not a sample provider is likely to develop glaucoma and whether or not the sample provider is likely to develop glaucoma with higher accuracy.

WO2008/130008号公報WO2008 / 130008 Gazette WO2008/130009号公報WO2008 / 130009

しかしながら、特許文献1、2に記載の方法では判定の的中率(感度と特異度)が最大でも60~70%程度であり、より高精度な感度、特異度、陽性的中率(PPV)、及び陰性的中率(NPV)を提供し得る更なる改良技術が求められている。 However, in the methods described in Patent Documents 1 and 2, the judgment accuracy (sensitivity and specificity) is about 60 to 70% at the maximum, and the sensitivity, specificity, and positive predictive value (PPV) are more accurate. , And further improved techniques that can provide a negative predictive value (NPV) are sought.

本発明の課題は、広義POAGの発症リスクを高精度に判定する方法、当該方法を実行する広義POAGの発症リスク判定装置、及び当該装置に実行させるためのコンピュータプログラムを提供することである。 An object of the present invention is to provide a method for determining the risk of developing POAG in a broad sense with high accuracy, a device for determining the risk of developing POAG in a broad sense for executing the method, and a computer program for causing the device to execute the method.

本発明者らは、前記課題を解決せんと鋭意検討した結果、本発明者らが保有する多数の緑内障患者と非緑内障健常人の検体を用いて高密度チップにより取得したジェノタイプ情報に基づくゲノムワイド関連解析(genome-wide association study, GWAS)を実施することで、広義POAGの発症リスクマーカーSNP群を同定し、その中でも、高精度な判定に寄与する特定のSNP群を見出し、当該SNP群と残りのSNPから選択されるSNP群とを組み合わせたSNP集団に関して、サンプル中のリスクアレルの総数を測定することにより、広義POAG発症リスクを高精度に判定できることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have a genome based on genotype information acquired by a high-density chip using a large number of samples of glaucoma patients and healthy non-glaucoma patients possessed by the present inventors. By conducting a genome-wide association study (GWAS), we identified a group of SNPs that are risk markers for the onset of POAG in a broad sense, and among them, we found a specific SNP group that contributes to highly accurate determination, and the SNP group. To complete the present invention, we have found that the risk of developing POAG in a broad sense can be determined with high accuracy by measuring the total number of risk alleles in the sample for the SNP population that combines the SNP group selected from the remaining SNPs and the remaining SNPs. I arrived.

即ち、本発明は、下記〔1〕~〔3〕に関する。
〔1〕 被検者から採取した生体試料における一塩基多型(SNP)のアレル情報に基づいて、表1に記載の12個のSNPからなるコアSNP群と、表2に記載のプールSNP群から選ばれるSNP(プール選抜SNP群)とを合わせて少なくとも30個のSNPについて、アレルを測定するアレル測定工程、
前記アレルの測定結果に基づいて、前記被検者における広義原発開放隅角緑内障の発症リスクに関する情報を取得する情報取得工程、及び
前記で得られた情報に基づいて、前記被検者の広義原発開放隅角緑内障の発症リスクを判定するための情報を提供する情報提供工程
を含む、被検者の広義原発開放隅角緑内障の発症リスクの診断を補助する方法。
〔2〕 プロセッサ及び前記プロセッサの制御下にあるメモリを含むコンピュータを備え、前記メモリには、
被検者から採取した生体試料における一塩基多型(SNP)のアレル情報に基づいて、表1に記載の12個のSNPからなるコアSNP群と、表2に記載のプールSNP群から選ばれるSNP(プール選抜SNP群)とを合わせて少なくとも30個のSNPについて、アレルを測定するアレル測定工程、
前記アレルの測定結果に基づいて、前記被検者における広義原発開放隅角緑内障の発症リスクに関する情報を取得する情報取得工程、及び
前記で得られた情報に基づいて、前記被検者の広義原発開放隅角緑内障の発症リスクを判定するための情報を提供する情報提供工程
を前記コンピュータに実行させるためのコンピュータプログラムが記録されている、広義原発開放隅角緑内障の発症リスクを有する被検者の検出装置。
〔3〕 プロセッサ及び前記プロセッサの制御下にあるメモリを含むコンピュータプログラムであって、
被検者から採取した生体試料における一塩基多型(SNP)のアレル情報に基づいて、表1に記載の12個のSNPからなるコアSNP群と、表2に記載のプールSNP群から選ばれるSNP(プール選抜SNP群)とを合わせて少なくとも30個のSNPについて、アレルを測定するアレル測定工程、
前記アレルの測定結果に基づいて、前記被検者における広義原発開放隅角緑内障の発症リスクに関する情報を取得する情報取得工程、及び
前記で得られた情報に基づいて、前記被検者の広義原発開放隅角緑内障の発症リスクを判定するための情報を提供する情報提供工程
を実行させる、コンピュータプログラム。
That is, the present invention relates to the following [1] to [3].
[1] A core SNP group consisting of 12 SNPs shown in Table 1 and a pooled SNP group shown in Table 2 based on single nucleotide polymorphism (SNP) allele information in a biological sample collected from a subject. Allele measurement process for measuring alleles for at least 30 SNPs including SNPs selected from (pool selection SNP group),
Based on the measurement results of the allele, the information acquisition process for acquiring information on the risk of developing open-angle glaucoma in the broad-sense subject, and based on the information obtained above, the broad-sense nuclear power plant of the subject. A method of assisting a subject in diagnosing the risk of developing open-angle glaucoma in a broad sense, including an information providing step that provides information for determining the risk of developing open-angle glaucoma.
[2] A computer including a processor and a memory under the control of the processor is provided, and the memory includes a processor.
Selected from the core SNP group consisting of 12 SNPs shown in Table 1 and the pooled SNP group shown in Table 2 based on the allelic information of single nucleotide polymorphisms (SNPs) in biological samples collected from subjects. Allele measurement process for measuring alleles for at least 30 SNPs including SNPs (pool selection SNP group),
Based on the measurement results of the allele, the information acquisition process for acquiring information on the risk of developing open-angle glaucoma in the broad-sense subject, and based on the information obtained above, the broad-sense nuclear power plant of the subject. A subject at risk of developing open-angle glaucoma in a broad sense, in which a computer program for causing the computer to execute an information providing process that provides information for determining the risk of developing open-angle glaucoma is recorded. Detection device.
[3] A computer program including a processor and a memory under the control of the processor.
Selected from the core SNP group consisting of 12 SNPs shown in Table 1 and the pooled SNP group shown in Table 2 based on the allelic information of single nucleotide polymorphisms (SNPs) in biological samples collected from subjects. Allele measurement process for measuring alleles for at least 30 SNPs including SNPs (pool selection SNP group),
Based on the measurement results of the allele, the information acquisition step of acquiring information on the risk of developing open-angle glaucoma in the broad sense of the subject, and based on the information obtained in the above, the broad sense of the subject A computer program that runs an information-providing process that provides information to determine the risk of developing open-angle glaucoma.

本発明の方法により、サンプル中に存在する本発明のSNP群について分析することにより、サンプル提供者における広義POAGの発症リスクの有無を判定し、さらには、リスクの高低を予測することができる。このリスクに基づきサンプル提供者は広義POAGの予防措置を講じ、又は適切な治療を受けることができる。 By analyzing the SNP group of the present invention present in the sample by the method of the present invention, it is possible to determine the presence or absence of the risk of developing POAG in a broad sense in the sample provider, and further predict the level of the risk. Based on this risk, sample providers can take precautionary measures or receive appropriate treatment for POAG in a broad sense.

図1は、被検者における広義POAGの発症リスク判定装置の一例を示した概略図である。FIG. 1 is a schematic view showing an example of a risk determination device for the onset of POAG in a broad sense in a subject. 図2は、図1に示される判定装置のハードウェア構成を示すブロック図である。FIG. 2 is a block diagram showing a hardware configuration of the determination device shown in FIG. 図3は、図1に示される判定装置を用いた広義POAGの発症リスクの判定のフローチャートである。FIG. 3 is a flowchart for determining the risk of developing POAG in a broad sense using the determination device shown in FIG. 図4は、測定対象のSNPを30個とした場合の発症リスクの有無の判定を行った結果を示した図である。左図がGWASの検定において上位30個のSNPを用いた場合の図、右図が表1記載のSNPと表2から選択されたSNPの計30個を用いた場合の図である。FIG. 4 is a diagram showing the results of determining the presence or absence of the onset risk when the number of SNPs to be measured is 30. The figure on the left is a diagram when the top 30 SNPs are used in the GWAS test, and the figure on the right is a diagram when a total of 30 SNPs shown in Table 1 and SNPs selected from Table 2 are used. 図5は、表1記載のSNPと表2から選択されたSNPを測定対象とし、SNP数を90個、測定ステップを1回とした場合の発症リスクの有無の判定に用いるグラフの一例を示した図である。FIG. 5 shows an example of a graph used for determining the presence or absence of onset risk when the number of SNPs is 90 and the measurement step is one, targeting the SNPs shown in Table 1 and the SNPs selected from Table 2. It is a figure. 図6は、表1記載のSNPと表2から選択されたSNPを測定対象とし、SNP数を90個、測定ステップを3回とした場合の発症リスクの有無を個々に判定する際に用いるグラフの一例を示した図である。FIG. 6 is a graph used when individually determining the presence or absence of the onset risk when the number of SNPs is 90 and the measurement step is 3 times, using the SNPs shown in Table 1 and the SNPs selected from Table 2 as measurement targets. It is a figure which showed an example. 図7は、表1記載のSNPと表2から選択されたSNPを測定対象とし、SNP数を90個、測定ステップを3回とした場合の発症リスクの有無を統合判定する際に用いるグラフの一例を示した図である。FIG. 7 is a graph used for integrated determination of the presence or absence of onset risk when the number of SNPs is 90 and the measurement step is 3 times, with the SNPs shown in Table 1 and the SNPs selected from Table 2 as measurement targets. It is a figure which showed an example. 図8は、表1記載のSNPと表2から選択されたSNPを測定対象とし、SNP数を90個、測定ステップを3回とした場合の発症リスクの有無の判定にベイズ定理を用いた結果の一例を示した図である。FIG. 8 shows the results of using Bayes' theorem to determine the presence or absence of the onset risk when the number of SNPs is 90 and the measurement step is 3 times, using the SNPs shown in Table 1 and the SNPs selected from Table 2 as measurement targets. It is a figure which showed an example. 図9は、表1記載のSNPと表2から選択されたSNPを測定対象とし、SNP数を120個、測定ステップを1回とした場合の発症リスクの有無の判定に用いるグラフの一例を示した図である。FIG. 9 shows an example of a graph used to determine the presence or absence of onset risk when the number of SNPs is 120 and the measurement step is one, targeting the SNPs shown in Table 1 and the SNPs selected from Table 2. It is a figure. 図10は、表1記載のSNPと表2から選択されたSNPを測定対象とし、SNP数を120個、測定ステップを3回とした場合の発症リスクの有無を個々に判定する際に用いるグラフの一例を示した図である。FIG. 10 is a graph used when individually determining the presence or absence of the onset risk when the number of SNPs is 120 and the measurement step is 3 times, using the SNPs shown in Table 1 and the SNPs selected from Table 2 as measurement targets. It is a figure which showed an example. 図11は、表1記載のSNPと表2から選択されたSNPを測定対象とし、SNP数を120個、測定ステップを3回とした場合の発症リスクの有無を統合判定する際に用いるグラフの一例を示した図である。FIG. 11 is a graph used when the presence or absence of the onset risk when the number of SNPs is 120 and the measurement step is 3 times is determined by integrating the SNPs shown in Table 1 and the SNPs selected from Table 2 as measurement targets. It is a figure which showed an example. 図12は、表1記載のSNPと表2から選択されたSNPを測定対象とし、SNP数を120個、測定ステップを3回とした場合の発症リスクの有無の判定にベイズ定理を用いた結果の一例を示した図である。FIG. 12 shows the results of using Bayes' theorem to determine the presence or absence of the onset risk when the SNPs shown in Table 1 and the SNPs selected from Table 2 are measured, the number of SNPs is 120, and the measurement step is 3 times. It is a figure which showed an example. 図13は、表1記載のSNPと表2から選択されたSNPを測定対象とし、SNP数を150個、測定ステップを1回とした場合の発症リスクの有無の判定に用いるグラフの一例を示した図である。FIG. 13 shows an example of a graph in which the SNPs shown in Table 1 and the SNPs selected from Table 2 are measured, and the presence or absence of the onset risk is determined when the number of SNPs is 150 and the measurement step is one. It is a figure. 図14は、表1記載のSNPと表2から選択されたSNPを測定対象とし、SNP数を150個、測定ステップを3回とした場合の発症リスクの有無を個々に判定する際に用いるグラフの一例を示した図である。FIG. 14 is a graph used when individually determining the presence or absence of the onset risk when the number of SNPs is 150 and the measurement step is 3 times, using the SNPs shown in Table 1 and the SNPs selected from Table 2 as measurement targets. It is a figure which showed an example. 図15は、表1記載のSNPと表2から選択されたSNPを測定対象とし、SNP数を150個、測定ステップを3回とした場合の発症リスクの有無を統合判定する際に用いるグラフの一例を示した図である。FIG. 15 is a graph used when the presence or absence of the onset risk when the number of SNPs is 150 and the measurement step is 3 times is determined by integrating the SNPs shown in Table 1 and the SNPs selected from Table 2 as measurement targets. It is a figure which showed an example. 図16は、表1記載のSNPと表2から選択されたSNPを測定対象とし、SNP数を150個、測定ステップを3回とした場合の発症リスクの有無の判定にベイズ定理を用いた結果の一例を示した図である。FIG. 16 shows the results of using Bayes' theorem to determine the presence or absence of the onset risk when the SNPs shown in Table 1 and the SNPs selected from Table 2 are measured, the number of SNPs is 150, and the measurement step is 3 times. It is a figure which showed an example.

本発明は、特定の一塩基多型(以下、SNPと記載することもある)についてアレルをin vitroで検出する工程を含む、広義原発開放隅角緑内障(以下、広義POAGと記載することもある)の発症リスクを判定する方法であって、被検者由来のサンプルにおいて前記したアレルを測定し、当該アレルがリスクアレルである場合に、その情報を用いて広義POAG発症リスクがあると判定できる情報を提供する、広義POAGの発症リスクの診断を補助する方法である。即ち、本発明は、高精度なリスク判定に寄与する特定のSNP群を構成メンバーとして含む測定対象を設定し、そこで検出したリスクアレルの総数を数え、当該リスクアレルの総数が予め設定された閾値を上回る場合に広義POAGの発症リスクがあるとする情報を提供できることに大きな特徴を有する。これにより、広義POAGの発症リスクの診断を補助することが可能となる。よって、本発明の広義POAGの発症リスクの診断を補助する方法とは、広義POAGの発症リスクに関する情報を提供する方法でもあり、また、広義POAGの発症リスクを判定、評価、又は検査する方法でもある。なお、本明細書において、「多型」または「バリアント」とは、ある生物種におけるゲノムの特定の位置の塩基配列や構造(挿入・欠失、逆位、コピー数)に多様性が認められることを言い、多型が存在する部位(以下、多型部位ともいう)とは一塩基多型(SNP)等のバリアントが認められるゲノム上の部位を言う。 The present invention may be referred to as broad-sense primary open-angle glaucoma (hereinafter, broadly-defined POAG), which comprises a step of detecting an allele in vitro for a specific single nucleotide polymorphism (hereinafter, also referred to as SNP). ) Is a method for determining the risk of developing POAG in a broad sense by measuring the above-mentioned allele in a sample derived from a subject and using the information when the allele is a risk allele. It is a method that provides information and assists in diagnosing the risk of developing POAG in a broad sense. That is, in the present invention, a measurement target including a specific SNP group that contributes to highly accurate risk determination is set as a member, the total number of risk alleles detected there is counted, and the total number of the risk alleles is a preset threshold value. It has a great feature in that it can provide information that there is a risk of developing POAG in a broad sense when it exceeds. This makes it possible to assist in diagnosing the risk of developing POAG in a broad sense. Therefore, the method of assisting the diagnosis of the onset risk of broadly defined POAG of the present invention is also a method of providing information on the onset risk of broadly defined POAG, and also a method of determining, evaluating, or inspecting the onset risk of broadly defined POAG. be. In the present specification, the term "polymorphism" or "variant" means that there is diversity in the base sequence and structure (insertion / deletion, inversion, number of copies) at a specific position of the genome in a certain organism species. The site where a polymorphism is present (hereinafter, also referred to as a polymorphism site) is a site on the genome in which a variant such as a single nucleotide polymorphism (SNP) is recognized.

本発明において、「アレル」とは、ある多型部位において取りうる、互いに異なる塩基を有するそれぞれの型を言い、「リスクアレル」とは、広義POAGと関連するSNPの各アレルのうち、非広義POAG患者群より広義POAG患者群において頻度が高いアレルを言い、「非リスクアレル」とは、リスクアレルではないアレルを言う。 In the present invention, the "allele" refers to each type having different bases that can be taken at a certain polymorphism site, and the "risk allele" is a non-broad definition among alleles of SNP related to POAG in a broad sense. In a broader sense than the POAG patient group, it refers to an allele that is more frequent in the POAG patient group, and "non-risk allele" refers to an allele that is not a risk allele.

本発明において、「広義POAG発症リスク」とは、広義POAGに関するリスクであり、疾患感受性によって決まる将来的な広義POAG発症の可能性を言う。本発明において、リスクの予測とは、将来のリスクの有無を現時点で判定し、又は、将来のリスクの大小を現時点で決定することを言う。 In the present invention, the "risk of developing POAG in a broad sense" is a risk related to POAG in a broad sense, and refers to the possibility of developing POAG in a broad sense in the future, which is determined by disease susceptibility. In the present invention, risk prediction means determining the presence or absence of future risk at the present time, or determining the magnitude of future risk at the present time.

本発明の広義POAGの発症リスクの診断を補助する方法は、
特定のSNPについてアレルを測定するアレル測定工程、
前記アレルの測定結果に基づいて被検者の情報を取得する情報取得工程、及び
前記情報に基づいて被検者の発症リスクを判定するための情報を提供する情報提供工程
を含む。以下に工程ごとに順を追って説明するが、先に、本発明において測定対象となる、広義POAGの発症に関連するSNP群を同定した方法を説明する。なお、広義POAGの発症に関連するSNP群のことを、本発明のSNP群と記載することもある。
The method of assisting the diagnosis of the onset risk of POAG in the broad sense of the present invention is
Allele measurement process, which measures alleles for a specific SNP,
It includes an information acquisition step of acquiring information on a subject based on the measurement result of the allele, and an information providing step of providing information for determining the onset risk of the subject based on the information. Each step will be described below in order, but first, a method for identifying an SNP group related to the onset of POAG in a broad sense, which is a measurement target in the present invention, will be described. The SNP group associated with the onset of POAG in a broad sense may be referred to as the SNP group of the present invention.

(広義POAGの発症に関連するSNP群の同定)
本発明において、広義POAGの発症に関連するSNP群は、具体的には、先ず、広義POAGと診断された緑内障患者(単に、患者と記載することもある)、及び、広義POAGではないと診断され、かつ、問診によって緑内障家族歴を有さないと判断された非緑内障健常者(単に、非患者、対照者又は非広義POAG患者と記載することもある)からゲノムDNAをそれぞれ抽出する。そして、ヒトゲノム上の公知のSNP約20万~500万個を指標として、個々のSNPにおけるアレル頻度を患者群と非患者群において比較し種々解析することにより、頻度の差が統計学的に高い有意性で認められるマーカー候補のSNP群を見出す。次いで、この候補群から更に解析を行うことで、本発明で用いるSNP群(マーカーSNP群)を決定し、その中から、より高精度な判定結果を与える特定のSNP群(コアSNP群)と残りのSNP群(プールSNP群)を設定し、これらを組み合わせて用いることにより、広義POAGの発症リスクの有無の判定及び広義POAGの発症リスクの大小の予測が可能となる。なお、詳細は実施例の項にて説明するが、以下のような方法により、本発明で開示された広義POAGに関連するSNP群を同定することができる。
(Identification of SNP group associated with the onset of POAG in a broad sense)
In the present invention, the SNP group associated with the onset of broad-sense POAG is specifically, first, a glaucoma patient diagnosed with broad-sense POAG (sometimes simply referred to as a patient), and a diagnosis that is not broad-sense POAG. Genomic DNA is extracted from healthy non-glaucoma patients (sometimes simply referred to as non-patients, controls, or non-broadly-defined POAG patients) who have been judged by interview to have no family history of glaucoma. Then, by comparing and variously analyzing the allele frequency in each SNP between the patient group and the non-patient group using about 200,000 to 5 million known SNPs on the human genome as an index, the difference in frequency is statistically high. Find a group of SNPs that are significant marker candidates. Then, by further analyzing from this candidate group, the SNP group (marker SNP group) used in the present invention is determined, and from among them, a specific SNP group (core SNP group) that gives a more accurate determination result. By setting the remaining SNP group (pool SNP group) and using these in combination, it is possible to determine the presence or absence of the risk of developing POAG in the broad sense and predict the magnitude of the risk of developing POAG in the broad sense. Although the details will be described in the section of Examples, the SNP group related to the broadly defined POAG disclosed in the present invention can be identified by the following method.

(1) マーカー候補のSNP群を見出す方法
患者群と非患者群、それぞれの血液からゲノムDNAを抽出する。血液中のゲノムDNAは公知の任意の方法によって抽出することができるが、例えば細胞を溶解して溶出させたDNAを、シリカでコーティングした磁性ビーズの表面に結合させ、磁気を利用して分離、回収することによってDNAを抽出することができる。
(1) Method for finding SNP groups of marker candidates Extract genomic DNA from the blood of each patient group and non-patient group. Genomic DNA in blood can be extracted by any known method. For example, DNA obtained by dissolving and eluting cells is bound to the surface of magnetic beads coated with silica and separated by magnetism. DNA can be extracted by recovery.

抽出したDNAサンプル中のSNPにおけるアレルの同定手段は特に限定されず、当該技術において公知のSNP検出方法及びSNPタイピング方法から適宜選択すればよい。 The means for identifying the allele in the SNP in the extracted DNA sample is not particularly limited, and an appropriate selection may be made from the SNP detection method and the SNP typing method known in the art.

ここでは、ゲノムワイド関連解析(GWAS)を用いる手法について説明する。具体的には、例えば、ゲノム全領域に分布するSNPを含むDNAマイクロアレイ(アフィメトリクス社、Genome-Wide Human SNP Array 6.0)を用いて行うことができる。その際に、Quality controlを行うことで、抽出するSNPを選択してもよい。 Here, a method using genome-wide association study (GWAS) will be described. Specifically, for example, a DNA microarray containing SNPs distributed in the entire genome region (Affymetrix, Genome-Wide Human SNP Array 6.0) can be used. At that time, the SNP to be extracted may be selected by performing Quality control.

Quality controlにおけるSNP採否の基準となるコールレートとしては、例えば、好ましくは85%以上、より好ましくは90%以上、更に好ましくは95%以上のコールレートを示すSNPを採用することが望ましい。また、その他に、マイナーアレル頻度(MAF)が0.01未満のSNP、及び遺伝子型の分布がハーディー・ワインバーグ平衡(HWE)から有意に(false discovery rateが0.001未満)逸脱したSNPについては、候補から除外することが望ましい。 As the call rate as a criterion for acceptance or rejection of SNP in quality control, for example, it is desirable to adopt an SNP having a call rate of preferably 85% or more, more preferably 90% or more, still more preferably 95% or more. In addition, SNPs with a minor allele frequency (MAF) of less than 0.01 and SNPs whose genotype distribution deviates significantly from Hardy-Weinberg equilibrium (HWE) (false discovery rate is less than 0.001) are among the candidates. It is desirable to exclude it.

Quality controlで選択されたSNPについては、更に絞り込みを行う。具体的には、例えば、統計ソフトウェアを用いてカイ二乗検定を行うことで、P値が好ましくは1×10-3以下、より好ましくは3×10-4以下、更に好ましくは1×10-4以下を満たすSNPを選択する。The SNPs selected in Quality control will be further narrowed down. Specifically, for example, by performing a chi-square test using statistical software, the P value is preferably 1 × 10 -3 or less, more preferably 3 × 10 -4 or less, still more preferably 1 × 10 -4 . Select an SNP that meets the following:

次に、前記抽出されたSNPについては、ジェノタイピング不良SNPを除外するための2次元クラスタープロット解析、例えば、ジェノタイピングソフトウェア(アフィメトリクス社、Genotyping Console)から得られるクラスタープロット画像を目視で観察することによって、ジェノタイピング不良のSNPを除外して、マーカー候補のSNP群を決定する。 Next, for the extracted SNPs, a two-dimensional cluster plot analysis for excluding genotyping defective SNPs, for example, a cluster plot image obtained from genotyping software (Genotyping Console) is visually observed. Excludes SNPs with poor genotyping and determines the SNP group of marker candidates.

このようにして選択されたSNPは、GenBankやdbSNPのような公知配列や公知SNPのデータベースを参照することにより、そのSNPが存在するゲノム上の位置、配列情報、SNPが存在する遺伝子又は近傍に存在する遺伝子、遺伝子上に存在する場合にはイントロン又はエキソンの区別やその機能、他の生物種における相同遺伝子などの情報を得ることができる。 The SNPs selected in this way can be found in known sequences such as GenBank and dbSNP, or by referring to a database of known SNPs, to the position on the genome where the SNP is present, sequence information, the gene in which the SNP is present, or the vicinity thereof. Information such as existing genes, distinction between introns or exones when they are present on genes, their functions, and homologous genes in other species can be obtained.

(2) マーカーSNP群を見出す方法
次に、前記で得られたマーカー候補のSNP群について、ジェノタイプデータを数値化して抽出する。
(2) Method for finding marker SNP group Next, for the marker candidate SNP group obtained above, genotype data is quantified and extracted.

数値化においては、ジェノタイプデータ及びリスクアレルデータベースを参照して、例えばジェノタイプデータに含まれる所定のアレルにおいて、リスクアレルがホモの場合には数値2を、リスクアレルがヘテロの場合には数値1を、非リスクアレルがホモの場合には数値0を、それぞれ付与する。そして、得られた数値を、各アレルの出現頻度の平均値と観測される頻度を用いて以下の数式により正規化を行って、選択されたSNP群における数値化したジェノタイプデータ行列を作成する。 In quantification, refer to the genotype data and risk allele database, for example, in a predetermined allele contained in the genotype data, if the risk allele is homozygous, the numerical value is 2, and if the risk allele is heterozygous, the numerical value is 2. 1 is given, and when the non-risk allele is homozygous, a numerical value of 0 is given. Then, the obtained numerical values are normalized by the following formulas using the average value of the appearance frequency of each allele and the observed frequency to create a quantified genotype data matrix in the selected SNP group. ..

Figure 0007072803000001
Figure 0007072803000001

なお、リスクアレルとは、患者群に高頻度に出現するアレルをいう。本発明で、リスクアレルはオッズ比に基づいて規定される。オッズ比とは、一般に患者群における危険因子を持つ人の割合と持たない人の割合の比、即ちオッズを、非患者群において同様に求めたオッズで除したものであり、本発明のようなケース・コントロール研究において用いられることが多い。本発明においてオッズ比はアレル頻度に基づいて求められ、患者群における、あるアレルの頻度と他のアレルの比を、非患者群において同様にして得られる頻度の比で除して算出することができる。なお、各アレルの出現頻度は、例えば、サンプル提供者のデータを取得するに伴って、そのデータが追加更新されて随時再算出可能なものである。 The risk allele is an allele that frequently appears in a patient group. In the present invention, risk alleles are defined based on odds ratios. The odds ratio is generally the ratio of the proportion of people with and without risk factors in the patient group, that is, the odds divided by the similarly determined odds in the non-patient group, as in the present invention. Often used in case control studies. In the present invention, the odds ratio is determined based on the allele frequency, and can be calculated by dividing the ratio of one allele to another in the patient group by the ratio of the frequencies similarly obtained in the non-patient group. can. The frequency of appearance of each allele can be recalculated at any time by additionally updating the data as the data of the sample provider is acquired, for example.

次いで、数値化したジェノタイプデータ行列を用いて、クラスター解析を行う。具体的には、例えば、SNP間の連鎖不平衡(linkage disequilibrium, LD)を考慮し、独立性が高いと思われるSNPを主成分分析(principal component analysis, PCA)により決定する。主成分分析の方法としては、公知の方法を用いることが出来るが、例えば、前記で選択されたSNPについて、全ゲノム又は染色体のそれぞれにおいて情報縮約を行って因子負荷量(主成分と元の変数との間の相関係数に相当)を算出し、それに基づいて候補領域を決定し、当該領域内でP値が最も低いSNPを候補SNPとして選択することで、本発明のマーカーSNP群を決定する。但し、全ゲノムからの計算と染色体のそれぞれからの計算から重複したSNPは除く。 Next, a cluster analysis is performed using the digitized genotype data matrix. Specifically, for example, considering the linkage disequilibrium (LD) between SNPs, the SNPs that are considered to have high independence are determined by principal component analysis (PCA). As a method for principal component analysis, a known method can be used. For example, for the SNP selected above, information reduction is performed in each of the entire genome or chromosome to perform factor loading (principal component and original). The marker SNP group of the present invention is selected by calculating (corresponding to the correlation coefficient between variables), determining a candidate region based on the calculation, and selecting the SNP having the lowest P value in the region as a candidate SNP. decide. However, duplicate SNPs are excluded from the calculation from the whole genome and the calculation from each of the chromosomes.

次に、本発明のマーカーSNP群から、高精度な判定に寄与する特定のSNP群を更に選定する方法について説明する。以降、かかるSNP群のことを、コアSNP群と記載する。 Next, a method of further selecting a specific SNP group that contributes to highly accurate determination from the marker SNP group of the present invention will be described. Hereinafter, such an SNP group will be referred to as a core SNP group.

(3) コアSNP群とプールSNP群を見出す方法
コアSNP群は、前記で得られたマーカーSNP群からP値が低い順に50個程度のSNP群を選択し、選択されたSNP群について新たな集団による再現実験を行うことで決定することができる。また、プールSNP群は、マーカーSNP群からコアSNP群を除いた群とする。
(3) Method for finding core SNP group and pool SNP group For the core SNP group, about 50 SNP groups are selected from the marker SNP group obtained above in ascending order of P value, and new SNP groups are selected for the selected SNP group. It can be determined by performing a reproduction experiment by a group. The pool SNP group is a group obtained by excluding the core SNP group from the marker SNP group.

より詳しくは、前記のようにして選択されたSNP群について、マーカー候補のSNP群を同定する際に用いた患者群と非患者群とは別の集団から、採取したDNAを用いてアレルの同定を行う。ここで、別集団とは、一部に重複が生じていてもよいが、完全非同一が好ましい集団である。解析方法としては、例えば、質量分析法が好ましく、公知のMassARRAYを用いることができる。なお、Quality controlを行ってもよく、その際のコールレートとしては、例えば、好ましくは85%以上、より好ましくは90%以上、更に好ましくは95%以上のコールレートを示すSNPを採用することが望ましい。また、その他に、マイナーアレル頻度(MAF)が0.01未満のSNP、及び遺伝子型の分布がハーディー・ワインバーグ平衡(HWE)から有意に(false discovery rateが0.001未満)逸脱したSNPについては、候補から除外することが望ましい。 More specifically, for the SNP group selected as described above, identification of alleles using DNA collected from a group different from the patient group and the non-patient group used for identifying the marker candidate SNP group. I do. Here, the different group is a group in which completely non-identical is preferable, although some overlap may occur. As the analysis method, for example, a mass spectrometry method is preferable, and a known Mass ARRAY can be used. Quality control may be performed, and as the call rate at that time, for example, an SNP having a call rate of preferably 85% or more, more preferably 90% or more, still more preferably 95% or more may be adopted. desirable. In addition, SNPs with a minor allele frequency (MAF) of less than 0.01 and SNPs whose genotype distribution deviates significantly from Hardy-Weinberg equilibrium (HWE) (false discovery rate is less than 0.001) are among the candidates. It is desirable to exclude it.

次いで、前記同定されたSNPについて、前記と同様にして2次元クラスタープロット解析を行って、ジェノタイピング不良SNPを除外する。 Then, for the identified SNPs, a two-dimensional cluster plot analysis is performed in the same manner as described above to exclude genotyping defective SNPs.

このようにして選択されたSNPについて、例えば、ジェノタイピングソフトウェアを用いてカイ二乗検定を行うことで、P値が好ましくは1×10-3以下、より好ましくは3×10-4以下、更に好ましくは1×10-4以下を満たすSNPを選択する。For the SNPs selected in this way, for example, by performing a chi-square test using genotyping software, the P value is preferably 1 × 10 -3 or less, more preferably 3 × 10 -4 or less, still more preferable. Selects SNPs that satisfy 1 × 10 -4 or less.

選択されたSNP群については、2回の解析結果を統合して判断することが好ましいことから、公知のメタ解析の手法、例えば、コクラン・マンテル・ヘンツェル法によって解析結果を統合して評価することができる。そして、当該解析手法によりP値が3×10-3以下を満たすSNPを本発明におけるコアSNP群(計12個)とし、コアSNP群に該当しない残りのSNP群(計471個)をプールSNP群とする。以下に、コアSNP群におけるSNPを含むプローブ配列を表1に、プールSNP群におけるSNPを含むプローブ配列を表2(表2-1~表2-24)にそれぞれ示す。表中、各SNPの対立遺伝子(アレル)はプローブ配列における括弧内に記載し、リスクアレルを含む配列を配列番号A、非リスクアレルを含む配列を配列番号Bとする。Since it is preferable to integrate and judge the results of two analyzes for the selected SNP group, the analysis results should be integrated and evaluated by a known meta-analysis method, for example, the Cochran-Mantel-Henzel method. Can be done. Then, the SNPs having a P value of 3 × 10 -3 or less according to the analysis method are defined as the core SNP group (12 in total) in the present invention, and the remaining SNP groups (471 in total) that do not correspond to the core SNP group are pooled SNPs. Make a group. Table 1 shows the probe sequences containing SNPs in the core SNP group, and Table 2 (Tables 2-1 to 2-24) shows the probe sequences containing SNPs in the pooled SNP group. In the table, alleles of each SNP are described in parentheses in the probe sequence, and the sequence containing the risk allele is designated as SEQ ID NO: A and the sequence containing the non-risk allele is designated as SEQ ID NO: B.

Figure 0007072803000002
Figure 0007072803000002

Figure 0007072803000003
Figure 0007072803000003

Figure 0007072803000004
Figure 0007072803000004

Figure 0007072803000005
Figure 0007072803000005

Figure 0007072803000006
Figure 0007072803000006

Figure 0007072803000007
Figure 0007072803000007

Figure 0007072803000008
Figure 0007072803000008

Figure 0007072803000009
Figure 0007072803000009

Figure 0007072803000010
Figure 0007072803000010

Figure 0007072803000011
Figure 0007072803000011

Figure 0007072803000012
Figure 0007072803000012

Figure 0007072803000013
Figure 0007072803000013

Figure 0007072803000014
Figure 0007072803000014

Figure 0007072803000015
Figure 0007072803000015

Figure 0007072803000016
Figure 0007072803000016

Figure 0007072803000017
Figure 0007072803000017

Figure 0007072803000018
Figure 0007072803000018

Figure 0007072803000019
Figure 0007072803000019

Figure 0007072803000020
Figure 0007072803000020

Figure 0007072803000021
Figure 0007072803000021

Figure 0007072803000022
Figure 0007072803000022

Figure 0007072803000023
Figure 0007072803000023

Figure 0007072803000024
Figure 0007072803000024

Figure 0007072803000025
Figure 0007072803000025

Figure 0007072803000026
Figure 0007072803000026

かくして選択された本発明のSNP群を用いて、以下の各工程を行う。 Using the SNP group of the present invention thus selected, the following steps are performed.

〔アレル測定工程〕
アレル測定工程では、前記コアSNP群について必ず測定を行い、かつ、プールSNP群から選ばれるSNP(プール選抜SNP群)についても測定を行う。測定対象のSNP数は、コアSNP群を含めた合計が少なくとも30個であれば特に限定はなく、例えば、測定対象が30個の場合は、コアSNP 12個とプール選抜SNP 18個で構成される。測定対象が40個の場合は、コアSNP 12個とプール選抜SNP 28個で構成される。測定対象が50個の場合は、コアSNP 12個とプール選抜SNP 38個で構成される。測定対象が90個の場合は、コアSNP 12個とプール選抜SNP 78個で構成される。
[Allele measurement process]
In the allele measurement step, the core SNP group is always measured, and the SNP selected from the pool SNP group (pool selection SNP group) is also measured. The number of SNPs to be measured is not particularly limited as long as the total number including the core SNP group is at least 30, and for example, when the measurement target is 30, it is composed of 12 core SNPs and 18 pool selection SNPs. To. If the measurement target is 40, it is composed of 12 core SNPs and 28 pool selection SNPs. If the measurement target is 50, it is composed of 12 core SNPs and 38 pool selection SNPs. If the measurement target is 90, it is composed of 12 core SNPs and 78 pool selection SNPs.

また、本発明では、1回の測定結果を持って次の情報取得工程に進んでもよいが、判定精度を向上させる観点から、複数回の測定ステップを行って得られた複数の結果を持って情報取得工程に進むことができる。この場合、12個のSNPからなるコアSNP群についてはいずれかの測定ステップで、重複せずに、かつ、12個全てが測定対象として用いられ得る。ステップ毎のコアSNP群の数は同一であっても、異なっていてもよい。また、ステップ毎の測定対象SNP数も同一であっても、異なっていてもよく、各ステップにおいてコアSNP群を含めた合計が少なくとも30個であれば特に限定はない。 Further, in the present invention, one measurement result may be used to proceed to the next information acquisition step, but from the viewpoint of improving the determination accuracy, the present invention has a plurality of results obtained by performing a plurality of measurement steps. You can proceed to the information acquisition process. In this case, for the core SNP group consisting of 12 SNPs , all 12 can be used as measurement targets without duplication in any of the measurement steps. The number of core SNP groups per step may be the same or different. Further, the number of SNPs to be measured for each step may be the same or different, and is not particularly limited as long as the total number including the core SNP group is at least 30 in each step.

具体的には、例えば、アレル測定工程が2回の測定ステップを含む場合は、
コアSNP群から選ばれる1個以上のSNP(第1コアSNP群)と、プールSNP群から選ばれる複数のSNP(第1プール選抜SNP群)とを合わせて少なくとも30個のSNPを含む第1SNP群について測定を行う第1測定ステップと、
第1コアSNP群とは異なる1個以上のSNP(第2コアSNP群)と、プールSNP群から選ばれる複数のSNP(第2プール選抜SNP群)とを合わせて少なくとも30個のSNPを含む第2SNP群について測定を行う第2測定ステップ
を含む工程が例示され、ここで、前記第1プール選抜SNP群と第2プール選抜SNP群とは非同一である。各測定ステップにおける測定対象のSNP数を例示すると、例えば、第1SNP群における第1コアSNP群は6個、第1プール選抜SNP群が24個以上であり、第2SNP群における第2コアSNP群は6個、第2プール選抜SNP群が24個以上の例が挙げられる。なお、本明細書において「非同一」とは完全同一ではないことを意味し、例えば、1個のみ異なる場合であってもよく、プール選抜SNP群の構成SNPが全て異なる場合であってもよい。
Specifically, for example, when the allele measurement step includes two measurement steps,
A first SNP containing at least 30 SNPs including one or more SNPs selected from the core SNP group (first core SNP group) and a plurality of SNPs selected from the pool SNP group (first pool selection SNP group). The first measurement step to measure the group and
A total of at least 30 SNPs including one or more SNPs different from the first core SNP group (second core SNP group) and a plurality of SNPs selected from the pool SNP group (second pool selection SNP group) are included. A step including a second measurement step for measuring the second SNP group is exemplified, and here, the first pool selection SNP group and the second pool selection SNP group are not the same. For example, the number of SNPs to be measured in each measurement step is 6 in the 1st core SNP group, 24 or more in the 1st pool selection SNP group, and the 2nd core SNP group in the 2nd SNP group. There are 6 cases, and there are 24 or more examples of the second pool selection SNP group. In addition, in this specification, "non-identical" means that they are not completely the same. For example, only one may be different, or the constituent SNPs of the pool selection SNP group may be all different. ..

また、アレル測定工程が3回の測定ステップを含む場合は、
コアSNP群から選ばれる1個以上のSNP(第1コアSNP群)と、プールSNP群から選ばれる複数のSNP(第1プール選抜SNP群)とを合わせて少なくとも30個のSNPを含む第1SNP群について測定を行う第1測定ステップと、
第1コアSNP群とは異なる1個以上のSNP(第2コアSNP群)と、プールSNP群から選ばれる複数のSNP(第2プール選抜SNP群)とを合わせて少なくとも30個のSNPを含む第2SNP群について測定を行う第2測定ステップと、
第1コアSNP群及び第2コアSNP群とは異なる1個以上のSNP(第3コアSNP群)と、プールSNP群から選ばれる複数のSNP(第3プール選抜SNP群)とを合わせて少なくとも30個のSNPを含む第3SNP群について測定を行う第3測定ステップ
を含む工程が例示され、ここで、前記第1プール選抜SNP群と第2プール選抜SNP群と第3プール選抜SNP群とはいずれも非同一である。また、各測定ステップにおける測定対象のSNP数を例示すると、例えば、第1SNP群における第1コアSNP群は4個、第1プール選抜SNP群が26個以上であり、第2SNP群における第2コアSNP群は4個、第2プール選抜SNP群が26個以上であり、第3SNP群における第3コアSNP群は4個、第3プール選抜SNP群が26個以上である例が挙げられる。
Also, if the allele measurement process involves three measurement steps,
A first SNP containing at least 30 SNPs including one or more SNPs selected from the core SNP group (first core SNP group) and a plurality of SNPs selected from the pool SNP group (first pool selection SNP group). The first measurement step to measure the group and
A total of at least 30 SNPs including one or more SNPs different from the first core SNP group (second core SNP group) and a plurality of SNPs selected from the pool SNP group (second pool selection SNP group) are included. The second measurement step for measuring the second SNP group, and
At least one or more SNPs (third core SNP group) different from the first core SNP group and the second core SNP group and a plurality of SNPs selected from the pool SNP group (third pool selection SNP group) are combined. An example is a step including a third measurement step of measuring a third SNP group containing 30 SNPs. Here, the first pool selection SNP group, the second pool selection SNP group, and the third pool selection SNP group are defined. Both are non-identical. To exemplify the number of SNPs to be measured in each measurement step, for example, the first core SNP group in the first SNP group has four, the first pool selection SNP group has 26 or more, and the second core in the second SNP group. There are 4 SNP groups, 26 or more selected SNP groups in the second pool, 4 in the 3rd core SNP group in the 3rd SNP group, and 26 or more in the selected SNP group in the 3rd pool.

なお、本発明においては、必要により、4回目以降の測定を行うこともできる。 In the present invention, if necessary, the fourth and subsequent measurements can be performed.

本発明で用いられる生体試料としては、ゲノム由来のDNAを抽出可能なものであれば何でも良い。例えば、全血、全血球、白血球、リンパ球、血漿、血清、リンパ液、涙液、唾液、鼻汁、脳脊髄液、骨髄液、精液、汗、粘膜組織、皮膚組織、又は毛根等が用いられる。かかる生体試料からのDNA抽出方法としては、公知の任意の方法を採用することができる。 The biological sample used in the present invention may be any sample as long as it can extract DNA derived from the genome. For example, whole blood, whole blood cells, leukocytes, lymphocytes, plasma, serum, lymph, tears, saliva, nasal juice, cerebrospinal fluid, bone marrow, semen, sweat, mucosal tissue, skin tissue, hair roots and the like are used. As the method for extracting DNA from such a biological sample, any known method can be adopted.

測定対象のSNP群に関しては、公知の方法に従って、そのアレルを決定して測定結果を得る。具体的には、例えば、本発明のSNP群の配列情報に基づき設計した、各アレルに特異的なプローブ(表1~表2)を用いてハイブリダイズさせ、そのシグナルを検出することによりそれぞれのアレルを検出することができる。プローブを用いてハイブリダイズさせる方法の例としてはタックマン法、インベーダー(Invader(登録商標))法、ライトサイクラー法、サイクリンプローブ法、MPSS法、ビーズアレイ法、DNAチップ法、マイクロアレイ法などがある。また、プローブによるハイブリダイズを行わずにアレルを検出することも可能であり、例えば、PCR-RFLP法、SSCP法、質量分析法、次世代シークエンス法、ダイレクトシークエンス法などを用いることができる。これらの方法は公知の条件に従って行うことができる。 For the SNP group to be measured, the allele is determined according to a known method and the measurement result is obtained. Specifically, for example, each allele-specific probe (Tables 1 to 2) designed based on the sequence information of the SNP group of the present invention is hybridized and the signal is detected. Alleles can be detected. Examples of methods for hybridizing using a probe include a Tuckman method, an Invader (registered trademark) method, a light cycler method, a cyclone probe method, an MPSS method, a bead array method, a DNA chip method, and a microarray method. It is also possible to detect alleles without hybridization with a probe, and for example, PCR-RFLP method, SSCP method, mass spectrometry method, next-generation sequencing method, direct sequencing method and the like can be used. These methods can be performed according to known conditions.

かくして得られた測定結果を次の情報取得工程に供する。 The measurement result thus obtained is used for the next information acquisition step.

〔情報取得工程〕
情報取得工程では、測定対象のアレルに基づいて広義POAGの発症リスクに関する情報を取得する。アレルの情報としては、バリアントが存在するか否かについての情報や測定されたアレルの種類についての情報であってもよく、その数を取得したものであってもよい。また、SNPと相関する値(統計値など)として算出されたものであってもよい。なかでも、本発明では、判定精度を向上する観点から、測定されたアレルがリスクアレルであるか否かを判別し、リスクアレルの総数をカウントしたものであることが好ましい。即ち、予め取得したリスクアレルデータに基づいて、測定されたアレルがリスクアレルであるか否かの判別を行って、測定対象のSNP群全体においてリスクアレルと判定されたアレルの総数(リスクアレル保有数ともいう)を数える。また、複数回の測定ステップを行う場合には、各測定においてリスクアレルの総数があらかじめ設定した所定の閾値を超えるかどうかで、陽性か陰性かを判定し、それらの数をカウントする。このようにして得られたリスクアレルの総数と、複数回の測定ステップを行う場合には、更に、各測定結果の陽性、陰性の個数をサンプル提供者の定量値として認定して、次の情報提供工程に進むことが好ましい。
[Information acquisition process]
In the information acquisition process, information on the risk of developing POAG in a broad sense is acquired based on the allele to be measured. The allele information may be information on whether or not a variant exists, information on the measured allele type, or information obtained from the number of alleles. Further, it may be calculated as a value (statistical value or the like) that correlates with SNP. Above all, in the present invention, from the viewpoint of improving the determination accuracy, it is preferable to determine whether or not the measured allele is a risk allele and count the total number of risk alleles. That is, based on the risk allele data acquired in advance, it is determined whether or not the measured allele is a risk allele, and the total number of alleles determined to be risk alleles in the entire SNP group to be measured (risk allele possession). Count). When a plurality of measurement steps are performed, positive or negative is determined based on whether the total number of risk alleles exceeds a predetermined threshold value set in advance in each measurement, and the number thereof is counted. When the total number of risk alleles thus obtained and the number of positives and negatives of each measurement result are performed in multiple measurement steps, the number of positives and negatives of each measurement result is further certified as a quantitative value of the sample provider, and the following information is obtained. It is preferable to proceed to the providing process.

〔情報提供工程〕
情報提供工程では、得られた情報に基づいて被検者の発症リスクを判定するための情報を被検者に提供する。
[Information provision process]
In the information providing process, information for determining the onset risk of the subject based on the obtained information is provided to the subject.

発症リスクを判定する方法としては、例えば、前記工程により得られる情報がリスクアレル保有数である場合、具体的には、4つの態様が挙げられる。
態様1:リスクアレル保有数の数値によって発症リスクの有無を判定する態様
態様2:複数のリスクアレル保有数が得られる場合の発症リスクの有無を統合して判定する態様
態様3:リスクアレル保有数に基づいて発症リスクを有する確率を算出する態様
態様4:リスクアレル保有数に基づいて所定の確率で発症リスクを有する確率を算出する態様
As a method for determining the onset risk, for example, when the information obtained by the above step is the number of risk alleles possessed, four specific embodiments can be mentioned.
Aspect 1: The presence or absence of the risk of onset is determined by the numerical value of the number of possessed risk alleles Aspect 2: The presence or absence of the onset risk is determined by integrating the presence or absence of the onset risk when a plurality of possessed risk alleles are obtained Aspect 3: The number of possessed risk alleles Aspect for calculating the probability of having an onset risk based on

態様1の方法としては、例えば、情報取得工程により得られた被検者に関する結果(リスクアレル保有数)が、アレル測定工程で用いられたSNPに基づいて予めROC(Receiver Operating Characteristic)分析により定められたカットオフ値を、上回る場合は前記被検者が広義POAGを発症するリスクが高く、下回る場合は当該リスクが低いとの情報を提供する方法が挙げられる。 As the method of the first aspect, for example, the result (number of risk alleles possessed) related to the subject obtained by the information acquisition step is determined in advance by ROC (Receiver Operating Characteristic) analysis based on the SNP used in the allele measurement step. If it exceeds the cutoff value, the subject has a high risk of developing POAG in a broad sense, and if it falls below the cutoff value, a method of providing information that the risk is low can be mentioned.

より詳しくは、先ず、サンプル提供者のリスクアレル保有数を予め設定された閾値と対比する。閾値とは患者と非患者とを識別する適切なカットオフ値のことであり、当該閾値と定量値を対比することにより、広義POAGの発症リスクを有するか否かを判定できる。 More specifically, first, the number of risk alleles possessed by the sample provider is compared with a preset threshold value. The threshold value is an appropriate cutoff value that distinguishes between a patient and a non-patient, and by comparing the threshold value with a quantitative value, it can be determined whether or not there is a risk of developing POAG in a broad sense.

閾値は以下のようにして設定することができる。サンプル提供者の定量値を取得する際に測定対象として選定されたSNP群と同じSNP群に関して、予め広義POAGの発症リスクを有するか否かを診断された被検者から採取した生体試料を用いて、上述のようにしてリスクアレル数を測定し、「広義POAGの発症リスクの有無」と「リスクアレル数」を統計的に処理することにより、両データ間の相関を解析する。解析された結果から、例えば、真陽性率の高さ(感度の高さ)を重視するか、真陰性率の高さ(特異度の高さ)を重視するか、又は真陽性率と真陰性率をどの程度でバランスさせるか等の目的に応じて、閾値を設定することができる。即ち、測定対象のSNP群が異なれば、そこに存在するリスクアレルも当然異なることから、測定対象のSNP群によって閾値は変動する。ここで、真陽性率とは、広義POAGの発症リスクを有する者を正しく広義POAGの発症リスクを有する者として判定する確率のことであり、真陰性率とは、広義POAGの発症リスクを有しない者を正しく広義POAGの発症リスクを有しない者として判定する確率のことである。 The threshold can be set as follows. For the same SNP group as the SNP group selected as the measurement target when acquiring the quantitative values of the sample provider, we used biological samples collected from subjects who were previously diagnosed as having a risk of developing POAG in a broad sense. Then, by measuring the number of risk alleles as described above and statistically processing "presence or absence of risk of developing POAG in a broad sense" and "number of risk alleles", the correlation between the two data is analyzed. From the analyzed results, for example, whether to emphasize the high true positive rate (high sensitivity), the high true negative rate (high specificity), or the true positive rate and the true negative. The threshold value can be set according to the purpose such as how much the rate is balanced. That is, if the SNP group to be measured is different, the risk allele existing there is naturally different, so that the threshold value varies depending on the SNP group to be measured. Here, the true positive rate is the probability of correctly determining a person who has a risk of developing POAG in a broad sense as a person who has a risk of developing POAG in a broad sense, and the true negative rate is a person who does not have a risk of developing POAG in a broad sense. It is the probability of correctly determining a person as a person who does not have the risk of developing POAG in a broad sense.

具体的な閾値の設定方法としては、先ず、サンプル提供者の定量値を取得する際に測定対象として選択されたSNP群と同じSNP群に関して、縦軸に真陽性率(感度)、横軸に真陰性率(1-特異度)をとって作成したROC曲線を作成する(ROC分析を実施する)。次に、グラフの左上隅からの距離が最小となる点を閾値としてもよく、ROC曲線下面積(Area Under the Curve, AUC)が0.5となる斜線から最も離れた点を閾値としてもよく、任意の特異度や感度になるような点を閾値として設定してもよい。本発明では、感度が1、(1-特異度)が0に最も近い結果を与える閾値を設定することが好ましく、例えば、〔(1-感度)2+(1-特異度)2〕が最少となる値を閾値と設定することができる。As a specific threshold setting method, first, for the same SNP group as the SNP group selected as the measurement target when acquiring the quantitative value of the sample provider, the vertical axis is the true positive rate (sensitivity) and the horizontal axis is the horizontal axis. Create an ROC curve created by taking the true negative rate (1-specificity) (perform ROC analysis). Next, the point where the distance from the upper left corner of the graph is the minimum may be the threshold value, and the point farthest from the diagonal line where the area under the curve (AUC) is 0.5 may be the threshold value, which is arbitrary. A point that has the specificity and sensitivity of may be set as a threshold value. In the present invention, it is preferable to set a threshold value at which the sensitivity is 1 and (1-specificity) is the closest to 0. For example, [(1-sensitivity) 2 + (1-specificity) 2 ] is the minimum. Can be set as a threshold value.

なお、閾値は、サンプル提供者の定量値を取得する際に別途同時に取得してもよく、事前に取得しておいたものであってもよい。また、サンプル提供者の定量値と比較する際に、それまでに得られた解析結果を随時追加更新して、取得されたものであってもよい。 The threshold value may be acquired separately at the same time when the quantitative value of the sample provider is acquired, or may be acquired in advance. Further, when comparing with the quantitative value of the sample provider, the analysis result obtained so far may be additionally updated at any time and obtained.

また、閾値の設定においては、判定精度の向上の観点から、正規化や重み付けを行ってもよい。具体的には、例えば、正規化の方法としては、正規分布曲線と比較する方法を用いることができる。また、重み付けの方法としては、各SNPのオッズ比を考慮して重み付けを行うことができる。 Further, in setting the threshold value, normalization or weighting may be performed from the viewpoint of improving the determination accuracy. Specifically, for example, as a normalization method, a method of comparing with a normal distribution curve can be used. Further, as a weighting method, weighting can be performed in consideration of the odds ratio of each SNP.

こうして予め設定された閾値とサンプル提供者の定量値とを対比することで、サンプル提供者が広義POAGの発症リスクを有するか否かを判定することができる。 By comparing the preset threshold value with the quantitative value of the sample provider in this way, it is possible to determine whether or not the sample provider has a risk of developing POAG in a broad sense.

態様2の方法としては、例えば、アレル測定工程が複数の測定ステップを含む場合、情報取得工程により得られた被検者に関する各測定ステップでの結果(各リスクアレル保有数)が、各測定ステップで用いられたSNP群に基づいて予めROC分析により定められたカットオフ値を上回るか否かを指標として、前記被検者が広義POAGを発症するリスクの高低についての情報を提供する方法が挙げられる。 As a method of the second aspect, for example, when the allele measurement step includes a plurality of measurement steps, the result (number of each risk allele possessed) in each measurement step regarding the subject obtained by the information acquisition step is obtained in each measurement step. As an index of whether or not the cutoff value previously determined by ROC analysis is exceeded based on the SNP group used in the above, there is a method of providing information on the high or low risk of the subject developing POAG in a broad sense. Be done.

より詳しくは、先ず、サンプル提供者のリスクアレル保有数を、測定ステップ毎に、予め設定された閾値と対比して発症リスクの有無を判定する。閾値は態様1と同様にして設定することができる。次に、測定ステップ毎の発症リスクの有無の結果を統合する。具体的には、例えば、測定ステップを3回行って、発症リスクがある場合を「+」、ない場合を「-」として表示する場合、1回目の判定結果が「+」、2回目の判定結果が「+」、3回目の判定結果が「+」の統合結果は「+++」であり、1回目の判定結果が「+」、2回目の判定結果が「+」、3回目の判定結果が「-」の統合結果は「++-」であり、1回目の判定結果が「+」、2回目の判定結果が「-」、3回目の判定結果が「+」の統合結果は「+-+」に分類される。よって、3回の判定において1回陰性であるという確率としては同じであっても、「++-」と「+-+」は異なる分類に該当することになる。そして、得られた統合結果を用いて、予め判明している発症リスクを有する群・発症リスクを有さない群のグラフ上において同じ分類に該当する傾向に基づいて広義POAGの発症リスクが高いか低いかを判定する。 More specifically, first, the presence or absence of risk of onset is determined by comparing the number of risk alleles possessed by the sample provider with a preset threshold value for each measurement step. The threshold value can be set in the same manner as in the first aspect. Next, the results of the presence or absence of onset risk for each measurement step are integrated. Specifically, for example, when the measurement step is performed three times and the case where there is a risk of onset is displayed as "+" and the case where there is no risk of onset is displayed as "-", the first judgment result is "+" and the second judgment. The result is "+", the third judgment result is "+", the integrated result is "+++", the first judgment result is "+", the second judgment result is "+", and the third judgment result. However, the integration result of "-" is "++-", the first judgment result is "+", the second judgment result is "-", and the third judgment result is "+". It is classified as "-+". Therefore, even if the probability of being negative once in three judgments is the same, "++-" and "++-" correspond to different classifications. Then, using the obtained integrated results, is the risk of developing POAG in a broad sense high based on the tendency to fall under the same classification on the graph of the group with the risk of onset and the group without the risk of onset that are known in advance? Determine if it is low.

発症リスクを有する群・発症リスクを有さない群のグラフは以下のようにして作成することができる。例えば、予め診断された被検者について統合結果を得て、「+++」、「++-」、「+-+」等のパターン毎に、広義POAGの発症リスクを有するか否かの人数を集積することで作成することができる。 The graph of the group with the onset risk and the group without the onset risk can be created as follows. For example, by obtaining integrated results for pre-diagnosed subjects, the number of people who have a risk of developing POAG in a broad sense is accumulated for each pattern such as "++++", "++-", and "++-". It can be created by doing.

こうして予め作成された発症リスクを有する群・発症リスクを有さない群のグラフにおいて、サンプル提供者の統合結果から該当する区分の情報を得ることで、サンプル提供者が広義POAGの発症リスクを有するか否かを判定することができる。 In the graph of the group with the onset risk and the group without the onset risk prepared in advance in this way, the sample provider has the onset risk of POAG in a broad sense by obtaining the information of the corresponding category from the integration result of the sample providers. It can be determined whether or not.

なお、態様2において、後述するベイズ定理を当てはめて、広義POAGの発症リスクを有する確率を算出してもよい。 In addition, in aspect 2, the probability of having a risk of developing POAG in a broad sense may be calculated by applying Bayes' theorem described later.

態様3の方法としては、例えば、情報取得工程で得られた結果にベイズ定理を当てはめて、広義POAGを発症するリスクを有する確率を算出する方法が挙げられる。一般に、臨床現場においては、検査対象者がその疾患の発症リスクを有するか否かは不明であり、検査結果から疾患の発症リスクの有無を推定することになるので、検査方法の陽性的中率(PPV)や陰性的中率(NPV)が高いことも望まれている。ここで、陽性的中率とは、検査結果が陽性の場合に疾患を有する者の割合であり、陰性的中率とは、検査結果が陰性の場合に発症リスクを有していない者の割合である。広義POAG発症リスクを有する確率として提示することで当該確率が高いほど、広義POAGを発症するリスクの高い群に分類されることがより容易に理解されることになる。 As the method of the third aspect, for example, a method of applying Bayes' theorem to the result obtained in the information acquisition step to calculate the probability of having a risk of developing POAG in a broad sense can be mentioned. Generally, in clinical practice, it is unclear whether or not the test subject has a risk of developing the disease, and the presence or absence of the risk of developing the disease is estimated from the test results. Therefore, the positive predictive value of the test method is used. High (PPV) and negative predictive value (NPV) are also desired. Here, the positive predictive value is the percentage of those who have a disease when the test result is positive, and the negative predictive value is the percentage of those who do not have the risk of developing the disease when the test result is negative. Is. By presenting it as the probability of having a broad-sense POAG onset, it is easier to understand that the higher the probability, the higher the risk of developing a broad-sense POAG.

具体的な広義POAGの発症リスクを有する確率算出方法としては、情報取得工程で得られた結果(リスクアレル保有数)を態様1と同様にして閾値と対比することで、広義POAGの発症リスクの有無を判断し、その結果にベイズ定理の方法を当てはめて発症リスクを有する確率を算出する。ベイズ定理の方法においては、事前確率(有病率)に、前述した感度と特異度を組み合わせて事後確率(陽性的中率、陰性的中率)を求めることができることから、本発明においては、広義POAGの発症リスクの確率が事後確率として表される。言い換えると、ベイズ定理の方法を用いない場合は、発症リスクを有する確率は有病率と同じであるけれども、ベイズ定理の方法を用いることにより、検査により陽性結果が出た場合は、その検査対象者の発症リスクの確率は陽性的中率により表すことができることを意味する。具体的には、陽性的中率=有病率×感度/〔有病率×感度+(1-有病率)×(1-特異度)〕、陰性的中率=特異度×(1-有病率)/〔特異度×(1-有病率)+有病率×(1-感度)〕により求めることができ、例えば、有病率が10%であって、検査の感度が70%、特異度が70%の場合、陽性的中率は21%、陰性的中率は95%と算出される。よって、陽性結果が出た検査対象者の発症リスクは21%であることから、有病率よりも高く、更なる診察を受けるように助言することができる。また、前記検査を3回組み合わせて行った場合には、陽性的中率は62%、陰性的中率は99%と算出されることから、3回目の検査においてリスクアレル数が閾値を超えた検査対象者は、広義POAGの発症リスクがより高いと判定することができる。 As a specific method for calculating the probability of having a risk of developing POAG in a broad sense, the result obtained in the information acquisition process (number of risk alleles possessed) is compared with the threshold in the same manner as in Phase 1, so that the risk of developing POAG in a broad sense can be determined. The presence or absence is determined, and the method of Bayes' theorem is applied to the result to calculate the probability of having the risk of developing the disease. In the method of the Bayes theorem, the posterior probability (positive predictive value, negative predictive value) can be obtained by combining the prior probability (prevalence) with the sensitivity and specificity described above. The probability of developing POAG in a broad sense is expressed as a posterior probability. In other words, if the method of Bayes'theorem is not used, the probability of having the risk of developing the disease is the same as the prevalence, but if the test gives a positive result by using the method of Bayes' theorem, the test target. It means that the probability of a person's risk of developing the disease can be expressed by a positive predictive value. Specifically, positive predictive value = prevalence x sensitivity / [prevalence x sensitivity + (1-prevalence) x (1-specificity)], negative predictive value = specificity x (1-). Prevalence) / [Specificity x (1-prevalence) + Prevalence x (1-sensitivity)], for example, the prevalence is 10% and the test sensitivity is 70. %, With a specificity of 70%, the positive predictive value is calculated to be 21% and the negative predictive value is calculated to be 95%. Therefore, since the risk of developing a test subject who gives a positive result is 21%, it is higher than the prevalence rate, and it can be advised to receive further medical examination. In addition, when the above tests were performed in combination three times, the positive predictive value was calculated to be 62% and the negative predictive value was calculated to be 99%. Therefore, the number of risk alleles exceeded the threshold value in the third test. The test subject can be determined to have a higher risk of developing POAG in a broad sense.

こうして検査対象者の全体バックグラウンドとして、有病率の影響も含めた判定が行なえることで、サンプル提供者の広義POAGの発症リスクの確率として提示することが可能となる。 In this way, it is possible to make a judgment including the influence of the prevalence rate as the overall background of the test subject, and it is possible to present it as the probability of the onset risk of POAG in the broad sense of the sample provider.

態様4の方法としては、例えば、情報取得工程で得られた結果にベイズ定理を当てはめて、リスクアレル保有数に基づく発症リスクを有する確率(平均発症リスク、95%信用区間)を算出し、更に予め設定されたパーセント(%)以上の確率で広義POAGを発症するリスクを有する確率を算出する方法が挙げられる。ここで、設定されるパーセントとしては、例えば、70%、80%、90%等の任意の数値を設定することができ、値が大きい程、高精度で判定を行うことができる。 As the method of aspect 4, for example, the Bayes' theorem is applied to the result obtained in the information acquisition process to calculate the probability of having an onset risk based on the number of risk alleles possessed (average onset risk, 95% credible interval), and further. A method of calculating the probability of having a risk of developing POAG in a broad sense with a probability of a preset percentage (%) or more can be mentioned. Here, as the percentage to be set, for example, an arbitrary numerical value such as 70%, 80%, 90% or the like can be set, and the larger the value, the higher the accuracy of the determination.

より詳しくは、例えば、態様2で用いた予め診断された被験者から得られた統合結果「+++」、「++-」、「+-+」等のパターン毎に、ベイズ定理により広義POAGの発症リスクを有する確率密度関数を算出する。例えば70%以上の確率を算出する場合、確率密度関数から連続確率変数である発症リスクを有する確率が70以上となる密度を範囲とする面積が発症リスクを有する確率となる。 More specifically, for example, the risk of developing POAG in a broad sense according to Bayes' theorem for each pattern such as "+++", "++-", "++-", etc., which is the integrated result obtained from the pre-diagnosed subject used in the second aspect. Calculate the probability density function with. For example, when calculating the probability of 70% or more, the area within the range of the density in which the probability of having the onset risk, which is a continuous random variable, is 70 or more from the probability density function is the probability of having the onset risk.

かくして、本発明においては、サンプル提供者の広義POAGの発症リスクを、リスクアレル数の合計数を閾値と対比することで、広義POAGの発症リスクを有するか否かを判定するだけでなく、その確率を算出することによって、サンプル提供者の広義POAGの発症リスクに関する情報をより詳細に提供することができる。 Thus, in the present invention, the risk of developing POAG in the broad sense of the sample provider is not only determined whether or not the risk of developing POAG in the broad sense is present, but also by comparing the total number of risk alleles with the threshold value. By calculating the probability, it is possible to provide more detailed information on the risk of developing POAG in the broad sense of the sample provider.

本発明はまた、広義POAGの発症リスクに関する情報を取得する装置を提供する。 The present invention also provides an apparatus for acquiring information on the risk of developing POAG in a broad sense.

本発明の装置としては、プロセッサおよび前記プロセッサの制御下にあるメモリを備えたコンピュータを含み、前記メモリには、下記の工程:
被検者から採取した生体試料における一塩基多型(SNP)のアレル情報に基づいて、表1に記載の12個のSNPからなるコアSNP群と、表2に記載のプールSNP群から選ばれるSNP(プール選抜SNP群)とを合わせて少なくとも30個のSNPについて、アレルを測定するアレル測定工程、
前記アレルの測定結果に基づいて、前記被検者における広義POAGの発症リスクに関する情報を取得する情報取得工程、及び
前記で得られた情報に基づいて、前記被検者の広義POAGの発症リスクを判定するための情報を提供する情報提供工程
を前記コンピュータに実行させるためのコンピュータプログラムが記録されている。
The apparatus of the present invention includes a processor and a computer having a memory under the control of the processor, and the memory includes the following steps:
Selected from the core SNP group consisting of 12 SNPs shown in Table 1 and the pooled SNP group shown in Table 2 based on the allelic information of single nucleotide polymorphisms (SNPs) in biological samples collected from subjects. Allele measurement process for measuring alleles for at least 30 SNPs including SNPs (pool selection SNP group),
Based on the measurement result of the allele, the information acquisition process for acquiring information on the risk of developing POAG in the broad sense of the subject, and based on the information obtained above, the risk of developing POAG in the broad sense of the subject is determined. A computer program for causing the computer to execute an information providing process for providing information for determination is recorded.

また、本発明には、被検者における広義POAGの発症リスクの判定をコンピュータに実行させるためのコンピュータプログラムも含まれる。そのようなコンピュータプログラムとしては、例えば、次のとおりである。 The present invention also includes a computer program for causing a computer to determine the risk of developing POAG in a broad sense in a subject. For example, such a computer program is as follows.

コンピュータに読み取り可能な媒体に記録されているコンピュータプログラムであって、下記の工程:
被検者から採取した生体試料における一塩基多型(SNP)のアレル情報に基づいて、表1に記載の12個のSNPからなるコアSNP群と、表2に記載のプールSNP群から選ばれるSNP(プール選抜SNP群)とを合わせて少なくとも30個のSNPについて、アレルを測定するアレル測定工程、
前記アレルの測定結果に基づいて、前記被検者における広義POAGの発症リスクに関する情報を取得する情報取得工程、及び
前記で得られた情報に基づいて、前記被検者の広義POAGの発症リスクを判定するための情報を提供する情報提供工程
を実行させて、被検者における広義POAG発症リスクの判定を行わせる。
A computer program recorded on a computer-readable medium that involves the following steps:
Selected from the core SNP group consisting of 12 SNPs shown in Table 1 and the pooled SNP group shown in Table 2 based on the allelic information of single nucleotide polymorphisms (SNPs) in biological samples collected from subjects. Allele measurement process for measuring alleles for at least 30 SNPs including SNPs (pool selection SNP group),
Based on the measurement result of the allele, the information acquisition process for acquiring information on the risk of developing POAG in the broad sense of the subject, and based on the information obtained above, the risk of developing POAG in the broad sense of the subject is determined. The information providing process for providing information for determination is executed, and the risk of developing POAG in a broad sense is determined in the subject.

上記の媒体は、上記のコンピュータプログラムが非一時的に記録され、且つコンピュータに読取可能な媒体であってもよい。 The medium may be a medium on which the computer program is non-temporarily recorded and readable by a computer.

以下に、本発明の方法を実施するのに好適な装置の一例を、図面を参照して説明する。しかし、本実施形態は、この例のみに限定されるものではない。図1は、被検者における広義POAG発症リスクの判定装置の一例を示した概略図である。図1に示された判定装置10は、測定装置20と、該測定装置20と接続されたコンピュータシステム30とを含んでいる。 Hereinafter, an example of an apparatus suitable for carrying out the method of the present invention will be described with reference to the drawings. However, this embodiment is not limited to this example. FIG. 1 is a schematic view showing an example of a device for determining the risk of developing POAG in a broad sense in a subject. The determination device 10 shown in FIG. 1 includes a measuring device 20 and a computer system 30 connected to the measuring device 20.

本実施形態において、測定装置20は、マイクロアレイ上のプローブと結合したDNAに基づくシグナルを検出するスキャナーもしくは質量分析機である。本実施形態において、シグナルは、蛍光シグナルなどの光学的情報もしくは質量分析結果である。測定用試料と接触させたマイクロアレイを測定装置20にセットすると、測定装置20は、マイクロアレイ上のプローブに結合した、被検者の生体試料由来の核酸に基づく光学的情報もしくは質量分析結果を取得し、得られた光学的情報もしくは質量分析結果をコンピュータシステム30に送信する。 In this embodiment, the measuring device 20 is a scanner or a mass spectrometer that detects a signal based on DNA bound to a probe on a microarray. In this embodiment, the signal is optical information such as a fluorescent signal or the result of mass spectrometry. When the microarray in contact with the measurement sample is set in the measuring device 20, the measuring device 20 acquires optical information or mass spectrometric analysis results based on the nucleic acid derived from the biological sample of the subject bound to the probe on the microarray. , The obtained optical information or mass spectrometry result is transmitted to the computer system 30.

スキャナーは、マイクロアレイ上のプローブに結合したDNAに基づくシグナルの検出が可能であれば特に限定されない。シグナルは、被検者の生体試料由来のDNAの標識に用いられた標識物質によって異なることから、スキャナーは、標識物質の種類に応じて適宜選択することができる。例えば、標識物質が蛍光物質である場合、測定装置20として、当該蛍光物質から生じる蛍光を検出可能なマイクロアレイスキャナーが用いられる。 The scanner is not particularly limited as long as it can detect a signal based on the DNA bound to the probe on the microarray. Since the signal differs depending on the labeling substance used for labeling the DNA derived from the biological sample of the subject, the scanner can be appropriately selected according to the type of the labeling substance. For example, when the labeling substance is a fluorescent substance, a microarray scanner capable of detecting the fluorescence generated from the fluorescent substance is used as the measuring device 20.

なお、SNPを次世代シークエンス法やダイレクトシークエンス法により検出する場合、測定装置20は、DNA増幅装置及びシークエンス解析装置からなる装置であってもよい。この場合、測定用試料、DNA増幅用の酵素及びプライマーなどを含む反応液を測定装置20にセットし、DNA増幅法によって反応液中のDNAを増幅させる。そして、測定装置20は、増幅産物の塩基配列を解析して配列情報を取得し、得られた配列情報をコンピュータシステム30に送信する。 When the SNP is detected by the next-generation sequence method or the direct sequence method, the measuring device 20 may be a device including a DNA amplification device and a sequence analysis device. In this case, a reaction solution containing a measurement sample, an enzyme for DNA amplification, a primer and the like is set in the measuring device 20, and the DNA in the reaction solution is amplified by the DNA amplification method. Then, the measuring device 20 analyzes the base sequence of the amplification product, acquires sequence information, and transmits the obtained sequence information to the computer system 30.

コンピュータシステム30は、コンピュータ本体300と、入力部301と、検体情報や判定結果などを表示する表示部302とを含む。コンピュータシステム30は、測定装置20から光学的情報もしくは質量分析結果もしくは配列情報を受信する。そして、コンピュータシステム30のプロセッサは、光学的情報もしくは質量分析結果もしくは配列情報に基づいて、被検者における広義POAGの発症リスクを判定するプログラムを実行する。なお、コンピュータシステム30は、図1に示されるように測定装置20とは別個の機器であってもよいし、測定装置20を内包する機器であってもよい。後者の場合、コンピュータシステム30は、それ自体で判定装置10となってもよい。 The computer system 30 includes a computer main body 300, an input unit 301, and a display unit 302 for displaying sample information, determination results, and the like. The computer system 30 receives optical information, mass spectrometry results, or sequence information from the measuring device 20. Then, the processor of the computer system 30 executes a program for determining the risk of developing POAG in a broad sense in the subject based on the optical information, the mass spectrometry result, or the sequence information. As shown in FIG. 1, the computer system 30 may be a device separate from the measuring device 20 or a device including the measuring device 20. In the latter case, the computer system 30 may itself be the determination device 10.

コンピュータ本体300は、図2に示されるように、CPU(Central Processing Unit)310と、ROM(Read Only Memory)311と、RAM(Random Access Memory)312と、ハードディスク313と、入出力インターフェイス314と、読出装置315と、通信インターフェイス316と、画像出力インターフェイス317とを備えている。CPU310、ROM311、RAM312、ハードディスク313、入出力インターフェイス314、読出装置315、通信インターフェイス316及び画像出力インターフェイス317は、バス318によってデータ通信可能に接続されている。また、測定装置20は、通信インターフェイス316により、コンピュータシステム30と通信可能に接続されている。 As shown in FIG. 2, the computer main body 300 includes a CPU (Central Processing Unit) 310, a ROM (Read Only Memory) 311, a RAM (Random Access Memory) 312, a hard disk 313, an input / output interface 314, and the like. It includes a reading device 315, a communication interface 316, and an image output interface 317. The CPU 310, ROM 311, RAM 312, hard disk 313, input / output interface 314, read device 315, communication interface 316, and image output interface 317 are connected by a bus 318 so as to be capable of data communication. Further, the measuring device 20 is communicably connected to the computer system 30 by the communication interface 316.

CPU310は、ROM311に記憶されているプログラム及びRAM312にロードされたプログラムを実行することが可能である。CPU310は、有効性予測値を算出し、ROM311に格納されている判別式を読み出し、有効性を判定する。CPU310は、判定結果を出力して表示部302に表示させる。 The CPU 310 can execute the program stored in the ROM 311 and the program loaded in the RAM 312. The CPU 310 calculates the effectiveness prediction value, reads the discriminant stored in the ROM 311 and determines the effectiveness. The CPU 310 outputs the determination result and displays it on the display unit 302.

ROM311は、マスクROM、PROM、EPROM、EEPROMなどによって構成されている。ROM311には、前述のようにCPU310によって実行されるプログラム及びこれに用いるデータが記録されている。ROM311には、所定の閾値などが記録されていてもよい。 The ROM 311 is composed of a mask ROM, a PROM, an EPROM, an EEPROM, and the like. As described above, the program executed by the CPU 310 and the data used for the program are recorded in the ROM 311. A predetermined threshold value or the like may be recorded in the ROM 311.

RAM312は、SRAM、DRAMなどによって構成されている。RAM312は、ROM311及びハードディスク313に記録されているプログラムの読み出しに用いられる。RAM312はまた、これらのプログラムを実行するときに、CPU310の作業領域として利用される。 The RAM 312 is composed of SRAM, DRAM, and the like. The RAM 312 is used to read the program recorded in the ROM 311 and the hard disk 313. The RAM 312 is also used as a work area for the CPU 310 when executing these programs.

ハードディスク313は、CPU310に実行させるためのオペレーティングシステム、アプリケーションプログラム(広義POAGの発症リスクの判定のためのコンピュータプログラム)などのコンピュータプログラム及び当該コンピュータプログラムの実行に用いるデータがインストールされている。ハードディスク313には、所定の閾値などが記録されていてもよい。 The hard disk 313 is installed with an operating system for the CPU 310 to execute, a computer program such as an application program (a computer program for determining the risk of developing POAG in a broad sense), and data used for executing the computer program. A predetermined threshold value or the like may be recorded on the hard disk 313.

読出装置315は、フラッシュメモリ、フレキシブルディスクドライブ、CD-ROMドライブ、DVDROMドライブなどによって構成されている。読出装置315は、可搬型記録媒体40に記録されたプログラム又はデータを読み出すことができる。読取装置と記載することもある。 The reading device 315 is composed of a flash memory, a flexible disc drive, a CD-ROM drive, a DVD ROM drive, and the like. The reading device 315 can read the program or data recorded on the portable recording medium 40. It may also be described as a reading device.

入出力インターフェイス314は、例えば、USB、IEEE1394、RS-232Cなどのシリアルインターフェイスと、SCSI、IDE、IEEE1284などのパラレルインターフェイスと、D/A変換器、A/D変換器などからなるアナログインターフェイスとから構成されている。入出力インターフェイス314には、キーボード、マウスなどの入力部301が接続されている。操作者は、当該入力部301により、コンピュータ本体300に各種の指令を入力することが可能である。 The input / output interface 314 is composed of, for example, a serial interface such as USB, IEEE1394, RS-232C, a parallel interface such as SCSI, IDE, IEEE1284, and an analog interface including a D / A converter and an A / D converter. It is configured. An input unit 301 such as a keyboard and a mouse is connected to the input / output interface 314. The operator can input various commands to the computer main body 300 by the input unit 301.

通信インターフェイス316は、例えば、Ethernet(登録商標)インターフェイスなどである。コンピュータ本体300は、通信インターフェイス316により、プリンタなどへの印刷データの送信も可能である。 The communication interface 316 is, for example, an Ethernet (registered trademark) interface or the like. The computer body 300 can also transmit print data to a printer or the like by the communication interface 316.

画像出力インターフェイス317は、LCD、CRTなどで構成される表示部302に接続されている。これにより、表示部302は、CPU310から与えられた画像データに応じた映像信号を出力できる。表示部302は、入力された映像信号にしたがって画像(画面)を表示する。 The image output interface 317 is connected to a display unit 302 composed of an LCD, a CRT, or the like. As a result, the display unit 302 can output a video signal corresponding to the image data given by the CPU 310. The display unit 302 displays an image (screen) according to the input video signal.

次に、判定装置10による、広義POAGの発症リスクの高低を判定する処理手順を説明する。ここでは、マイクロアレイ上のプローブに結合した、被検者の生体試料由来のDNAに基づく蛍光情報からリスクアレル情報を取得し、得られた測定値を用いて判定を行なう場合を例として説明する。しかし、本実施形態は、この例のみに限定されるものではない。 Next, a processing procedure for determining the high or low risk of developing POAG in a broad sense by the determination device 10 will be described. Here, a case where risk allergen information is acquired from fluorescence information based on DNA derived from a biological sample of a subject bound to a probe on a microarray and a judgment is performed using the obtained measured values will be described as an example. However, this embodiment is not limited to this example.

図3を参照して、ステップS101において、判定装置10のCPU310は、測定装置20から蛍光情報を取得する。次に、ステップS102において、CPU310は、取得した蛍光情報から蛍光強度を算出し、RAM312に記憶する。そして、ステップS103において、CPU310は、RAM312に記憶された前記蛍光強度から各バリアントの有無及びその種類を決定し、ROM311又はハードディスク313に記憶されたアレルデータにしたがって、リスクアレル総数を算出する。 With reference to FIG. 3, in step S101, the CPU 310 of the determination device 10 acquires fluorescence information from the measuring device 20. Next, in step S102, the CPU 310 calculates the fluorescence intensity from the acquired fluorescence information and stores it in the RAM 312. Then, in step S103, the CPU 310 determines the presence or absence of each variant and its type from the fluorescence intensity stored in the RAM 312, and calculates the total number of risk alleles according to the allele data stored in the ROM 311 or the hard disk 313.

その後、ステップS104において、CPU310は、算出された有効性予測値と、ROM311又はハードディスク313に記憶された所定の閾値とを用いて、被検者における広義POAGの発症リスクの高低を判定する。ここで、リスクアレル総数が所定の閾値よりも小さいとき、処理は、ステップS105に進行し、CPU310は、被検者における広義POAGの発症リスクが低いことを示す判定結果をRAM312に記憶する。一方、リスクアレル総数が所定の閾値よりも低くないとき(すなわち、リスクアレル総数が閾値以上であるとき)、処理は、ステップS106に進行し、CPU310は、被検者における広義POAGの発症リスクが高いことを示す判定結果をRAM312に記憶する。 Then, in step S104, the CPU 310 uses the calculated effectiveness prediction value and a predetermined threshold value stored in the ROM 311 or the hard disk 313 to determine the high or low risk of developing POAG in a broad sense in the subject. Here, when the total number of risk alleles is smaller than a predetermined threshold value, the process proceeds to step S105, and the CPU 310 stores in the RAM 312 a determination result indicating that the risk of developing POAG in a broad sense in the subject is low. On the other hand, when the total number of risk alleles is not lower than a predetermined threshold value (that is, when the total number of risk alleles is equal to or higher than the threshold value), the process proceeds to step S106, and the CPU 310 has a risk of developing POAG in a broad sense in the subject. The determination result indicating that the value is high is stored in the RAM 312.

そして、ステップS107において、CPU310は、判定結果を出力し、表示部302に表示させたり、プリンタに印刷させたりする。これにより、被検者における広義POAGの発症リスクが高いか否かの判定を補助する情報を医師などに提供することができる。 Then, in step S107, the CPU 310 outputs the determination result and displays it on the display unit 302 or prints it on the printer. This makes it possible to provide doctors and the like with information that assists in determining whether or not the subject has a high risk of developing POAG in a broad sense.

以下、実施例を示して本発明を具体的に説明する。この実施例は、単なる本発明の例示であり、何ら限定を意味するものではない。なお、以下の実施例では、特に詳細な説明がない一般的に用いられる分子生物学的手法については、モレキュラークローニング (Joseph Sambrook et al., Molecular Cloning - A Laboratory Manual, 3rd Edition, Cold Spring Harbor Laboratory Press, 2001)などの成書に記載された方法及び条件が用いられる。 Hereinafter, the present invention will be specifically described with reference to examples. This example is merely an example of the present invention and does not mean any limitation. In the following examples, molecular cloning (Joseph Sambrook et al., Molecular Cloning --A Laboratory Manual, 3rd Edition, Cold Spring Harbor Laboratory) will be described for commonly used molecular biology methods that are not described in detail. The methods and conditions described in the textbooks such as Press, 2001) are used.

試験例1 マーカーSNP(コアSNP+プールSNP)の選択
広義の原発開放隅角緑内障と診断された患者(広義POAG患者群)824例、及び、緑内障ではないと診断され、かつ、問診によって緑内障家族歴を有さないと判断された非患者686例、それぞれの血液から、市販の自動核酸抽出機を使用して、総DNAを抽出した。総DNAの抽出は機器及びキットの取扱説明書に従い実施した。本方法により、血液検体350μLから約5μgの総DNAを得た。
Test Example 1 Selection of marker SNP (core SNP + pool SNP) 824 patients diagnosed with primary open-angle glaucoma in a broad sense (POAG patient group in a broad sense) and 824 patients diagnosed as not having glaucoma and family history of glaucoma by interview Total DNA was extracted from the blood of 686 non-patients who were determined not to have glaucoma using a commercially available automated nucleic acid extractor. Extraction of total DNA was performed according to the instruction manual of the device and kit. By this method, about 5 μg of total DNA was obtained from 350 μL of blood sample.

SNPの分析は、ヒトゲノム上の公知のSNP約90万個の分析が可能な市販のマイクロアレイ型のSNP分析キットDNAマイクロアレイ(Genome-Wide Human SNP Array 6.0)を用いて906,600個のSNPのジェノタイプデータを取得し、QCフィルター (Call Rate, ≧0.95; MAF, ≧0.01; HWE, ≧0.001) を用いて653,519個の高精度なSNPデータを選択した。さらに、以下の過程により787個のSNPマーカー候補群を抽出した。
(1) ゲノムワイド関連解析(アレルデータによるχ2検定)でP<0.001を抽出条件とした。
(2) 抽出された全SNPについて、アフィメトリクス社のジェノタイピングソフトウェア (Genotyping Console) から得られる2Dクラスタープロット画像に基づき、3人の検者の目視による判定によってクラスター不良のSNPを除外した。
For SNP analysis, 906,600 SNP genotype data using a commercially available microarray type SNP analysis kit DNA microarray (Genome-Wide Human SNP Array 6.0) capable of analyzing about 900,000 known SNPs on the human genome. Was obtained, and 653,519 high-precision SNP data were selected using a QC filter (Call Rate, ≧ 0.95; MAF, ≧ 0.01; HWE, ≧ 0.001). Furthermore, 787 SNP marker candidate groups were extracted by the following process.
(1) P <0.001 was used as the extraction condition in genome-wide association analysis (χ 2 test using allelic data).
(2) For all the extracted SNPs, cluster defective SNPs were excluded by visual judgment by three examiners based on 2D cluster plot images obtained from Affymetrix's Genotyping Console.

マーカーSNPはSNPマーカー候補群から以下の手順により483個を選択した。なお、マーカーSNPはコアSNP 12個とプールSNP 471個から構成される。
(1) ジェノタイピングデータを、以下の手順でコード化(数値変換)および正規化を行った。
(a) Risk Allele Homo: 2、Risk Allele Hetero: 1、Other Allele Homo: 0とした。
(b) 数値変換は広義POAG患者群および非緑内障健常群の各群で、平均値および観測アレル頻度を用いて、前述の数式に従って数値の正規化を行った。
(2) 連鎖不平衡(linkage disequilibrium, LD)を考慮したSNPマーカー候補群の組合せを主成分分析(principle component analysis, PCA)を用いたクラスター解析により算出した。
(a) SNPマーカー候補群を用いて、広義POAG群および非緑内障健常群の全検体をPCAに供し、検体で情報縮約(Cluster SNP)することで得られる因子負荷量(主成分と元の変数との間の相関係数に相当)を算出した。次に、各SNPの最も高い因子負荷量の絶対値を示す主成分を基準とするクラスターにより候補領域を決定し、各候補領域内で最小のP値を得たSNPをマーカーSNPの候補とした。
(b) 「各染色体」でのSNPマーカー候補群を用いて、(a) と同様に各染色体で候補領域を決定し、マーカーSNPの候補とした。
(c) (a) と (b) のマーカーSNP候補を組み合わせて、重複を除いた。
For the marker SNP, 483 markers were selected from the SNP marker candidate group by the following procedure. The marker SNP consists of 12 core SNPs and 471 pool SNPs.
(1) Genotyping data was coded (numerical conversion) and normalized according to the following procedure.
(a) Risk Allele Homo: 2, Risk Allele Hetero: 1, Other Allele Homo: 0.
(b) Numerical conversion was performed by normalizing the numerical values according to the above formula using the mean value and the observed allergen frequency in each group of the POAG patient group in the broad sense and the healthy non-glaucoma group.
(2) The combination of SNP marker candidate groups considering linkage disequilibrium (LD) was calculated by cluster analysis using principal component analysis (PCA).
(a) Using the SNP marker candidate group, all the samples from the broadly defined POAG group and the healthy non-glaucoma group were submitted to PCA, and the factor loadings (main component and original) obtained by information reduction (Cluster SNP) with the samples. Corresponds to the correlation coefficient with variables) was calculated. Next, candidate regions were determined by clusters based on the principal component showing the absolute value of the highest factor loading of each SNP, and the SNP that obtained the smallest P value in each candidate region was used as a marker SNP candidate. ..
(b) Using the SNP marker candidate group in "each chromosome", the candidate region was determined in each chromosome in the same manner as in (a), and the candidate region was used as a marker SNP candidate.
(c) The marker SNP candidates of (a) and (b) were combined to eliminate duplication.

コアSNPの取得
マーカーSNPの上位51個を用いて、別集団の広義POAG患者1,492例と非緑内障健常者1,052例を用いてマスアレイによる再現実験を実施した。QCフィルター (Call Rate, ≧0.9; MAF, ≧0.01; HWE, ≧0.001)を通過したSNP群を用いて関連解析(アレルデータによるχ2検定)を実施した。ゲノムワイド関連解析とマスアレイによる再現実験の再現性について、コクラン・マンテル・ヘンツェル検定結果(P<0.003)を基準とした12個のSNPをコアSNPとした。
Acquisition of core SNPs Using the top 51 marker SNPs, a mass array reproduction experiment was performed using 1,492 patients with POAG in a broad sense and 1,052 healthy non-glaucoma patients from another group. A related analysis (χ 2 test with allelic data) was performed using the SNP group that passed through the QC filter (Call Rate, ≧ 0.9; MAF, ≧ 0.01; HWE, ≧ 0.001). Regarding the reproducibility of genome-wide association studies and reproduction experiments using mass arrays, 12 SNPs based on the Cochran-Mantel-Henzel test results (P <0.003) were used as core SNPs.

プールSNPの取得
マーカーSNPからコアSNPを除いた群をプールSNPとした。
Acquisition of pooled SNP The group obtained by removing the core SNP from the marker SNP was defined as the pooled SNP.

実施例1及び比較例1
広義POAG群680例と非緑内障健常者群680例について、試験例1と同様にして血液を採取してゲノムDNAを抽出し、実施例1(表3)及び比較例1(表4-1~表4-2)についてそれぞれ示すプローブを用いて、ハイブリダイゼーションでアレルデータを取得し、リスクアレルの総数をカウントした。なお、実施例1で用いたプローブは、表1に記載の12個のプローブ及び表2から選択された18個のプローブであり、比較例1で用いたプローブは、検定上位の30個である。
Example 1 and Comparative Example 1
For 680 patients in the broadly defined POAG group and 680 patients in the non-glaucoma healthy subject group, blood was collected and genomic DNA was extracted in the same manner as in Test Example 1, and Example 1 (Table 3) and Comparative Example 1 (Table 4-1 to 1). Allele data were obtained by hybridization using the probes shown in Table 4-2), and the total number of risk alleles was counted. The probes used in Example 1 are the 12 probes shown in Table 1 and the 18 probes selected from Table 2, and the probes used in Comparative Example 1 are the top 30 probes in the assay. ..

Figure 0007072803000027
Figure 0007072803000027

Figure 0007072803000028
Figure 0007072803000028

Figure 0007072803000029
Figure 0007072803000029

リスクアレルの総数を横軸にした度数分布図を作成し、ROC分析を行った結果を図4に示す。図4より、比較例1では感度54.3%、特異度65.4%であるカットオフ値が42個の場合にAUCが0.641程度であるのに対し、実施例1では感度70.1%、特異度71.2%であるカットオフ値が37個の場合にAUCが0.784と高く、度数分布図からも発症リスクを有する群と発症リスクを有さない群で区別がつくことが分かる。 A frequency distribution map with the total number of risk alleles on the horizontal axis is created, and the results of ROC analysis are shown in FIG. From FIG. 4, in Comparative Example 1, the sensitivity is 54.3% and the specificity is 65.4%, and the AUC is about 0.641 when the cutoff value is 42, whereas in Example 1, the sensitivity is 70.1% and the specificity is 71.2%. When a certain cutoff value is 37, the AUC is as high as 0.784, and it can be seen from the frequency distribution chart that the group with the onset risk and the group without the onset risk can be distinguished.

実施例2
実施例1と用いるプローブが異なる以外は、実施例1と同様にしてデータ取得を行った。具体的には、下記表5に示すプローブを用いた。
Example 2
Data acquisition was performed in the same manner as in Example 1 except that the probe used was different from that in Example 1. Specifically, the probes shown in Table 5 below were used.

Figure 0007072803000030
Figure 0007072803000030

(態様1)
上記表5に示す90個のプローブ(コアSNP群12個、プールSNP群78個)全てを一度に用いて測定を行い、リスクアレルの総数をカウントした。リスクアレルの総数を横軸にした度数分布図を作成し、ROC分析を行った結果を図5に示す。図5より、感度83.1%、特異度82.1%であるカットオフ値が108個の場合にAUCが0.908であり、度数分布図からも発症リスクを有する群と発症リスクを有さない群で区別がつくことが分かる。
(Aspect 1)
Measurements were performed using all 90 probes (12 in the core SNP group and 78 in the pool SNP group) shown in Table 5 above, and the total number of risk alleles was counted. A frequency distribution map with the total number of risk alleles on the horizontal axis is created, and the results of ROC analysis are shown in FIG. From Fig. 5, the AUC is 0.908 when the cutoff value is 108 with a sensitivity of 83.1% and a specificity of 82.1%, and the frequency distribution chart also distinguishes between the group with the risk of onset and the group without the risk of onset. You can see that it will be attached.

(態様2)
次に、前記態様1で用いたプローブを30個ずつに分けて、測定ステップを測定ステップ1、測定ステップ2、測定ステップ3の3グループに分けて行い、リスクアレルの総数をカウントした。
(Aspect 2)
Next, the probes used in the first aspect were divided into 30 probes, and the measurement steps were divided into three groups of measurement step 1, measurement step 2, and measurement step 3, and the total number of risk alleles was counted.

得られた結果について、前記と同様にして、リスクアレルの度数分布図とROC曲線を取得した。結果を図6に示す。図6より、第1測定での結果が感度69.1%、特異度71.2%でのカットオフ値が36個であり、第2測定での結果が感度74.1%、特異度66.5%でのカットオフ値が37個であり、第3測定での結果が感度68.8%、特異度75.4%でのカットオフ値が36個であり、それぞれの測定における判定結果が得られることが分かった。 For the obtained results, the frequency distribution map of the risk allele and the ROC curve were obtained in the same manner as described above. The results are shown in FIG. From FIG. 6, the result of the first measurement is the sensitivity of 69.1% and the cutoff value at the specificity of 71.2% is 36, and the result of the second measurement is the cutoff value at the sensitivity of 74.1% and the specificity of 66.5%. The number was 37, and the result in the third measurement was 68.8% for the sensitivity and 36 for the cutoff value at the specificity of 75.4%, and it was found that the judgment results in each measurement could be obtained.

また、図7に、前記3測定の判定結果を統合した結果を示す。即ち、発症リスクを有する群・発症リスクを有さない群毎に、前記3測定の判定結果を分類した結果を示す。これより、発症リスクを有する群と発症リスクを有さない群で区別がつくことが分かる。 Further, FIG. 7 shows the result of integrating the determination results of the above three measurements. That is, the results of classifying the determination results of the above three measurements into a group having an onset risk and a group having no onset risk are shown. From this, it can be seen that there is a distinction between the group having the risk of developing the disease and the group having no risk of developing the disease.

(態様3及び4)
態様2と同様にして、個々のグループでの判定結果を得た上で、ベイズ定理を用いてリスクアレル保有数に基づく発症リスクを有する数確率(平均発症リスク、95%信用区間)を算出した。また、ベイズ定理を用いた確率密度関数の発症リスクを有する確率が70以上となる密度を範囲とする面積を算出し、70%以上の確率で発症するリスクの確率を示した。結果を図8に示す。
(Aspects 3 and 4)
In the same manner as in aspect 2, after obtaining the judgment results for each group, the number probability (mean risk of onset, 95% credible interval) having the onset risk based on the number of risk alleles possessed was calculated using Bayes' theorem. .. In addition, using the Bayesian theorem, we calculated the area within the range of the density at which the probability of having the probability of developing the probability density function is 70 or more, and showed the probability of the risk of developing it with a probability of 70% or more. The results are shown in FIG.

なお、ベイズ定理を用いた解析は、以下の手順に従って行った。
(a) 事前分布π(θ)は一様分布(無情報事前分布)とした。事前分布は、ベータ分布を採用した。
(b) 尤度は患者群および非患者群の全検体からランダムに、患者群680例と非患者群680例を選び、各リスクアレル保有数でのデータ数(観察数)と患者数(陽性数)から算出した。分布は二項分布を採用した。
(c) 事後分布は、ベイズの定理(事後分布π(θ|D)∝事前分布×尤度)より算出した。
(d) 事後分布から、平均発症リスク(%)、95%信用区間(%)、発症リスクを有する確率(%)を算出した。
The analysis using Bayes' theorem was performed according to the following procedure.
(a) Prior distribution π (θ) is a uniform distribution (non-information prior distribution). The beta distribution was adopted as the prior distribution.
(b) For the likelihood, 680 patients in the patient group and 680 patients in the non-patient group were randomly selected from all the samples in the patient group and the non-patient group, and the number of data (observations) and the number of patients (positive) for each risk allele possession number. Calculated from the number). The distribution adopted the binomial distribution.
(c) The posterior distribution was calculated from Bayes' theorem (posterior distribution π (θ | D) ∝ prior distribution × likelihood).
(d) From the posterior distribution, the mean onset risk (%), 95% credible interval (%), and probability of having onset risk (%) were calculated.

実施例3
実施例1及び2と用いるプローブが異なる以外は、実施例1と同様にしてデータ取得を行った。具体的には、下記表6-1~表6-2に示すプローブを用いた。
Example 3
Data acquisition was performed in the same manner as in Example 1 except that the probes used in Examples 1 and 2 were different. Specifically, the probes shown in Tables 6-1 to 6-2 below were used.

Figure 0007072803000031
Figure 0007072803000031

Figure 0007072803000032
Figure 0007072803000032

(態様1)
上記表6-1~表6-2に示す120個のプローブ(コアSNP群12個、プールSNP群108個)全てを一度に用いて測定を行い、リスクアレルの総数をカウントした。実施例1と同様にして、リスクアレルの度数分布図とROC分析を行った結果を図9に示す。図9より、感度84.4%、特異度85.3%であるカットオフ値が141個の場合にAUCが0.929であり、度数分布図からも発症リスクを有する群と発症リスクを有さない群で区別がつくことが分かる。
(Aspect 1)
Measurements were performed using all 120 probes (12 in the core SNP group and 108 in the pool SNP group) shown in Tables 6-1 to 6-2 above, and the total number of risk alleles was counted. FIG. 9 shows the frequency distribution map of the risk allele and the result of ROC analysis in the same manner as in Example 1. From Fig. 9, the AUC is 0.929 when the cutoff value is 141 with a sensitivity of 84.4% and a specificity of 85.3%, and the frequency distribution chart also distinguishes between the group with the risk of onset and the group without the risk of onset. You can see that it will be attached.

(態様2)
次に、前記態様1で用いたプローブを40個ずつに分けて、測定ステップを測定ステップ1、測定ステップ2、測定ステップ3の3グループに分けて行い、リスクアレルの総数をカウントした。
(Aspect 2)
Next, the probes used in the above aspect 1 were divided into 40 pieces each, and the measurement steps were divided into three groups of measurement step 1, measurement step 2, and measurement step 3, and the total number of risk alleles was counted.

得られた結果について、前記と同様にして、リスクアレルの度数分布図とROC曲線を取得した。結果を図10に示す。図10より、第1測定での結果が感度74.4%、特異度72.6%でのカットオフ値が44個であり、第2測定での結果が感度76.8%、特異度69.7%でのカットオフ値が48個であり、第3測定での結果が感度69.6%、特異度76.3%でのカットオフ値が50個であり、それぞれの測定における判定結果が得られることが分かった。 For the obtained results, the frequency distribution map of the risk allele and the ROC curve were obtained in the same manner as described above. The results are shown in FIG. From FIG. 10, the result of the first measurement is the sensitivity of 74.4% and the cutoff value at the specificity of 72.6% is 44, and the result of the second measurement is the cutoff value at the sensitivity of 76.8% and the specificity of 69.7%. The number was 48, and the result in the third measurement was a sensitivity of 69.6% and a cutoff value of 50 at a specificity of 76.3%, and it was found that the judgment results in each measurement could be obtained.

また、図11に、前記3測定の判定結果を統合した結果を示す。即ち、発症リスクを有する群・発症リスクを有さない群毎に、前記3測定の判定結果を分類した結果を示す。これより、発症リスクを有する群と発症リスクを有さない群で区別がつくことが分かる。 Further, FIG. 11 shows the result of integrating the determination results of the above three measurements. That is, the results of classifying the determination results of the above three measurements into a group having an onset risk and a group having no onset risk are shown. From this, it can be seen that there is a distinction between the group having the risk of developing the disease and the group having no risk of developing the disease.

(態様3及び4)
態様2と同様にして、個々のグループでの判定結果を得た上で、実施例2と同様にして、平均発症リスク(%)、95%信用区間(%)、発症リスクを有する確率(%)を算出した。結果を図12に示す。これより、発症リスクを有する群と発症リスクを有さない群で区別がつくことが分かる。
(Aspects 3 and 4)
In the same manner as in the second aspect, after obtaining the judgment result in each group, the average onset risk (%), the 95% credible interval (%), and the probability of having the onset risk (%) are the same as in the second embodiment. ) Was calculated. The results are shown in FIG. From this, it can be seen that there is a distinction between the group having the risk of developing the disease and the group having no risk of developing the disease.

実施例4
実施例1~3と用いるプローブが異なる以外は、実施例1と同様にしてデータ取得を行った。具体的には、下記表7-1~表7-2に示すプローブを用いた。
Example 4
Data acquisition was performed in the same manner as in Example 1 except that the probes used in Examples 1 to 3 were different. Specifically, the probes shown in Tables 7-1 to 7-2 below were used.

Figure 0007072803000033
Figure 0007072803000033

Figure 0007072803000034
Figure 0007072803000034

(態様1)
上記表7-1~表7-2に示す150個のプローブ(コアSNP群12個、プールSNP群138個)全てを一度に用いて測定を行い、リスクアレルの総数をカウントした。実施例1と同様にして、リスクアレルの度数分布図とROC分析を行った結果を図13に示す。図13より、感度89.0%、特異度84.9%であるカットオフ値が170個の場合にAUCが0.940であり、度数分布図からも発症リスクを有する群と発症リスクを有さない群で区別がつくことが分かる。
(Aspect 1)
Measurements were performed using all 150 probes (12 in the core SNP group and 138 in the pool SNP group) shown in Tables 7-1 to 7-2 above, and the total number of risk alleles was counted. FIG. 13 shows the frequency distribution map of the risk allele and the result of ROC analysis in the same manner as in Example 1. From FIG. 13, the AUC is 0.940 when the cutoff value is 170 with a sensitivity of 89.0% and a specificity of 84.9%, and the frequency distribution chart also distinguishes between a group having an onset risk and a group having no onset risk. You can see that it will be attached.

(態様2)
次に、前記態様1で用いたプローブを50個ずつに分けて、測定ステップを測定ステップ1、測定ステップ2、測定ステップ3の3グループに分けて行い、リスクアレルの総数をカウントした。
(Aspect 2)
Next, the probes used in the first aspect were divided into 50 probes, and the measurement steps were divided into three groups of measurement step 1, measurement step 2, and measurement step 3, and the total number of risk alleles was counted.

得られた結果について、前記と同様にして、リスクアレルの度数分布図とROC曲線を取得した。結果を図14に示す。図14より、第1測定での結果が感度75.3%、特異度74.3%でのカットオフ値が53個であり、第2測定での結果が感度69.6%、特異度78.4%でのカットオフ値が62個であり、第3測定での結果が感度75.6%、特異度70.4%でのカットオフ値が57個であり、それぞれの測定における判定結果が得られることが分かった。 For the obtained results, the frequency distribution map of the risk allele and the ROC curve were obtained in the same manner as described above. The results are shown in FIG. From FIG. 14, the result of the first measurement is the sensitivity 75.3% and the cutoff value at the specificity 74.3% is 53, and the result of the second measurement is the cutoff value at the sensitivity 69.6% and the specificity 78.4%. The number was 62, the result in the third measurement was sensitivity 75.6%, and the cutoff value at specificity 70.4% was 57, and it was found that the judgment results in each measurement could be obtained.

また、図15に、前記3測定の判定結果を統合した結果を示す。即ち、発症リスクを有する群・発症リスクを有さない群毎に、前記3測定の判定結果を分類した結果を示す。これより、発症リスクを有する群と発症リスクを有さない群で区別がつくことが分かる。 Further, FIG. 15 shows the result of integrating the determination results of the above three measurements. That is, the results of classifying the determination results of the above three measurements into a group having an onset risk and a group having no onset risk are shown. From this, it can be seen that there is a distinction between the group having the risk of developing the disease and the group having no risk of developing the disease.

(態様3及び4)
態様2と同様にして、個々のグループでの判定結果を得た上で、実施例2と同様にして、平均発症リスク(%)、95%信用区間(%)、発症リスクを有する確率(%)を算出した。結果を図16に示す。これより、発症リスクを有する群と発症リスクを有さない群で区別がつくことが分かる。
(Aspects 3 and 4)
In the same manner as in the second aspect, after obtaining the judgment result in each group, the average onset risk (%), the 95% credible interval (%), and the probability of having the onset risk (%) are the same as in the second embodiment. ) Was calculated. The results are shown in FIG. From this, it can be seen that there is a distinction between the group having the risk of developing the disease and the group having no risk of developing the disease.

実施例5 ベイズ流アプローチによるマーカーSNPフィードバック改善ループ
実施例2又は実施例3又は実施例4の判定後の追跡研究により、広義POAGの発症および陰性の結果を得ることで、データの蓄積と更新(追加学習)を行う。追加学習は、追跡研究によって新たに得られた分類結果を用いてベイズの事前分布π(θ)を更新する。
・追跡研究により新たに得られたジェノタイプデータを従来の結果に加えた関連解析(アレルデータによるχ2検定)を実施し、プールSNPの入れ替えを実施する。また、入れ替えを実施する場合は、「情報取得工程」の各測定のROC分析の再計算による閾値の再設定を行い、「情報提供工程」におけるベイズの事前分布を忘却し、一様分布(無情報事前分布)として再計算する。
・データの蓄積と更新により、ジェノタイプデータを用いてアレルデータによるχ2検定の結果が変化した場合、マーカー候補SNPの入れ替えを実施する。
Example 5 Marker SNP Feedback Improvement Loop by Bayesian Approach Data Accumulation and Update by obtaining broadly defined POAG onset and negative results by post-judgment follow-up study of Example 2 or Example 3 or Example 4 ( Perform additional learning). Additional learning updates the Bayesian prior distribution π (θ) with the classification results newly obtained by the follow-up study.
-Perform a related analysis (χ 2 test using allelic data) by adding the genotype data newly obtained by the follow-up study to the conventional results, and replace the pool SNP. In addition, when the replacement is carried out, the threshold value is reset by recalculating the ROC analysis of each measurement in the "information acquisition process", the prior distribution of Bayes in the "information providing process" is forgotten, and the uniform distribution (none). Recalculate as information prior distribution).
-If the result of the χ 2 test using allelic data changes due to the accumulation and update of data, the marker candidate SNPs are replaced.

本発明の方法により、被験者由来のDNA上の本発明のSNPのアレルを分析することにより、被験者の広義原発開放隅角緑内障の発症リスクの高低を判定することができる。このリスクに基づき被験者は広義原発開放隅角緑内障の予防措置を講じ、又は先制医療を含む適切な治療を受けることができる。また、本発明のSNPを用いて、広義原発開放隅角緑内障の発症リスクが高い者を選択して緑内障治療薬の臨床試験を行うことにより、緑内障治療薬の臨床試験の期間を短縮できるため、有用である。 By the method of the present invention, by analyzing the allele of the SNP of the present invention on the DNA derived from the subject, it is possible to determine the high or low risk of developing open-angle glaucoma in the broad sense of the subject. Based on this risk, subjects can take preventive measures for broad-sense primary open-angle glaucoma or receive appropriate treatment, including preemptive treatment. Further, by using the SNP of the present invention to select a person having a high risk of developing open-angle glaucoma in a broad sense and conducting a clinical trial of a glaucoma therapeutic agent, the period of the clinical trial of the glaucoma therapeutic agent can be shortened. It is useful.

10 判定装置
20 測定装置
30 コンピュータシステム
40 記録媒体
300 コンピュータ本体
301 入力部
302 表示部
310 CPU
311 ROM
312 RAM
313 ハードディスク
314 入出力インターフェイス
315 読出装置(読取装置)
316 通信インターフェイス
317 画像出力インターフェイス
318 バス
10 Judgment device 20 Measuring device 30 Computer system 40 Recording medium 300 Computer body 301 Input unit 302 Display unit 310 CPU
311 ROM
312 RAM
313 Hard disk 314 Input / output interface 315 Read device (reader)
316 communication interface 317 image output interface 318 bus

Claims (11)

被検者から採取した生体試料における一塩基多型(SNP)のアレル情報に基づいて、12個のSNPからなるコアSNP群と、471個のSNPからなるプールSNP群から選ばれるSNP(プール選抜SNP群)とを合わせて少なくとも30個のSNPについて、アレルを測定するアレル測定工程、
前記アレルの測定結果に基づいて、前記被検者における広義原発開放隅角緑内障の発症リスクに関する情報を取得する情報取得工程、及び
前記で得られた情報に基づいて、前記被検者の広義原発開放隅角緑内障の発症リスクを判定するための情報を提供する情報提供工程
を含む、被検者の広義原発開放隅角緑内障の発症リスクの診断を補助する方法であって、
前記情報提供工程が、前記情報取得工程により得られた被検者に関する結果が、アレル測定工程で用いられたSNPに基づいて予め定められたカットオフ値を、上回る場合は前記被検者が広義原発開放隅角緑内障を発症するリスクが高く、下回る場合は前記被検者が広義原発開放隅角緑内障を発症するリスクが低いとの情報を提供するステップを含む工程であり、
前記コアSNP群の12個のSNPが、rs7623847、rs11159830、rs4852079、rs10853035、rs7531982、rs4430527、rs1399216、rs12437660、rs9442、rs1149332、rs11136906及びrs11956913であり、
前記プールSNP群の471個のSNPが、rs6429703、rs659046、rs11583644、rs835337、rs960501、rs3768184、rs6669702、rs2786755、rs1469876、rs2039153、rs12048011、rs9661521、rs7516960、rs515194、rs1127313、rs2661275、rs7524938、rs16852409、rs7367640、rs12026361、rs4233520、rs16850250、rs2841385、rs16855905、rs17313689、rs11680265、rs12615616、rs9332420、rs4344916、rs10490195、rs12713615、rs17030916、rs2587702、rs1529292、rs6747239、rs12477346、rs13408246、rs1627497、rs10804383、rs4973518、rs940947、rs9878659、rs2437685、rs1993761、rs6779858、rs775779、rs775722、rs162871、rs1993802、rs1462793、rs4450855、rs9866028、rs7644682、rs1499787、rs9874964、rs7378503、rs7656362、rs956469、rs11945500、rs4295245、rs6814828、rs6837917、rs6847630、rs7664412、rs13132427、rs1047626、rs2581441、rs7677091、rs13149904、rs12641050、rs2036455、rs10011515、rs6835198、rs1392874、rs2567388、rs12641140、rs10049967、rs13118455、rs2675531、rs261133、rs261162、rs1501958、rs4701849、rs835136、rs865036、rs9688120、rs4354048、rs12659589、rs6883614、rs10051972、rs17585205、rs27311、rs13168430、rs17165576、rs6875282、rs17097145、rs7744710、rs197962、rs197963、rs2815019、rs4311505、rs11968166、rs1518516、rs4895745、rs7753862、rs1873329、rs9493858、rs9376182、rs646695、rs4394230、rs4535568、rs311330、rs311329、rs4870148、rs9480313、rs6908330、rs2350842、rs2350835、rs13236851、rs7777579、rs7781607、rs7788738、rs10282694、rs1123227、rs879965、rs17152102、rs6968827、rs6943901、rs1015573、rs12698976、rs10271370、rs2079162、rs10215082、rs1476446、rs6466117、rs2267889、rs6959243、rs4725651、rs3779853、rs4876223、rs12548247、rs4457353、rs2440396、rs17077154、rs1079326、rs11988880、rs11786580、rs17250119、rs2853236、rs13248227、rs729005、rs16929、rs273393、rs2221770、rs7009780、rs10815523、rs1331260、rs10815020、rs10974623、rs10974624、rs4742008、rs301430、rs4742011、rs10120677、rs1890074、rs4448374、rs10965215、rs564398、rs10757270、rs10757272、rs4977574、rs2891168、rs1333042、rs815845、rs2798062、rs1777052、rs6479594、rs290221、rs1755938、rs16936272、rs563、rs1130635、rs3812591、rs7919331、rs11254023、rs11254057、rs6602142、rs12218350、rs11008621、rs6481756、rs2808068、rs10762738、rs7896131、rs7090670、rs7901883、rs2419836、rs1907220、rs17663978、rs10901799、rs11016590、rs7113375、rs12291056、rs4755436、rs10838418、rs17788930、rs656104、rs17286033、rs2640785、rs1056136、rs582146、rs575848、rs11603786、rs2343877、rs1049376、rs2570、rs7973582、rs11049085、rs12370473、rs4931245、rs929952、rs7980789、rs1729803、rs11178499、rs2137506、rs12580741、rs1526844、rs10861463、rs4293219、rs1009438、rs10773249、rs10847208、rs17083838、rs1322569、rs6563805、rs9532536、rs10492606、rs4942888、rs1413065、rs9564019、rs2134897、rs1965830、rs9514234、rs9587525、rs2179931、rs179562、rs179558、rs397080、rs761509、rs1450709、rs10133218、rs941714、rs941713、rs4417522、rs683922、rs1568679、rs8023369、rs4775035、rs11632583、rs1482929、rs922878、rs1482933、rs2672086、rs12441915、rs4338756、rs11633107、rs2015808、rs12903810、rs2667675、rs1029442、rs12599165、rs6497609、rs11649409、rs1424151、rs1056321、rs12451094、rs8070213、rs181535、rs9890602、rs7224525、rs12452064、rs199494、rs11079884、rs1003313、rs4476235、rs8075920、rs16976552、rs544748、rs891805、rs2269222、rs7234150、rs11659375、rs8085116、rs996919、rs11150、rs216283、rs1368456、rs2734456、rs2734454、rs2965106、rs6135852、rs8126205、rs6119304、rs6102788、rs2235862、rs4811206、rs3810550、rs6142738、rs2427293、rs735501、rs3003137、rs1543766、rs2839504、rs130414、rs4648462、rs1459764、rs10917476、rs666371、rs16828286、rs835340、rs4915844、rs9970705、rs11209252、rs1361493、rs7516969、rs1698598、rs1890303、rs6700410、rs41467544、rs7540764、rs11811532、rs17016333、rs6756667、rs11903594、rs2587693、rs7583123、rs17685106、rs896790、rs1441456、rs13007054、rs12989659、rs11901692、rs2727946、rs17234276、rs1558893、rs6766740、rs826431、rs4130090、rs844438、rs17069212、rs1502757、rs9871957、rs16849435、rs9815106、rs879394、rs6449420、rs16869447、rs2660341、rs6840349、rs17026134、rs2567372、rs41330746、rs3775851、rs1113890、rs8180155、rs3094356、rs386313、rs2973092、rs10514994、rs7729566、rs30997、rs6897211、rs409855、rs7705024、rs364211、rs13360374、rs7726729、rs17056003、rs7754459、rs4711718、rs7760603、rs1150093、rs4710773、rs4722237、rs788761、rs13311390、rs12718634、rs820935、rs10487463、rs3112341、rs4875712、rs10106492、rs3020282、rs11250152、rs4872203、rs17652451、rs3739231、rs10974620、rs3780411、rs9632884、rs2798058、rs1777035、rs2798042、rs290226、rs573212、rs12339593、rs16929114、rs3124596、rs7099056、rs7922576、rs2688812、rs2688815、rs11199835、rs17104935、rs3781452、rs10159505、rs2057498、rs7107896、rs10769120、rs4752797、rs7120194、rs10502071、rs604411、rs7960985、rs4764380、rs863786、rs11177371、rs1512979、rs12230997、rs7990612、rs12018544、rs9315894、rs1588681、rs421841、rs9529485、rs8000868、rs179541、rs763388、rs10142332、rs4924127、rs17239763、rs14912、rs967180、rs2283462、rs1032955、rs12917583、rs3751664、rs757166、rs757164、rs16956781、rs10852333、rs12600303、rs4784219、rs12597838、rs9889056、rs6502937、rs4969326、rs1786809、rs11663052、rs16971109、rs17787324、rs4599012、rs12458940、rs7250638、rs1407033、rs2235863、rs3746417、rs7278259、rs5996894、rs138679、rs1894469及びrs5764733である、
被検者の広義原発開放隅角緑内障の発症リスクの診断を補助する方法
SNPs (pools) selected from a core SNP group consisting of 12 SNPs and a pool SNP group consisting of 471 SNPs based on single nucleotide polymorphism (SNP) allele information in biological samples collected from subjects. Allele measurement process, which measures alleles for at least 30 SNPs including the selected SNP group).
Based on the measurement results of the allele, the information acquisition process for acquiring information on the risk of developing open-angle glaucoma in the broad-sense subject, and based on the information obtained above, the broad-sense nuclear power plant of the subject. A method of assisting a subject in diagnosing the risk of developing open-angle glaucoma in a broad sense, including an information providing step that provides information for determining the risk of developing open-angle glaucoma.
In the broad sense, if the information providing step exceeds the predetermined cutoff value based on the SNP used in the allergen measurement step for the result regarding the subject obtained by the information acquisition step, the subject is broadly defined. It is a step that includes a step of providing information that the risk of developing primary open-angle glaucoma is high, and if it is lower, the subject has a low risk of developing broad-sense primary open-angle glaucoma.
The 12 SNPs in the core SNP group are rs7623847, rs11159830, rs4852079, rs10853035, rs7531982, rs4430527, rs1399216, rs12437660, rs9442, rs1149332, rs11136906 and rs11956913.
471 SNPs in the pool SNP group are rs6429703, rs659046, rs11583644, rs835337, rs960501, rs3768184, rs6669702, rs2786755, rs1469876, rs2039153, rs12048011, rs9661521, rs7516960, rs515194, rs1127313, rs2661275, rs7524938 , Rs4233520, rs16850250, rs2841385, rs16855905, rs17313689, rs11680265, rs12615616, rs9332420, rs4344916, rs10490195, rs12713615, rs17030916, rs2587702, rs1529292, rs6747239, rs12477346, rs13408246, rs1627497, rs10804383 , Rs775779, rs775722, rs162871, rs1993802, rs1462793, rs4450855, rs9866028, rs7644682, rs1499787, rs9874964, rs7378503, rs7656362, rs956469, rs11945500, rs4295245, rs6814828, rs6837917, rs6847630, rs7664412, rs13 , Rs2036455, rs10011515, rs6835198, rs1392874, rs2567388, rs12641140, rs10049967, rs13118455, rs2675531, rs261133, rs261162, rs1501958, rs4701849, rs835136, rs865036, rs9688120, rs4354048, rs12659589, rs6883614 , Rs17097145, rs7744 710, rs197962, rs197963, rs2815019, rs4311505, rs11968166, rs1518516, rs4895745, rs7753862, rs1873329, rs9493858, rs9376182, rs646695, rs4394230, rs4535568, rs311330, rs311329, rs4870148, rs9480313, rs6908330 rs7788738, rs10282694, rs1123227, rs879965, rs17152102, rs6968827, rs6943901, rs1015573, rs12698976, rs10271370, rs2079162, rs10215082, rs1476446, rs6466117, rs2267889, rs6959243, rs4725651, rs3779853, rs6959243, rs4725651, rs3779853, rs4876223 rs11786580, rs17250119, rs2853236, rs13248227, rs729005, rs16929, rs273393, rs2221770, rs7009780, rs10815523, rs1331260, rs10815020, rs10974623, rs10974624, rs4742008, rs301430, rs4742011, rs10120677, rs1890074, rs4448374 rs2891168, rs1333042, rs815845, rs2798062, rs1777052, rs6479594, rs290221, rs1755938, rs16936272, rs563, rs1130635, rs3812591, rs7919331, rs11254023, rs11254057, rs6602142, rs12218350, rs11008621, rs6481756 36, rs1907220, rs17663978, rs10901799, rs11016590, rs7113375, rs12291056, rs4755436, rs10838418, rs17788930, rs656104, rs17286033, rs2640785, rs1056136, rs582146, rs575848, rs11603786, rs2343877, rs1049376, rs2570 rs7980789, rs1729803, rs11178499, rs2137506, rs12580741, rs1526844, rs10861463, rs4293219, rs1009438, rs10773249, rs10847208, rs17083838, rs1322569, rs6563805, rs9532536, rs10492606, rs4942888, rs1413065, rs9564019rs rs179558, rs397080, rs761509, rs1450709, rs10133218, rs941714, rs941713, rs4417522, rs683922, rs1568679, rs8023369, rs4775035, rs11632583, rs1482929, rs922878, rs1482933, rs2672086, rs12441915, rs4338756, rs11633107 rs6497609, rs11649409, rs1424151, rs1056321, rs12451094, rs8070213, rs181535, rs9890602, rs7224525, rs12452064, rs199494, rs11079884, rs1003313, rs4476235, rs8075920, rs16976552, rs544748, rs891805, rs2269222, rs7234 r s1368456, rs2734456, rs2734454, rs2965106, rs6135852, rs8126205, rs6119304, rs6102788, rs2235862, rs4811206, rs3810550, rs6142738, rs2427293, rs735501, rs3003137, rs1543766, rs2839504, rs130414, rs4648462 rs9970705, rs11209252, rs1361493, rs7516969, rs1698598, rs1890303, rs6700410, rs41467544, rs7540764, rs11811532, rs17016333, rs6756667, rs11903594, rs2587693, rs7583123, rs17685109, rs2587693, rs7583123, rs17685106, rs896790, rs1441456, rs13007054 rs826431, rs4130090, rs844438, rs17069212, rs1502757, rs9871957, rs16849435, rs9815106, rs879394, rs6449420, rs16869447, rs2660341, rs6840349, rs17026134, rs2567372, rs41330746, rs3775851, rs1113890, rs8180155 rs6897211, rs409855, rs7705024, rs364211, rs13360374, rs7726729, rs17056003, rs7754459, rs4711718, rs7760603, rs1150093, rs4710773, rs4722237, rs788761, rs13311390, rs12718634, rs820935, rs10487463, rs3112341, rs4875712 s17652451, rs3739231, rs10974620, rs3780411, rs9632884, rs2798058, rs1777035, rs2798042, rs290226, rs573212, rs12339593, rs16929114, rs3124596, rs7099056, rs7922576, rs2688812, rs2688815, rs11199835, rs17104935 rs7120194, rs10502071, rs604411, rs7960985, rs4764380, rs863786, rs11177371, rs1512979, rs12230997, rs7990612, rs12018544, rs9315894, rs1588681, rs421841, rs9529485, rs8000868, rs179541, rs763388, rs10142332 rs12917583, rs3751664, rs757166, rs757164, rs16956781, rs10852333, rs12600303, rs4784219, rs12597838, rs9889056, rs6502937, rs4969326, rs1786809, rs11663052, rs16971109, rs17787324, rs4599012, rs12458940, rs7250638, rs12458940, rs7250638 rs1894469 and rs5764733,
A method to assist the diagnosis of the risk of developing open-angle glaucoma in the broad sense of the subject .
アレル測定工程が、
コアSNP群から選ばれる1個以上のSNP(第1コアSNP群)と、プールSNP群から選ばれる複数のSNP(第1プール選抜SNP群)とを合わせて少なくとも30個のSNPを含む第1SNP群について測定を行う第1測定ステップと、
第1コアSNP群とは異なる1個以上のSNP(第2コアSNP群)と、プールSNP群から選ばれる複数のSNP(第2プール選抜SNP群)とを合わせて少なくとも30個のSNPを含む第2SNP群について測定を行う第2測定ステップ
を含む工程であり、
ここで、前記第1プール選抜SNP群と第2プール選抜SNP群とは非同一である、請求項1記載の方法。
The allele measurement process
A first SNP containing at least 30 SNPs including one or more SNPs selected from the core SNP group (first core SNP group) and a plurality of SNPs selected from the pool SNP group (first pool selection SNP group). The first measurement step to measure the group and
A total of at least 30 SNPs including one or more SNPs different from the first core SNP group (second core SNP group) and a plurality of SNPs selected from the pool SNP group (second pool selection SNP group) are included. This is a step including a second measurement step of measuring the second SNP group.
Here, the method according to claim 1, wherein the first pool selection SNP group and the second pool selection SNP group are not the same.
アレル測定工程が、
コアSNP群から選ばれる1個以上のSNP(第1コアSNP群)と、プールSNP群から選ばれる複数のSNP(第1プール選抜SNP群)とを合わせて少なくとも30個のSNPを含む第1SNP群について測定を行う第1測定ステップと、
第1コアSNP群とは異なる1個以上のSNP(第2コアSNP群)と、プールSNP群から選ばれる複数のSNP(第2プール選抜SNP群)とを合わせて少なくとも30個のSNPを含む第2SNP群について測定を行う第2測定ステップと、
第1コアSNP群及び第2コアSNP群とは異なる1個以上のSNP(第3コアSNP群)と、プールSNP群から選ばれる複数のSNP(第3プール選抜SNP群)とを合わせて少なくとも30個のSNPを含む第3SNP群について測定を行う第3測定ステップ
を含む工程であり、
ここで、前記第1プール選抜SNP群と第2プール選抜SNP群と第3プール選抜SNP群とはいずれも非同一である、請求項1記載の方法。
The allele measurement process
A first SNP containing at least 30 SNPs including one or more SNPs selected from the core SNP group (first core SNP group) and a plurality of SNPs selected from the pool SNP group (first pool selection SNP group). The first measurement step to measure the group and
A total of at least 30 SNPs including one or more SNPs different from the first core SNP group (second core SNP group) and a plurality of SNPs selected from the pool SNP group (second pool selection SNP group) are included. The second measurement step for measuring the second SNP group, and
At least one or more SNPs (third core SNP group) different from the first core SNP group and the second core SNP group and a plurality of SNPs selected from the pool SNP group (third pool selection SNP group) are combined. It is a step including a third measurement step of measuring the third SNP group including 30 SNPs.
Here, the method according to claim 1, wherein the first pool selection SNP group, the second pool selection SNP group, and the third pool selection SNP group are all non-identical.
情報取得工程が、測定されたアレルがリスクアレルであるか否かを判別し、リスクアレルの総数をカウントするステップを含む工程である、請求項1~3いずれか記載の方法。 The method according to any one of claims 1 to 3, wherein the information acquisition step is a step including a step of determining whether or not the measured allele is a risk allele and counting the total number of risk alleles. 生体試料が、全血、全血球、白血球、リンパ球、血漿、血清、リンパ液、涙液、唾液、鼻汁、脳脊髄液、骨髄液、精液、汗、粘膜組織、皮膚組織、又は毛根である、請求項1~4いずれか記載の方法。 Biological samples are whole blood, whole blood cells, leukocytes, lymphocytes, plasma, serum, lymph, tears, saliva, nasal juice, cerebrospinal fluid, bone marrow, semen, sweat, mucosal tissue, skin tissue, or hair roots. The method according to any one of claims 1 to 4. カットオフ値が、アレル測定工程で用いられたSNPに基づいて予めROC分析により定められたカットオフ値である、請求項1~5いずれか記載の方法。 The method according to any one of claims 1 to 5, wherein the cutoff value is a cutoff value previously determined by ROC analysis based on the SNP used in the allele measurement step. 情報提供工程が、前記アレル測定工程が複数の測定ステップを含む場合、前記情報取得工程により得られた被検者に関する各測定ステップでの結果が、各測定ステップで用いられたSNP群に基づいて予めROC分析により定められたカットオフ値を上回るか否かを指標として、前記被検者が広義原発開放隅角緑内障を発症するリスクの高低についての情報を提供するステップを含む工程である、請求項2~5いずれか記載の方法。 When the information providing step includes a plurality of measurement steps, the result of each measurement step regarding the subject obtained by the information acquisition step is based on the SNP group used in each measurement step. A process including a step of providing information on the high or low risk of developing broad-sense primary open-angle glaucoma by the subject as an index of whether or not the cutoff value is exceeded, which is determined in advance by ROC analysis. Item 2. The method according to any one of Items 2 to 5. 情報提供工程が、前記情報取得工程で得られた結果にベイズ定理を当てはめて、前記被検者が広義原発開放隅角緑内障の発症リスクを有する確率を算出するステップを含む工程である、請求項1~5いずれか記載の方法。 Claimed claim, wherein the information providing step is a step of applying Bayes' theorem to the result obtained in the information acquisition step to calculate the probability that the subject has a risk of developing open-angle glaucoma in a broad sense. The method according to any one of 1 to 5. 情報提供工程が、前記情報取得工程で得られた結果にベイズ定理を当てはめて、前記被検者の広義原発開放隅角緑内障を予め設定されたパーセント(%)以上の確率で発症リスクを有する確率を算出するステップを含む工程である、請求項1~5いずれか記載の方法。 Probability that the information providing process applies the Bayes' theorem to the results obtained in the information acquisition process and has a probability of developing the broad-sense primary open-angle glaucoma of the subject with a probability of a preset percentage (%) or more. The method according to any one of claims 1 to 5, which is a step including a step of calculating. プロセッサ及び前記プロセッサの制御下にあるメモリを含むコンピュータを備え、前記メモリには、
被検者から採取した生体試料における一塩基多型(SNP)のアレル情報に基づいて、12個のSNPからなるコアSNP群と、471個のSNPからなるプールSNP群から選ばれるSNP(プール選抜SNP群)とを合わせて少なくとも30個のSNPについて、アレルを測定するアレル測定工程、
前記アレルの測定結果に基づいて、前記被検者における広義原発開放隅角緑内障の発症リスクに関する情報を取得する情報取得工程、及び
前記で得られた情報に基づいて、前記被検者の広義原発開放隅角緑内障の発症リスクを判定するための情報を提供する情報提供工程
を前記コンピュータに実行させるためのコンピュータプログラムが記録されている、広義原発開放隅角緑内障の発症リスクを有する被検者の検出装置であって、
前記情報提供工程が、前記情報取得工程により得られた被検者に関する結果が、アレル測定工程で用いられたSNPに基づいて予め定められたカットオフ値を、上回る場合は前記被検者が広義原発開放隅角緑内障を発症するリスクが高く、下回る場合は前記被検者が広義原発開放隅角緑内障を発症するリスクが低いとの情報を提供するステップを含む工程であり、
前記コアSNP群の12個のSNPが、rs7623847、rs11159830、rs4852079、rs10853035、rs7531982、rs4430527、rs1399216、rs12437660、rs9442、rs1149332、rs11136906及びrs11956913であり、
前記プールSNP群の471個のSNPが、rs6429703、rs659046、rs11583644、rs835337、rs960501、rs3768184、rs6669702、rs2786755、rs1469876、rs2039153、rs12048011、rs9661521、rs7516960、rs515194、rs1127313、rs2661275、rs7524938、rs16852409、rs7367640、rs12026361、rs4233520、rs16850250、rs2841385、rs16855905、rs17313689、rs11680265、rs12615616、rs9332420、rs4344916、rs10490195、rs12713615、rs17030916、rs2587702、rs1529292、rs6747239、rs12477346、rs13408246、rs1627497、rs10804383、rs4973518、rs940947、rs9878659、rs2437685、rs1993761、rs6779858、rs775779、rs775722、rs162871、rs1993802、rs1462793、rs4450855、rs9866028、rs7644682、rs1499787、rs9874964、rs7378503、rs7656362、rs956469、rs11945500、rs4295245、rs6814828、rs6837917、rs6847630、rs7664412、rs13132427、rs1047626、rs2581441、rs7677091、rs13149904、rs12641050、rs2036455、rs10011515、rs6835198、rs1392874、rs2567388、rs12641140、rs10049967、rs13118455、rs2675531、rs261133、rs261162、rs1501958、rs4701849、rs835136、rs865036、rs9688120、rs4354048、rs12659589、rs6883614、rs10051972、rs17585205、rs27311、rs13168430、rs17165576、rs6875282、rs17097145、rs7744710、rs197962、rs197963、rs2815019、rs4311505、rs11968166、rs1518516、rs4895745、rs7753862、rs1873329、rs9493858、rs9376182、rs646695、rs4394230、rs4535568、rs311330、rs311329、rs4870148、rs9480313、rs6908330、rs2350842、rs2350835、rs13236851、rs7777579、rs7781607、rs7788738、rs10282694、rs1123227、rs879965、rs17152102、rs6968827、rs6943901、rs1015573、rs12698976、rs10271370、rs2079162、rs10215082、rs1476446、rs6466117、rs2267889、rs6959243、rs4725651、rs3779853、rs4876223、rs12548247、rs4457353、rs2440396、rs17077154、rs1079326、rs11988880、rs11786580、rs17250119、rs2853236、rs13248227、rs729005、rs16929、rs273393、rs2221770、rs7009780、rs10815523、rs1331260、rs10815020、rs10974623、rs10974624、rs4742008、rs301430、rs4742011、rs10120677、rs1890074、rs4448374、rs10965215、rs564398、rs10757270、rs10757272、rs4977574、rs2891168、rs1333042、rs815845、rs2798062、rs1777052、rs6479594、rs290221、rs1755938、rs16936272、rs563、rs1130635、rs3812591、rs7919331、rs11254023、rs11254057、rs6602142、rs12218350、rs11008621、rs6481756、rs2808068、rs10762738、rs7896131、rs7090670、rs7901883、rs2419836、rs1907220、rs17663978、rs10901799、rs11016590、rs7113375、rs12291056、rs4755436、rs10838418、rs17788930、rs656104、rs17286033、rs2640785、rs1056136、rs582146、rs575848、rs11603786、rs2343877、rs1049376、rs2570、rs7973582、rs11049085、rs12370473、rs4931245、rs929952、rs7980789、rs1729803、rs11178499、rs2137506、rs12580741、rs1526844、rs10861463、rs4293219、rs1009438、rs10773249、rs10847208、rs17083838、rs1322569、rs6563805、rs9532536、rs10492606、rs4942888、rs1413065、rs9564019、rs2134897、rs1965830、rs9514234、rs9587525、rs2179931、rs179562、rs179558、rs397080、rs761509、rs1450709、rs10133218、rs941714、rs941713、rs4417522、rs683922、rs1568679、rs8023369、rs4775035、rs11632583、rs1482929、rs922878、rs1482933、rs2672086、rs12441915、rs4338756、rs11633107、rs2015808、rs12903810、rs2667675、rs1029442、rs12599165、rs6497609、rs11649409、rs1424151、rs1056321、rs12451094、rs8070213、rs181535、rs9890602、rs7224525、rs12452064、rs199494、rs11079884、rs1003313、rs4476235、rs8075920、rs16976552、rs544748、rs891805、rs2269222、rs7234150、rs11659375、rs8085116、rs996919、rs11150、rs216283、rs1368456、rs2734456、rs2734454、rs2965106、rs6135852、rs8126205、rs6119304、rs6102788、rs2235862、rs4811206、rs3810550、rs6142738、rs2427293、rs735501、rs3003137、rs1543766、rs2839504、rs130414、rs4648462、rs1459764、rs10917476、rs666371、rs16828286、rs835340、rs4915844、rs9970705、rs11209252、rs1361493、rs7516969、rs1698598、rs1890303、rs6700410、rs41467544、rs7540764、rs11811532、rs17016333、rs6756667、rs11903594、rs2587693、rs7583123、rs17685106、rs896790、rs1441456、rs13007054、rs12989659、rs11901692、rs2727946、rs17234276、rs1558893、rs6766740、rs826431、rs4130090、rs844438、rs17069212、rs1502757、rs9871957、rs16849435、rs9815106、rs879394、rs6449420、rs16869447、rs2660341、rs6840349、rs17026134、rs2567372、rs41330746、rs3775851、rs1113890、rs8180155、rs3094356、rs386313、rs2973092、rs10514994、rs7729566、rs30997、rs6897211、rs409855、rs7705024、rs364211、rs13360374、rs7726729、rs17056003、rs7754459、rs4711718、rs7760603、rs1150093、rs4710773、rs4722237、rs788761、rs13311390、rs12718634、rs820935、rs10487463、rs3112341、rs4875712、rs10106492、rs3020282、rs11250152、rs4872203、rs17652451、rs3739231、rs10974620、rs3780411、rs9632884、rs2798058、rs1777035、rs2798042、rs290226、rs573212、rs12339593、rs16929114、rs3124596、rs7099056、rs7922576、rs2688812、rs2688815、rs11199835、rs17104935、rs3781452、rs10159505、rs2057498、rs7107896、rs10769120、rs4752797、rs7120194、rs10502071、rs604411、rs7960985、rs4764380、rs863786、rs11177371、rs1512979、rs12230997、rs7990612、rs12018544、rs9315894、rs1588681、rs421841、rs9529485、rs8000868、rs179541、rs763388、rs10142332、rs4924127、rs17239763、rs14912、rs967180、rs2283462、rs1032955、rs12917583、rs3751664、rs757166、rs757164、rs16956781、rs10852333、rs12600303、rs4784219、rs12597838、rs9889056、rs6502937、rs4969326、rs1786809、rs11663052、rs16971109、rs17787324、rs4599012、rs12458940、rs7250638、rs1407033、rs2235863、rs3746417、rs7278259、rs5996894、rs138679、rs1894469及びrs5764733である、
広義原発開放隅角緑内障の発症リスクを有する被検者の検出装置
A computer comprising a processor and a memory under the control of the processor, said memory.
SNPs (pools) selected from a core SNP group consisting of 12 SNPs and a pool SNP group consisting of 471 SNPs based on single nucleotide polymorphism (SNP) allele information in biological samples collected from subjects. Allele measurement process, which measures alleles for at least 30 SNPs including the selected SNP group).
Based on the measurement results of the allele, the information acquisition process for acquiring information on the risk of developing open-angle glaucoma in the broad-sense subject, and based on the information obtained above, the broad-sense nuclear power plant of the subject. A subject at risk of developing open-angle glaucoma in a broad sense, in which a computer program for causing the computer to execute an information providing process that provides information for determining the risk of developing open-angle glaucoma is recorded. It ’s a detector ,
In the broad sense, if the information providing step exceeds the predetermined cutoff value based on the SNP used in the allergen measurement step for the result regarding the subject obtained by the information acquisition step, the subject is broadly defined. It is a step that includes a step of providing information that the risk of developing primary open-angle glaucoma is high, and if it is lower, the subject has a low risk of developing broad-sense primary open-angle glaucoma.
The 12 SNPs in the core SNP group are rs7623847, rs11159830, rs4852079, rs10853035, rs7531982, rs4430527, rs1399216, rs12437660, rs9442, rs1149332, rs11136906 and rs11956913.
471 SNPs in the pool SNP group are rs6429703, rs659046, rs11583644, rs835337, rs960501, rs3768184, rs6669702, rs2786755, rs1469876, rs2039153, rs12048011, rs9661521, rs7516960, rs515194, rs1127313, rs2661275, rs7524938 , Rs4233520, rs16850250, rs2841385, rs16855905, rs17313689, rs11680265, rs12615616, rs9332420, rs4344916, rs10490195, rs12713615, rs17030916, rs2587702, rs1529292, rs6747239, rs12477346, rs13408246, rs1627497, rs10804383 , Rs775779, rs775722, rs162871, rs1993802, rs1462793, rs4450855, rs9866028, rs7644682, rs1499787, rs9874964, rs7378503, rs7656362, rs956469, rs11945500, rs4295245, rs6814828, rs6837917, rs6847630, rs7664412, rs13 , Rs2036455, rs10011515, rs6835198, rs1392874, rs2567388, rs12641140, rs10049967, rs13118455, rs2675531, rs261133, rs261162, rs1501958, rs4701849, rs835136, rs865036, rs9688120, rs4354048, rs12659589, rs6883614 , Rs17097145, rs7744 710, rs197962, rs197963, rs2815019, rs4311505, rs11968166, rs1518516, rs4895745, rs7753862, rs1873329, rs9493858, rs9376182, rs646695, rs4394230, rs4535568, rs311330, rs311329, rs4870148, rs9480313, rs6908330 rs7788738, rs10282694, rs1123227, rs879965, rs17152102, rs6968827, rs6943901, rs1015573, rs12698976, rs10271370, rs2079162, rs10215082, rs1476446, rs6466117, rs2267889, rs6959243, rs4725651, rs3779853, rs6959243, rs4725651, rs3779853, rs4876223 rs11786580, rs17250119, rs2853236, rs13248227, rs729005, rs16929, rs273393, rs2221770, rs7009780, rs10815523, rs1331260, rs10815020, rs10974623, rs10974624, rs4742008, rs301430, rs4742011, rs10120677, rs1890074, rs4448374 rs2891168, rs1333042, rs815845, rs2798062, rs1777052, rs6479594, rs290221, rs1755938, rs16936272, rs563, rs1130635, rs3812591, rs7919331, rs11254023, rs11254057, rs6602142, rs12218350, rs11008621, rs6481756 36, rs1907220, rs17663978, rs10901799, rs11016590, rs7113375, rs12291056, rs4755436, rs10838418, rs17788930, rs656104, rs17286033, rs2640785, rs1056136, rs582146, rs575848, rs11603786, rs2343877, rs1049376, rs2570 rs7980789, rs1729803, rs11178499, rs2137506, rs12580741, rs1526844, rs10861463, rs4293219, rs1009438, rs10773249, rs10847208, rs17083838, rs1322569, rs6563805, rs9532536, rs10492606, rs4942888, rs1413065, rs10492606, rs4942888, rs1413065, rs9564019 rs179558, rs397080, rs761509, rs1450709, rs10133218, rs941714, rs941713, rs4417522, rs683922, rs1568679, rs8023369, rs4775035, rs11632583, rs1482929, rs922878, rs1482933, rs2672086, rs12441915, rs4338756, rs11633107 rs6497609, rs11649409, rs1424151, rs1056321, rs12451094, rs8070213, rs181535, rs9890602, rs7224525, rs12452064, rs199494, rs11079884, rs1003313, rs4476235, rs8075920, rs16976552, rs544748, rs891805, rs2269222, rs7234 r s1368456, rs2734456, rs2734454, rs2965106, rs6135852, rs8126205, rs6119304, rs6102788, rs2235862, rs4811206, rs3810550, rs6142738, rs2427293, rs735501, rs3003137, rs1543766, rs2839504, rs130414, rs4648462 rs9970705, rs11209252, rs1361493, rs7516969, rs1698598, rs1890303, rs6700410, rs41467544, rs7540764, rs11811532, rs17016333, rs6756667, rs11903594, rs2587693, rs7583123, rs17685109, rs2587693, rs7583123, rs17685106, rs896790, rs1441456, rs13007054 rs826431, rs4130090, rs844438, rs17069212, rs1502757, rs9871957, rs16849435, rs9815106, rs879394, rs6449420, rs16869447, rs2660341, rs6840349, rs17026134, rs2567372, rs41330746, rs3775851, rs1113890, rs8180155 rs6897211, rs409855, rs7705024, rs364211, rs13360374, rs7726729, rs17056003, rs7754459, rs4711718, rs7760603, rs1150093, rs4710773, rs4722237, rs788761, rs13311390, rs12718634, rs820935, rs10487463, rs3112341, rs4875712 s17652451, rs3739231, rs10974620, rs3780411, rs9632884, rs2798058, rs1777035, rs2798042, rs290226, rs573212, rs12339593, rs16929114, rs3124596, rs7099056, rs7922576, rs2688812, rs2688815, rs11199835, rs17104935 rs7120194, rs10502071, rs604411, rs7960985, rs4764380, rs863786, rs11177371, rs1512979, rs12230997, rs7990612, rs12018544, rs9315894, rs1588681, rs421841, rs9529485, rs8000868, rs179541, rs763388, rs10142332 rs12917583, rs3751664, rs757166, rs757164, rs16956781, rs10852333, rs12600303, rs4784219, rs12597838, rs9889056, rs6502937, rs4969326, rs1786809, rs11663052, rs16971109, rs17787324, rs4599012, rs12458940, rs7250638, rs12458940, rs7250638 rs1894469 and rs5764733,
A device for detecting subjects at risk of developing open-angle glaucoma in a broad sense .
プロセッサ及び前記プロセッサの制御下にあるメモリを含むコンピュータに実行させるためのコンピュータプログラムであって、
被検者から採取した生体試料における一塩基多型(SNP)のアレル情報に基づいて、12個のSNPからなるコアSNP群と、471個のSNPからなるプールSNP群から選ばれるSNP(プール選抜SNP群)とを合わせて少なくとも30個のSNPについて、アレルを測定するアレル測定工程、
前記アレルの測定結果に基づいて、前記被検者における広義原発開放隅角緑内障の発症リスクに関する情報を取得する情報取得工程、及び
前記で得られた情報に基づいて、前記被検者の広義原発開放隅角緑内障の発症リスクを判定するための情報を提供する情報提供工程
を実行させる、コンピュータプログラムであって、
前記情報提供工程が、前記情報取得工程により得られた被検者に関する結果が、アレル測定工程で用いられたSNPに基づいて予め定められたカットオフ値を、上回る場合は前記被検者が広義原発開放隅角緑内障を発症するリスクが高く、下回る場合は前記被検者が広義原発開放隅角緑内障を発症するリスクが低いとの情報を提供するステップを含む工程であり、
前記コアSNP群の12個のSNPが、rs7623847、rs11159830、rs4852079、rs10853035、rs7531982、rs4430527、rs1399216、rs12437660、rs9442、rs1149332、rs11136906及びrs11956913であり、
前記プールSNP群の471個のSNPが、rs6429703、rs659046、rs11583644、rs835337、rs960501、rs3768184、rs6669702、rs2786755、rs1469876、rs2039153、rs12048011、rs9661521、rs7516960、rs515194、rs1127313、rs2661275、rs7524938、rs16852409、rs7367640、rs12026361、rs4233520、rs16850250、rs2841385、rs16855905、rs17313689、rs11680265、rs12615616、rs9332420、rs4344916、rs10490195、rs12713615、rs17030916、rs2587702、rs1529292、rs6747239、rs12477346、rs13408246、rs1627497、rs10804383、rs4973518、rs940947、rs9878659、rs2437685、rs1993761、rs6779858、rs775779、rs775722、rs162871、rs1993802、rs1462793、rs4450855、rs9866028、rs7644682、rs1499787、rs9874964、rs7378503、rs7656362、rs956469、rs11945500、rs4295245、rs6814828、rs6837917、rs6847630、rs7664412、rs13132427、rs1047626、rs2581441、rs7677091、rs13149904、rs12641050、rs2036455、rs10011515、rs6835198、rs1392874、rs2567388、rs12641140、rs10049967、rs13118455、rs2675531、rs261133、rs261162、rs1501958、rs4701849、rs835136、rs865036、rs9688120、rs4354048、rs12659589、rs6883614、rs10051972、rs17585205、rs27311、rs13168430、rs17165576、rs6875282、rs17097145、rs7744710、rs197962、rs197963、rs2815019、rs4311505、rs11968166、rs1518516、rs4895745、rs7753862、rs1873329、rs9493858、rs9376182、rs646695、rs4394230、rs4535568、rs311330、rs311329、rs4870148、rs9480313、rs6908330、rs2350842、rs2350835、rs13236851、rs7777579、rs7781607、rs7788738、rs10282694、rs1123227、rs879965、rs17152102、rs6968827、rs6943901、rs1015573、rs12698976、rs10271370、rs2079162、rs10215082、rs1476446、rs6466117、rs2267889、rs6959243、rs4725651、rs3779853、rs4876223、rs12548247、rs4457353、rs2440396、rs17077154、rs1079326、rs11988880、rs11786580、rs17250119、rs2853236、rs13248227、rs729005、rs16929、rs273393、rs2221770、rs7009780、rs10815523、rs1331260、rs10815020、rs10974623、rs10974624、rs4742008、rs301430、rs4742011、rs10120677、rs1890074、rs4448374、rs10965215、rs564398、rs10757270、rs10757272、rs4977574、rs2891168、rs1333042、rs815845、rs2798062、rs1777052、rs6479594、rs290221、rs1755938、rs16936272、rs563、rs1130635、rs3812591、rs7919331、rs11254023、rs11254057、rs6602142、rs12218350、rs11008621、rs6481756、rs2808068、rs10762738、rs7896131、rs7090670、rs7901883、rs2419836、rs1907220、rs17663978、rs10901799、rs11016590、rs7113375、rs12291056、rs4755436、rs10838418、rs17788930、rs656104、rs17286033、rs2640785、rs1056136、rs582146、rs575848、rs11603786、rs2343877、rs1049376、rs2570、rs7973582、rs11049085、rs12370473、rs4931245、rs929952、rs7980789、rs1729803、rs11178499、rs2137506、rs12580741、rs1526844、rs10861463、rs4293219、rs1009438、rs10773249、rs10847208、rs17083838、rs1322569、rs6563805、rs9532536、rs10492606、rs4942888、rs1413065、rs9564019、rs2134897、rs1965830、rs9514234、rs9587525、rs2179931、rs179562、rs179558、rs397080、rs761509、rs1450709、rs10133218、rs941714、rs941713、rs4417522、rs683922、rs1568679、rs8023369、rs4775035、rs11632583、rs1482929、rs922878、rs1482933、rs2672086、rs12441915、rs4338756、rs11633107、rs2015808、rs12903810、rs2667675、rs1029442、rs12599165、rs6497609、rs11649409、rs1424151、rs1056321、rs12451094、rs8070213、rs181535、rs9890602、rs7224525、rs12452064、rs199494、rs11079884、rs1003313、rs4476235、rs8075920、rs16976552、rs544748、rs891805、rs2269222、rs7234150、rs11659375、rs8085116、rs996919、rs11150、rs216283、rs1368456、rs2734456、rs2734454、rs2965106、rs6135852、rs8126205、rs6119304、rs6102788、rs2235862、rs4811206、rs3810550、rs6142738、rs2427293、rs735501、rs3003137、rs1543766、rs2839504、rs130414、rs4648462、rs1459764、rs10917476、rs666371、rs16828286、rs835340、rs4915844、rs9970705、rs11209252、rs1361493、rs7516969、rs1698598、rs1890303、rs6700410、rs41467544、rs7540764、rs11811532、rs17016333、rs6756667、rs11903594、rs2587693、rs7583123、rs17685106、rs896790、rs1441456、rs13007054、rs12989659、rs11901692、rs2727946、rs17234276、rs1558893、rs6766740、rs826431、rs4130090、rs844438、rs17069212、rs1502757、rs9871957、rs16849435、rs9815106、rs879394、rs6449420、rs16869447、rs2660341、rs6840349、rs17026134、rs2567372、rs41330746、rs3775851、rs1113890、rs8180155、rs3094356、rs386313、rs2973092、rs10514994、rs7729566、rs30997、rs6897211、rs409855、rs7705024、rs364211、rs13360374、rs7726729、rs17056003、rs7754459、rs4711718、rs7760603、rs1150093、rs4710773、rs4722237、rs788761、rs13311390、rs12718634、rs820935、rs10487463、rs3112341、rs4875712、rs10106492、rs3020282、rs11250152、rs4872203、rs17652451、rs3739231、rs10974620、rs3780411、rs9632884、rs2798058、rs1777035、rs2798042、rs290226、rs573212、rs12339593、rs16929114、rs3124596、rs7099056、rs7922576、rs2688812、rs2688815、rs11199835、rs17104935、rs3781452、rs10159505、rs2057498、rs7107896、rs10769120、rs4752797、rs7120194、rs10502071、rs604411、rs7960985、rs4764380、rs863786、rs11177371、rs1512979、rs12230997、rs7990612、rs12018544、rs9315894、rs1588681、rs421841、rs9529485、rs8000868、rs179541、rs763388、rs10142332、rs4924127、rs17239763、rs14912、rs967180、rs2283462、rs1032955、rs12917583、rs3751664、rs757166、rs757164、rs16956781、rs10852333、rs12600303、rs4784219、rs12597838、rs9889056、rs6502937、rs4969326、rs1786809、rs11663052、rs16971109、rs17787324、rs4599012、rs12458940、rs7250638、rs1407033、rs2235863、rs3746417、rs7278259、rs5996894、rs138679、rs1894469及びrs5764733である、
コンピュータプログラム
A computer program for a computer including a processor and a memory under the control of the processor to be executed .
SNPs (pools) selected from a core SNP group consisting of 12 SNPs and a pool SNP group consisting of 471 SNPs based on single nucleotide polymorphism (SNP) allele information in biological samples collected from subjects. Allele measurement process, which measures alleles for at least 30 SNPs including the selected SNP group).
Based on the measurement results of the allele, the information acquisition step of acquiring information on the risk of developing open-angle glaucoma in the broad sense of the subject, and based on the information obtained in the above, the broad sense of the subject A computer program that executes an information providing process that provides information for determining the risk of developing open-angle glaucoma.
In the broad sense, if the information providing step exceeds the predetermined cutoff value based on the SNP used in the allergen measurement step for the result regarding the subject obtained by the information acquisition step, the subject is broadly defined. It is a step that includes a step of providing information that the risk of developing primary open-angle glaucoma is high, and if it is lower, the subject has a low risk of developing broad-sense primary open-angle glaucoma.
The 12 SNPs in the core SNP group are rs7623847, rs11159830, rs4852079, rs10853035, rs7531982, rs4430527, rs1399216, rs12437660, rs9442, rs1149332, rs11136906 and rs11956913.
471 SNPs in the pool SNP group are rs6429703, rs659046, rs11583644, rs835337, rs960501, rs3768184, rs6669702, rs2786755, rs1469876, rs2039153, rs12048011, rs9661521, rs7516960, rs515194, rs1127313, rs2661275, rs7524938 , Rs4233520, rs16850250, rs2841385, rs16855905, rs17313689, rs11680265, rs12615616, rs9332420, rs4344916, rs10490195, rs12713615, rs17030916, rs2587702, rs1529292, rs6747239, rs12477346, rs13408246, rs1627497, rs10804383 , Rs775779, rs775722, rs162871, rs1993802, rs1462793, rs4450855, rs9866028, rs7644682, rs1499787, rs9874964, rs7378503, rs7656362, rs956469, rs11945500, rs4295245, rs6814828, rs6837917, rs6847630, rs7664412, rs13 , Rs2036455, rs10011515, rs6835198, rs1392874, rs2567388, rs12641140, rs10049967, rs13118455, rs2675531, rs261133, rs261162, rs1501958, rs4701849, rs835136, rs865036, rs9688120, rs4354048, rs12659589, rs6883614 , Rs17097145, rs7744 710, rs197962, rs197963, rs2815019, rs4311505, rs11968166, rs1518516, rs4895745, rs7753862, rs1873329, rs9493858, rs9376182, rs646695, rs4394230, rs4535568, rs311330, rs311329, rs4870148, rs9480313, rs6908330 rs7788738, rs10282694, rs1123227, rs879965, rs17152102, rs6968827, rs6943901, rs1015573, rs12698976, rs10271370, rs2079162, rs10215082, rs1476446, rs6466117, rs2267889, rs6959243, rs4725651, rs3779853, rs6959243, rs4725651, rs3779853, rs4876223 rs11786580, rs17250119, rs2853236, rs13248227, rs729005, rs16929, rs273393, rs2221770, rs7009780, rs10815523, rs1331260, rs10815020, rs10974623, rs10974624, rs4742008, rs301430, rs4742011, rs10120677, rs1890074, rs4448374 rs2891168, rs1333042, rs815845, rs2798062, rs1777052, rs6479594, rs290221, rs1755938, rs16936272, rs563, rs1130635, rs3812591, rs7919331, rs11254023, rs11254057, rs6602142, rs12218350, rs11008621, rs6481756 36, rs1907220, rs17663978, rs10901799, rs11016590, rs7113375, rs12291056, rs4755436, rs10838418, rs17788930, rs656104, rs17286033, rs2640785, rs1056136, rs582146, rs575848, rs11603786, rs2343877, rs1049376, rs2570 rs7980789, rs1729803, rs11178499, rs2137506, rs12580741, rs1526844, rs10861463, rs4293219, rs1009438, rs10773249, rs10847208, rs17083838, rs1322569, rs6563805, rs9532536, rs10492606, rs4942888, rs1413065, rs9564019rs rs179558, rs397080, rs761509, rs1450709, rs10133218, rs941714, rs941713, rs4417522, rs683922, rs1568679, rs8023369, rs4775035, rs11632583, rs1482929, rs922878, rs1482933, rs2672086, rs12441915, rs4338756, rs11633107 rs6497609, rs11649409, rs1424151, rs1056321, rs12451094, rs8070213, rs181535, rs9890602, rs7224525, rs12452064, rs199494, rs11079884, rs1003313, rs4476235, rs8075920, rs16976552, rs544748, rs891805, rs2269222, rs7234 r s1368456, rs2734456, rs2734454, rs2965106, rs6135852, rs8126205, rs6119304, rs6102788, rs2235862, rs4811206, rs3810550, rs6142738, rs2427293, rs735501, rs3003137, rs1543766, rs2839504, rs130414, rs4648462 rs9970705, rs11209252, rs1361493, rs7516969, rs1698598, rs1890303, rs6700410, rs41467544, rs7540764, rs11811532, rs17016333, rs6756667, rs11903594, rs2587693, rs7583123, rs17685109, rs2587693, rs7583123, rs17685106, rs896790, rs1441456, rs13007054 rs826431, rs4130090, rs844438, rs17069212, rs1502757, rs9871957, rs16849435, rs9815106, rs879394, rs6449420, rs16869447, rs2660341, rs6840349, rs17026134, rs2567372, rs41330746, rs3775851, rs1113890, rs8180155 rs6897211, rs409855, rs7705024, rs364211, rs13360374, rs7726729, rs17056003, rs7754459, rs4711718, rs7760603, rs1150093, rs4710773, rs4722237, rs788761, rs13311390, rs12718634, rs820935, rs10487463, rs3112341, rs4875712 s17652451, rs3739231, rs10974620, rs3780411, rs9632884, rs2798058, rs1777035, rs2798042, rs290226, rs573212, rs12339593, rs16929114, rs3124596, rs7099056, rs7922576, rs2688812, rs2688815, rs11199835, rs17104935 rs7120194, rs10502071, rs604411, rs7960985, rs4764380, rs863786, rs11177371, rs1512979, rs12230997, rs7990612, rs12018544, rs9315894, rs1588681, rs421841, rs9529485, rs8000868, rs179541, rs763388, rs10142332 rs12917583, rs3751664, rs757166, rs757164, rs16956781, rs10852333, rs12600303, rs4784219, rs12597838, rs9889056, rs6502937, rs4969326, rs1786809, rs11663052, rs16971109, rs17787324, rs4599012, rs12458940, rs7250638, rs12458940, rs7250638 rs1894469 and rs5764733,
Computer program .
JP2018525042A 2016-06-30 2017-06-15 How to determine the risk of developing open-angle glaucoma in a broad sense Active JP7072803B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016129954 2016-06-30
JP2016129954 2016-06-30
PCT/JP2017/022157 WO2018003523A1 (en) 2016-06-30 2017-06-15 Method for determining risk of onset of primary open-angle glaucoma (broadly defined)

Publications (2)

Publication Number Publication Date
JPWO2018003523A1 JPWO2018003523A1 (en) 2019-04-18
JP7072803B2 true JP7072803B2 (en) 2022-05-23

Family

ID=60785207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018525042A Active JP7072803B2 (en) 2016-06-30 2017-06-15 How to determine the risk of developing open-angle glaucoma in a broad sense

Country Status (2)

Country Link
JP (1) JP7072803B2 (en)
WO (1) WO2018003523A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130008A1 (en) 2007-04-17 2008-10-30 Santen Pharmaceutical Co., Ltd. Method for determination of onset risk of glaucoma
WO2008152656A2 (en) 2007-06-13 2008-12-18 Decode Genetics Ehf Genetic variants on chr 15q24 as markers for use in diagnosis, prognosis and treatment of exfoliation syndrome and glaucoma
WO2010044459A1 (en) 2008-10-16 2010-04-22 独立行政法人国立病院機構 Method for predicting risk of glaucoma
WO2012091093A1 (en) 2010-12-28 2012-07-05 参天製薬株式会社 Comprehensive glaucoma determination method utilizing glaucoma diagnosis chip and deformed proteomics cluster analysis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1468113A4 (en) * 2001-12-24 2006-09-06 Univ Connecticut Optineurin and glaucoma
WO2005090602A2 (en) * 2004-03-18 2005-09-29 Sucampo Ag Method for diagnosing or predicting susceptibility to optic nueropathy
JP5169306B2 (en) * 2008-02-26 2013-03-27 至 木村 Method for determining risk of glaucoma development using SNP of prostacyclin receptor gene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130008A1 (en) 2007-04-17 2008-10-30 Santen Pharmaceutical Co., Ltd. Method for determination of onset risk of glaucoma
WO2008130009A1 (en) 2007-04-17 2008-10-30 Santen Pharmaceutical Co., Ltd. Method for determination of progression risk of glaucoma
WO2008152656A2 (en) 2007-06-13 2008-12-18 Decode Genetics Ehf Genetic variants on chr 15q24 as markers for use in diagnosis, prognosis and treatment of exfoliation syndrome and glaucoma
WO2010044459A1 (en) 2008-10-16 2010-04-22 独立行政法人国立病院機構 Method for predicting risk of glaucoma
WO2012091093A1 (en) 2010-12-28 2012-07-05 参天製薬株式会社 Comprehensive glaucoma determination method utilizing glaucoma diagnosis chip and deformed proteomics cluster analysis

Also Published As

Publication number Publication date
WO2018003523A1 (en) 2018-01-04
JPWO2018003523A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP7368483B2 (en) An integrated machine learning framework for estimating homologous recombination defects
Chong et al. GWAS and ExWAS of blood mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia
Booij et al. A gene expression pattern in blood for the early detection of Alzheimer's disease
KR101542529B1 (en) Examination methods of the bio-marker of allele
CN108624650B (en) Method for judging whether solid tumor is suitable for immunotherapy and detection kit
KR101460520B1 (en) Detecting method for disease markers of NGS data
EA017966B1 (en) Diagnosing fetal chromosomal aneuploidy using genomic sequencing
US20190228836A1 (en) Systems and methods for predicting genetic diseases
KR102303638B1 (en) Method for evaluation of alzheimer disease risk
KR101693510B1 (en) Genotype analysis system and methods using genetic variants data of individual whole genome
TW201248425A (en) Comprehensive glaucoma determination method utilizing glaucoma diagnosis chip and deformed proteomics cluster analysis
JP5235274B2 (en) Method and apparatus for determining disease risk
Li et al. A review of brain imaging biomarker genomics in Alzheimer’s disease: implementation and perspectives
KR20150024232A (en) Examination methods of the origin marker of resistance from drug resistance gene about disease
JP2015089364A (en) Cancer diagnostic method by multiplex somatic mutation, development method of cancer pharmaceutical, and cancer diagnostic device
RU2612630C2 (en) Method for determination of individual genetic risk for ischemic stroke
JP7064215B2 (en) How to determine the risk of developing desquamation syndrome or desquamation glaucoma
JP7072803B2 (en) How to determine the risk of developing open-angle glaucoma in a broad sense
US20170147745A1 (en) Method, computer system and software for selecting tag snp, and dna microarray equipped with nucleic acid probe corresponding to tag snp selected by said selection method
JP2020517304A (en) Use of off-target sequences for DNA analysis
JP2023112692A (en) Method for acquiring information on risk of progress of primary open-angle glaucoma
KR20190088037A (en) SNP marker set for predicting of prognosis of rheumatoid arthritis
JP2023038111A (en) Method for obtaining information on risk of exacerbation of broad-defined primary open-angle glaucoma
CN115579056B (en) Gene group for evaluating molecular typing of schizophrenia, and diagnostic product and application thereof
Quinones-Valdez et al. Long-read RNA-seq demarcates cis-and trans-directed alternative RNA splicing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R150 Certificate of patent or registration of utility model

Ref document number: 7072803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150