JP7071620B2 - Optical measuring device and sensitivity calibration method for optical measuring device - Google Patents

Optical measuring device and sensitivity calibration method for optical measuring device Download PDF

Info

Publication number
JP7071620B2
JP7071620B2 JP2017250293A JP2017250293A JP7071620B2 JP 7071620 B2 JP7071620 B2 JP 7071620B2 JP 2017250293 A JP2017250293 A JP 2017250293A JP 2017250293 A JP2017250293 A JP 2017250293A JP 7071620 B2 JP7071620 B2 JP 7071620B2
Authority
JP
Japan
Prior art keywords
light
optical
measuring device
irradiation
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017250293A
Other languages
Japanese (ja)
Other versions
JP2019117079A (en
Inventor
智 大日方
美由貴 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2017250293A priority Critical patent/JP7071620B2/en
Publication of JP2019117079A publication Critical patent/JP2019117079A/en
Application granted granted Critical
Publication of JP7071620B2 publication Critical patent/JP7071620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、試料液中の測定対象成分等についての情報を得るために、照射光を受けた試料液が発する蛍光や散乱光を受光して検出する光学測定装置に関する。 The present invention relates to an optical measuring device that receives and detects fluorescence or scattered light emitted by a sample liquid that has been irradiated with light in order to obtain information about a component to be measured in the sample liquid.

試料液に光を照射し、試料液中の測定対象成分、測定対象成分との反応生成物、或いは測定対象成分と反応する試薬等から発せられる蛍光(強度、消光時間を含む。)や散乱光等の応答光を測定することにより、測定対象成分の存否や濃度を測定する光学測定装置が広く利用されている。
蛍光を測定する場合、実験室では、試料液を入れたセルの一側面に予め分光した励起光を入射させ、入射方向に対して90゜の方向に発せられる光を分光して蛍光を検出する側面測光方式が一般的である。
Fluorescence (including intensity and extinguishing time) and scattered light emitted from the measurement target component, the reaction product with the measurement target component, the reagent that reacts with the measurement target component, etc. by irradiating the sample solution with light. An optical measuring device for measuring the presence / absence and concentration of a component to be measured by measuring the response light such as the above is widely used.
When measuring fluorescence, in the laboratory, pre-spectroscopic excitation light is incident on one side of a cell containing a sample solution, and light emitted in a direction of 90 ° with respect to the incident direction is separated to detect fluorescence. The side metering method is common.

また、検出感度を上げるため、吸着剤が充填されたカートリッジに試料液を流通させ、測定対象成分を充分に吸着させた後にカートリッジに励起光を照射し、蛍光を測定する装置も提案されている(特許文献1)。
特許文献1では、蛍光の検出経路に対して斜め方向から励起光を照射する方式が採用されている。
Further, in order to increase the detection sensitivity, a device has been proposed in which a sample solution is circulated in a cartridge filled with an adsorbent, the component to be measured is sufficiently adsorbed, and then the cartridge is irradiated with excitation light to measure fluorescence. (Patent Document 1).
In Patent Document 1, a method of irradiating excitation light from an oblique direction with respect to a fluorescence detection path is adopted.

一方、環境測定等の現場において、試料液の情報を継続的に得ようとする場合、フローセルやカートリッジのように試料液と接する部材を使用することは、汚れ等メンテナンス上の問題がある。そこで、オーバーフローさせた試料液の液面(オーバーフロー面)に対して、蛍光の検出経路と同軸となる鉛直方向から励起光を照射する落射方式の蛍光分析装置が提案されている(特許文献2)。
また、濁度計では、オーバーフロー面に対して、斜め上方から光を照射し、乱反射した散乱光を検出することが行われている(特許文献3)。
On the other hand, in the field of environmental measurement or the like, when trying to continuously obtain information on the sample liquid, using a member in contact with the sample liquid such as a flow cell or a cartridge has a maintenance problem such as dirt. Therefore, an epi-illumination type fluorescence analyzer that irradiates the liquid surface (overflow surface) of the overflowed sample liquid with excitation light from a vertical direction coaxial with the fluorescence detection path has been proposed (Patent Document 2). ..
Further, in the turbidity meter, the overflow surface is irradiated with light from diagonally above to detect diffusely reflected scattered light (Patent Document 3).

ところが、オーバーフロー面は、表面張力によって、オーバーフロー槽の上面よりも盛り上がる。また、その盛り上がり方は流量に依存する。そのため、特許文献2、3のように、オーバーフロー面に光を照射して、蛍光や散乱光を受光して検出する光学測定装置では、試料液の流量が変動すると、オーバーフロー面の位置が変動して測定誤差を招くことになる。したがって、このような測定装置では、試料液の流量を一定にしておくことが求められる。 However, the overflow surface rises above the upper surface of the overflow tank due to surface tension. Moreover, the way of swelling depends on the flow rate. Therefore, in an optical measuring device such as Patent Documents 2 and 3, which irradiates the overflow surface with light and receives and detects fluorescence and scattered light, the position of the overflow surface changes when the flow rate of the sample liquid fluctuates. This will lead to measurement errors. Therefore, in such a measuring device, it is required to keep the flow rate of the sample liquid constant.

しかしながら、このような測定装置の感度校正を行う際の校正液は、一般に高価であるため、測定対象である試料液と同じ流量で流すことは、コスト上好ましくない。
そこで、特許文献2では、固体標準蛍光体から発せられる蛍光を利用して感度校正を行うことが提案されている。また、特許文献3では、オーバーフロー槽の上縁に所定厚さのリングを載せることにより、オーバーフロー槽に溜めるだけの溜め水状態でも、測定対象である試料液のオーバーフロー面との液面の位置が異ならないようにすることが提案されている。
However, since the calibration liquid for performing sensitivity calibration of such a measuring device is generally expensive, it is not preferable in terms of cost to flow it at the same flow rate as the sample liquid to be measured.
Therefore, Patent Document 2 proposes that sensitivity calibration is performed using fluorescence emitted from a solid-state standard phosphor. Further, in Patent Document 3, by placing a ring having a predetermined thickness on the upper edge of the overflow tank, the position of the liquid level with the overflow surface of the sample liquid to be measured is set even in the state of the pooled water that can be stored in the overflow tank. It has been proposed not to differ.

特開2013-19819号公報Japanese Unexamined Patent Publication No. 2013-1919 特開2004-157018号公報Japanese Unexamined Patent Publication No. 2004-157018 特開2005-351831号公報Japanese Unexamined Patent Publication No. 2005-351831

しかし、特許文献2、3の場合、校正時に、人手によりオーバーフロー槽上に固体標準蛍光体やリングを配置しなければならず、作業が繁雑であった。また、測定対象である試料液測定中の予期しない流量変動に基づく誤差を避けることもできなかった。
本発明は、上記事情に鑑みてなされたものであって、試料液の液面の水位変動による受光量の変動が少なく、固体標準蛍光体やリング等の部材を使用することなく、精度良く蛍光や散乱光を測定することが可能な光学測定装置を提供することを課題とする。
However, in the case of Patent Documents 2 and 3, the solid standard phosphor and the ring had to be manually placed on the overflow tank at the time of calibration, which was complicated. In addition, it was not possible to avoid an error due to unexpected flow rate fluctuations during the measurement of the sample liquid to be measured.
The present invention has been made in view of the above circumstances, and the fluctuation in the amount of received light due to the fluctuation in the water level of the sample liquid is small, and fluorescence is performed with high accuracy without using a member such as a solid standard phosphor or a ring. It is an object of the present invention to provide an optical measuring device capable of measuring or scattered light.

上記の課題を達成するために、本発明は、以下の構成を採用した。
[1] 光源と、
前記光源から発せられる光を照射光として試料液の液面に導く照射光学系と、
前記照射光によって前記液面近傍の試料液から発せられる応答光を検出する検出器と、
前記応答光を受光して前記検出器に導く検出光学系とを備え、
前記照射光学系による照射光の光路の光軸と前記検出光学系による応答光の受光範囲の光軸とは、同一直線上に重ならず、かつ平行ではなく、
前記照射光学系による照射光の光路と前記検出光学系による応答光の受光範囲とは交叉しており、
前記照射光の光路と前記応答光の受光範囲とが重なる部分の体積の90%以上が、前記試料液の液面が最も低くなる水位以下に存在することを特徴とする光学測定装置。
[2] 前記応答光が蛍光である[1]に記載の光学測定装置。
[3] 前記応答光が散乱光である[1]に記載の光学測定装置。
[4] さらに、上端が開口部とされ、試料液を前記開口部からオーバーフローさせることが可能なオーバーフロー筒を備え、
前記試料液の液面が、前記オーバーフロー筒の前記開口部近傍に位置する、[1]~[3]のいずれか一項に記載の光学測定装置。
In order to achieve the above problems, the present invention has adopted the following configurations.
[1] Light source and
An irradiation optical system that guides the light emitted from the light source to the liquid surface of the sample liquid as irradiation light.
A detector that detects the response light emitted from the sample liquid near the liquid surface by the irradiation light, and
It is equipped with a detection optical system that receives the response light and guides it to the detector.
The optical axis of the optical path of the irradiation light by the irradiation optical system and the optical axis of the light receiving range of the response light by the detection optical system do not overlap and are not parallel on the same straight line.
The optical path of the irradiation light by the irradiation optical system and the light receiving range of the response light by the detection optical system intersect.
An optical measuring device characterized in that 90% or more of the volume of the portion where the optical path of the irradiation light and the light receiving range of the response light overlap is located below the water level at which the liquid level of the sample liquid is the lowest.
[2] The optical measuring device according to [1], wherein the response light is fluorescent.
[3] The optical measuring device according to [1], wherein the response light is scattered light.
[4] Further, an overflow cylinder having an opening at the upper end and capable of overflowing the sample liquid from the opening is provided.
The optical measuring device according to any one of [1] to [3], wherein the liquid level of the sample liquid is located in the vicinity of the opening of the overflow cylinder.

本発明の光学測定装置によれば、試料液の液面の水位変動による受光量の変動が少なく、固体標準蛍光体やリング等の部材を使用することなく、精度良く、蛍光や散乱光を測定することが可能な光学測定装置を提供することが可能である。 According to the optical measuring device of the present invention, there is little fluctuation in the amount of received light due to fluctuations in the water level of the sample liquid, and fluorescence and scattered light can be measured accurately without using a member such as a solid standard phosphor or a ring. It is possible to provide an optical measuring device that can be used.

本発明の実施形態に係る多波長蛍光分析装置の概略構成図である。It is a schematic block diagram of the multi-wavelength fluorescence analyzer which concerns on embodiment of this invention. 本発明の実施形態に係る多波長蛍光分析装置の要部断面図である。It is sectional drawing of the main part of the multi-wavelength fluorescence analyzer which concerns on embodiment of this invention. 本発明を実施しない場合の液面の水位変動の影響を説明する図である。It is a figure explaining the influence of the water level fluctuation of the liquid level when this invention is not carried out. 本発明を実施した場合の液面の水位変動の影響を説明する図である。It is a figure explaining the influence of the water level fluctuation of the liquid level at the time of carrying out this invention. 実験例1の結果を示す図である。It is a figure which shows the result of the experimental example 1. FIG.

本発明の光学測定装置に係る1実施形態として、多波長蛍光分析装置について説明する。図1に示すように、本実施形態の多波長蛍光分析装置1は、遮光性の仕切り板2と仕切り板2の上方に設置される遮光性の検出部ケース3と、仕切り板2の下方に設置される遮光性の試料ケース4と、試料ケース4の下方から挿入された遮光性のオーバーフロー筒6とを備えている。 A multi-wavelength fluorescence analyzer will be described as an embodiment of the optical measuring device of the present invention. As shown in FIG. 1, the multi-wavelength fluorescence analyzer 1 of the present embodiment has a light-shielding partition plate 2 and a light-shielding detection unit case 3 installed above the partition plate 2 and below the partition plate 2. It includes a light-shielding sample case 4 to be installed, and a light-shielding overflow cylinder 6 inserted from below the sample case 4.

試料ケース4の下端には、試料液出口4aが設けられている。オーバーフロー筒6は下端が試料液入口6aとされ、上端が略水平の上側開口部6bとされている。
試料液Sは、オーバーフロー筒6の試料液入口6aからオーバーフロー筒6の内側に流入し、オーバーフロー筒6の上端側の略水平の上側開口部6bからオーバーフローし、オーバーフロー面である液面7を形成するようになっている。そして、オーバーフローした試料液Sは、試料液出口4aに導かれて排出されるようになっている。
A sample liquid outlet 4a is provided at the lower end of the sample case 4. The lower end of the overflow cylinder 6 is a sample liquid inlet 6a, and the upper end is a substantially horizontal upper opening 6b.
The sample liquid S flows into the inside of the overflow cylinder 6 from the sample liquid inlet 6a of the overflow cylinder 6 and overflows from the substantially horizontal upper opening 6b on the upper end side of the overflow cylinder 6 to form the liquid level 7 which is the overflow surface. It is designed to do. Then, the overflowed sample liquid S is guided to the sample liquid outlet 4a and discharged.

多波長蛍光分析装置1は、連続測定中、試料液Sの流入流出が、原則として常に継続し、常時新しい試料液Sによる液面7が形成されるようになっている。
一方、感度校正時には、試料液入口6aを閉じた状態でオーバーフロー筒6内に、上側開口部6bから溢れ出るまで校正液を入れ、貯め水状態の液面7を形成するようになっている。
In the multi-wavelength fluorescence analyzer 1, in principle, the inflow and outflow of the sample liquid S always continues during continuous measurement, and the liquid level 7 is always formed by the new sample liquid S.
On the other hand, at the time of sensitivity calibration, the calibration liquid is poured into the overflow cylinder 6 with the sample liquid inlet 6a closed until it overflows from the upper opening 6b to form the liquid level 7 in the stored water state.

仕切り板2と検出部ケース3とで囲まれた空間には、光源ユニット10、光路ユニット20、光源側分光ユニット30、励起光ユニット40、受光ユニット60、検出側分光ユニット70、検出器ユニット80が配置されている。
また、多波長蛍光分析装置1は演算制御装置90を備え、演算制御装置90により、装置全体の動作が制御されると共に、検出器ユニット80で検出された信号等に基づき、必要な演算等を行うようになっている。
In the space surrounded by the partition plate 2 and the detection unit case 3, the light source unit 10, the optical path unit 20, the light source side spectroscopic unit 30, the excitation light unit 40, the light receiving unit 60, the detection side spectroscopic unit 70, and the detector unit 80 Is placed.
Further, the multi-wavelength fluorescence analyzer 1 includes a calculation control device 90, and the operation of the entire device is controlled by the calculation control device 90, and necessary calculations and the like are performed based on the signal and the like detected by the detector unit 80. It is supposed to do.

本実施形態において、光源ユニット10が本発明における光源であり、検出器ユニット80における蛍光検出器82が本発明における検出器である。また、光路ユニット20、光源側分光ユニット30、および励起光ユニット40が、本発明における照射光学系を構成している。また、受光ユニット60、検出側分光ユニット70および検出器ユニット80における蛍光検出器82以外が、本発明における検出光学系を構成している。 In the present embodiment, the light source unit 10 is the light source in the present invention, and the fluorescence detector 82 in the detector unit 80 is the detector in the present invention. Further, the optical path unit 20, the light source side spectroscopic unit 30, and the excitation light unit 40 constitute the irradiation optical system in the present invention. Further, other than the light receiving unit 60, the detection side spectroscopic unit 70, and the fluorescence detector 82 in the detector unit 80, the detection optical system in the present invention is configured.

光源ユニット10としては、Xeフラッシュランプ(キセノン放電管)、Dランプ(重水素放電管)等を用いることができる。
光路ユニット20は、取付ベース21と、この取付ベース21に固定されたマスク22、レンズ23、ミラー24、レンズ25、およびマスク26で構成されている。光路ユニット20は、光源ユニット10からの光束をマスク22、26やレンズ23、25で整えつつ、ミラー24で方向を変えて、光源側分光ユニット30に導くように構成されている。
As the light source unit 10, a Xe flash lamp (xenon discharge tube), a D 2 lamp (deuterium discharge tube), or the like can be used.
The optical path unit 20 includes a mounting base 21, a mask 22, a lens 23, a mirror 24, a lens 25, and a mask 26 fixed to the mounting base 21. The optical path unit 20 is configured to adjust the light flux from the light source unit 10 with the masks 22 and 26 and the lenses 23 and 25, change the direction with the mirror 24, and guide the light flux to the light source side spectroscopic unit 30.

光源側分光ユニット30は、取付ベース31と、この取付ベース31に固定されたスリット32、回折格子33、およびスリット34で構成されている。すなわち、照射光学系は、分光手段として回折格子33を有している。
回折格子33は、図示を省略するモーターにより回転可能とされており、光路ユニット20からスリット32を通過して入射した光の内、特定の波長の光がスリット34を通過して励起光ユニット40に入射するように回転位置を選択できるようになっている。
The light source side spectroscopic unit 30 is composed of a mounting base 31, a slit 32 fixed to the mounting base 31, a diffraction grating 33, and a slit 34. That is, the irradiation optical system has a diffraction grating 33 as a spectroscopic means.
The diffraction grating 33 is rotatable by a motor (not shown), and among the light incident from the optical path unit 20 through the slit 32, light having a specific wavelength passes through the slit 34 and the excitation light unit 40. The rotation position can be selected so that it is incident on.

励起光ユニット40は、取付ベース41と、この取付ベース41に固定されたマスク42、レンズ43、ミラー45、レンズ46、マスク47、リファレンス光検出器51、マスク52、およびレンズ53で構成されている。光源側分光ユニット30から入射した光は、マスク42、52やレンズ43、46で光束を整えつつ、ミラー45を通過して、試料液Sの液面7に対して照射光として励起光Eが照射されるようになっている。
励起光Eは、鉛直方向に対する角度θが45±15゜の方向から、液面7に入射するようになっている。すなわち、励起光Eの光軸は、鉛直方向に対して、45±15゜とされている。
The excitation light unit 40 includes a mounting base 41, a mask 42 fixed to the mounting base 41, a lens 43, a mirror 45, a lens 46, a mask 47, a reference photodetector 51, a mask 52, and a lens 53. There is. The light incident from the light source side spectroscopic unit 30 passes through the mirror 45 while adjusting the luminous flux with the masks 42, 52 and the lenses 43, 46, and the excitation light E is emitted as irradiation light to the liquid surface 7 of the sample liquid S. It is designed to be irradiated.
The excitation light E is incident on the liquid surface 7 from a direction in which the angle θ with respect to the vertical direction is 45 ± 15 °. That is, the optical axis of the excitation light E is 45 ± 15 ° with respect to the vertical direction.

また、光源側分光ユニット30から入射した光の一部は、ミラー45で反射されて、マスク52、およびレンズ53を経由してリファレンス光Rとしてリファレンス光検出器51に至り、リファレンス光Rが検出される。リファレンス光Rの検出結果は、演算制御装置90に送られ、励起光Eの光量の変動を補償できるようになっている。 Further, a part of the light incident from the light source side spectroscopic unit 30 is reflected by the mirror 45 and reaches the reference photodetector 51 as the reference light R via the mask 52 and the lens 53, and the reference light R is detected. Will be done. The detection result of the reference light R is sent to the arithmetic control device 90 so that the fluctuation of the light amount of the excitation light E can be compensated.

受光ユニット60は、取付ベース61と、この取付ベース61に固定されたレンズ62、およびレンズ63で構成されている。受光ユニット60は液面7近傍から鉛直方向上方に発せられる蛍光F(応答光)が入射可能となるように配置されている。すなわち、蛍光Fの受光範囲の光軸は、鉛直方向に沿っている。また、光軸Exと光軸Fxの交叉角度は、45±15゜とされている。
そして、受光した蛍光Fは、レンズ62、63により光束を整えられ、検出側分光ユニット70に導かれるようになっている。
The light receiving unit 60 includes a mounting base 61, a lens 62 fixed to the mounting base 61, and a lens 63. The light receiving unit 60 is arranged so that fluorescent F (response light) emitted upward in the vertical direction from the vicinity of the liquid surface 7 can be incident. That is, the optical axis of the light receiving range of the fluorescence F is along the vertical direction. The crossing angle between the optical axis Ex and the optical axis Fx is 45 ± 15 °.
Then, the received fluorescence F is adjusted in luminous flux by the lenses 62 and 63 and guided to the detection side spectroscopic unit 70.

検出側分光ユニット70は、取付ベース71と、この取付ベース71に固定されたスリット72、回折格子73、およびスリット74で構成されている。すなわち、検出光学系は、分光手段として回折格子73を有している。
回折格子73は、図示を省略するモーターにより回転可能とされており、受光ユニット60からスリット72を通過して入射した光の内、特定の波長の光がスリット74を通過して検出器ユニット80に入射するように回転位置を選択できるようになっている。
The detection-side spectroscopic unit 70 includes a mounting base 71, a slit 72 fixed to the mounting base 71, a diffraction grating 73, and a slit 74. That is, the detection optical system has a diffraction grating 73 as a spectroscopic means.
The diffraction grating 73 is rotatable by a motor (not shown), and among the light incident from the light receiving unit 60 through the slit 72, the light of a specific wavelength passes through the slit 74 and the detector unit 80. The rotation position can be selected so that it is incident on the.

検出器ユニット80は、取付ベース81と、この取付ベース81に固定された蛍光検出器82、マスク83、レンズ84およびカットフィルター85で構成されている。蛍光検出器82としては、光電子増倍管、フォトダイオード、フォトトランジスタ、アバランシェフォトダイオードなどを適宜用いることができる。 The detector unit 80 includes a mounting base 81, a fluorescence detector 82 fixed to the mounting base 81, a mask 83, a lens 84, and a cut filter 85. As the fluorescence detector 82, a photomultiplier tube, a photodiode, a phototransistor, an avalanche photodiode, or the like can be appropriately used.

検出器ユニット80では、検出側分光ユニット70から導かれた光が、マスク83、レンズ84で光束を整えられ、さらに、カットフィルター85で不要な波長の光を除去された後、蛍光検出器82に導入されるようになっている。カットフィルター85は励起光Eと同じ波長の光を除去するもので、これにより、散乱光や迷光が除去される。蛍光検出器82による蛍光Fの検出結果は、演算制御装置90に送られ、測定対象成分の濃度等が求められるようになっている。 In the detector unit 80, the light guided from the detection side spectroscopic unit 70 is adjusted in luminous flux by the mask 83 and the lens 84, and further, the light having an unnecessary wavelength is removed by the cut filter 85, and then the fluorescence detector 82 is used. It has been introduced in. The cut filter 85 removes light having the same wavelength as the excitation light E, whereby scattered light and stray light are removed. The detection result of the fluorescence F by the fluorescence detector 82 is sent to the arithmetic control device 90, and the concentration of the component to be measured and the like can be obtained.

本実施形態における励起光Eの光路Erと、蛍光Fの受光範囲Frと、オーバーフロー筒6との位置関係を、図2に基づき詳述する。
図2は、光路Erの光軸Exと受光範囲Frの光軸Fxを含む平面における、要部断面図である。図2の平面において、光軸Exと光軸Fxとは、同一直線上には重ならず、斜めに交叉している。そして、光路Erと受光範囲Frとが重なる部分である有限の重複部Wが形成されている。
なお、光路Erは、照射光学系の終端にあるレンズ46から液面7に向けて照射される励起光E(照射光)の範囲である。また、受光範囲Frは、検出光学系の入口にあるレンズ62から光を取り込むことが可能な範囲、すなわち、蛍光F(応答光)を受光可能な範囲である。
The positional relationship between the optical path Er of the excitation light E, the light receiving range Fr of the fluorescence F, and the overflow cylinder 6 in the present embodiment will be described in detail with reference to FIG.
FIG. 2 is a cross-sectional view of a main part in a plane including the optical axis Ex of the optical path Er and the optical axis Fx of the light receiving range Fr. In the plane of FIG. 2, the optical axis Ex and the optical axis Fx do not overlap on the same straight line and intersect diagonally. Then, a finite overlapping portion W is formed, which is a portion where the optical path Er and the light receiving range Fr overlap.
The optical path Er is a range of excitation light E (irradiation light) emitted from the lens 46 at the end of the irradiation optical system toward the liquid surface 7. The light receiving range Fr is a range in which light can be taken in from the lens 62 at the entrance of the detection optical system, that is, a range in which fluorescent F (response light) can be received.

本実施形態の多波長蛍光分析装置1では、試料液Sの液面7の水位はオーバーフロー筒6の上端側の略水平の上側開口部6b近傍に位置する。試料液Sの液面7の水位は、オーバーフロー筒6への通水を停止し、貯め水状態とした際に最も低くなり、その際の液面7である最低液面7aは、上側開口部6bの位置に等しいか、ごく僅かに盛り上がった位置となる。
一方、オーバーフロー筒6への通水を行い、オーバーフローさせた場合の試料液Sの液面7の水位は、貯め水状態の場合よりも上側開口部6bの上側に盛り上がる。
したがって、試料液Sの液面7は、通常の使用状態では上側開口部6bを下回らない。
重複部Wは、その全体が、オーバーフロー筒6の上端側の略水平の上側開口部6bよりも低い位置とされているので、全体が、試料液Sの最低液面7a以下に存在するようになっている。
In the multi-wavelength fluorescence analyzer 1 of the present embodiment, the water level of the liquid level 7 of the sample liquid S is located in the vicinity of the substantially horizontal upper opening 6b on the upper end side of the overflow cylinder 6. The water level of the liquid level 7 of the sample liquid S becomes the lowest when the water flow to the overflow cylinder 6 is stopped and the water is stored, and the minimum liquid level 7a which is the liquid level 7 at that time is the upper opening. It is equal to or slightly raised at position 6b.
On the other hand, the water level of the liquid level 7 of the sample liquid S when water is passed through the overflow cylinder 6 and overflows rises to the upper side of the upper opening 6b than in the case of the stored water state.
Therefore, the liquid level 7 of the sample liquid S does not fall below the upper opening 6b under normal use conditions.
Since the entire overlapping portion W is located at a position lower than the substantially horizontal upper opening 6b on the upper end side of the overflow cylinder 6, the entire overlapping portion W is located below the minimum liquid level 7a of the sample liquid S. It has become.

本実施形態の多波長蛍光分析装置1によれば、試料液の液面の水位変動による受光量の変動が少なくなる理由を、図3、4を用いて説明する。なお、図3、4においては、重複部の範囲について理解しやすいよう、励起光Eの光路Erを平行光路としている。また,空気-試料液の界面で起きる光の屈折は図に反映していない。 According to the multi-wavelength fluorescence analyzer 1 of the present embodiment, the reason why the fluctuation of the light receiving amount due to the fluctuation of the water level of the sample liquid is reduced will be described with reference to FIGS. 3 and 4. In FIGS. 3 and 4, the optical path Er of the excitation light E is a parallel optical path so that the range of the overlapping portion can be easily understood. In addition, the refraction of light that occurs at the interface between air and sample liquid is not reflected in the figure.

図3(a)に示すように、光軸Exと光軸Fxとが、最低液面7aにおいて交叉するようにした場合、励起光Eによって蛍光が発生可能な範囲は、最低液面7a以下の光路Erである。また、から発生した蛍光Fを受光可能な範囲は、最低液面7a以下の受光範囲Frである。
したがって、蛍光検出器82によって検出可能な光量は、光路Erと受光範囲Frとの重複部Wの内、液面下の重複部Wの体積にほぼ比例する。なお、厳密には励起光Eと蛍光Fが試料液Sによる散乱・吸収によって減衰することも考慮すべきであるが、これを無視して、検出可能な光量は前記体積にほぼ比例すると考えることができる。
液面より上の重複部Wは、検出すべき蛍光Fが発生しないので、検出可能な光量に関与しない。
As shown in FIG. 3A, when the optical axis Ex and the optical axis Fx are crossed at the minimum liquid level 7a, the range in which fluorescence can be generated by the excitation light E is the minimum liquid level 7a or less. Optical path Er. Further, the range in which the fluorescent F generated from the light can be received is the light receiving range Fr having a minimum liquid level of 7a or less.
Therefore, the amount of light that can be detected by the fluorescence detector 82 is substantially proportional to the volume of the overlapping portion W1 below the liquid surface in the overlapping portion W of the optical path Er and the light receiving range Fr. Strictly speaking, it should be considered that the excitation light E and the fluorescence F are attenuated by scattering / absorption by the sample liquid S, but ignoring this, it is considered that the amount of detectable light is substantially proportional to the volume. Can be done.
The overlapping portion W 2 above the liquid surface does not generate the fluorescent F to be detected, and therefore does not contribute to the amount of light that can be detected.

この図3(a)のように設定された装置において、図3(b)に示すように試料液Sの液面が最低液面7aより高い最高液面7bとなった場合、重複部Wの内、液面下の部分は、重複部W及び重複部Wとなる。そのため、蛍光検出器82によって検出可能な光量は、重複部W及び重複部Wの合計体積にほぼ比例する。液面より上の重複部Wは、検出すべき蛍光Fが発生しないので、検出可能な光量に関与しない。
したがって、図3(b)の検出可能な光量は、図3(a)の検出可能な光量に対して、(1+[Wの体積]/[Wの体積])倍となり、同じ試料液Sであっても検出光量が増加してしまう。
In the apparatus set as shown in FIG. 3A, when the liquid level of the sample liquid S becomes the highest liquid level 7b higher than the lowest liquid level 7a as shown in FIG. 3B, the overlapping portion W The portion below the liquid level is the overlapping portion W1 and the overlapping portion W3 . Therefore , the amount of light that can be detected by the fluorescence detector 82 is substantially proportional to the total volume of the overlapping portion W1 and the overlapping portion W3. The overlapping portion W 4 above the liquid surface does not generate the fluorescent F to be detected, and therefore does not contribute to the amount of light that can be detected.
Therefore, the amount of light that can be detected in FIG. 3 (b) is (1 + [volume of W 3 ] / [volume of W 1 ]) times that of the amount of light that can be detected in FIG. 3 (a), and the same sample liquid is used. Even if it is S, the amount of detected light increases.

これに対して、図4(a)に示すように、光軸Exと光軸Fxとが、最低液面7aより充分下方で交叉し、重複部W全体が試料液Sの最低液面7a以下に存在するようにした場合、蛍光検出器82によって検出可能な光量は、光路Erと受光範囲Frとの重複部W全体の体積にほぼ比例する。
また、この図4(a)のように設定された装置において、図4(b)に示すように試料液Sの液面が最低液面7aより高い最高液面7bとなった場合も、蛍光検出器82によって検出可能な光量は、光路Erと受光範囲Frとの重複部W全体の体積にほぼ比例する。
On the other hand, as shown in FIG. 4A, the optical axis Ex and the optical axis Fx intersect sufficiently below the minimum liquid level 7a, and the entire overlapping portion W is equal to or less than the minimum liquid level 7a of the sample liquid S. The amount of light that can be detected by the fluorescence detector 82 is substantially proportional to the volume of the entire overlapping portion W of the optical path Er and the light receiving range Fr.
Further, in the apparatus set as shown in FIG. 4 (a), even when the liquid level of the sample liquid S becomes the highest liquid level 7b higher than the minimum liquid level 7a as shown in FIG. 4 (b), the fluorescence is also fluorescent. The amount of light that can be detected by the detector 82 is substantially proportional to the volume of the entire overlapping portion W of the optical path Er and the light receiving range Fr.

そのため、図4(b)の検出可能な光量は、図4(a)の検出可能な光量とほぼ同等となる。
なお、重複部Wの液面に対する位置が多少深くなるため、試料液Sによる光の減衰が生じるため、図4(b)の検出可能な光量は、図4(a)の検出可能な光量を若干下回る。しかし、その影響は、重複部Wの内、液面下の部分の体積が変化することによる影響と比べれば小さい。
Therefore, the amount of light that can be detected in FIG. 4B is substantially the same as the amount of light that can be detected in FIG. 4A.
Since the position of the overlapping portion W with respect to the liquid surface becomes slightly deeper, the light is attenuated by the sample liquid S. Therefore, the amount of light that can be detected in FIG. 4B is the amount of light that can be detected in FIG. 4A. Slightly below. However, the effect is smaller than the effect of changing the volume of the portion below the liquid surface in the overlapping portion W.

したがって、本実施形態の多波長蛍光分析装置1によれば、試料液Sをオーバーフローさせ、液面7の水位が最低液面7aよりも高くなった場合も、液面7の水位が最低液面7aとなった場合と、同等の受光量を得ることができる。
図4を用いた説明から理解されるように、励起光Eの光路Erは平行光路であっても集光光路であっても差し支えないが、高い励起効率を得やすいことから、本実施形態の多波長蛍光分析装置1のように、集光光路であることが好ましい。
Therefore, according to the multi-wavelength fluorescence analyzer 1 of the present embodiment, even when the sample liquid S overflows and the water level of the liquid level 7 becomes higher than the minimum liquid level 7a, the water level of the liquid level 7 is the lowest liquid level. It is possible to obtain the same amount of light received as in the case of 7a.
As can be understood from the explanation using FIG. 4, the optical path Er of the excitation light E may be a parallel optical path or a focused optical path, but since it is easy to obtain high excitation efficiency, the present embodiment It is preferably a focused optical path as in the multi-wavelength fluorescence analyzer 1.

また、受光範囲Frは、焦点を有する範囲であっても、焦点を有しない範囲であってもよいが、高い検出感度を得やすいことから、本実施形態の多波長蛍光分析装置1のように、焦点を有する範囲であることが好ましい。また、焦点位置は、測定対象試料液測定時の液面付近であることが好ましい。測定対象試料液をオーバーフローさせてオーバーフロー面を液面7とする際は、オーバーフロー面付近に焦点を合わせることが好ましい。 Further, the light receiving range Fr may be a range having a focal point or a range having no focal point, but since it is easy to obtain high detection sensitivity, the multi-wavelength fluorescence analyzer 1 of the present embodiment is used. , It is preferable that the range has a focal point. Further, the focal position is preferably near the liquid level at the time of measuring the sample liquid to be measured. When the sample liquid to be measured overflows and the overflow surface is set to the liquid level 7, it is preferable to focus on the vicinity of the overflow surface.

なお、上記実施形態の多波長蛍光分析装置1では、重複部Wの全体が、試料液Sの最低液面7a以下に存在するようにしたが、本発明においては、重複部Wの90%以上の体積が最低液面7a以下に存在すればよい。すなわち、重複部W全体に対する試料液Sの最低液面7a以下に存在する重複部の割合が、体積比率で90%以上であればよい。 In the multi-wavelength fluorescence analyzer 1 of the above embodiment, the entire overlapping portion W is located below the minimum liquid level 7a of the sample liquid S, but in the present invention, 90% or more of the overlapping portion W is present. It suffices if the volume of is present at the minimum liquid level 7a or less. That is, the ratio of the overlapping portion existing below the minimum liquid level 7a of the sample liquid S to the entire overlapping portion W may be 90% or more in terms of volume ratio.

重複部Wの90%が最低液面7a以下に存在し、残りの10%が最低液面7aの上に存在する場合、液面が上昇して、重複部W全体が最低液面7a以下となった際は、液面下の重複部分の体積は、(100/90)倍となる。一方、重複部の水深が液面上昇前より深くなることによる影響は検出可能な光量を減衰させる方向に働く、その結果、重複部Wの体積の90%が最低液面7a以下に存在する場合の液面変動による誤差は、10%程度に収まるものと考えられる。 When 90% of the overlapping portion W is present below the minimum liquid level 7a and the remaining 10% is above the minimum liquid level 7a, the liquid level rises and the entire overlapping portion W becomes the minimum liquid level 7a or less. When it becomes, the volume of the overlapping portion under the liquid surface becomes (100/90) times. On the other hand, the effect of making the water depth of the overlapping portion deeper than before the liquid level rise works in the direction of attenuating the detectable amount of light, and as a result, when 90% of the volume of the overlapping portion W is present at the minimum liquid level 7a or less. The error due to the fluctuation of the liquid level is considered to be within about 10%.

液面変動による誤差をできるだけ少なくする観点で、重複部Wが最低液面7a以下に存在する体積の割合は、95%以上であることが好ましく、98%以上であることがより好ましく、99%以上であることがさらに好ましく、100%であることが特に好ましい。
ただし、試料液Sの濁りが大きい、液面変動の幅が大きいなどの理由で、液面上昇時の試料液Sによる光の減衰作用が大きい場合は、100%未満であることが好ましい場合もある。
From the viewpoint of minimizing the error due to the liquid level fluctuation, the ratio of the volume in which the overlapping portion W exists below the minimum liquid level 7a is preferably 95% or more, more preferably 98% or more, and 99%. The above is more preferable, and 100% is particularly preferable.
However, if the light attenuation effect of the sample liquid S when the liquid level rises is large due to the large turbidity of the sample liquid S, the wide range of liquid level fluctuation, etc., it may be preferably less than 100%. be.

試料液Sによる光の減衰を避ける観点で、重複部Wの水深はできるだけ浅い方が好ましい。すなわち、重複部Wの全体が最低液面7a以下に存在する場合、重複部Wの最も高い位置と最低液面7aとの距離は、小さい方が好ましい。重複部Wの最も高い位置と最低液面7aとの許容される距離は、試料液Sの濁りの程度、液面変動の幅、励起光Eの強度、許容される測定誤差等により異なる。
重複部Wの全体が最低液面7a以下に存在する場合、重複部Wの最も高い位置と最低液面7aとの距離は、20mm以下が好ましく、10mm以下がより好ましく、5mm以下がさらに好ましく、0mmであることが特に好ましい。
From the viewpoint of avoiding light attenuation due to the sample liquid S, it is preferable that the water depth of the overlapping portion W is as shallow as possible. That is, when the entire overlapping portion W is present at the minimum liquid level 7a or less, the distance between the highest position of the overlapping portion W and the minimum liquid level 7a is preferably small. The permissible distance between the highest position of the overlapping portion W and the lowest liquid level 7a varies depending on the degree of turbidity of the sample liquid S, the width of the liquid level fluctuation, the intensity of the excitation light E, the permissible measurement error, and the like.
When the entire overlapping portion W is present at the minimum liquid level 7a or less, the distance between the highest position of the overlapping portion W and the minimum liquid level 7a is preferably 20 mm or less, more preferably 10 mm or less, still more preferably 5 mm or less. It is particularly preferably 0 mm.

また、上記実施形態の多波長蛍光分析装置1では、蛍光Fの受光範囲Frの光軸Fxが鉛直方向とされているが、光軸Fxは鉛直方向に対して、斜めに傾いていてもよい。
また、光路Erの光軸Exと受光範囲Frの光軸Fxを含む平面は、鉛直方向に沿っていてもよいし、鉛直方向に対して、斜めに傾いていてもよい。
また、上記実施形態では、光軸Exと光軸Fxの交叉角度は、45±15゜とされているが、交叉角度に特に限定はない。
Further, in the multi-wavelength fluorescence analyzer 1 of the above embodiment, the optical axis Fx of the light receiving range Fr of the fluorescence F is in the vertical direction, but the optical axis Fx may be inclined diagonally with respect to the vertical direction. ..
Further, the plane including the optical axis Ex of the optical path Er and the optical axis Fx of the light receiving range Fr may be along the vertical direction or may be inclined diagonally with respect to the vertical direction.
Further, in the above embodiment, the crossing angle between the optical axis Ex and the optical axis Fx is 45 ± 15 °, but the crossing angle is not particularly limited.

ただし、光軸Exと光軸Fxとは同軸であってはならない。すなわち、同一直線上に重なってはならない。また、光軸Exと光軸Fxとは平行であってはならない。仮に、光軸Exと光軸Fxとが、同一直線上には重なるか平行である場合、光路Erと受光範囲Frとが重なる部分は有限の領域ではなくなる。そのため、重なる部分全体、ないしは90%以上の体積を最低液面の水位以下とすることはできない。
したがって、本発明においては、光軸Exと光軸Fxとが同一直線上には重なることや平行であることは許容されない。
However, the optical axis Ex and the optical axis Fx must not be coaxial. That is, they must not overlap on the same straight line. Further, the optical axis Ex and the optical axis Fx must not be parallel to each other. If the optical axis Ex and the optical axis Fx overlap or are parallel to each other on the same straight line, the portion where the optical path Er and the light receiving range Fr overlap is not a finite region. Therefore, the entire overlapping portion or the volume of 90% or more cannot be set below the water level of the minimum liquid level.
Therefore, in the present invention, it is not permissible for the optical axis Ex and the optical axis Fx to overlap or be parallel on the same straight line.

また、上記実施形態の多波長蛍光分析装置1では、光軸Exと光軸Fxとが交叉する態様としたが、光軸Exと光軸Fxとは、必ずしも交叉する必要はない。光軸Exと光軸Fxとは、光路Erと受光範囲Frとが交叉する程度に近接していればよい。 Further, in the multi-wavelength fluorescence analyzer 1 of the above embodiment, the optical axis Ex and the optical axis Fx are crossed, but the optical axis Ex and the optical axis Fx do not necessarily have to cross each other. The optical axis Ex and the optical axis Fx may be close to each other so that the optical path Er and the light receiving range Fr intersect.

また、上記実施形態では、単一の筒であるオーバーフロー筒6を用いたが、オーバーフロー筒6の外側に外筒を有する二重管とし、試料液を外筒の内壁とオーバーフロー筒6の外壁の間を下降させた後、オーバーフロー筒6の下側開口部からオーバーフロー筒6の内側に流入させてもよい。この場合、試料液を外筒の内壁とオーバーフロー筒6の外壁の間を下降させている間に試料液中の気泡を除去することができる。 Further, in the above embodiment, the overflow cylinder 6 which is a single cylinder is used, but a double pipe having an outer cylinder on the outside of the overflow cylinder 6 is used, and the sample liquid is used on the inner wall of the outer cylinder and the outer wall of the overflow cylinder 6. After lowering the space, it may flow into the inside of the overflow cylinder 6 from the lower opening of the overflow cylinder 6. In this case, air bubbles in the sample liquid can be removed while the sample liquid is lowered between the inner wall of the outer cylinder and the outer wall of the overflow cylinder 6.

また、試料液をオーバーフローさせるためのオーバーフロー筒は必須ではなく、試料液の液面は流動する液の液面であってもよい。また、容器に収納された試料液の静止した液面であってもよい。
また、液面変動の要因は、オーバーフロー時の流量変動やオーバーフロー時と貯め水状態との違いには限定されない。例えば、測定桶に一定量を計量してサンプリングした際の、計量誤差などによるものでもよい。
Further, the overflow cylinder for overflowing the sample liquid is not essential, and the liquid level of the sample liquid may be the liquid level of the flowing liquid. Further, it may be a stationary liquid level of the sample liquid stored in the container.
Further, the factors of the liquid level fluctuation are not limited to the flow rate fluctuation at the time of overflow and the difference between the overflow and the stored water state. For example, it may be due to a measurement error when a certain amount is weighed in a measuring tub and sampled.

また、上記実施形態では、照射光学系と検出光学系の双方に、回折格子を配置したが、各々回折格子に代えて、プリズム等の他の分光手段を用いてもよい。また、各々分光手段を設けず、固定波長としてもよい。その場合の照射光学系と検出光学系は、各々上記実施形態よりも簡略化できる。 Further, in the above embodiment, the diffraction gratings are arranged in both the irradiation optical system and the detection optical system, but other spectroscopic means such as a prism may be used instead of the diffraction gratings. Further, a fixed wavelength may be used without providing each spectroscopic means. In that case, the irradiation optical system and the detection optical system can be simplified as compared with the above embodiments.

なお、試料液が試料液入口6aに至るまでの経路には、受水槽、流量調節弁等、公知のサンプリングシステムに使用される部材を適宜設けることができる。また、演算制御装置90に指示を出すための指示操作部や、測定結果を表示するための表示装置や記録計、プリンター等を適宜設けることができるのはもちろんである。
また、上記の実施形態は、蛍光分析装置であったが、本発明は、散乱光を利用した、例えば濁度計などにも適用できる。
In the path from the sample liquid to the sample liquid inlet 6a, a member used in a known sampling system such as a water receiving tank and a flow rate control valve can be appropriately provided. Of course, an instruction operation unit for issuing an instruction to the arithmetic control device 90, a display device for displaying the measurement result, a recorder, a printer, and the like can be appropriately provided.
Further, although the above embodiment is a fluorescence analyzer, the present invention can also be applied to, for example, a turbidity meter using scattered light.

[実験例1]
オーバーフロー筒6を使用せず、測定桶を使用した他は、図1と同等の装置で蛍光測定を行った。励起光の波長は320nm、蛍光の波長は440nmとした。
試料液としては、硫酸キニーネ水溶液を用い、受光ユニット60のレンズ62と液面との距離を変化させながら測定を行った。結果を表1と図5に示す。
[Experimental Example 1]
Fluorescence measurement was performed with the same apparatus as in FIG. 1 except that the overflow cylinder 6 was not used and the measuring tub was used. The wavelength of the excitation light was 320 nm, and the wavelength of the fluorescence was 440 nm.
As the sample liquid, an aqueous solution of quinine sulfate was used, and the measurement was performed while changing the distance between the lens 62 of the light receiving unit 60 and the liquid surface. The results are shown in Table 1 and FIG.

Figure 0007071620000001
Figure 0007071620000001

表1に示すように、レンズと液面との距離が36.6mmの時は、測定出力は0に近かった。これは、液面に対するレンズ距離が遠すぎたため、光路Erと受光範囲Frとが重なる重複部Wのほぼ全体が、液面より上に存在していたためである。
また、距離が34.6mmの時も、測定出力は132mVと低かった。これは、液面に対するレンズ距離が遠すぎたため、光路Erと受光範囲Frとが重なる重複部Wのかなりの部分が、液面より上に存在していたためである。
As shown in Table 1, when the distance between the lens and the liquid surface was 36.6 mm, the measured output was close to 0. This is because the lens distance to the liquid surface was too far, and almost the entire overlapping portion W where the optical path Er and the light receiving range Fr overlap was present above the liquid surface.
Moreover, even when the distance was 34.6 mm, the measured output was as low as 132 mV. This is because the lens distance to the liquid surface is too long, and a considerable part of the overlapping portion W where the optical path Er and the light receiving range Fr overlap is present above the liquid surface.

これに対して、距離が32.6mm以下の場合は、測定出力は450mV付近でいずれも高い値が得られた。これは、液面に対するレンズ距離が充分近くなり、光路Erと受光範囲Frとが重なる重複部Wのほぼ全体が、液面より下に存在するようになったためである。
これらの結果から、光路Erと受光範囲Frとが重なる重複部Wの内、液面より下にある部分の割合が、測定出力に大きく影響することが確認できた。
On the other hand, when the distance was 32.6 mm or less, the measured output was high at around 450 mV. This is because the lens distance to the liquid surface is sufficiently close, and almost the entire overlapping portion W where the optical path Er and the light receiving range Fr overlap is present below the liquid surface.
From these results, it was confirmed that the ratio of the portion below the liquid level in the overlapping portion W where the optical path Er and the light receiving range Fr overlap greatly affects the measurement output.

また、距離が32.6mm以下では、距離が短くなるほど出力が漸減する傾向が見られた。これは、光路Erと受光範囲Frとが重なる重複部Wの水深が徐々に大きくなることにより、試料液による光の減衰が生じているためであると考えられる。そのため、重複部Wの水深は、過剰に深くするべきでないことが確認できた。
ただし、距離が短くなるにしたがっての出力の減少の度合いは図5に示すように緩やかであった。そのため、重複部Wの水深の多少の変動は、大きな測定誤差をもたらさないことが確認できた。
Further, when the distance was 32.6 mm or less, the output tended to gradually decrease as the distance became shorter. It is considered that this is because the water depth of the overlapping portion W where the optical path Er and the light receiving range Fr overlap gradually increases, so that the light is attenuated by the sample liquid. Therefore, it was confirmed that the water depth of the overlapping portion W should not be excessively deep.
However, the degree of decrease in output as the distance became shorter was gradual as shown in FIG. Therefore, it was confirmed that a slight fluctuation in the water depth of the overlapping portion W does not cause a large measurement error.

[実験例2]
図1と同等の装置で蛍光測定を行った。励起光の波長は320nm、蛍光の波長は440nmとした。光軸Fxと光軸Exとの交叉角度は45度とした。
また、受光ユニット60のレンズ62の焦点距離は35mmとし、励起光ユニットのレンズ46は、光軸Fxのレンズ62から31.6mmの位置に焦点を結ぶようにした。この装置において、光路Erと受光範囲Frとが重なる重複部Wの最も高い位置は、レンズ62から29.4mmの位置であった。
[Experimental Example 2]
Fluorescence measurement was performed with the same device as in FIG. The wavelength of the excitation light was 320 nm, and the wavelength of the fluorescence was 440 nm. The crossover angle between the optical axis Fx and the optical axis Ex was set to 45 degrees.
Further, the focal length of the lens 62 of the light receiving unit 60 was set to 35 mm, and the lens 46 of the excitation light unit focused on the position 31.6 mm from the lens 62 of the optical axis Fx. In this device, the highest position of the overlapping portion W where the optical path Er and the light receiving range Fr overlap was the position 29.4 mm from the lens 62.

試料液としては、硫酸キニーネ水溶液を用い、受光ユニット60のレンズ62とオーバーフロー筒6の上側開口部6bとの距離dを31.6mmとして、通水時と貯め水時の測定出力を求めた。オーバーフロー筒6の上側開口部6bの面積は3390mm、通水時の流量は、1L/minとした。なお、貯め水時の液面は、オーバーフロー筒6の上側開口部6bの位置とほぼ等しい。
同様にして、受光ユニット60のレンズ62とオーバーフロー筒6の上側開口部6bとの距離dを28.1mmとして、通水時と貯め水時の測定出力を求めた。結果を表2に示す。
As the sample liquid, an aqueous solution of quinine sulfate was used, and the distance d between the lens 62 of the light receiving unit 60 and the upper opening 6b of the overflow cylinder 6 was set to 31.6 mm, and the measurement output at the time of passing water and at the time of storing water was obtained. The area of the upper opening 6b of the overflow cylinder 6 was 3390 mm 2 , and the flow rate during water flow was 1 L / min. The liquid level at the time of storing water is substantially equal to the position of the upper opening 6b of the overflow cylinder 6.
Similarly, the distance d between the lens 62 of the light receiving unit 60 and the upper opening 6b of the overflow cylinder 6 was set to 28.1 mm, and the measured outputs at the time of passing water and at the time of storing water were obtained. The results are shown in Table 2.

Figure 0007071620000002
Figure 0007071620000002

表2に示すように、距離dが、31.6mmの場合、通水時の方が貯め水時よりも測定出力が大きかった。これは、通水により液面7が盛り上がり、光路Erと受光範囲Frとが重なる重複部Wの内、液面より下の部分の割合が増したためである。
また、距離dが28.1mmの場合、通水時と貯め水時の測定出力はほぼ同等であった。これは、貯め水時の際、既に光路Erと受光範囲Frとが重なる重複部Wの全体が液面7より下にあったため、通水により液面7が盛り上がっても、液面7より下における光路Erと受光範囲Frとが重なる重複部Wの割合が大きくは変化しないためである。
As shown in Table 2, when the distance d was 31.6 mm, the measured output was larger when the water was passed than when the water was stored. This is because the liquid level 7 rises due to the passage of water, and the proportion of the portion below the liquid level in the overlapping portion W where the optical path Er and the light receiving range Fr overlap increases.
Further, when the distance d was 28.1 mm, the measured outputs at the time of passing water and at the time of storing water were almost the same. This is because the entire overlapping portion W where the optical path Er and the light receiving range Fr overlap was already below the liquid level 7 at the time of storing water, so even if the liquid level 7 rises due to water flow, it is below the liquid level 7. This is because the ratio of the overlapping portion W where the optical path Er and the light receiving range Fr overlap in the above direction does not change significantly.

1…多波長蛍光分析装置、2…仕切り板、3…検出部ケース、4…試料ケース、
6…オーバーフロー筒、6b…上側開口部、7…液面、7a…最低液面、
10…光源ユニット、20…光路ユニット、30…光源側分光ユニット、
33…回折格子、40…励起光ユニット、60…受光ユニット、
70…検出側分光ユニット、73…回折格子、80…検出器ユニット、
90…演算制御装置、S…試料液、E…励起光、F…蛍光、R…リファレンス光
Er…光路、Ex…光軸、Fr…受光範囲、Fx…光軸、W…重複部
1 ... Multi-wavelength fluorescence analyzer, 2 ... Partition plate, 3 ... Detection unit case, 4 ... Sample case,
6 ... overflow cylinder, 6b ... upper opening, 7 ... liquid level, 7a ... lowest liquid level,
10 ... Light source unit, 20 ... Optical path unit, 30 ... Light source side spectroscopic unit,
33 ... Diffraction grating, 40 ... Excitation light unit, 60 ... Light receiving unit,
70 ... Detection side spectroscopic unit, 73 ... Diffraction grating, 80 ... Detector unit,
90 ... Arithmetic control device, S ... Sample solution, E ... Excitation light, F ... Fluorescence, R ... Reference light Er ... Optical path, Ex ... Optical axis, Fr ... Light receiving range, Fx ... Optical axis, W ... Overlapping part

Claims (4)

上端が開口部とされ、試料液を前記開口部からオーバーフローさせることが可能なオーバーフロー筒と、
光源と、
前記光源から発せられる光を照射光として前記オーバーフロー筒の前記開口部近傍に位置する試料液の液面に導く照射光学系と、
前記照射光によって前記液面近傍の試料液から発せられる応答光を検出する検出器と、
前記応答光を受光して前記検出器に導く検出光学系とを備え、
前記オーバーフロー筒、光源、照射光学系、及び検出光学系は、互いの位置関係が固定されており、
前記照射光学系による照射光の光路の光軸と前記検出光学系による応答光の受光範囲の光軸とは、同一直線上に重ならず、かつ平行ではなく、
前記照射光学系による照射光の光路と前記検出光学系による応答光の受光範囲とは交叉しており、
前記照射光の光路と前記応答光の受光範囲とが重なる部分の体積の90%以上が、前記開口部以下に存在することを特徴とする光学測定装置。
An overflow cylinder whose upper end is an opening and which allows the sample liquid to overflow from the opening.
Light source and
An irradiation optical system that guides the light emitted from the light source to the liquid surface of the sample liquid located near the opening of the overflow cylinder as irradiation light.
A detector that detects the response light emitted from the sample liquid near the liquid surface by the irradiation light, and
It is equipped with a detection optical system that receives the response light and guides it to the detector.
The overflow cylinder, the light source, the irradiation optical system, and the detection optical system have a fixed positional relationship with each other.
The optical axis of the optical path of the irradiation light by the irradiation optical system and the optical axis of the light receiving range of the response light by the detection optical system do not overlap and are not parallel on the same straight line.
The optical path of the irradiation light by the irradiation optical system and the light receiving range of the response light by the detection optical system intersect.
An optical measuring device, characterized in that 90% or more of the volume of a portion where the optical path of the irradiation light and the light receiving range of the response light overlap is present below the opening .
前記応答光が蛍光である請求項1に記載の光学測定装置。 The optical measuring device according to claim 1, wherein the response light is fluorescent. 前記応答光が散乱光である請求項1に記載の光学測定装置。 The optical measuring device according to claim 1, wherein the response light is scattered light. 請求項1~3の何れか一項に記載の光学測定装置の校正方法であって、The method for calibrating an optical measuring device according to any one of claims 1 to 3.
前記試料液を継続的にオーバーフローさせることに代えて、校正液を前記オーバーフロー筒内に前記開口部から溢れ出るまで入れた状態で溜めた際の応答光に基づき校正する、光学測定装置の感度校正方法。 Sensitivity calibration of an optical measuring device that calibrates based on the response light when the calibration solution is stored in the overflow cylinder until it overflows from the opening instead of continuously overflowing the sample solution. Method.
JP2017250293A 2017-12-27 2017-12-27 Optical measuring device and sensitivity calibration method for optical measuring device Active JP7071620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250293A JP7071620B2 (en) 2017-12-27 2017-12-27 Optical measuring device and sensitivity calibration method for optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250293A JP7071620B2 (en) 2017-12-27 2017-12-27 Optical measuring device and sensitivity calibration method for optical measuring device

Publications (2)

Publication Number Publication Date
JP2019117079A JP2019117079A (en) 2019-07-18
JP7071620B2 true JP7071620B2 (en) 2022-05-19

Family

ID=67304308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250293A Active JP7071620B2 (en) 2017-12-27 2017-12-27 Optical measuring device and sensitivity calibration method for optical measuring device

Country Status (1)

Country Link
JP (1) JP7071620B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7304272B2 (en) * 2019-11-13 2023-07-06 東亜ディーケーケー株式会社 Device for measuring the concentration of oil accumulated in diatoms

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351831A (en) 2004-06-14 2005-12-22 Yokogawa Electric Corp Turbidimeter calibration device
US20070171410A1 (en) 2003-09-23 2007-07-26 Ahmed Samir A Method and apparatus for the separation of fluoroscence and elastic scattering produced by broadband illumination using polarization discrimination techniques
JP2012037356A (en) 2010-08-06 2012-02-23 Asahi Kasei Techno System Kk Fluorescence detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138079U (en) * 1974-04-27 1975-11-13

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070171410A1 (en) 2003-09-23 2007-07-26 Ahmed Samir A Method and apparatus for the separation of fluoroscence and elastic scattering produced by broadband illumination using polarization discrimination techniques
JP2005351831A (en) 2004-06-14 2005-12-22 Yokogawa Electric Corp Turbidimeter calibration device
JP2012037356A (en) 2010-08-06 2012-02-23 Asahi Kasei Techno System Kk Fluorescence detector

Also Published As

Publication number Publication date
JP2019117079A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
US7658884B2 (en) Photometric method and apparatus for measuring a liquid's turbidity, fluorescence, phosphorescence and/or absorption coefficient
JP6336710B2 (en) Optical device for detecting inhomogeneities in the sample, in particular the polarimeter
KR20190010522A (en) Water quality analyzer
US8253117B2 (en) Fluorescence detector
JP2012198059A (en) Measuring apparatus and measuring method
JP2014044145A (en) Flow cell
WO2013140617A1 (en) Detector and liquid chromatograph provided with detector
JP7071620B2 (en) Optical measuring device and sensitivity calibration method for optical measuring device
EP3321664B1 (en) Functional water concentration sensor
US10948416B2 (en) Method and apparatus for determining a concentration of a substance in a liquid medium
JP2007225389A (en) Surface plasmon resonance measuring device and measuring method
KR20100116207A (en) Total reflection attenuation type far-ultraviolet spectroscopy and concentration measurement device using the spectroscopy
JP2014032148A (en) Surface plasmon excitation enhanced fluorescence acquisition structure and surface plasmon excitation enhanced fluorescence measurement system
JPS58158538A (en) Optical device for aligning luminous flux passing liquid flow absorbing cell
JP2018146539A (en) Multi-wavelength fluorescence analyzer
JP2018105761A (en) Multi-wavelength fluorescence analyzer
JP2017083394A (en) Photoprobe and optical measurement method
JP2008249363A (en) Turbidimeter
JP2008232790A (en) Detector and device for measuring water quality
RU2229113C2 (en) Module incorporating aid to flush sensor and measuring activity of liquid
KR102365746B1 (en) Absorbance measuring apparatus
US20190302027A1 (en) Method and apparatus for determining solids content in a liquid medium
RU2449259C2 (en) Diesel optical analyser
JP7397468B2 (en) Air bubble measuring device and method
JP2019015513A (en) Detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7071620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150