JP2007225389A - Surface plasmon resonance measuring device and measuring method - Google Patents

Surface plasmon resonance measuring device and measuring method Download PDF

Info

Publication number
JP2007225389A
JP2007225389A JP2006045579A JP2006045579A JP2007225389A JP 2007225389 A JP2007225389 A JP 2007225389A JP 2006045579 A JP2006045579 A JP 2006045579A JP 2006045579 A JP2006045579 A JP 2006045579A JP 2007225389 A JP2007225389 A JP 2007225389A
Authority
JP
Japan
Prior art keywords
surface plasmon
plasmon resonance
sensor
light receiving
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006045579A
Other languages
Japanese (ja)
Inventor
Daisuke Tanooka
大 輔 田ノ岡
Tomohisa Ogawa
川 智 央 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Priority to JP2006045579A priority Critical patent/JP2007225389A/en
Publication of JP2007225389A publication Critical patent/JP2007225389A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/276Calibration, base line adjustment, drift correction with alternation of sample and standard in optical path

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a resonance angle change highly accurately even when a light intensity distribution of a light flux irradiated to a surface plasmon resonance sensor is not constant, or when the sensitivity of each light receiving element arranged one-dimensionally or two-dimensionally has dispersion. <P>SOLUTION: This device is equipped with an operation processing device 3 for measuring reflected light intensity of measuring light irradiated to a sensor part 11 by an optical detector 30 when a calibration solution wherein a reflected light intensity change is flat in a measuring domain near a resonance angle of a sample liquid is supplied to the surface plasmon resonance sensor 10, and executing calibration so that the sensitivity of each light receiving element becomes constant based on detection values from each light receiving element arranged one-dimensionally or two-dimensionally. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一次元又は二次元に受光素子を配した光学検出器を用いて表面プラズモン共鳴センサからの反射光強度変化を測定することにより、共鳴角の変化を測定する表面プラズモン共鳴測定方法に関する。   The present invention relates to a surface plasmon resonance measurement method for measuring a change in resonance angle by measuring a change in reflected light intensity from a surface plasmon resonance sensor using an optical detector in which light receiving elements are arranged one-dimensionally or two-dimensionally. .

近年、生体分子の結合の様子をセンシング装置により検出することにより、創薬の開発効率を向上させることが進められている。また、悪性の抗原抗体反応を迅速に検査することが求められている。
そして、これらの生体分子の結合および結合過程を検出する方法として、光励起による表面プラズモン共鳴(Surface Plasmon Resonance:以下、単に「SPR」と略記する)現象を利用した表面プラズモン共鳴測定装置(以下、単に「SPR測定装置」と略記する)が用いられる。
このSPR現象によれば、例えば、金属薄膜上に抗体などを固定化した状態で、抗原を含んだサンプル液を金属薄膜上に供給し、抗原抗体反応による抗体の屈折率変化に起因する共鳴角度変化が検出され、これにより、特定物質の定量を行うことができる。
In recent years, it has been promoted to improve the development efficiency of drug discovery by detecting the state of binding of biomolecules with a sensing device. In addition, it is required to rapidly examine a malignant antigen-antibody reaction.
As a method for detecting the binding and the binding process of these biomolecules, a surface plasmon resonance measurement apparatus (hereinafter simply referred to as “surface plasmon resonance”, hereinafter simply abbreviated as “SPR”) by photoexcitation. (Abbreviated as “SPR measuring device”).
According to this SPR phenomenon, for example, in a state where an antibody or the like is immobilized on a metal thin film, a sample solution containing an antigen is supplied onto the metal thin film, and the resonance angle caused by the change in the refractive index of the antibody due to the antigen-antibody reaction. A change is detected, whereby a specific substance can be quantified.

SPR測定装置41は、SPRセンサ42にサンプル液を供給するサンプル液供給装置43と、サンプル液に接しているセンサ部44における反射光強度を測定する光学系45とを備えている。
SPRセンサ42は、半円形プリズム46の平面部分に金属薄膜を蒸着したセンサ部44が形成され、底面側に溝状の流路47が形成されたセル48を前記センサ部44に密着させた状態で、前記流路47にサンプル液を供給して測定を行う。
The SPR measurement device 41 includes a sample solution supply device 43 that supplies a sample solution to the SPR sensor 42, and an optical system 45 that measures the reflected light intensity at the sensor unit 44 that is in contact with the sample solution.
The SPR sensor 42 is a state in which a sensor portion 44 in which a metal thin film is deposited is formed on the flat portion of the semicircular prism 46, and a cell 48 in which a groove-like channel 47 is formed on the bottom surface is in close contact with the sensor portion 44. Then, the sample liquid is supplied to the flow path 47 to perform measurement.

光学系45は、半円形プリズム46の円弧面側から中心に向かう照射光軸Zに沿ってP偏光の測定光を照射する光源装置49と、この測定光を所定の中心角度範囲(入射角75°±5°)で入射させるレンズ系50と、その反射光軸Z上に二次元マトリクス状に受光素子を配したCCD素子などの光学検出器51が配されている。
これにより、受光素子の位置と入射角が対応し、光源装置49及び光学検出器51を移動させることなく、各入射角度に対応した反射光強度変化が測定できる。
特開平7−159319号公報
The optical system 45 includes a light source device 49 that emits P-polarized measurement light along an irradiation optical axis Z L that extends from the arc surface side of the semicircular prism 46 toward the center, and the measurement light in a predetermined center angle range (incident angle). a lens system 50 to be incident at 75 ° ± 5 °), an optical detector 51 such as CCD elements arranged light receiving elements in a two-dimensional matrix on the reflected optical axis Z R is disposed.
Thereby, the position of the light receiving element corresponds to the incident angle, and the reflected light intensity change corresponding to each incident angle can be measured without moving the light source device 49 and the optical detector 51.
JP-A-7-159319

しかしながら、受光素子を1次元又は2次元に配した光学検出器51を用いた場合、一般的な点での受光素子を用いた測定とは異なり、光源装置49からSPRセンサ42に照射される光束の光強度分布が一定でなかったり、受光素子の感度のバラツキがあったりすると、測定精度に悪影響を及ぼすという問題があった。
また、流路が形成されたセルを用いる場合、セルをセットするたびに、その流路の位置に対応する受光素子の位置を決定しなければならずその作業が面倒であった。
However, when the optical detector 51 in which the light receiving elements are arranged one-dimensionally or two-dimensionally is used, the light beam irradiated from the light source device 49 to the SPR sensor 42 is different from the measurement using the light receiving elements in general points. If the light intensity distribution is not constant or the sensitivity of the light receiving element varies, there is a problem of adversely affecting the measurement accuracy.
Further, when a cell in which a flow path is formed is used, each time the cell is set, the position of the light receiving element corresponding to the position of the flow path has to be determined, which is troublesome.

そこで本発明は、第一に、センサに照射される光束の光強度分布が一定でなかったり、受光素子の感度のバラツキがあったりしても、高精度で測定することができ、第二に、流路が形成されたセルの流路に対応する受光素子の位置を自動的に決定することができるようにすることを技術的課題としている。   Therefore, the present invention can measure with high accuracy even if the light intensity distribution of the light beam irradiated to the sensor is not constant or the sensitivity of the light receiving element varies. A technical problem is to enable automatic determination of the position of the light receiving element corresponding to the flow path of the cell in which the flow path is formed.

この課題を解決するために、請求項1の発明は、表面プラズモン共鳴センサにサンプル液を供給するサンプル液供給装置と、サンプル液に接しているセンサ部に測定光を照射して、その反射光強度を一次元又は二次元に受光素子を配した光学検出器を用いて測定する光学系とを備えた表面プラズモン共鳴測定装置であって、サンプル液の共鳴角近傍の測定領域内において反射光強度変化がフラットである較正溶液が表面プラズモン共鳴センサに供給されたときに、センサ部に照射した測定光の反射光強度を前記光学検出器で測定して、各受光素子の検出値に基づき受光素子の感度が一定になるようにキャリブレーションを実行する演算処理装置を備えたことを特徴としている。
請求項2の発明は、演算処理装置が、各受光素子に共通する基準値を決定する基準値設定手段と、基準値と各受光素子の検出値との差に基づいてそれぞれの受光素子の感度を調整するキャリブレーション手段を備えている。
請求項3の発明は、表面プラズモン共鳴センサのセンサ部に複数の流路が平行に形成され、表面プラズモン共鳴センサの任意の流路にサンプル液を供給したときに当該流路と直交する方向に沿って共鳴角付近の反射光強度を前記光学検出器で測定し、その反射光強度分布に基づいて流路の中心に対応する1又は複数の測定用受光素子を決定する演算処理装置を備えている。
In order to solve this problem, the invention according to claim 1 irradiates the sample liquid supply device for supplying the sample liquid to the surface plasmon resonance sensor and the sensor light in contact with the sample liquid, and reflects the reflected light. A surface plasmon resonance measuring apparatus having an optical system that measures an intensity using an optical detector in which a light receiving element is arranged in one or two dimensions, and the intensity of reflected light in a measurement region near the resonance angle of the sample liquid When a calibration solution having a flat change is supplied to the surface plasmon resonance sensor, the reflected light intensity of the measurement light applied to the sensor unit is measured by the optical detector, and the light receiving element is based on the detection value of each light receiving element. And an arithmetic processing unit that performs calibration so that the sensitivity of the signal becomes constant.
According to a second aspect of the present invention, the arithmetic processing device has a reference value setting means for determining a reference value common to each light receiving element, and the sensitivity of each light receiving element based on the difference between the reference value and the detected value of each light receiving element. A calibration means for adjusting is provided.
In the invention of claim 3, a plurality of flow paths are formed in parallel in the sensor portion of the surface plasmon resonance sensor, and when sample liquid is supplied to an arbitrary flow path of the surface plasmon resonance sensor, the direction is perpendicular to the flow path. And an arithmetic processing unit that measures the reflected light intensity near the resonance angle with the optical detector and determines one or a plurality of measurement light receiving elements corresponding to the center of the flow path based on the reflected light intensity distribution. Yes.

本発明によれば、較正溶液を前記表面プラズモン共鳴センサに供給した状態で、そのセンサ部に測定光を照射してその反射光強度を光学検出器で測定すると、較正溶液は、サンプル液の共鳴角近傍の測定領域内において反射光強度変化がフラットであるので、反射率が一定のセンサ部からの反射光強度が光学検出器の夫々の各受光素子で測定される。
このとき、測定光の光束の光強度分布が一定でなかったり、受光素子の感度のバラツキがあったりすると、そのような誤差を含んだまま各受光素子で光強度が測定される。
そこで、各受光素子の検出値に基づき、例えば、各受光素子で検出された反射光強度の平均値を基準値とし、この基準値に対する各受光素子の検出値の差に基づいて、受光素子の感度が一定になるようにキャリブレーションする。
これにより、同一条件で測定すれば、測定光の光束の光強度分布や、受光素子の感度のバラツキは相殺されるので、これらの誤差を排除して、高精度で表面プラズモン共鳴の測定を行うことができる。
According to the present invention, when the calibration solution is supplied to the surface plasmon resonance sensor, the sensor portion is irradiated with measurement light, and the reflected light intensity is measured by the optical detector. Since the reflected light intensity change is flat in the measurement region near the corner, the reflected light intensity from the sensor unit having a constant reflectance is measured by each light receiving element of the optical detector.
At this time, if the light intensity distribution of the light beam of the measurement light is not constant or the sensitivity of the light receiving element varies, the light intensity is measured by each light receiving element while including such an error.
Therefore, based on the detection value of each light receiving element, for example, the average value of the reflected light intensity detected by each light receiving element is used as a reference value, and based on the difference in the detection value of each light receiving element with respect to this reference value, Calibrate so that sensitivity is constant.
As a result, if the measurement is performed under the same conditions, the light intensity distribution of the measurement light beam and variations in the sensitivity of the light receiving element are canceled out. Therefore, these errors are eliminated, and surface plasmon resonance measurement is performed with high accuracy. be able to.

また、センサ部に複数の流路が平行に形成されている場合は、前記キャリブレーションを実行した後、表面プラズモン共鳴センサの任意の流路にサンプル液を供給して当該流路と直交する方向に沿って共鳴角付近の反射光強度を前記光学検出器で測定する。
こ共鳴角付近では、反射光強度が低下するため、サンプル液が流れている流路の部分は暗く、流路が形成されていない部分は明るくなる。
すなわち、流路と直交する方向に反射光強度を測定すれば、極小値を示す部分が流路の位置に対応するので、その極小値が測定された受光素子を通り、流路と平行な方向に配列された受光素子が流路の中心に対応することとなる。
したがって、この状態で、任意の入射角に対応する位置にある1又は所要数の受光素子を選定すれば、センサ部に形成された流路における共鳴角の変化を正確に測定することができる。
Further, when a plurality of flow paths are formed in parallel in the sensor unit, after performing the calibration, the sample liquid is supplied to an arbitrary flow path of the surface plasmon resonance sensor and is orthogonal to the flow paths. Then, the reflected light intensity in the vicinity of the resonance angle is measured by the optical detector.
In the vicinity of this resonance angle, the intensity of the reflected light is reduced, so that the portion of the channel through which the sample liquid flows is dark and the portion where the channel is not formed is bright.
That is, if the reflected light intensity is measured in a direction orthogonal to the flow path, the portion showing the minimum value corresponds to the position of the flow path, and therefore the direction passing through the light receiving element where the minimum value is measured is parallel to the flow path. The light receiving elements arranged in the line correspond to the center of the flow path.
Therefore, in this state, if one or a required number of light receiving elements at a position corresponding to an arbitrary incident angle is selected, a change in the resonance angle in the flow path formed in the sensor unit can be accurately measured.

本例では、センサに照射される光束の光強度分布が一定でなかったり、受光素子の感度のバラツキがあったりしても高精度で測定できるようにするという目的を達成するために、サンプル液の共鳴角近傍の測定領域内において反射光強度変化がフラットである較正溶液を前記表面プラズモン共鳴センサに供給し、較正溶液に接しているセンサ部に測定光を照射してその反射光強度を前記光学検出器で測定し、各受光素子の検出値に基づき受光素子の感度が一定になるようにキャリブレーションを実行した後に、前記表面プラズモン共鳴センサにサンプル液を供給して共鳴角の変化を測定するようにした。   In this example, in order to achieve the purpose of enabling measurement with high accuracy even when the light intensity distribution of the light beam irradiated to the sensor is not constant or the sensitivity of the light receiving element varies, the sample solution A calibration solution having a flat reflected light intensity change in a measurement region near the resonance angle is supplied to the surface plasmon resonance sensor, and the reflected light intensity is measured by irradiating the sensor unit in contact with the calibration solution with the measurement light. After measuring with an optical detector and performing calibration so that the sensitivity of the light receiving element becomes constant based on the detection value of each light receiving element, supply sample liquid to the surface plasmon resonance sensor to measure the change in resonance angle I tried to do it.

図1は本発明に係る表面プラズモン共鳴測定装置の一例を示す説明図、図2は表面プラズモン共鳴センサを示す説明図、図3は光学系とセンサの関係を示す説明図、図4(a)及び(b)は較正溶液及びサンプル液を供給したときの反射光強度分布を示す説明図、図5は流路に直交する受光素子列の検出結果を示すグラフ、図6はキャリブレーションプログラムを示すフローチャート、図7は流路位置決定プログラムを示すフローチャート、図8(a)及び(b)は較正前後のデータに基づく反射光強度の測定結果、図9は共鳴角の変化の測定結果を示すグラフである。   1 is an explanatory view showing an example of a surface plasmon resonance measuring apparatus according to the present invention, FIG. 2 is an explanatory view showing a surface plasmon resonance sensor, FIG. 3 is an explanatory view showing the relationship between the optical system and the sensor, and FIG. FIGS. 5A and 5B are explanatory diagrams showing the reflected light intensity distribution when the calibration solution and the sample solution are supplied, FIG. 5 is a graph showing the detection result of the light receiving element array orthogonal to the flow path, and FIG. 6 shows the calibration program. FIG. 7 is a flowchart showing a flow path position determination program, FIGS. 8A and 8B are graphs showing the measurement result of reflected light intensity based on data before and after calibration, and FIG. 9 is a graph showing the measurement result of change in resonance angle. It is.

本例の表面プラズモン共鳴測定装置1は、光励起による表面プラズモン共鳴(Surface Plasmon Resonance:以下、単に「SPR」と略記する)現象により生ずる共鳴角の変化を測定するものである。
SPR測定装置1は、SPRセンサ10にサンプル液を供給するサンプル液供給装置2と、サンプル液に接しているセンサ部11における反射光強度を測定する光学系20とを備えている。
The surface plasmon resonance measuring apparatus 1 of this example measures a change in resonance angle caused by a surface plasmon resonance (hereinafter simply referred to as “SPR”) phenomenon caused by light excitation.
The SPR measurement device 1 includes a sample solution supply device 2 that supplies a sample solution to the SPR sensor 10, and an optical system 20 that measures the reflected light intensity in the sensor unit 11 that is in contact with the sample solution.

SPRセンサ10は、半円形プリズム12とサンプル液が流れるセル13からなる。
プリズム12は、その平面部分に金属薄膜を蒸着したセンサ部11が形成されている。
セル13は、エアシリンダ14のピストン15に取り付けられてプリズム12のセンサ部11に対して昇降可能に配されている。そして、底面側に溝状の流路16…が平行に形成され、夫々の流路16の流入口16inに任意のサンプル液を供給するサンプル供給装置2が接続されると共に、流出口16outがドレイン(図示せず)に接続されている。
これにより、セル13をセンサ部11に密着させ、サンプル液供給装置2からサンプル液を供給すると、溝状の流路16…をセンサ部11に接して流れていき、ドレインに排出される。
The SPR sensor 10 includes a semicircular prism 12 and a cell 13 through which a sample solution flows.
The prism 12 has a sensor portion 11 formed by vapor-depositing a metal thin film on a planar portion thereof.
The cell 13 is attached to the piston 15 of the air cylinder 14 so as to be movable up and down with respect to the sensor unit 11 of the prism 12. Groove-shaped flow paths 16 are formed in parallel on the bottom surface side, and the sample supply device 2 for supplying an arbitrary sample solution to the inlet 16in of each flow path 16 is connected, and the outlet 16out is drained. (Not shown).
As a result, when the cell 13 is brought into close contact with the sensor unit 11 and the sample solution is supplied from the sample solution supply device 2, the cell 13 flows in contact with the sensor unit 11 and is discharged to the drain.

光学系20は、半円形プリズム12の円弧面側から中心に向かう照射光軸Zに沿って中心波長720nmの光を照射する発光ダイオード21と、直径200μmのピンホール22と、光束径を広げて平行化するビームエクスパンダレンズ23及び24と、干渉フィルタ(中心波長720nm、半値幅10nm)25と、センサ部11に対してP偏光を照射させる偏光プリズム(消光比10−6)26と、半円形プリズム12の中心に対して共鳴角近傍の入射角度(中心入射角75°±5°)で照射されるように集光する円筒面レンズ27が配されている。 The optical system 20 has a light emitting diode 21 that irradiates light with a central wavelength of 720 nm along an irradiation optical axis Z L that goes from the arc surface side to the center of the semicircular prism 12, a pinhole 22 with a diameter of 200 μm, and a light beam diameter. Beam expander lenses 23 and 24 to be collimated, an interference filter (center wavelength 720 nm, half width 10 nm) 25, a polarizing prism (extinction ratio 10 −6 ) 26 that irradiates the sensor unit 11 with P-polarized light, A cylindrical lens 27 that collects light so as to be irradiated at an incident angle (center incident angle 75 ° ± 5 °) near the resonance angle with respect to the center of the semicircular prism 12 is disposed.

また、その反射光軸Z上に沿って、センサ部11で反射してプリズム12から広がって出射してくる光束を平行化する円筒面レンズ28と、その光を結像させる結像レンズ29と、その結像面に受光素子をi×jの二次元マトリクス状に配して成るCCD素子などの光学検出器30が配され、その光学検出器30が演算処理装置3に接続されている。 Also, along the reflected optical axis Z R, it is reflected by the sensor portion 11 and the cylindrical surface lens 28 for collimating the light beam coming emitted extends from the prism 12, an imaging lens for imaging the light 29 And an optical detector 30 such as a CCD element in which light receiving elements are arranged in an i × j two-dimensional matrix on the image plane, and the optical detector 30 is connected to the arithmetic processing unit 3. .

サンプル供給装置2は、SPRセンサ10に形成された流路16…に対応したチャンネル数の供給系を有すると共に、全ての流路16…に対して、サンプル液(例えば水)の共鳴角近傍の測定領域(75±5°)内において反射光強度変化がフラットである較正溶液(例えばクロロホルム)を供給できるように供給液切換装置が配されている。
これにより、光学検出器30の受光素子の較正を行うときは、SPRセンサ10のすべての流路16…に較正溶液を供給することができ、SPR測定を行うときは、SPRセンサ10のすべての流路16…に同一又は異なる種類の任意のサンプルを混合したサンプル液を供給したり、任意に選択した流路16…にサンプル液を供給すると同時に、選択されなかった流路16…に較正溶液を供給することもできる。
The sample supply device 2 has a supply system with the number of channels corresponding to the flow paths 16 formed in the SPR sensor 10 and is near the resonance angle of the sample liquid (for example, water) with respect to all the flow paths 16. A supply liquid switching device is arranged so that a calibration solution (for example, chloroform) having a flat reflected light intensity change in the measurement region (75 ± 5 °) can be supplied.
Thereby, when calibrating the light receiving element of the optical detector 30, the calibration solution can be supplied to all the flow paths 16 of the SPR sensor 10, and when performing the SPR measurement, all of the SPR sensor 10 can be supplied. A sample solution in which arbitrary samples of the same or different types are mixed is supplied to the channels 16... Or the sample solution is supplied to the arbitrarily selected channels 16. At the same time, the calibration solution is supplied to the channels 16. Can also be supplied.

演算処理装置3は、光学検出器30の各受光素子の検出値に基づき受光素子の感度が一定になるようにキャリブレーション実行プラグラムPRGと、流路16…に対応する受光素子を決定する流路位置決定プログラムPRGを備えている。 The arithmetic processing unit 3 determines the light receiving elements corresponding to the calibration execution program PRG 1 and the flow paths 16 so that the sensitivity of the light receiving elements becomes constant based on the detection value of each light receiving element of the optical detector 30. A road position determination program PRG 2 is provided.

図6はキャリブレーション実行プログラムPRGを示すフローチャートで、まず、プリズム12、SPRセンサ10が定位置にセットされると、サンプル液供給装置2からSPRセンサ10の全流路16…に較正溶液としてクロロホルムが供給される。
クロロホルムを供給した場合、75±5°の範囲内に共鳴角は存在せず、反射率が一定であるので、光学検出器30で撮像された画像は、図4(a)に示すように同色/同輝度の画面となるので、全ての受光素子で検出された反射光強度は一定になる筈であるが、実際には、発光ダイオード21の照射光の光強度分布や、各受光素子の感度のバラツキにより、検出値は一定ではなく誤差を含むこととなる。
FIG. 6 is a flowchart showing the calibration execution program PRG 1. First, when the prism 12 and the SPR sensor 10 are set at fixed positions, a calibration solution is supplied from the sample solution supply device 2 to all the flow paths 16 of the SPR sensor 10. Chloroform is supplied.
When chloroform is supplied, the resonance angle does not exist within the range of 75 ± 5 ° and the reflectance is constant. Therefore, the image picked up by the optical detector 30 has the same color as shown in FIG. / Because the screen has the same brightness, the reflected light intensity detected by all the light receiving elements should be constant, but actually, the light intensity distribution of the light emitted from the light emitting diode 21 and the sensitivity of each light receiving element As a result, the detection value is not constant and includes an error.

そこで、ステップSTP1で、発光ダイオード21からSPRセンサ10に照射されたP偏光の反射光強度に応じた検出値Eijを光学検出器30の各受光素子から出力させ、ステップSTP2で全受光素子の検出値Eijの平均値を求め、これを基準値Avとして設定する。
次いで、ステップSTP3に移行して、基準値Avに対する各受光素子の検出値Eijの差ΔEijを、
ΔEij=Eij/Av
で算出し、ステップSTP4で、各受光素子の任意の検出値Eijに対し較正値Kijを求める較正式を、
Kij=Eij/ΔEij
と設定し、キャリブレーションプログラムPRGを終了する。
これによれば、較正溶液を供給したときの各受光素子の検出値Eijを較正すると、較正出力Kijは、
Kij=Eij/ΔEij=Av
となるので、発光ダイオード21の照射光の光強度分布や、各受光素子の感度のバラツキに拘わらず、どの受光素子からも同じ検出値が得られることがわかる。
Therefore, in step STP1, a detection value Eij corresponding to the intensity of reflected light of P-polarized light irradiated from the light emitting diode 21 to the SPR sensor 10 is output from each light receiving element of the optical detector 30, and in step STP2, all light receiving elements are detected. An average value of the values Eij is obtained and set as a reference value Av.
Next, the process proceeds to step STP3, and the difference ΔEij of the detection value Eij of each light receiving element with respect to the reference value Av is set as follows.
ΔEij = Eij / Av
In step STP4, a calibration equation for obtaining a calibration value Kij for an arbitrary detection value Eij of each light receiving element is
Kij = Eij / ΔEij
And the calibration program PRG 1 is terminated.
According to this, when the detection value Eij of each light receiving element when the calibration solution is supplied is calibrated, the calibration output Kij is
Kij = Eij / ΔEij = Av
Therefore, it can be seen that the same detection value can be obtained from any light receiving element regardless of the light intensity distribution of the light emitted from the light emitting diode 21 and variations in sensitivity of each light receiving element.

図7は、キャリブレーションプログラムPRG終了後に実行される流路位置決定プログラムPRGを示すフローチャートである。
サンプル液供給装置2からSPRセンサ10の全流路16…に、サンプルが混入されていないサンプル液(例えば水)のみを供給した場合、75±5°の範囲内に共鳴角が存在し、その部分の反射光強度が低下するので、光学検出器30で撮像された画像は、図4(b)に示すように、流路16…に対応し、且つ、共鳴角付近が暗色を呈する。
FIG. 7 is a flowchart showing the channel position determination program PRG 2 that is executed after the calibration program PRG 1 ends.
When only the sample liquid (for example, water) in which the sample is not mixed is supplied from the sample liquid supply device 2 to all the flow paths 16 of the SPR sensor 10, a resonance angle exists within a range of 75 ± 5 °. Since the reflected light intensity of the portion decreases, the image picked up by the optical detector 30 corresponds to the flow paths 16 as shown in FIG. 4B, and the vicinity of the resonance angle is dark.

そこで、ステップSTP11で、発光ダイオード21からSPRセンサ10に照射されたP偏光の反射光強度を光学検出器30の各受光素子で検出し、ステップSTP12で共鳴角付近において流路16…に直交する方向Xに配列された受光素子の検出値を抽出し、ステップSTP13で夫々の検出値の較正値を算出する。
図5は較正値のグラフであって、一定間隔で極小値が存在し、この極小値の観察された部分が流路16…の中央に対応する部分である。
したがって、ステップSTP14で、極小値が観察された受光素子抽出し、この受光素子を通り前記方向Xに対して直交する方向Yに配列された夫々の受光素子列により反射光強度を測定することにより、夫々の流路16を流れるサンプル液について入射角度に対応した反射光強度の測定が可能となる。
Therefore, in step STP11, the reflected light intensity of the P-polarized light irradiated from the light emitting diode 21 to the SPR sensor 10 is detected by each light receiving element of the optical detector 30, and in step STP12, it is orthogonal to the flow path 16 in the vicinity of the resonance angle. The detection values of the light receiving elements arranged in the direction X are extracted, and the calibration value of each detection value is calculated in step STP13.
FIG. 5 is a graph of calibration values, where there are minimum values at regular intervals, and the observed portion of the minimum value corresponds to the center of the flow path 16.
Therefore, in step STP14, the light receiving element in which the minimum value is observed is extracted, and the reflected light intensity is measured by the respective light receiving element arrays arranged in the direction Y orthogonal to the direction X through the light receiving element. Thus, the reflected light intensity corresponding to the incident angle can be measured for the sample liquid flowing through each flow path 16.

図8は、任意の一の流路16を流れるサンプル液について入射角度に対応した反射光強度を測定したもので、図8(a)が較正前のデータでプロットしたもの、図8(b)が較正後のデータでプロットしたものである。
このように、発光ダイオード21の照射光の光強度分布や、各受光素子の感度のバラツキにより、受光素子の検出値に誤差を含む場合も、キャリブレーションを実行することにより、その誤差を無くして高精度で測定することが可能となる。
FIG. 8 shows the measurement of the reflected light intensity corresponding to the incident angle for the sample liquid flowing through one arbitrary flow path 16, and FIG. 8 (a) is a plot of the data before calibration, FIG. 8 (b). Is plotted with the data after calibration.
As described above, even when the detection value of the light receiving element includes an error due to the light intensity distribution of the light emitted from the light emitting diode 21 and the sensitivity variation of each light receiving element, the error is eliminated by executing the calibration. It becomes possible to measure with high accuracy.

以上が本発明の一構成例であって、次にその作用について説明する。
まず、センサ部11に定量しようとする特定物質(サンプル)に適した反応物質を固定したプリズム12にセル13を密着させてSPRセンサ10を所定位置にセットする。
そして、各流路16…に較正溶液としてクロロホルムを供給してキャリブレーションプログラムPRGを実行した後、特定物質を含んでいないサンプル液(水)を供給して流路位置決定プログラムPRGを実行し、各流路16に対応する受光素子列で入射角に応じた反射光強度を測定する。
得られたデータに基づいてフィッティング処理を施してスムージングすると、図9に示すような共鳴カーブCが得られるので、その極小値を基準共鳴角θとして記録する。
The above is one configuration example of the present invention, and the operation thereof will be described next.
First, the SPR sensor 10 is set at a predetermined position by bringing the cell 13 into close contact with a prism 12 to which a reactive substance suitable for a specific substance (sample) to be quantified is fixed to the sensor unit 11.
Then, after supplying chloroform as a calibration solution to each of the flow paths 16 and executing the calibration program PRG 1 , a sample liquid (water) that does not contain a specific substance is supplied and the flow path position determination program PRG 2 is executed. Then, the reflected light intensity corresponding to the incident angle is measured by the light receiving element array corresponding to each flow path 16.
When smoothing is subjected to fitting process based on the obtained data, since the resonance curve C 1 shown in FIG. 9 is obtained, and records the minimum value as a reference resonance angle theta 0.

次いで、特定物質が混入したサンプル液(水)を各流路16…に供給し、同様にして、各流路16に対応する受光素子列で入射角に応じた反射光強度を測定する。
得られたデータに基づいてフィッティング処理を施してスムージングすると、図9に示すような共鳴カーブCが得られるので、その極小値を共鳴角θとして記録する。
このとき、各受光素子の検出値は較正されているので、高精度で基準共鳴角θ及び共鳴角θを求めて、その変化を算出することができ、これに基づき特定物質を定量することが可能となる。
Subsequently, the sample liquid (water) mixed with the specific substance is supplied to each flow path 16..., And similarly, the reflected light intensity corresponding to the incident angle is measured by the light receiving element array corresponding to each flow path 16.
When smoothing is subjected to fitting process based on the obtained data, since the resonance curve C 2, as shown in FIG. 9 is obtained, and records the minimum value as the resonance angle theta R.
At this time, since the detection values of the respective light receiving elements are calibrated, the reference resonance angle θ 0 and the resonance angle θ R can be obtained with high accuracy, and the changes can be calculated. Based on this, the specific substance is quantified. It becomes possible.

なお、隣り合う二つの流路16を一対とし、一方の流路16にサンプル液を流し、他方の流路16に較正溶液を流しながらSPR測定を行えば、較正溶液が流れる流路に対応する受光素子で照射光の強度変化をモニタすることができ、外気温の変化などにより測定装置の状態が変化するようなことがあっても、その影響による測定誤差を軽減することができる。
また、SPRセンサ10として流路16…が複数形成されたものについて説明したが、流路は一つであってもよい。
さらに、受光素子を二次元に配した光学検出器30を用いた場合についてのみ説明したが、共鳴カーブが既知の場合に受光素子を一次元に配した光学検出器を共鳴角近傍に配したり、SPRセンサ10に流路16が一本しか形成されていない場合に受光素子を一次元に配した光学検出器をその流路方向に沿って配したSPR測定装置にも適用し得る。
In addition, if SPR measurement is performed while two adjacent flow paths 16 are paired, the sample liquid is flowed through one flow path 16 and the calibration solution is flowed through the other flow path 16, it corresponds to the flow path through which the calibration solution flows. The intensity change of the irradiation light can be monitored by the light receiving element, and the measurement error due to the influence can be reduced even if the state of the measuring apparatus changes due to a change in the outside air temperature or the like.
In addition, the SPR sensor 10 having a plurality of flow paths 16 is described, but one flow path may be provided.
Further, only the case where the optical detector 30 in which the light receiving element is arranged in two dimensions has been described, but when the resonance curve is known, the optical detector in which the light receiving element is arranged in one dimension may be arranged in the vicinity of the resonance angle. When only one flow path 16 is formed in the SPR sensor 10, the present invention can also be applied to an SPR measurement apparatus in which an optical detector having a light receiving element arranged one-dimensionally is arranged along the flow path direction.

以上述べたように、本発明は、一次元又は二次元に受光素子を配した光学検出器を用いて、表面プラズモン共鳴センサからの反射光強度変化を測定し、共鳴角の変化を検出し、生体分子の結合および結合過程を検出する用途に適用することができる。   As described above, the present invention measures the reflected light intensity change from the surface plasmon resonance sensor using an optical detector in which a light receiving element is arranged one-dimensionally or two-dimensionally, detects a change in resonance angle, The present invention can be applied to uses for detecting binding and binding processes of biomolecules.

本発明に係る表面プラズモン共鳴測定装置の一例を示す説明図。Explanatory drawing which shows an example of the surface plasmon resonance measuring apparatus which concerns on this invention. 表面プラズモン共鳴センサを示す説明図。Explanatory drawing which shows a surface plasmon resonance sensor. 光学系とセンサの関係を示す説明図。Explanatory drawing which shows the relationship between an optical system and a sensor. (a)及び(b)は較正溶液及びサンプル液を供給したときの反射光強度分布を示す説明図。(A) And (b) is explanatory drawing which shows reflected light intensity distribution when a calibration solution and a sample solution are supplied. 流路に直交する受光素子列の検出結果を示すグラフ。The graph which shows the detection result of the light receiving element row | line | column orthogonal to a flow path. キャリブレーションプログラムを示すフローチャート。The flowchart which shows a calibration program. 流路位置決定プログラムを示すフローチャート。The flowchart which shows a flow-path position determination program. (a)及び(b)は較正前後のデータに基づく反射光強度の測定結果。(A) And (b) is a measurement result of reflected light intensity based on data before and after calibration. 共鳴角の変化の測定結果を示すグラフ。The graph which shows the measurement result of the change of a resonance angle. 従来装置を示す説明図。Explanatory drawing which shows a conventional apparatus.

符号の説明Explanation of symbols

1 表面プラズモン共鳴測定装置
2 サンプル液供給装置
3 演算処理装置
10 表面プラズモン共鳴センサ
11 センサ部
12 半円形プリズム
20 光学系
30 光学検出器

DESCRIPTION OF SYMBOLS 1 Surface plasmon resonance measuring apparatus 2 Sample liquid supply apparatus 3 Arithmetic processing apparatus 10 Surface plasmon resonance sensor 11 Sensor part 12 Semicircular prism 20 Optical system 30 Optical detector

Claims (5)

表面プラズモン共鳴センサにサンプル液を供給するサンプル液供給装置と、サンプル液に接しているセンサ部に測定光を照射して、その反射光強度を一次元又は二次元に受光素子を配した光学検出器を用いて測定する光学系とを備えた表面プラズモン共鳴測定装置であって、
サンプル液の共鳴角近傍の測定領域内において反射光強度変化がフラットである較正溶液が表面プラズモン共鳴センサに供給されたときに、センサ部に照射した測定光の反射光強度を前記光学検出器で測定して、各受光素子の検出値に基づき受光素子の感度が一定になるようにキャリブレーションを実行する演算処理装置を備えたことを特徴とする表面プラズモン共鳴測定装置。
Optical detection with sample liquid supply device that supplies the sample liquid to the surface plasmon resonance sensor and the sensor unit that is in contact with the sample liquid is irradiated with measurement light, and the reflected light intensity is arranged in one or two dimensions. A surface plasmon resonance measuring apparatus comprising an optical system for measuring using a measuring instrument,
When a calibration solution having a flat reflected light intensity change in the measurement region near the resonance angle of the sample liquid is supplied to the surface plasmon resonance sensor, the reflected light intensity of the measurement light irradiated on the sensor unit is measured by the optical detector. A surface plasmon resonance measuring apparatus comprising an arithmetic processing unit that performs measurement and performs calibration so that sensitivity of a light receiving element becomes constant based on a detection value of each light receiving element.
前記演算処理装置は、各受光素子に共通する基準値を決定する基準値設定手段と、基準値と各受光素子の検出値との差に基づいてそれぞれの受光素子の感度を調整するキャリブレーション手段を備えた請求項1記載の表面プラズモン共鳴測定装置。   The arithmetic processing unit includes a reference value setting unit that determines a reference value common to each light receiving element, and a calibration unit that adjusts the sensitivity of each light receiving element based on a difference between the reference value and a detection value of each light receiving element. The surface plasmon resonance measuring apparatus according to claim 1, comprising: 前記表面プラズモン共鳴センサのセンサ部に複数の流路が平行に形成され、
表面プラズモン共鳴センサの任意の流路にサンプル液を供給したときに当該流路と直交する方向に沿って共鳴角付近の反射光強度を前記光学検出器で測定し、その反射光強度分布に基づいて流路の中心に対応する1又は複数の測定用受光素子を決定する演算処理装置を備えた請求項1記載の表面プラズモン共鳴測定装置。
A plurality of flow paths are formed in parallel in the sensor portion of the surface plasmon resonance sensor,
When the sample liquid is supplied to an arbitrary flow path of the surface plasmon resonance sensor, the reflected light intensity near the resonance angle is measured along the direction orthogonal to the flow path with the optical detector, and based on the reflected light intensity distribution The surface plasmon resonance measuring apparatus according to claim 1, further comprising an arithmetic processing unit that determines one or a plurality of measurement light receiving elements corresponding to the center of the flow path.
表面プラズモン共鳴センサにサンプル液を供給し、サンプル液に接しているセンサ部に測定光を照射して、その反射光強度変化を一次元又は二次元に受光素子を配した光学検出器を用いて測定することにより、そのサンプル液に起因する共鳴角の変化を測定する表面プラズモン共鳴測定方法であって、
サンプル液の共鳴角近傍の測定領域内において反射光強度変化がフラットである較正溶液を前記表面プラズモン共鳴センサに供給し、
前記較正溶液に接しているセンサ部に測定光を照射してその反射光強度を前記光学検出器で測定し、
各受光素子の検出値に基づき受光素子の感度が一定になるようにキャリブレーションを実行した後に、
前記表面プラズモン共鳴センサにサンプル液を供給して共鳴角の変化を測定することを特徴とする表面プラズモン共鳴測定方法。
Using an optical detector that supplies sample liquid to the surface plasmon resonance sensor, irradiates the sensor part in contact with the sample liquid with measurement light, and changes the reflected light intensity in one or two dimensions. A surface plasmon resonance measurement method for measuring a change in resonance angle caused by the sample liquid by measuring,
Supply the calibration solution whose reflected light intensity change is flat in the measurement region near the resonance angle of the sample liquid to the surface plasmon resonance sensor,
Irradiate measurement light to the sensor unit in contact with the calibration solution and measure the reflected light intensity with the optical detector,
After performing calibration so that the sensitivity of the light receiving element is constant based on the detection value of each light receiving element,
A surface plasmon resonance measuring method, comprising: supplying a sample liquid to the surface plasmon resonance sensor to measure a change in resonance angle.
前記センサ部に複数の流路が平行に形成された表面プラズモン共鳴センサを用いて、前記各流路に較正溶液を供給して前記キャリブレーションを実行した後、
表面プラズモン共鳴センサの任意の流路にサンプル液を供給して当該流路と直交する方向に沿って共鳴角付近の反射光強度を前記光学検出器で測定し、
その反射光強度分布に基づいて流路の中心に対応する1又は複数の測定用受光素子を決定し、
該受光素子で夫々の流路を流れるサンプル液に起因する共鳴角の変化を測定する請求項4記載の表面プラズモン共鳴測定方法。
Using a surface plasmon resonance sensor in which a plurality of flow paths are formed in parallel in the sensor unit, after supplying the calibration solution to each flow path and executing the calibration,
Supply sample liquid to an arbitrary flow path of the surface plasmon resonance sensor, measure the reflected light intensity near the resonance angle along the direction orthogonal to the flow path with the optical detector,
Determining one or more light-receiving elements for measurement corresponding to the center of the flow path based on the reflected light intensity distribution;
5. The surface plasmon resonance measurement method according to claim 4, wherein a change in resonance angle caused by the sample liquid flowing through each flow path is measured by the light receiving element.
JP2006045579A 2006-02-22 2006-02-22 Surface plasmon resonance measuring device and measuring method Pending JP2007225389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006045579A JP2007225389A (en) 2006-02-22 2006-02-22 Surface plasmon resonance measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006045579A JP2007225389A (en) 2006-02-22 2006-02-22 Surface plasmon resonance measuring device and measuring method

Publications (1)

Publication Number Publication Date
JP2007225389A true JP2007225389A (en) 2007-09-06

Family

ID=38547351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006045579A Pending JP2007225389A (en) 2006-02-22 2006-02-22 Surface plasmon resonance measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP2007225389A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096428A1 (en) * 2008-02-28 2009-09-02 Fujifilm Corporation Surface plasmon sensing apparatus
JP2009288103A (en) * 2008-05-29 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> Flow cell for measuring surface plasmon resonance phenomenon
JP2013072868A (en) * 2011-09-29 2013-04-22 Micobiomed Co Ltd Surface plasmon resonance sensor system
RU2519505C2 (en) * 2009-02-18 2014-06-10 Конинклейке Филипс Электроникс Н.В. Sensor device for target substance identification
JP2017203741A (en) * 2016-05-13 2017-11-16 住友電気工業株式会社 Sensitivity correction method and quantitative measuring method
JP2018535416A (en) * 2015-11-10 2018-11-29 ラクリサイエンス・エルエルシー System and method for determining sample osmotic pressure
US11406259B2 (en) 2015-09-24 2022-08-09 Lacrisciences, Llc Optical sensors, systems and methods of using same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096428A1 (en) * 2008-02-28 2009-09-02 Fujifilm Corporation Surface plasmon sensing apparatus
US8193516B2 (en) 2008-02-28 2012-06-05 Fujifilm Corporation Sensing apparatus
JP2009288103A (en) * 2008-05-29 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> Flow cell for measuring surface plasmon resonance phenomenon
RU2519505C2 (en) * 2009-02-18 2014-06-10 Конинклейке Филипс Электроникс Н.В. Sensor device for target substance identification
JP2013072868A (en) * 2011-09-29 2013-04-22 Micobiomed Co Ltd Surface plasmon resonance sensor system
US11406259B2 (en) 2015-09-24 2022-08-09 Lacrisciences, Llc Optical sensors, systems and methods of using same
US11980418B2 (en) 2015-09-24 2024-05-14 Lacrisciences, Llc Optical sensors, systems and methods of using same
JP2018535416A (en) * 2015-11-10 2018-11-29 ラクリサイエンス・エルエルシー System and method for determining sample osmotic pressure
US11016025B2 (en) 2015-11-10 2021-05-25 Lacrisciences, Llc Systems and methods for determining sample osmolarity
US11650154B2 (en) 2015-11-10 2023-05-16 Lacrisciences, Llc Systems and methods for determining sample osmolarity
JP2017203741A (en) * 2016-05-13 2017-11-16 住友電気工業株式会社 Sensitivity correction method and quantitative measuring method

Similar Documents

Publication Publication Date Title
US9383311B2 (en) Non-scanning SPR system
US10495446B2 (en) Methods and apparatus for measuring height on a semiconductor wafer
KR100571863B1 (en) Apparatus for measuring film thickness formed on object, apparatus and method of measuring spectral reflectance of object, and apparatus and method of inspecting foreign material on object
US8792102B2 (en) Interferometric spectral imaging of a two-dimensional array of samples using surface plasmon resonance
JP2007225389A (en) Surface plasmon resonance measuring device and measuring method
WO2009093453A1 (en) Analysis device and analysis method
US9733063B2 (en) Method and device for determining optical properties by simultaneous measurement of intensities at thin layers using light of several wavelengths
KR102337173B1 (en) Multilayer Measuring Using Effective Media Approximation
WO2006071992A1 (en) Spatially scanned optical reader system and method for using same
NL2010211A (en) Inspection apparatus and method.
US8743367B2 (en) Optical resonance analysis using a multi-angle source of illumination
KR20190118603A (en) Systems and Methods for Use in Ellipsometry with High Spatial Resolution
JP2022533246A (en) Optical diagnosis of semiconductor processes using hyperspectral imaging
US10228368B2 (en) Enhanced surface plasmon resonance method
JP2006017648A (en) Measuring instrument
JP2005257455A (en) Measuring apparatus and measuring unit
KR101987506B1 (en) Measurement apparatus and measurement method
TW202043930A (en) Scaling metric for quantifying metrology sensitivity to process variation
US20130267034A1 (en) Intermolecular interaction measurement method, measurement system for use in the method, and program
RU2500993C1 (en) Spectrometer based on surface plasmon resonance
JP2004117298A (en) Measuring method and apparatus using total reflection attenuation
US8541760B2 (en) Method for calibrating a deflection unit in a TIRF microscope, TIRF microscope, and method for operating the same
JP4219689B2 (en) Imaging apparatus and method
JP4173746B2 (en) measuring device
US6804007B2 (en) Apparatus for multiplexing two surface plasma resonance channels onto a single linear scanned array