WO2013140617A1 - Detector and liquid chromatograph provided with detector - Google Patents

Detector and liquid chromatograph provided with detector Download PDF

Info

Publication number
WO2013140617A1
WO2013140617A1 PCT/JP2012/057582 JP2012057582W WO2013140617A1 WO 2013140617 A1 WO2013140617 A1 WO 2013140617A1 JP 2012057582 W JP2012057582 W JP 2012057582W WO 2013140617 A1 WO2013140617 A1 WO 2013140617A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
detector
analysis
flow cell
Prior art date
Application number
PCT/JP2012/057582
Other languages
French (fr)
Japanese (ja)
Inventor
小田 竜太郎
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2012/057582 priority Critical patent/WO2013140617A1/en
Publication of WO2013140617A1 publication Critical patent/WO2013140617A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/064Stray light conditioning
    • G01N2201/0648Shutters

Definitions

  • the present invention relates to a detector used for detecting a sample component separated by an analysis column in a liquid chromatograph and a liquid chromatograph provided with the detector.
  • a spectrophotometer such as a multi-channel absorbance detector is often used as a detector used to detect sample components separated in an analysis column in a liquid chromatograph (see Patent Document 1).
  • FIG. 22 schematically shows the configuration of a multi-channel absorbance detector.
  • the detector includes a light source 2 that emits measurement light, a flow cell 6 for flowing an eluate from an analysis column of a liquid chromatograph, a light detector 14 for detecting light, and light from the light source 2 to the flow cell 6.
  • an optical system for guiding the light transmitted through the flow cell 6 to the photodetector 14 is provided.
  • the optical system includes a mirror 4, a mirror 8, and a concave diffraction grating 12.
  • the mirror 4 is disposed on the optical axis of the light emitted from the light source 2, and the flow cell 6 is disposed on the optical axis of the light reflected by the mirror 4.
  • a mirror 8 is arranged on the optical axis of the light transmitted through the flow cell 6, and a slit 10 and a concave diffraction grating 12 are arranged at a position on the optical axis of the light reflected by the mirror 8, and are split by the concave diffraction grating 12.
  • the light detector 14 is disposed at a position where the received light can be received.
  • the light from the light source 2 is reflected by the mirror 4 and condensed on the flow cell 6, the light transmitted through the flow cell 6 is reflected by the mirror 8 and condensed on the slit 10, and the light passing through the slit 10 is concavely diffracted.
  • the light is split by the grating 12 and imaged on the photodetector 14.
  • the light source 2 is, for example, a deuterium lamp, and the photodetector 14 is a multichannel photodetector such as a photodiode array.
  • the photodetector 14 detects a temporal change in the intensity of light for each predetermined wavelength range that has passed through the flow cell 6, and the detection signal is converted as a change in absorbance and sent to an arithmetic control device (not shown). Analysis data processing is performed. Absorbance data obtained from the data processing can be used to obtain an absorption spectrum for the qualification of the sample, or to quantify a specific component based on the relationship between the absorbance at a wavelength where the specific component is absorbed and the sample concentration. it can.
  • Parts such as lenses and window plates are provided in the light passage part of the flow cell 6.
  • ultraviolet light and visible light are often used. Therefore, a material that is transparent to ultraviolet light and visible light is used as a material for components such as lenses and window plates provided in the flow cell 6. Quartz glass is often used.
  • the mirror 4, mirror 8, and diffraction grating 12 other than the flow cell are often made of aluminum as a reflective material. If light with strong energy continues to pass through these parts, the deterioration of these parts may progress and the light transmittance may decrease.
  • an object of the present invention is to suppress deterioration of components and other optical elements constituting the flow cell.
  • a first embodiment of a detector according to the present invention includes a light source that emits measurement light, a light detector for detecting light, a flow cell for flowing a sample to be measured, light from the light source to the flow cell, and a flow cell.
  • a light irradiation control means for controlling the operation of the shutter mechanism so that the light shielding shutter is removed from the optical path only when the measurement is performed and the light shielding shutter is disposed on the optical path except when the measurement of the sample is performed.
  • a second embodiment of the detector according to the present invention includes a light source for emitting measurement light, a flow cell for flowing a sample to be measured, an optical system for guiding light from the light source to the flow cell, and light detection for detecting light. And at least a part of the light in the wavelength range not used for measurement from the light irradiated to the flow cell when placed on the optical path of the light guided from the light source to the flow cell when the measurement of the sample is executed Or a neutral density filter having a light shielding characteristic.
  • the liquid chromatograph according to the present invention includes an analysis channel, a sample introduction unit for introducing a sample into the analysis channel, a mobile phase solution feeding unit for feeding a mobile phase in the analysis channel, An analysis column is provided on the downstream side of the sample introduction section on the analysis flow path, and is separated from the sample introduced by the sample introduction section for each component, and is provided on the analysis flow path on the downstream side of the analysis column. And a detector for detecting the separated sample component, wherein the detector includes the first form or the second form of the detector according to the present invention.
  • a shutter mechanism that can block the light from the light source to the flow cell by arranging a light blocking shutter on the optical path of the light guided from the light source to the flow cell, and the measurement of the sample
  • the detector of the present invention at least a part of light in a wavelength range not used for measurement is dimmed or shielded from the light irradiated to the flow cell, which is disposed on the optical path of the light guided from the light source to the flow cell. Because it is equipped with a neutral density filter, it is possible to reduce the intensity of the light irradiated to the flow cell at least during sample measurement, and the deterioration of parts such as lenses and other optical elements that constitute the flow cell. Can be suppressed.
  • the progress of deterioration of components such as lenses and other optical elements constituting the flow cell of the detector is suppressed, so that the reliability of the analysis is improved. Deterioration can be suppressed.
  • the second embodiment of the detector according to the present invention and the liquid chromatograph provided with the second embodiment also provide an effect that the following problems can be improved.
  • the low-concentration sample is greatly affected by alteration due to light irradiation, and the relationship between concentration and absorbance.
  • concentration and absorbance There is a problem that the linearity of the sample deteriorates and the accuracy of quantification deteriorates.
  • FIG. 15 is a graph showing an absorbance spectrum for each elapsed time from the start of light irradiation measured by sealing the anti-inflammatory analgesic as a sample in the flow cell after stopping the liquid feeding to the flow cell.
  • FIG. 16 is a graph showing the temporal change in absorbance at a measurement wavelength of 260 nm in the data of FIG.
  • the absorbance spectrum at the start of light irradiation can be referred to as the original absorbance spectrum of the sample.
  • the absorbance spectrum changes with the passage of time from the start of light irradiation, and the absorbance at a wavelength of 260 nm increases with the passage of time. Yes.
  • the sample is irradiated with light while passing through the flow cell, but the sample is altered within the passage time, and the influence becomes greater as the concentration is lower.
  • the linearity at a wavelength of 260 nm deteriorates as shown by the graph in FIG.
  • the light absorbance may decrease due to light irradiation, in which case the linearity deteriorates as shown in FIG. 17B.
  • the reason why the linearity of absorbance deteriorates as the sample concentration decreases is that the amount of light received per molecule increases as the sample concentration decreases, so the proportion of denatured molecules increases and changes from the original absorbance. It is thought that it is from.
  • the sample of the flow cell is irradiated with light other than the wavelength used for measuring the absorbance, and the sample contains a component that emits fluorescence when excited by light of such wavelength, the fluorescence emitted from that component
  • the wavelength range used for the measurement of absorbance is included in this wavelength range, the linearity of the relationship between concentration and absorbance deteriorates due to the influence of the fluorescence, and there is also a problem that the accuracy of quantification deteriorates. For example, in the measurement of a sample having an absorption spectrum as shown in FIG.
  • the above problems can be improved or solved by removing components not used for measurement from the light irradiated to the flow cell by the neutral density filter.
  • the problem of deterioration of the sample due to the energy of the irradiated light can be improved by reducing the energy of the light irradiated to the flow cell by dimming or blocking a part of the light having a wavelength not used for measurement by the neutral density filter.
  • the problem of fluorescence emitted from components contained in the sample can be solved by removing the wavelength components that excite such components with a neutral density filter.
  • movement of the Example of FIG. 6 is a flowchart for explaining still another example of the shutter opening / closing operation of the embodiment of FIG. 1. 6 is a flowchart for explaining still another example of the shutter opening / closing operation of the embodiment of FIG. 1.
  • a condensing mirror for condensing the light from the light source and guiding it to the flow cell may be provided between the light source and the flow cell. If such a condensing mirror is continuously irradiated with light having strong energy, the deterioration proceeds like the lens of the flow cell and the like, resulting in a problem that the reflectance decreases.
  • the shutter mechanism may be configured to shield the light from the light source to the flow cell by arranging a light shielding shutter between the light source and the condenser mirror. Then, when the analysis of the sample is not performed, the light from the light source is not irradiated to the condenser mirror, and the irradiation time of the light to the condenser mirror is reduced and the deterioration of the condenser mirror is progressed. Can be suppressed.
  • the neutral density filter is arranged between the light source and the collector mirror, the energy of the light irradiated to the collector mirror can be reduced. It is possible to suppress the progress of deterioration of the condenser mirror.
  • the first and second embodiments of the detector according to the present invention include those in which the optical system has a configuration for guiding the light transmitted through the flow cell to the photodetector.
  • the optical system has a configuration for guiding the light transmitted through the flow cell to the photodetector.
  • the optical system has a configuration for guiding the light transmitted through the flow cell to the photodetector.
  • the optical system has a configuration for guiding the light transmitted through the flow cell to the photodetector.
  • the optical system has a configuration for guiding the light transmitted through the flow cell to the photodetector.
  • the optical system has a configuration for guiding the light transmitted through the flow cell to the photodetector.
  • the optical system has a configuration for guiding the light transmitted through the flow cell to the photodetector.
  • the optical system has a configuration for guiding the light transmitted through the flow cell to the photodetector.
  • the optical system has a configuration for guiding the light transmitted through the flow cell to the photo
  • the detector is disposed on the optical path of the light guided from the light source to the flow cell, and the light irradiated to the flow cell is used in a wavelength region that is not used for the measurement.
  • the optical system further includes a filter driving mechanism that performs an operation of disposing the neutral density filter on the optical path and an operation of removing the neutral density filter from the optical path
  • the filter driving mechanism is a sample having a property of being altered at least by light irradiation.
  • a neutral density filter is arranged on the optical path.
  • the detector further includes a filter driving mechanism that performs an operation of disposing the neutral density filter on the optical path and an operation of removing it from the optical path, and the filter driving mechanism is at least by light irradiation
  • the filter driving mechanism is at least by light irradiation
  • Examples include a filter in which an attenuating filter is arranged on an optical path when measuring a sample having a property of changing quality.
  • a sample introduction unit As an example of a preferred embodiment of a liquid chromatograph equipped with the first embodiment of the detector of the present invention, a sample introduction unit, a mobile phase liquid feeding unit, and a control unit that controls the operation by transmitting a control signal to the detector
  • the light irradiation control means of the detector receives a signal for starting the analysis of the sample from the control unit, the light shielding shutter is removed from the optical path of the light from the light source, and the sample is analyzed from the control unit.
  • a light-shielding shutter is arranged on the optical path when a signal for ending is received.
  • the operation is performed by transmitting a control signal to the sample introduction part, the mobile phase liquid feeding part and the detector.
  • the light irradiation control means of the detector further removes the light-shielding shutter from the light path of the light from the light source and receives the analysis when receiving a signal for starting the analysis of the sample from the control unit.
  • the time elapsed since the start of the measurement is counted, and when the time required for the analysis has elapsed since the start of the analysis, a light shielding shutter is arranged on the optical path.
  • the mobile phase liquid feeding unit is feeding the mobile phase while feeding the mobile phase. While the light irradiation control means of the detector is receiving a signal indicating that the mobile phase is being fed from the mobile phase liquid feeding unit, The light-shielding shutter is removed from the light path of the light from the light source, and the light-shielding shutter is arranged on the light path when the mobile phase liquid feeding unit stops receiving a signal indicating that the mobile phase is being fed. What is being done is mentioned.
  • an arithmetic processing unit that performs arithmetic processing on a sample based on a detection signal obtained by the detector, and a light shielding shutter of the detector are provided on the optical path.
  • a dark current data holding unit that holds a dark current value of a light detector element measured in a state of being arranged in the detector, and the arithmetic processing unit is a detector for measuring the sample in the arithmetic processing for the sample.
  • the dark current value held in the dark current data holding unit may be subtracted from the detection signal obtained in the above and used for the arithmetic processing.
  • the detector 1 includes a light source 2 that emits measurement light, a flow cell 6 for flowing an eluate from an analysis column of a liquid chromatograph, a light detector 14 for detecting light, and light from the light source 2 to the flow cell 6.
  • An optical system that guides the light transmitted through the flow cell 6 to the photodetector 14 is provided.
  • the optical system includes a mirror 4, a mirror 8, and a concave diffraction grating 12.
  • the mirror 4 is disposed on the optical axis of the light emitted from the light source 2, and the flow cell 6 is disposed on the optical axis of the light reflected by the mirror 4.
  • a mirror 8 is arranged on the optical axis of the light transmitted through the flow cell 6, and a slit 10 and a concave diffraction grating 12 are arranged at a position on the optical axis of the light reflected by the mirror 8, and are split by the concave diffraction grating 12.
  • the light detector 14 is disposed at a position where the received light can be received.
  • the light from the light source 2 is reflected by the mirror 4 and condensed on the flow cell 6, the light transmitted through the flow cell 6 is reflected by the mirror 8 and condensed on the slit 10, and the light passing through the slit 10 is concavely diffracted.
  • the light is split by the grating 12 and imaged on the photodetector 14.
  • the light source 2 is, for example, a deuterium lamp, and the photodetector 14 is a multichannel photodetector such as a photodiode array.
  • FIG. 1 An example of the structure of the flow cell 6 is shown in FIG.
  • a cell 36 is formed inside the housing 42.
  • An inlet channel 38 is connected to one end of the cell 36, and an outlet channel 40 is connected to the other end of the cell 36.
  • a lens 44 is disposed on the side of the light incident side of the cell 36 via a gasket 45, and the lens 44 and the gasket 45 are fixed to the housing 42 by a fixing screw 46.
  • a flat window plate 48 is disposed on the side of the light emission side of the cell 36 via a gasket 49, and the window plate 48 and the gasket 49 are fixed to the housing 42 by a fixing screw 50.
  • the lens 44 and the window plate 48 are made of, for example, synthetic quartz glass, and the gaskets 45 and 49 are made of a fluororesin.
  • the photodetector 14 detects a temporal change in the intensity of light for each predetermined wavelength range that has passed through the flow cell 6, and the detection signal is converted as a change in absorbance so that the arithmetic control device 23, analysis data processing is performed.
  • Absorbance data obtained from the data processing can be used to obtain an absorption spectrum for the qualification of the sample, or to quantify a specific component based on the relationship between the absorbance at a wavelength where the specific component is absorbed and the sample concentration. it can.
  • a shutter 16 for shielding light from the light source 2 and a shutter drive mechanism 18 that can be disposed on or removed from the light path of the light from the light source 2 are provided.
  • the shutter 16 is arranged on the optical path of the light from the light source 2 between the light source 2 and the condenser mirror 4.
  • the shutter 16 and the shutter drive mechanism 18 constitute a shutter mechanism.
  • disposing the shutter 16 on the optical path of the light from the light source 2 is expressed as “closing”, and removing the shutter 16 from the optical path is expressed as “opening”.
  • An example of the shutter drive mechanism 18 is to rotationally drive a shutter 16 that shields light by a motor 18a, as shown in FIG.
  • the position of the shutter 16 is controlled by a motor drive unit 18b that controls the rotation of the motor 18a by applying a voltage to the motor 18a.
  • the configuration of the shutter mechanism is not limited to this, and any configuration may be used as long as the shutter 16 can be opened and closed.
  • the detector 1 includes a detector control unit 20.
  • the detector control unit 20 is realized by a computer, and controls the light source 2, the shutter drive mechanism 18, and the photodetector 14 based on a control signal given from an external arithmetic control device 23. Further, the detection signal obtained by the photodetector 14 is input to the arithmetic control device 23 via the detector control unit 20, and the arithmetic control device 23 performs an operation for obtaining the absorbance and the like.
  • the arithmetic control device 23 will be described later.
  • the detector control unit 20 includes light irradiation control means 22 for controlling the lighting of the light source 2 and the driving of the shutter by the shutter driving mechanism 18.
  • the light irradiation control means 22 is configured to open the shutter 16 only when measuring the absorbance of the sample.
  • the light irradiation control means 22 keeps the shutter 16 closed until it receives a sample analysis start signal from the arithmetic and control unit 23, and receives the analysis start signal.
  • the shutter 16 is configured to open.
  • the detector control part 20 is comprised so that the shutter 16 may be closed again, when the signal of the completion
  • the operation of closing the shutter 16 after the analysis is not necessarily performed based on the signal from the arithmetic control device 23 as described above.
  • the detector control unit 20 receives an analysis start signal from the arithmetic control device 23, it also receives information on the time required for analysis, and the detector control unit 20 starts the analysis.
  • the light irradiation control means 22 may be configured so as to measure the time from the time until the shutter 16 is closed when the time required for analysis has elapsed.
  • the light irradiation control means 22 of the detector control unit 20 starts a series of analyzes from the arithmetic control device 23 as shown in the flowchart of FIG.
  • the shutter 16 is opened based on this signal, and the shutter 16 is closed based on the end signal of a series of analyzes from the arithmetic and control unit 23.
  • the operation of closing the shutter 16 after the end of a series of analyzes in the case of analyzing a plurality of samples continuously does not necessarily have to be performed based on the signal from the arithmetic and control unit 23 as described above.
  • the detector control unit 20 receives an analysis start signal from the arithmetic control device 23, it also receives information on the analysis schedule set in the arithmetic control device 23.
  • the detector control unit 20 receives information indicating that the analysis is the last analysis and the time required for the analysis from the arithmetic and control unit 23, and the time required after receiving the signal for starting the last analysis.
  • the light irradiation control means 22 may be configured to measure the time until the passage of time and close the shutter 16 when the last analysis is completed.
  • An analysis column 32 and a detector 1 for separation are provided.
  • the arithmetic control device 23 has functions of an arithmetic processing unit and a control unit, and controls the operations of the liquid feed pump 26, the sample injection unit 30, and the detector 1, and based on signals obtained by the detector 1. Calculation to obtain absorbance and the like is performed.
  • the arithmetic and control unit 23 can be realized by, for example, a PC (personal computer) or a dedicated computer, as well as those including those computers and a system controller.
  • the system controller is interposed between a PC or a dedicated computer and each device such as the liquid feed pump 26, the sample injection unit 30, and the detector 1, and sets operations and operating conditions for each of these devices.
  • An analysis schedule and analysis conditions are set in the arithmetic and control unit 23.
  • an operation start signal is given from the arithmetic and control unit 23 to the detector 1 and the liquid feed pump 26.
  • the detector 1 closes the shutter 16 and turns on the light source 2.
  • the liquid feed pump 26 starts to feed the mobile phase. Then, it waits for a fixed time until the emitted light quantity of the light source 2 of the detector 1 is stabilized.
  • an analysis start signal is given from the arithmetic and control unit 23 to the detector 1 and the sample injection unit 30.
  • the detector 1 opens the shutter 16 and irradiates the flow cell 6 with light from the light source 2.
  • the sample injection unit 30 injects the sample into the analysis flow path 24. The sample injected into the analysis channel 24 is separated for each component in the analysis column 32, and then introduced into the flow cell 6 of the detector 1, whereby the absorbance is measured and the component concentration is quantified.
  • the next sample is injected into the analysis flow path 24 by the sample injection unit 30 and analyzed.
  • the arithmetic and control unit 23 gives an analysis end signal to the detector 1, and the detector 1 receiving the analysis end signal closes the shutter 16 and puts it in the flow cell 6. Blocks the irradiated light.
  • the arithmetic and control unit 23 gives an analysis start signal to the detector 1 and the sample injection unit 30 based on the new analysis schedule, whereby the detector 1 opens the shutter 16 and the sample injection The unit 30 sequentially injects the sample into the analysis channel 24 and executes analysis of the analysis schedule.
  • the arithmetic and control unit 23 gives an operation end signal to the detector 1 and the liquid feed pump 26. Upon receiving the operation end signal, the detector 1 turns off the light source 2 and the liquid feed pump 26 stops the mobile phase liquid feed. Thereby, the operation of the liquid chromatograph is completed.
  • the detector and the liquid chromatograph of the present invention are not limited to those in which the opening and closing of the shutter 16 of the detector 1 is performed based on the signal from the arithmetic control device 23 and the elapsed time from the start of analysis.
  • a signal indicating that the mobile phase is being fed is transmitted to the detector control unit 20 of the detector 1.
  • the detector control unit 20 opens the shutter 16 while receiving a signal from the liquid feeding pump 26, and closes the shutter 16 when no signal is received. Good.
  • the advantage that the light incident on the photodetector 14 can be blocked by closing the shutter 16 without turning off the light source 2 makes it possible to provide the apparatus with a function of eliminating the influence of the dark current of the elements of the photodetector 14. It is.
  • the dark current value of each element of the photodetector 14 is determined by measuring the signal of each element of the multi-channel photodetector 14 with the shutter 16 closed and the light incident on the photodetector 14 blocked. Can be measured. The measured value can be corrected using the dark current value.
  • a dark current data holding unit 23 a for holding the measured dark current value is provided in the arithmetic control device 23. Then, when calculating the absorbance, as shown in the flowchart of FIG. 10, the detection signal data of each element of the photodetector 14 with respect to the sample with the shutter 16 opened is collected, and the dark current is obtained. The dark current value held in the data holding unit 23a is subtracted from the collected detection signal value, and the calculation for obtaining the absorbance of the sample component is performed using the detection signal data after the dark current value is subtracted. Thereby, the light absorbency which reduced the influence of the dark current of the photodetector 14 can be calculated
  • the dark current data holding unit 23 a is provided in the arithmetic control device 23, but the dark current data holding unit 23 a is provided by a data memory or other storage device provided in the detector control unit 20. Can also be realized.
  • the shutter 16 is arranged between the light source 2 and the condenser mirror 4 when the shutter 16 is closed, but the present invention is not limited to this. 12, a shutter 16 may be disposed between the mirror 4 and the flow cell 6. In short, even when other optical components are provided, when the shutter 16 is closed, the shutter 16 is disposed at least on the optical path of the light from the light source 2 between the light source 2 and the flow cell 6. Well, by doing so, it is possible to suppress the progress of deterioration of components such as lenses, the mirror 8 and the diffraction grating 12 constituting the flow cell 6. As in the embodiment of FIG. 1, by arranging the shutter 16 closer to the light source 2 than other optical components, it is possible to suppress the progress of deterioration of more optical components such as the condensing mirror 4. it can.
  • the light from the light source 2 is guided to the flow cell 6, and the light transmitted through the flow cell 6 is dispersed by the spectroscope 12 and detected by the photodetector 14.
  • the detector according to the present invention is not limited to this.
  • the light after the light from the light source is separated by the spectroscope is guided to the flow cell, and the light transmitted through the flow cell is detected by the photodetector.
  • the present invention can also be applied to a pre-spectroscopic spectrophotometer detected by the above method.
  • FIG. 14 is a schematic configuration diagram showing an embodiment in which the present invention is applied to a pre-spectral spectrophotometer.
  • the detector 1a of this embodiment includes a mirror 40, a slit 42, a mirror 44, a diffraction grating 46, and a mirror 50 as an optical system for guiding the light from the light source 2 to the flow cell 6.
  • the light from the light source 2 is condensed on the slit 42 by the mirror 40, and the light transmitted through the slit 42 is reflected by the mirror 44 and enters the diffraction grating 46.
  • the light incident on the diffraction grating 46 is dispersed in the wavelength direction, and the wavelength component used for measuring the absorbance of the sample is guided to the mirror 50.
  • the diffraction grating 46 is rotated about a rotation axis 47 by a diffraction grating rotating mechanism 48.
  • the relationship between the rotation angle of the diffraction grating 46 and the wavelength of the light extracted toward the flow cell 6 is set in advance, and the detector control unit 20a extracts the light of the wavelength used for measurement and irradiates the flow cell 6 with it.
  • the installation angle is adjusted by rotating the diffraction grating 46.
  • the light split by the diffraction grating 46 and incident on the mirror 50 is reflected by the mirror 50 and applied to the flow cell 6, and the light transmitted through the flow cell 6 is detected by the sample-side photodetector 54 provided immediately after the flow cell 6.
  • a beam splitter 52 is installed between the mirror 50 and the flow cell 6.
  • the beam splitter 52 extracts a part of the light traveling from the mirror 50 toward the flow cell 6 and guides it to the reference side photodetector 56, and the reference side photodetector 56 emits a part of the light emitted to the flow cell 6. Measured.
  • the detection signal of the reference-side photodetector 56 is used to correct the influence due to the variation in the amount of light irradiated to the flow cell 6.
  • the temporal change in the intensity of the light transmitted through the flow cell 6 is detected in the sample-side photodetector 54, and the detection signal is converted as an absorbance change and sent to the arithmetic control device 23a.
  • the arithmetic and control unit 23a obtains the absorbance of the sample flowing through the flow cell 6 based on the detection signals of the sample-side photodetector 54 and the reference-side photodetector 56, and uses a calibration curve representing the relationship between the absorbance and the sample concentration prepared in advance. Based on this, the specific component is quantified.
  • a shutter 16 is arranged on the optical path of light from the light source 2 toward the mirror 40.
  • the shutter 16 is disposed on the optical path or removed from the optical path by the shutter driving mechanism 18.
  • mirror 40, mirror 44, diffraction grating 46 and mirror 50 constituting the optical system of the detector 1a by closing the shutter 16 when the sample is not analyzed while the light source 2 is lit, It is possible to suppress the progress of deterioration of the lens provided in the flow cell 6.
  • the position where the shutter 16 is disposed is not limited to the position between the light source 2 and the mirror 40, and the light source 2, the flow cell 6, and the like. As long as it is on the optical path of the light from the light source 2 between them, it is possible to suppress the progress of deterioration of components such as optical components and lenses of the flow cell 6 on the rear side of the shutter 16.
  • the detector 1b of this embodiment is obtained by adding a neutral density filter (hereinafter referred to as a filter) 60 to the detector 1 of FIG. 1 and changing the shutter driving mechanism 18 to a shutter and filter driving mechanism 62.
  • a filter neutral density filter
  • Other configurations are the same as those of the detector 1 of FIG. 1, and a detailed description thereof is omitted here.
  • a shutter 16 and a filter 60 are arranged on the optical path of light from the light source 2 toward the mirror 4.
  • the shutter 16 and the filter 60 are arranged on the optical path of the light from the light source 2 by the shutter and filter driving mechanism 62 or are removed from the optical path.
  • the shutter 16 and the filter 60 are driven by a common mechanism called the shutter and filter drive mechanism 62, but may be driven by separate drive mechanisms. .
  • FIG. 16 An example of the configuration of the shutter 16, the filter 60, the shutter, and the filter driving mechanism 62 is shown in FIG.
  • the filter 60 is provided as a partial region of the shutter 16 and is driven to rotate by a motor 62a. By rotating the motor 62a, the shutter 16 is disposed on the optical path of the light from the light source 2, the filter 60 is disposed on the optical path of the light from the light source 2, and both the shutter 16 and the filter 60 are separated from the light source 2. It is possible to make it not placed on the optical path of the light.
  • the shutter 16 is disposed on the optical path of the light from the light source 2, and the optical components constituting the optical system are deteriorated. Is prevented.
  • the filter 60 is disposed on the optical path of the light from the light source 2, thereby reducing the energy of the light from the light source 2 at the time of analyzing the sample, and the subsequent stage. The deterioration of the sample in the flow cell 6 due to light irradiation can be suppressed while the deterioration of the optical component on the side can be suppressed. Further, in the case where the sample flowing through the flow cell 6 has a property that does not change due to light irradiation, it is possible to perform high-sensitivity measurement without arranging the filter 60 on the optical path of the light from the light source 2.
  • a sample having an absorbance spectrum as shown in FIG. 15 is quantified by measuring absorbance at a wavelength of 260 nm.
  • this sample has strong absorption on the shorter wavelength side than 260 nm used for measurement, and particularly has strong absorption on the shorter wavelength side than 220 nm. Therefore, as the wavelength characteristics of the filter used as the filter 60, it is preferable to use a filter having characteristics that hardly transmit light on the short wavelength side from around 220 nm as shown in FIG.
  • the filter 60 light having a wavelength component that is absorbed by the sample and not used for measurement can be removed by the filter 60, and deterioration of the sample due to light irradiation can be suppressed.
  • a plurality of types of filters used as the filter 60 are prepared, and the filter to be used may be determined according to the characteristics of the sample to be measured.
  • the absorbance spectrum of the sample component to be analyzed is known in advance, a filter that transmits light in the vicinity of the wavelength used for measurement within the wavelength range with the absorption and attenuates wavelength components not used for measurement Select. Even if the absorbance spectrum of the sample component to be analyzed is not known, the multi-channel absorbance detector can easily measure the spectrum. Therefore, the absorbance spectrum of the target component is measured without the filter 60 being installed in the optical path.
  • the filter wavelength and transmittance characteristics are selected as in the case where the absorbance spectrum of the target component is known.
  • the wavelength range used for measurement it is preferable to select a filter that attenuates light on the short wavelength side. Since the light on the short wavelength side has stronger energy than the light on the long wavelength side, the wavelength range used for measurement can be selected by selecting a filter that attenuates light on the short wavelength side rather than the wavelength range used for measurement. It is possible to more efficiently suppress the deterioration of the sample component than selecting a filter that attenuates light on the longer wavelength side.
  • the filter having the light transmission characteristics as shown in FIG. 20 has some transmittance even in a short wavelength region of 220 nm or less, the filter is arranged on the optical path using light in the wavelength region in which the filter absorbs.
  • the absorbance spectrum of the sample can be obtained by taking the difference between the absorbance spectrum of the mobile phase and the sample in the state, and the absorbance spectrum of the sample can be accurately measured while suppressing the alteration of the sample.
  • a filter having a light transmission characteristic as shown in FIG. It is possible to suppress the generation of fluorescence that inhibits the absorbance measurement.
  • the filter 60 is arranged between the light source 2 and the condenser mirror 4, but the present invention is not limited to this, and between the light source 2 and the flow cell 6. Any position on the optical path of the light irradiated to the flow cell 6 may be used. As in the embodiment of FIG. 18, the filter 60 is arranged at a position closer to the light source 2 than other optical components, thereby suppressing the progress of deterioration of more optical components such as the condenser mirror 4. it can.
  • the filter 60 is driven by a driving mechanism, and is arranged on or removed from the optical path of the light from the light source 2, but the present invention is not limited to this. Instead, the filter 60 may be always arranged on the optical path of the light from the light source 2. In that case, it can be realized by forming the lens 44 of the flow cell 6 of FIG. 11 with the material of the filter 60 of FIG. Thereby, without increasing the number of parts constituting the detector, it is possible to suppress the deterioration of the optical parts on the subsequent stage and the deterioration of the sample. Further, as shown in FIG. 21, the same effect can be obtained even if the filter 60 is attached to the entrance window side of the flow cell 6a.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

A shutter (16) (light blocking shutter) for blocking light from a light source (2), and a shutter drive mechanism (18) for moving the shutter (16) between a position on the optical path of the light emitted from the light source (2) and between the light source (2) and a light collection mirror (4) and a position out of the optical path are provided. A detector control unit (20) is provided with a light irradiation control means (22) for controlling the lighting of the light source (2) and the drive of the shutter by the shutter drive mechanism (18). The light irradiation control means (22) is configured to open the shutter (16) only when the absorbance of a sample is measured.

Description

検出器及びその検出器を備えた液体クロマトグラフDetector and liquid chromatograph equipped with the detector
 本発明は、液体クロマトグラフにおいて分析カラムで分離された試料成分を検出するために使用される検出器及びその検出器を備えた液体クロマトグラフに関するものである。 The present invention relates to a detector used for detecting a sample component separated by an analysis column in a liquid chromatograph and a liquid chromatograph provided with the detector.
 液体クロマトグラフにおいて分析カラムで分離された試料成分を検出するために使用される検出器として、マルチチャネル型吸光度検出器などの分光光度計が多く使用される(特許文献1参照。)。 A spectrophotometer such as a multi-channel absorbance detector is often used as a detector used to detect sample components separated in an analysis column in a liquid chromatograph (see Patent Document 1).
 図22にマルチチャネル型吸光度検出器の構成を概略的に示す。
 この検出器は、測定光を発する光源2、液体クロマトグラフの分析カラムからの溶出液を流すためのフローセル6、光を検出するための光検出器14及び光源2からの光をフローセル6に導くとともにフローセル6を透過した光を光検出器14に導く光学系を備えている。光学系はミラー4、ミラー8及び凹面回折格子12により構成されている。
FIG. 22 schematically shows the configuration of a multi-channel absorbance detector.
The detector includes a light source 2 that emits measurement light, a flow cell 6 for flowing an eluate from an analysis column of a liquid chromatograph, a light detector 14 for detecting light, and light from the light source 2 to the flow cell 6. In addition, an optical system for guiding the light transmitted through the flow cell 6 to the photodetector 14 is provided. The optical system includes a mirror 4, a mirror 8, and a concave diffraction grating 12.
 ミラー4は光源2から発せられる光の光軸上に配置されており、ミラー4で反射した光の光軸上にフローセル6が配置されている。フローセル6を透過した光の光軸上にミラー8が配置されており、ミラー8で反射した光の光軸上の位置にスリット10及び凹面回折格子12が配置され、凹面回折格子12で分光された光を受光することができる位置に光検出器14が配置されている。すなわち、光源2からの光をミラー4で反射させてフローセル6に集光し、フローセル6を透過した光をミラー8で反射させてスリット10に集光し、スリット10を通過した光を凹面回折格子12で分光して光検出器14上に結像する。光源2は例えば重水素ランプであり、光検出器14は例えばホトダイオードアレイなどのマルチチャネル型の光検出器である。 The mirror 4 is disposed on the optical axis of the light emitted from the light source 2, and the flow cell 6 is disposed on the optical axis of the light reflected by the mirror 4. A mirror 8 is arranged on the optical axis of the light transmitted through the flow cell 6, and a slit 10 and a concave diffraction grating 12 are arranged at a position on the optical axis of the light reflected by the mirror 8, and are split by the concave diffraction grating 12. The light detector 14 is disposed at a position where the received light can be received. That is, the light from the light source 2 is reflected by the mirror 4 and condensed on the flow cell 6, the light transmitted through the flow cell 6 is reflected by the mirror 8 and condensed on the slit 10, and the light passing through the slit 10 is concavely diffracted. The light is split by the grating 12 and imaged on the photodetector 14. The light source 2 is, for example, a deuterium lamp, and the photodetector 14 is a multichannel photodetector such as a photodiode array.
 光検出器14では、フローセル6を透過した所定の波長範囲ごとの光の強度の時間的な変化が検出され、その検出信号は吸光度変化として変換されて演算制御装置(図示は省略)に送られ、分析データ処理が行なわれる。そのデータ処理で得られた吸光度データにより、試料の定性のための吸収スペクトルを得たり、特定成分に吸収のある波長での吸光度と試料濃度との関係から特定成分の定量を行なったりすることができる。 The photodetector 14 detects a temporal change in the intensity of light for each predetermined wavelength range that has passed through the flow cell 6, and the detection signal is converted as a change in absorbance and sent to an arithmetic control device (not shown). Analysis data processing is performed. Absorbance data obtained from the data processing can be used to obtain an absorption spectrum for the qualification of the sample, or to quantify a specific component based on the relationship between the absorbance at a wavelength where the specific component is absorbed and the sample concentration. it can.
特開2008-70274号公報JP 2008-70274 A
 図22に示したような従来の検出器では、フローセル6には分光される前の光が入射するため、分光された光に比べて強いエネルギーをもつ光がフローセル6に入射する。ある試料についての分析が終了したときは、次回の分析が開始されるまで移動相の送液が停止される。一方で、検出器の光源は、点灯してから光量が安定するまでに時間がかかるため、ある試料の分析が終了し移動相の送液が停止されても光源は点灯したままにされていることが多い。そのため、試料の分析が行なわれていない状態でも光源からフローセルに対して光が照射され続けることになる。 In the conventional detector as shown in FIG. 22, since light before being split is incident on the flow cell 6, light having a stronger energy than the split light is incident on the flow cell 6. When the analysis for a certain sample is completed, the mobile phase liquid feeding is stopped until the next analysis is started. On the other hand, since it takes time for the light source of the detector to stabilize after the light is turned on, the light source remains on even after the analysis of a certain sample is completed and the liquid feeding of the mobile phase is stopped. There are many cases. Therefore, light is continuously irradiated from the light source to the flow cell even when the sample is not analyzed.
 フローセル6の光通過部分にはレンズや窓板などの部品が設けられている。液体クロマトグラフの吸光度検出器では、紫外光や可視光が多く使用されるため、フローセル6に設けられているレンズや窓板などの部品の材質に、紫外光や可視光に透過性のある合成石英ガラスが使用されることが多い。また、フローセル以外のミラー4、ミラー8、回折格子12には反射材としてアルミニウムを使用したものが使用されることが多い。エネルギーの強い光がこれらの部品を通過し続けると、これらの部品の劣化が進行して光透過率が低下してしまうことがある。これらの部品の性能が劣化するとフローセル6を透過する光量が低下し、その結果、光検出器14に入射する光の強度が低下してノイズの割合が増大する。その結果、液体クロマトグラフの分析精度が低下し、高感度分析にも影響を与える。 Parts such as lenses and window plates are provided in the light passage part of the flow cell 6. In an absorbance detector for a liquid chromatograph, ultraviolet light and visible light are often used. Therefore, a material that is transparent to ultraviolet light and visible light is used as a material for components such as lenses and window plates provided in the flow cell 6. Quartz glass is often used. In addition, the mirror 4, mirror 8, and diffraction grating 12 other than the flow cell are often made of aluminum as a reflective material. If light with strong energy continues to pass through these parts, the deterioration of these parts may progress and the light transmittance may decrease. When the performance of these components deteriorates, the amount of light transmitted through the flow cell 6 decreases, and as a result, the intensity of light incident on the photodetector 14 decreases and the ratio of noise increases. As a result, the analysis accuracy of the liquid chromatograph is lowered, which affects high sensitivity analysis.
 そこで、本発明は、フローセルを構成する部品及びその他の光学素子の劣化を抑制することを目的とするものである。 Therefore, an object of the present invention is to suppress deterioration of components and other optical elements constituting the flow cell.
 本発明にかかる検出器の第1形態は、測定光を発する光源と、光を検出するための光検出器と、測定対象の試料を流すフローセルと、光源からの光をフローセルに導くとともにフローセルを透過した光を光検出器に導くための光学系と、光源からフローセルに導かれる光の光路上に遮光用シャッタを配置して光源からフローセルへの光を遮光することができるシャッタ機構と、試料の測定が実行されるときのみ遮光用シャッタを光路上から外し、試料の測定が実行されるとき以外は遮光用シャッタを光路上に配置するようにシャッタ機構の動作を制御する光照射制御手段と、を備えたものである。 A first embodiment of a detector according to the present invention includes a light source that emits measurement light, a light detector for detecting light, a flow cell for flowing a sample to be measured, light from the light source to the flow cell, and a flow cell. An optical system for guiding the transmitted light to the photodetector, a shutter mechanism capable of blocking the light from the light source to the flow cell by arranging a light blocking shutter on the optical path of the light guided from the light source to the flow cell, and the sample A light irradiation control means for controlling the operation of the shutter mechanism so that the light shielding shutter is removed from the optical path only when the measurement is performed and the light shielding shutter is disposed on the optical path except when the measurement of the sample is performed. , With.
 本発明にかかる検出器の第2形態は、測定光を発する光源と、測定対象の試料を流すフローセルと、光源からの光をフローセルに導くための光学系と、光を検出するための光検出器と、少なくとも試料の測定が実行される際に光源からフローセルに導かれる光の光路上に配置され、フローセルに照射される光から測定に使用しない波長域にある光の少なくとも一部を減光又は遮光する特性をもつ減光フィルタと、を備えたものである。 A second embodiment of the detector according to the present invention includes a light source for emitting measurement light, a flow cell for flowing a sample to be measured, an optical system for guiding light from the light source to the flow cell, and light detection for detecting light. And at least a part of the light in the wavelength range not used for measurement from the light irradiated to the flow cell when placed on the optical path of the light guided from the light source to the flow cell when the measurement of the sample is executed Or a neutral density filter having a light shielding characteristic.
 本発明にかかる液体クロマトグラフは、分析流路と、分析流路中に試料を導入するための試料導入部と、分析流路中で移動相を送液するための移動相送液部と、分析流路上で試料導入部の下流側に設けられ、試料導入部により導入された試料を成分ごとに分離するための分析カラムと、分析流路上で分析カラムの下流側に設けられ、分析カラムで分離された試料成分を検出するための検出器と、を備えたものであって、検出器として、本発明にかかる検出器の第1形態又は第2形態を備えている。 The liquid chromatograph according to the present invention includes an analysis channel, a sample introduction unit for introducing a sample into the analysis channel, a mobile phase solution feeding unit for feeding a mobile phase in the analysis channel, An analysis column is provided on the downstream side of the sample introduction section on the analysis flow path, and is separated from the sample introduced by the sample introduction section for each component, and is provided on the analysis flow path on the downstream side of the analysis column. And a detector for detecting the separated sample component, wherein the detector includes the first form or the second form of the detector according to the present invention.
 本発明にかかる検出器の第1形態では、光源からフローセルに導かれる光の光路上に遮光用シャッタを配置して光源からフローセルへの光を遮光することができるシャッタ機構と、試料の測定が実行されるときのみ遮光用シャッタを光路上から外し、試料の測定が実行されるとき以外は遮光用シャッタを光路上に配置するようにシャッタ機構を制御する光照射制御手段と、を備えているので、試料の測定が実行されていないときは光源からの光が遮光用シャッタによって遮光されてフローセルを通過しない。これにより、フローセルを光源からの光が通過する時間を短縮することができ、フローセルを構成するレンズなどの部品やその他の光学素子の劣化の進行を抑制することができる。 In the first embodiment of the detector according to the present invention, a shutter mechanism that can block the light from the light source to the flow cell by arranging a light blocking shutter on the optical path of the light guided from the light source to the flow cell, and the measurement of the sample A light irradiation control means for controlling the shutter mechanism so that the light shielding shutter is removed from the optical path only when it is executed, and the light shielding shutter is arranged on the optical path except when the measurement of the sample is executed. Therefore, when the measurement of the sample is not executed, the light from the light source is blocked by the light blocking shutter and does not pass through the flow cell. Thereby, the time for the light from the light source to pass through the flow cell can be shortened, and the progress of deterioration of components such as lenses and other optical elements constituting the flow cell can be suppressed.
 本発明の検出器の第2形態では、光源からフローセルに導かれる光の光路上に配置され、フローセルに照射される光から測定に使用しない波長域にある光の少なくとも一部を減光又は遮光するための減光フィルタを備えているので、少なくとも試料の測定時にフローセルに照射される光の強度を低下させることができ、フローセルを構成するレンズなどの部品やその他の光学素子の劣化の進行を抑制することができる。 In the second embodiment of the detector of the present invention, at least a part of light in a wavelength range not used for measurement is dimmed or shielded from the light irradiated to the flow cell, which is disposed on the optical path of the light guided from the light source to the flow cell. Because it is equipped with a neutral density filter, it is possible to reduce the intensity of the light irradiated to the flow cell at least during sample measurement, and the deterioration of parts such as lenses and other optical elements that constitute the flow cell. Can be suppressed.
 上記第1の又は第2の検出器を備えた本発明の液体クロマトグラフでは、検出器のフローセルを構成するレンズなどの部品やその他の光学素子の劣化の進行が抑制されるので、分析の信頼性の低下を抑制することができる。 In the liquid chromatograph of the present invention provided with the first or second detector, the progress of deterioration of components such as lenses and other optical elements constituting the flow cell of the detector is suppressed, so that the reliability of the analysis is improved. Deterioration can be suppressed.
 また、本発明にかかる検出器の第2形態及びその第2形態を備えた液体クロマトグラフでは、以下の問題点を改善することができるという効果も得られる。
 まず、試料の測定の際、フローセルに対し強いエネルギーをもつ光が照射されるとフローセル内の試料が変質し、特に低濃度の試料は光照射による変質の影響を大きく受け、濃度と吸光度の関係の直線性が悪化して定量の精度が悪化するという問題点がある。
Moreover, the second embodiment of the detector according to the present invention and the liquid chromatograph provided with the second embodiment also provide an effect that the following problems can be improved.
First, when measuring a sample, light with strong energy is irradiated to the flow cell, and the sample in the flow cell is altered. Especially, the low-concentration sample is greatly affected by alteration due to light irradiation, and the relationship between concentration and absorbance. There is a problem that the linearity of the sample deteriorates and the accuracy of quantification deteriorates.
 図15はフローセルへの送液を停止してフローセルに試料としてある消炎鎮痛剤を封入して測定した光照射開始時からの経過時間ごとの吸光度スペクトルを示すグラフである。図16は、図15のデータにおける測定波長260nmにおける吸光度の時間的変化を示すグラフである。図15において光照射開始時の吸光度スペクトルが試料の本来の吸光度スペクトルということができ、光照射開始時から時間の経過とともに吸光度スペクトルが変化し、波長260nmでの吸光度は時間の経過とともに増加している。液体クロマトグラフでは試料はフローセルの中を通過しながら光の照射を受けるが、その通過時間内で試料は変質し、低濃度ほどその影響は大きくなる。この例では、波長260nmにおける直線性は図17のAのグラフのように悪化する。また、図15、図16の例とは逆に光の照射により吸光度が低下することもあり、その場合は図17のBのように直線性が悪化する。試料が低濃度になるほど吸光度の直線性が悪化する理由としては、試料濃度が低くなるほど試料一分子あたりの受光する光量が増加するため、変質する分子の割合が増加し、本来の吸光度から変化するからであると考えられる。 FIG. 15 is a graph showing an absorbance spectrum for each elapsed time from the start of light irradiation measured by sealing the anti-inflammatory analgesic as a sample in the flow cell after stopping the liquid feeding to the flow cell. FIG. 16 is a graph showing the temporal change in absorbance at a measurement wavelength of 260 nm in the data of FIG. In FIG. 15, the absorbance spectrum at the start of light irradiation can be referred to as the original absorbance spectrum of the sample. The absorbance spectrum changes with the passage of time from the start of light irradiation, and the absorbance at a wavelength of 260 nm increases with the passage of time. Yes. In the liquid chromatograph, the sample is irradiated with light while passing through the flow cell, but the sample is altered within the passage time, and the influence becomes greater as the concentration is lower. In this example, the linearity at a wavelength of 260 nm deteriorates as shown by the graph in FIG. Further, in contrast to the examples of FIGS. 15 and 16, the light absorbance may decrease due to light irradiation, in which case the linearity deteriorates as shown in FIG. 17B. The reason why the linearity of absorbance deteriorates as the sample concentration decreases is that the amount of light received per molecule increases as the sample concentration decreases, so the proportion of denatured molecules increases and changes from the original absorbance. It is thought that it is from.
 また、吸光度の測定に使用される波長以外の光がフローセルの試料に照射され、そのような波長の光によって励起されて蛍光を発する成分が試料に含まれていた場合、その成分から発せられる蛍光の波長範囲に吸光度の測定に使用される波長が含まれていると、その蛍光の影響により濃度と吸光度の関係の直線性が悪化し、定量の精度が悪化するという問題点もある。例えば、図15のような吸収スペクトルをもつ試料の測定において、260nmで吸光度を測定して試料の定量を行なう場合、210nm付近の波長の光によって励起され260nm付近の波長の蛍光を発する成分が試料に含まれていると、試料から発せられる蛍光も光検出器によって測定されてしまい、その測定値が吸光度の測定に使用されるため、試料濃度と測定される吸光度の直線性が悪化し、定量の精度が悪化する。 In addition, if the sample of the flow cell is irradiated with light other than the wavelength used for measuring the absorbance, and the sample contains a component that emits fluorescence when excited by light of such wavelength, the fluorescence emitted from that component If the wavelength range used for the measurement of absorbance is included in this wavelength range, the linearity of the relationship between concentration and absorbance deteriorates due to the influence of the fluorescence, and there is also a problem that the accuracy of quantification deteriorates. For example, in the measurement of a sample having an absorption spectrum as shown in FIG. 15, when the sample is quantified by measuring the absorbance at 260 nm, a component that is excited by light having a wavelength near 210 nm and emits fluorescence having a wavelength near 260 nm is used. In this case, the fluorescence emitted from the sample is also measured by the photodetector, and the measured value is used for measuring the absorbance. Therefore, the linearity between the sample concentration and the measured absorbance deteriorates, and the quantification The accuracy of will deteriorate.
 以上の問題は、減光フィルタによってフローセルに照射される光から測定に使用しない成分を除去することで改善又は解決することができる。照射される光のエネルギーによる試料の劣化の問題は、測定に使用しない波長の光の一部を減光フィルタによって減光又は遮光しフローセルに照射される光のエネルギーを低減することで改善できる。試料に含まれる成分から発せられる蛍光の問題は、そのような成分を励起する波長成分を減光フィルタによって除去することで解決できる。 The above problems can be improved or solved by removing components not used for measurement from the light irradiated to the flow cell by the neutral density filter. The problem of deterioration of the sample due to the energy of the irradiated light can be improved by reducing the energy of the light irradiated to the flow cell by dimming or blocking a part of the light having a wavelength not used for measurement by the neutral density filter. The problem of fluorescence emitted from components contained in the sample can be solved by removing the wavelength components that excite such components with a neutral density filter.
検出器の一実施例を概略的に示す構成図である。It is a block diagram which shows roughly one Example of a detector. 同実施例のシャッタ駆動機構の一例を概略的に示す図である。It is a figure which shows roughly an example of the shutter drive mechanism of the Example. 液体クロマトグラフの一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of a liquid chromatograph. 液体クロマトグラフの他の実施例を示す概略構成図である。It is a schematic block diagram which shows the other Example of a liquid chromatograph. 図1の実施例のシャッタ開閉動作の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the shutter opening / closing operation | movement of the Example of FIG. 図1の実施例のシャッタ開閉動作の他の例を説明するためのフローチャートである。It is a flowchart for demonstrating the other example of the shutter opening / closing operation | movement of the Example of FIG. 図1の実施例のシャッタ開閉動作のさらに他の例を説明するためのフローチャートである。6 is a flowchart for explaining still another example of the shutter opening / closing operation of the embodiment of FIG. 1. 図1の実施例のシャッタ開閉動作のさらに他の例を説明するためのフローチャートである。6 is a flowchart for explaining still another example of the shutter opening / closing operation of the embodiment of FIG. 1. 図3の実施例の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the Example of FIG. 図4の実施例の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the Example of FIG. フローセルの構造の一例を示す図である。It is a figure which shows an example of the structure of a flow cell. 検出器の他の実施例を概略的に示す構成図である。It is a block diagram which shows schematically the other Example of a detector. 液体クロマトグラフのさらに他の実施例を示す概略構成図である。It is a schematic block diagram which shows the further another Example of a liquid chromatograph. 検出器の他の実施例を概略的に示す構成図である。It is a block diagram which shows schematically the other Example of a detector. フローセルへの送液を停止してフローセルに消炎鎮痛剤を封入して測定した光照射開始時からの経過時間ごとの吸光度スペクトルを示すグラフである。It is a graph which shows the absorption spectrum for every elapsed time from the time of the light irradiation start measured by stopping liquid feeding to a flow cell, and enclosing an anti-inflammatory analgesic in the flow cell. 図15のデータにおける測定波長260nmにおける吸光度の時間的変化を示すグラフである。It is a graph which shows the time change of the light absorbency in the measurement wavelength of 260 nm in the data of FIG. 試料に照射される光による試料の変質が吸光度の直線性に与える影響を説明するための図である。It is a figure for demonstrating the influence which the alteration of the sample by the light irradiated to a sample has on the linearity of a light absorbency. 検出器のさらに他の実施例を概略的に示す構成図である。It is a block diagram which shows schematically the further another Example of a detector. シャッタ及びフィルタ駆動機構の一例を概略的に示す図である。It is a figure which shows an example of a shutter and a filter drive mechanism roughly. 減光フィルタの波長特性の一例を示す図である。It is a figure which shows an example of the wavelength characteristic of a neutral density filter. 減光フィルタを取り付けたフローセルの一例を示す図である。It is a figure which shows an example of the flow cell which attached the neutral density filter. 従来の検出器の一例を概略的に示す構成図である。It is a block diagram which shows an example of the conventional detector roughly.
   1   検出器
   2   光源
   4,8、40、44、50   ミラー
   6   フローセル
  10   スリット
  12、48   回折格子(分光素子)
  14   ホトダイオードアレイ(光検出器)
  16   シャッタ
  18   シャッタ駆動機構
  20   検出器制御部
  22   光照射制御手段
  23   演算制御装置
  24   分析流路
  26   送液ポンプ
  28   移動相
  30   試料注入部
  32   分析カラム
  52   ビームスプリッタ
  54   試料側光検出器
  56   参照側光検出器
  60   減光フィルタ
  62   シャッタ及びフィルタ駆動機構
DESCRIPTION OF SYMBOLS 1 Detector 2 Light source 4, 8, 40, 44, 50 Mirror 6 Flow cell 10 Slit 12, 48 Diffraction grating (spectral element)
14 Photodiode array (photodetector)
DESCRIPTION OF SYMBOLS 16 Shutter 18 Shutter drive mechanism 20 Detector control part 22 Light irradiation control means 23 Computation control apparatus 24 Analysis flow path 26 Liquid feed pump 28 Mobile phase 30 Sample injection part 32 Analysis column 52 Beam splitter 54 Sample side photodetector 56 Reference side Photodetector 60 Neutral filter 62 Shutter and filter drive mechanism
 光源からの光をフローセルに導く光学系として、光源とフローセルとの間に光源からの光を集光してフローセルに導くための集光ミラーが設けられていることがある。このような集光ミラーに強いエネルギーをもつ光が照射され続けると、フローセルのレンズなどと同様に劣化が進行し、反射率が低下するという問題が生じる。 As an optical system for guiding light from the light source to the flow cell, a condensing mirror for condensing the light from the light source and guiding it to the flow cell may be provided between the light source and the flow cell. If such a condensing mirror is continuously irradiated with light having strong energy, the deterioration proceeds like the lens of the flow cell and the like, resulting in a problem that the reflectance decreases.
 そこで、本発明の検出器の第1形態において、シャッタ機構を、遮光用シャッタを光源と集光ミラーの間に配置して光源からフローセルへの光を遮光するものとしてもよい。そうすれば、試料の分析が実行されていないときには、光源からの光が集光ミラーに照射されないようになり、集光ミラーへの光の照射時間を低減して集光ミラーの劣化の進行を抑制することができる。 Therefore, in the first embodiment of the detector of the present invention, the shutter mechanism may be configured to shield the light from the light source to the flow cell by arranging a light shielding shutter between the light source and the condenser mirror. Then, when the analysis of the sample is not performed, the light from the light source is not irradiated to the condenser mirror, and the irradiation time of the light to the condenser mirror is reduced and the deterioration of the condenser mirror is progressed. Can be suppressed.
 同様に、本発明の検出器の第2形態においても、減光フィルタが光源と集光ミラーの間に配置されるようにすれば、集光ミラーに照射される光のエネルギーを低減することができ、集光ミラーの劣化の進行を抑制することができる。 Similarly, in the second embodiment of the detector of the present invention, if the neutral density filter is arranged between the light source and the collector mirror, the energy of the light irradiated to the collector mirror can be reduced. It is possible to suppress the progress of deterioration of the condenser mirror.
 なお、本発明にかかる検出器の第1形態及び第2形態は、光学系がフローセルを透過した光を光検出器に導く構成を有するものも含む。例えば分光光度計には、光源からの光を分光器で分光し、分光された光をフローセルに導いてフローセルの直後に設けられた検出器でその透過光を検出する前分光方式と、光源からの光をフローセルに導いて照射し、フローセルを透過した光を分光器に導いて分光し、分光された光を検出器で検出する後分光方式がある。前分光方式ではフローセルと検出器との間に光学系が存在せず、後分光方式ではフローセルと検出器との間に光学系が存在する。本発明の検出器はこれらの両方式を含む。 The first and second embodiments of the detector according to the present invention include those in which the optical system has a configuration for guiding the light transmitted through the flow cell to the photodetector. For example, in a spectrophotometer, the light from the light source is dispersed with a spectroscope, the dispersed light is guided to the flow cell, and the transmitted light is detected with a detector provided immediately after the flow cell. There is a post-spectrometry method in which the light is guided to the flow cell for irradiation, the light transmitted through the flow cell is guided to the spectroscope for spectroscopy, and the dispersed light is detected by the detector. In the pre-spectroscopy method, no optical system exists between the flow cell and the detector, and in the post-spectroscopy method, an optical system exists between the flow cell and the detector. The detector of the present invention includes both of these types.
 本発明の検出器の第1形態においては、少なくとも試料の測定が実行される際に光源からフローセルに導かれる光の光路上に配置され、フローセルに照射される光から測定に使用しない波長域にある光の少なくとも一部を減光又は遮光する特性をもつ減光フィルタをさらに備えていてもよい。そうすれば、遮光用シャッタによってフローセルを構成するレンズなどの部品やその他の光学素子の劣化の進行を抑制することができるとともに、測定時に試料に照射される光のエネルギーを低減して試料の劣化を抑制することができる。 In the first embodiment of the detector of the present invention, at least when the measurement of the sample is performed, the detector is disposed on the optical path of the light guided from the light source to the flow cell, and the light irradiated to the flow cell is used in a wavelength region that is not used for the measurement. You may further provide the neutral density filter which has the characteristic to reduce or block at least one part of certain light. By doing so, it is possible to suppress the progress of deterioration of parts such as a lens constituting the flow cell and other optical elements by the light shielding shutter, and to reduce the energy of the light irradiated to the sample at the time of measurement. Can be suppressed.
 上記の場合の好ましい実施形態としては、減光フィルタを光路上に配置する動作と光路上から外す動作を行なうフィルタ駆動機構をさらに備え、フィルタ駆動機構は、少なくとも光照射により変質する性質をもつ試料の測定の際に減光フィルタを光路上に配置するようになっているものが挙げられる。これにより、光照射により変質する試料の分析の際に試料の変質を防止することができるとともに、光照射によっては変質しない試料の分析の際に減光フィルタを光路上から外して測定に使用する光量を減衰させることなく高感度分析を行なうことも可能になる。 As a preferred embodiment of the above case, the optical system further includes a filter driving mechanism that performs an operation of disposing the neutral density filter on the optical path and an operation of removing the neutral density filter from the optical path, and the filter driving mechanism is a sample having a property of being altered at least by light irradiation. In this measurement, a neutral density filter is arranged on the optical path. As a result, it is possible to prevent the sample from being altered during the analysis of the sample that is altered by light irradiation, and to remove the neutral density filter from the optical path and use it for the analysis of the sample that is not altered by the light irradiation. It is also possible to perform high sensitivity analysis without attenuating the amount of light.
 本発明の検出器の第2形態の好ましい実施形態としても、減光フィルタを光路上に配置する動作と光路上から外す動作を行なうフィルタ駆動機構をさらに備え、フィルタ駆動機構は、少なくとも光照射により変質する性質をもつ試料の測定の際に減光フィルタを光路上に配置するようになっているものが挙げられる。これにより、光照射により変質する試料の分析の際に試料の変質を防止することができるとともに、光照射によっては変質しない試料の分析の際に減光フィルタを光路上から外して測定に使用する光量を減衰させることなく高感度分析を行なうことも可能になる。 As a preferred embodiment of the second form of the detector of the present invention, the detector further includes a filter driving mechanism that performs an operation of disposing the neutral density filter on the optical path and an operation of removing it from the optical path, and the filter driving mechanism is at least by light irradiation Examples include a filter in which an attenuating filter is arranged on an optical path when measuring a sample having a property of changing quality. As a result, it is possible to prevent the sample from being altered during the analysis of the sample that is altered by light irradiation, and to remove the neutral density filter from the optical path and use it for the analysis of the sample that is not altered by the light irradiation. It is also possible to perform high sensitivity analysis without attenuating the amount of light.
 本発明の検出器の第1形態を備えた液体クロマトグラフの好ましい実施形態の一例として、試料導入部、移動相送液部及び検出器に制御信号を送信することでその動作を制御する制御部をさらに備え、検出器の光照射制御手段が、制御部から試料の分析を開始するための信号を受信したときに遮光用シャッタを光源からの光の光路上から外し、制御部から試料の分析を終了するための信号を受信したときに遮光用シャッタを光路上に配置するように構成されているものが挙げられる。 As an example of a preferred embodiment of a liquid chromatograph equipped with the first embodiment of the detector of the present invention, a sample introduction unit, a mobile phase liquid feeding unit, and a control unit that controls the operation by transmitting a control signal to the detector When the light irradiation control means of the detector receives a signal for starting the analysis of the sample from the control unit, the light shielding shutter is removed from the optical path of the light from the light source, and the sample is analyzed from the control unit. For example, there is a configuration in which a light-shielding shutter is arranged on the optical path when a signal for ending is received.
 また、本発明の検出器の第1形態を備えた液体クロマトグラフの好ましい実施形態の他の例として、試料導入部、移動相送液部及び検出器に制御信号を送信することでその動作を制御する制御部をさらに備え、検出器の光照射制御手段は、制御部から試料の分析を開始するための信号を受信したときに遮光用シャッタを光源からの光の光路上から外すとともにその分析が開始してからの経過時間を計時し、その分析の開始からその分析に要する時間が経過したときに遮光用シャッタを光路上に配置するように構成されているものが挙げられる。 Further, as another example of the preferred embodiment of the liquid chromatograph provided with the first form of the detector of the present invention, the operation is performed by transmitting a control signal to the sample introduction part, the mobile phase liquid feeding part and the detector. The light irradiation control means of the detector further removes the light-shielding shutter from the light path of the light from the light source and receives the analysis when receiving a signal for starting the analysis of the sample from the control unit. The time elapsed since the start of the measurement is counted, and when the time required for the analysis has elapsed since the start of the analysis, a light shielding shutter is arranged on the optical path.
 また、本発明の検出器の第1形態を備えた液体クロマトグラフの好ましい実施形態のさらに他の例として、移動相送液部は移動相を送液している間に移動相を送液中であることの信号を検出器に送信するようになっており、検出器の光照射制御手段は、移動相送液部から移動相を送液中であることの信号を受信している間は遮光用シャッタを光源からの光の光路上から外し、移動相送液部から移動相を送液中であることの信号を受信しなくなったときに遮光用シャッタを光路上に配置するように構成されているものが挙げられる。 As still another example of the preferred embodiment of the liquid chromatograph including the first form of the detector of the present invention, the mobile phase liquid feeding unit is feeding the mobile phase while feeding the mobile phase. While the light irradiation control means of the detector is receiving a signal indicating that the mobile phase is being fed from the mobile phase liquid feeding unit, The light-shielding shutter is removed from the light path of the light from the light source, and the light-shielding shutter is arranged on the light path when the mobile phase liquid feeding unit stops receiving a signal indicating that the mobile phase is being fed. What is being done is mentioned.
 本発明の検出器の第1形態を備えた液体クロマトグラフにおいては、検出器で得られた検出信号に基づいて試料についての演算処理を行なう演算処理部と、検出器の遮光用シャッタが光路上に配置されている状態で測定した光検出器の素子の暗電流値を保持した暗電流データ保持部と、をさらに備え、演算処理部は、試料についての演算処理において、試料の測定時に検出器で得られた検出信号から暗電流データ保持部に保持されている暗電流値を差し引いて演算処理に用いるようになっていてもよい。 In the liquid chromatograph provided with the first embodiment of the detector of the present invention, an arithmetic processing unit that performs arithmetic processing on a sample based on a detection signal obtained by the detector, and a light shielding shutter of the detector are provided on the optical path. And a dark current data holding unit that holds a dark current value of a light detector element measured in a state of being arranged in the detector, and the arithmetic processing unit is a detector for measuring the sample in the arithmetic processing for the sample. The dark current value held in the dark current data holding unit may be subtracted from the detection signal obtained in the above and used for the arithmetic processing.
 以下、図面を用いて本発明の検出器及び液体クロマトグラフの一実施例について説明する。まず、図1を用いて検出器の一実施例について説明する。
 この検出器1は、測定光を発する光源2、液体クロマトグラフの分析カラムからの溶出液を流すためのフローセル6、光を検出するための光検出器14及び光源2からの光をフローセル6に導くとともにフローセル6を透過した光を光検出器14に導く光学系を備えている。光学系はミラー4、ミラー8及び凹面回折格子12により構成されている。
Hereinafter, an embodiment of a detector and a liquid chromatograph of the present invention will be described with reference to the drawings. First, an embodiment of the detector will be described with reference to FIG.
The detector 1 includes a light source 2 that emits measurement light, a flow cell 6 for flowing an eluate from an analysis column of a liquid chromatograph, a light detector 14 for detecting light, and light from the light source 2 to the flow cell 6. An optical system that guides the light transmitted through the flow cell 6 to the photodetector 14 is provided. The optical system includes a mirror 4, a mirror 8, and a concave diffraction grating 12.
 ミラー4は光源2から発せられる光の光軸上に配置されており、ミラー4で反射した光の光軸上にフローセル6が配置されている。フローセル6を透過した光の光軸上にミラー8が配置されており、ミラー8で反射した光の光軸上の位置にスリット10及び凹面回折格子12が配置され、凹面回折格子12で分光された光を受光することができる位置に光検出器14が配置されている。すなわち、光源2からの光をミラー4で反射させてフローセル6に集光し、フローセル6を透過した光をミラー8で反射させてスリット10に集光し、スリット10を通過した光を凹面回折格子12で分光して光検出器14上に結像する。光源2は例えば重水素ランプであり、光検出器14は例えばホトダイオードアレイなどのマルチチャネル型の光検出器である。 The mirror 4 is disposed on the optical axis of the light emitted from the light source 2, and the flow cell 6 is disposed on the optical axis of the light reflected by the mirror 4. A mirror 8 is arranged on the optical axis of the light transmitted through the flow cell 6, and a slit 10 and a concave diffraction grating 12 are arranged at a position on the optical axis of the light reflected by the mirror 8, and are split by the concave diffraction grating 12. The light detector 14 is disposed at a position where the received light can be received. That is, the light from the light source 2 is reflected by the mirror 4 and condensed on the flow cell 6, the light transmitted through the flow cell 6 is reflected by the mirror 8 and condensed on the slit 10, and the light passing through the slit 10 is concavely diffracted. The light is split by the grating 12 and imaged on the photodetector 14. The light source 2 is, for example, a deuterium lamp, and the photodetector 14 is a multichannel photodetector such as a photodiode array.
 フローセル6の構造の一例を図11に示す。筐体42の内部にセル36が形成されている。セル36の一端に入口流路38が接続され、セル36の他端に出口流路40が接続されている。セル36の光入射側の側方にレンズ44がガスケット45を介して配置されており、レンズ44とガスケット45は固定ネジ46によって筐体42に固定されている。セル36の光出射側の側方に平板状の窓板48がガスケット49を介して配置され、窓板48とガスケット49は固定ネジ50によって筐体42に固定されている。レンズ44及び窓板48は例えば合成石英ガラスからなるものであり、ガスケット45及び49はフッ素樹脂からなるものである。 An example of the structure of the flow cell 6 is shown in FIG. A cell 36 is formed inside the housing 42. An inlet channel 38 is connected to one end of the cell 36, and an outlet channel 40 is connected to the other end of the cell 36. A lens 44 is disposed on the side of the light incident side of the cell 36 via a gasket 45, and the lens 44 and the gasket 45 are fixed to the housing 42 by a fixing screw 46. A flat window plate 48 is disposed on the side of the light emission side of the cell 36 via a gasket 49, and the window plate 48 and the gasket 49 are fixed to the housing 42 by a fixing screw 50. The lens 44 and the window plate 48 are made of, for example, synthetic quartz glass, and the gaskets 45 and 49 are made of a fluororesin.
 図1に戻って説明すると、光検出器14では、フローセル6を透過した所定の波長範囲ごとの光の強度の時間的な変化が検出され、その検出信号は吸光度変化として変換されて演算制御装置23に送られ、分析データ処理が行なわれる。そのデータ処理で得られた吸光度データにより、試料の定性のための吸収スペクトルを得たり、特定成分に吸収のある波長での吸光度と試料濃度との関係から特定成分の定量を行なったりすることができる。 Referring back to FIG. 1, the photodetector 14 detects a temporal change in the intensity of light for each predetermined wavelength range that has passed through the flow cell 6, and the detection signal is converted as a change in absorbance so that the arithmetic control device 23, analysis data processing is performed. Absorbance data obtained from the data processing can be used to obtain an absorption spectrum for the qualification of the sample, or to quantify a specific component based on the relationship between the absorbance at a wavelength where the specific component is absorbed and the sample concentration. it can.
 光源2からの光を遮光するためのシャッタ16(遮光用シャッタ)と、光源2からの光の光路上に配置したり光路上から外したりすることができるシャッタ駆動機構18が設けられている。この実施例では、シャッタ16が光源2と集光ミラー4との間において光源2からの光の光路上に配置されるようになっている。シャッタ16及びシャッタ駆動機構18はシャッタ機構を構成する。以下において、シャッタ16を光源2からの光の光路上に配置することをシャッタ16を「閉じる」と表現し、シャッタ16を該光路上から外すことをシャッタ16を「開く」と表現する。 A shutter 16 (light-shielding shutter) for shielding light from the light source 2 and a shutter drive mechanism 18 that can be disposed on or removed from the light path of the light from the light source 2 are provided. In this embodiment, the shutter 16 is arranged on the optical path of the light from the light source 2 between the light source 2 and the condenser mirror 4. The shutter 16 and the shutter drive mechanism 18 constitute a shutter mechanism. Hereinafter, disposing the shutter 16 on the optical path of the light from the light source 2 is expressed as “closing”, and removing the shutter 16 from the optical path is expressed as “opening”.
 シャッタ駆動機構18の一例は、図2に示されているように、モータ18aによって光を遮光するシャッタ16を回転駆動するものである。シャッタ16の位置はモータ18aに電圧を印加してモータ18aの回転を制御するモータ駆動部18bによって制御する。なお、シャッタ機構の構成はこれに限定されるものではなく、シャッタ16を開閉できる構成であればどのような構成であってもよい。 An example of the shutter drive mechanism 18 is to rotationally drive a shutter 16 that shields light by a motor 18a, as shown in FIG. The position of the shutter 16 is controlled by a motor drive unit 18b that controls the rotation of the motor 18a by applying a voltage to the motor 18a. The configuration of the shutter mechanism is not limited to this, and any configuration may be used as long as the shutter 16 can be opened and closed.
 図1に戻って説明すると、この検出器1は検出器制御部20を備えている。検出器制御部20はコンピュータにより実現され、外部の演算制御装置23から与えられる制御信号に基づいて光源2、シャッタ駆動機構18及び光検出器14を制御するものである。また、光検出器14で得られた検出信号は検出器制御部20を介して演算制御装置23に入力され、演算制御装置23にて吸光度などを求める演算がなされる。演算制御装置23については後述する。 Referring back to FIG. 1, the detector 1 includes a detector control unit 20. The detector control unit 20 is realized by a computer, and controls the light source 2, the shutter drive mechanism 18, and the photodetector 14 based on a control signal given from an external arithmetic control device 23. Further, the detection signal obtained by the photodetector 14 is input to the arithmetic control device 23 via the detector control unit 20, and the arithmetic control device 23 performs an operation for obtaining the absorbance and the like. The arithmetic control device 23 will be described later.
 検出器制御部20は光源2の点灯とシャッタ駆動機構18によるシャッタの駆動を制御するための光照射制御手段22を備えている。光照射制御手段22は、試料の吸光度測定を行なう際にのみシャッタ16を開くよう構成されている。 The detector control unit 20 includes light irradiation control means 22 for controlling the lighting of the light source 2 and the driving of the shutter by the shutter driving mechanism 18. The light irradiation control means 22 is configured to open the shutter 16 only when measuring the absorbance of the sample.
 光照射制御手段22は、図5のフローチャートに示されているように、演算制御装置23からの試料の分析開始の信号を受けるまでシャッタ16を閉じておき、分析開始の信号を受けたときにシャッタ16を開くように構成されている。そして、検出器制御部20は、演算制御装置23からの分析終了の信号を受けたときにシャッタ16を再び閉じるように構成されている。 As shown in the flowchart of FIG. 5, the light irradiation control means 22 keeps the shutter 16 closed until it receives a sample analysis start signal from the arithmetic and control unit 23, and receives the analysis start signal. The shutter 16 is configured to open. And the detector control part 20 is comprised so that the shutter 16 may be closed again, when the signal of the completion | finish of analysis from the arithmetic control apparatus 23 is received.
 なお、分析終了後にシャッタ16を閉じる動作は、必ずしも上記のように演算制御装置23からの信号に基づいて行なわれる必要はない。図6のフローチャートに示されているように、検出器制御部20が演算制御装置23から分析開始の信号を受けたときに分析の所要時間の情報も受け、検出器制御部20でその分析開始からの時間を計時し、分析の所要時間が経過したときにシャッタ16を閉じるように、光照射制御手段22が構成されていてもよい。 The operation of closing the shutter 16 after the analysis is not necessarily performed based on the signal from the arithmetic control device 23 as described above. As shown in the flowchart of FIG. 6, when the detector control unit 20 receives an analysis start signal from the arithmetic control device 23, it also receives information on the time required for analysis, and the detector control unit 20 starts the analysis. The light irradiation control means 22 may be configured so as to measure the time from the time until the shutter 16 is closed when the time required for analysis has elapsed.
 また、複数の試料の分析を連続して行なう場合、検出器制御部20の光照射制御手段22は、図7のフローチャートに示されているように、演算制御装置23からの一連の分析の開始の信号に基づいてシャッタ16を開き、演算制御装置23からの一連の分析の終了の信号に基づいてシャッタ16を閉じるように構成されている。 When analyzing a plurality of samples continuously, the light irradiation control means 22 of the detector control unit 20 starts a series of analyzes from the arithmetic control device 23 as shown in the flowchart of FIG. The shutter 16 is opened based on this signal, and the shutter 16 is closed based on the end signal of a series of analyzes from the arithmetic and control unit 23.
 なお、複数の試料の分析を連続して行なう場合における一連の分析の終了後にシャッタ16を閉じる動作についても、必ずしも上記のように演算制御装置23からの信号に基づいて行なわれる必要はない。図8のフローチャートに示されているように、検出器制御部20が演算制御装置23から分析開始の信号を受けたときに演算制御装置23に設定された分析スケジュールの情報も受け、さらに最後の分析を開始する際に最後の分析であることの情報とその分析の所要時間を検出器制御部20が演算制御装置23から受け、最後の分析の開始の信号を受信してからその所要時間が経過するまでの時間を計時して、最後の分析が終了したときにシャッタ16を閉じるように、光照射制御手段22が構成されていてもよい。 Note that the operation of closing the shutter 16 after the end of a series of analyzes in the case of analyzing a plurality of samples continuously does not necessarily have to be performed based on the signal from the arithmetic and control unit 23 as described above. As shown in the flowchart of FIG. 8, when the detector control unit 20 receives an analysis start signal from the arithmetic control device 23, it also receives information on the analysis schedule set in the arithmetic control device 23. When starting the analysis, the detector control unit 20 receives information indicating that the analysis is the last analysis and the time required for the analysis from the arithmetic and control unit 23, and the time required after receiving the signal for starting the last analysis. The light irradiation control means 22 may be configured to measure the time until the passage of time and close the shutter 16 when the last analysis is completed.
 次に、液体クロマトグラフの一実施例を図3を用いて説明する。
 分析流路24上に、上流側から移動相28を送液するための送液ポンプ26、試料を分析流路24中に注入するための試料注入部(オートサンプラ)30、試料を成分ごとに分離するための分析カラム32及び検出器1が設けられている。演算制御装置23は演算処理部及び制御部の機能を備えたものであり、送液ポンプ26、試料注入部30及び検出器1の動作を制御するとともに検出器1で得られた信号に基づいて吸光度などを求める演算を行なう。演算制御装置23は、例えばPC(パーソナルコンピュータ)や専用のコンピュータのほか、それらのコンピュータとシステムコントローラを含むものによって実現することができる。システムコントローラはPCや専用のコンピュータと送液ポンプ26、試料注入部30及び検出器1などの各装置との間に介在してこれらの各装置に動作や動作条件を設定するものである。
Next, an example of a liquid chromatograph will be described with reference to FIG.
A liquid feed pump 26 for feeding the mobile phase 28 from the upstream side onto the analysis channel 24, a sample injection part (autosampler) 30 for injecting the sample into the analysis channel 24, and a sample for each component An analysis column 32 and a detector 1 for separation are provided. The arithmetic control device 23 has functions of an arithmetic processing unit and a control unit, and controls the operations of the liquid feed pump 26, the sample injection unit 30, and the detector 1, and based on signals obtained by the detector 1. Calculation to obtain absorbance and the like is performed. The arithmetic and control unit 23 can be realized by, for example, a PC (personal computer) or a dedicated computer, as well as those including those computers and a system controller. The system controller is interposed between a PC or a dedicated computer and each device such as the liquid feed pump 26, the sample injection unit 30, and the detector 1, and sets operations and operating conditions for each of these devices.
 この液体クロマトグラフの動作の一例について図3とともに図1及び図9のフローチャートを用いて簡単に説明する。
 演算制御装置23には分析スケジュール及び分析条件が設定されている。この液体クロマトグラフの動作を開始すると、演算制御装置23から動作開始の信号が検出器1と送液ポンプ26に与えられる。動作開始の信号を受けた検出器1はシャッタ16を閉じるとともに光源2を点灯させる。動作開始の信号を受けた送液ポンプ26は移動相の送液を開始する。その後、検出器1の光源2の発光光量が安定するまで一定時間待機する。
An example of the operation of the liquid chromatograph will be briefly described with reference to the flowcharts of FIGS. 1 and 9 together with FIG.
An analysis schedule and analysis conditions are set in the arithmetic and control unit 23. When the operation of the liquid chromatograph is started, an operation start signal is given from the arithmetic and control unit 23 to the detector 1 and the liquid feed pump 26. Upon receiving the operation start signal, the detector 1 closes the shutter 16 and turns on the light source 2. Upon receiving the operation start signal, the liquid feed pump 26 starts to feed the mobile phase. Then, it waits for a fixed time until the emitted light quantity of the light source 2 of the detector 1 is stabilized.
 光源2の発光が安定するまでの待機時間が経過した後、演算制御装置23から検出器1と試料注入部30に分析開始の信号が与えられる。分析開始の信号を受けた検出器1はシャッタ16を開き、光源2からの光をフローセル6に照射する。分析開始の信号を受けた試料注入部30は分析流路24に試料を注入する。分析流路24に注入された試料は分析カラム32において成分ごとに分離された後、検出器1のフローセル6に導入されることで吸光度が測定され、成分濃度が定量される。 After the standby time until the light emission of the light source 2 is stabilized, an analysis start signal is given from the arithmetic and control unit 23 to the detector 1 and the sample injection unit 30. Upon receiving the analysis start signal, the detector 1 opens the shutter 16 and irradiates the flow cell 6 with light from the light source 2. Upon receiving the analysis start signal, the sample injection unit 30 injects the sample into the analysis flow path 24. The sample injected into the analysis channel 24 is separated for each component in the analysis column 32, and then introduced into the flow cell 6 of the detector 1, whereby the absorbance is measured and the component concentration is quantified.
 分析が終了した後、次に測定すべき試料が分析スケジュールにある場合は、試料注入部30によって次の試料が分析流路24に注入されて分析される。分析スケジュールの全ての試料についての分析が終了した場合は、演算制御装置23が分析終了の信号を検出器1に与え、分析終了の信号を受けた検出器1はシャッタ16を閉じ、フローセル6に照射される光を遮光する。 After the analysis is completed, if the next sample to be measured is in the analysis schedule, the next sample is injected into the analysis flow path 24 by the sample injection unit 30 and analyzed. When the analysis for all the samples in the analysis schedule is completed, the arithmetic and control unit 23 gives an analysis end signal to the detector 1, and the detector 1 receiving the analysis end signal closes the shutter 16 and puts it in the flow cell 6. Blocks the irradiated light.
 他の分析スケジュールがある場合は、演算制御装置23が新たな分析スケジュールに基づいて検出器1と試料注入部30に分析開始の信号を与え、それによって検出器1がシャッタ16が開き、試料注入部30が分析流路24に試料を順次注入してその分析スケジュールの分析を実行する。 When there is another analysis schedule, the arithmetic and control unit 23 gives an analysis start signal to the detector 1 and the sample injection unit 30 based on the new analysis schedule, whereby the detector 1 opens the shutter 16 and the sample injection The unit 30 sequentially injects the sample into the analysis channel 24 and executes analysis of the analysis schedule.
 他に分析スケジュールがなく、この液体クロマトグラフの動作を終了する場合には、演算制御装置23が検出器1と送液ポンプ26に動作終了の信号を与える。動作終了の信号を受けた検出器1は光源2を消灯させ、送液ポンプ26は移動相の送液を停止する。これにより、液体クロマトグラフの動作が終了する。 When there is no other analysis schedule and the operation of the liquid chromatograph is to be terminated, the arithmetic and control unit 23 gives an operation end signal to the detector 1 and the liquid feed pump 26. Upon receiving the operation end signal, the detector 1 turns off the light source 2 and the liquid feed pump 26 stops the mobile phase liquid feed. Thereby, the operation of the liquid chromatograph is completed.
 なお、本発明の検出器及び液体クロマトグラフは、検出器1のシャッタ16の開閉が演算制御装置23からの信号や分析開始からの経過時間に基づいて行なわれるものに限定されるものではない。例えば、図13に示されているように、送液ポンプ26は移動相を送液している間は移動相を送液中であることの信号を検出器1の検出器制御部20に発信するようになっており、検出器制御部20は送液ポンプ26からの信号を受信している間はシャッタ16を開き、信号を受信しなくなったときにシャッタ16を閉じるようになっていてもよい。 Note that the detector and the liquid chromatograph of the present invention are not limited to those in which the opening and closing of the shutter 16 of the detector 1 is performed based on the signal from the arithmetic control device 23 and the elapsed time from the start of analysis. For example, as shown in FIG. 13, while the liquid feeding pump 26 is feeding the mobile phase, a signal indicating that the mobile phase is being fed is transmitted to the detector control unit 20 of the detector 1. The detector control unit 20 opens the shutter 16 while receiving a signal from the liquid feeding pump 26, and closes the shutter 16 when no signal is received. Good.
 また、光源2を消灯させることなくシャッタ16を閉じて光検出器14に入射する光を遮光できるという利点により、光検出器14の素子の暗電流による影響をなくす機能を装置に設けることが可能である。シャッタ16を閉じて光検出器14への入射光を遮光した状態で、マルチチャネル型の光検出器14の各素子の信号を測定することで、光検出器14の各素子の暗電流値を測定することができる。その暗電流値を用いて測定値の補正を行なうことができる。 In addition, the advantage that the light incident on the photodetector 14 can be blocked by closing the shutter 16 without turning off the light source 2 makes it possible to provide the apparatus with a function of eliminating the influence of the dark current of the elements of the photodetector 14. It is. The dark current value of each element of the photodetector 14 is determined by measuring the signal of each element of the multi-channel photodetector 14 with the shutter 16 closed and the light incident on the photodetector 14 blocked. Can be measured. The measured value can be corrected using the dark current value.
 具体的には、図4に示されているように、測定した暗電流値を保持しておく暗電流データ保持部23aを演算制御装置23に設けておく。そして、吸光度の演算を行なう際に、図10のフローチャートに示されているように、シャッタ16を開いた状態での試料についての光検出器14の各素子の検出信号データを採取し、暗電流データ保持部23aに保持された暗電流値を採取した検出信号値から差し引き、暗電流値を差し引いた後の検出信号データを用いて試料成分の吸光度を求める演算を行なう。これにより、光検出器14の暗電流の影響を低減した吸光度を求めることができる。なお、図4の例では、暗電流データ保持部23aが演算制御装置23に設けられているが、暗電流データ保持部23aは検出器制御部20に設けられたデータメモリやその他の記憶装置によっても実現することができる。 Specifically, as shown in FIG. 4, a dark current data holding unit 23 a for holding the measured dark current value is provided in the arithmetic control device 23. Then, when calculating the absorbance, as shown in the flowchart of FIG. 10, the detection signal data of each element of the photodetector 14 with respect to the sample with the shutter 16 opened is collected, and the dark current is obtained. The dark current value held in the data holding unit 23a is subtracted from the collected detection signal value, and the calculation for obtaining the absorbance of the sample component is performed using the detection signal data after the dark current value is subtracted. Thereby, the light absorbency which reduced the influence of the dark current of the photodetector 14 can be calculated | required. In the example of FIG. 4, the dark current data holding unit 23 a is provided in the arithmetic control device 23, but the dark current data holding unit 23 a is provided by a data memory or other storage device provided in the detector control unit 20. Can also be realized.
 図1の実施例では、シャッタ16を閉じる際にシャッタ16が光源2と集光ミラー4との間に配置されるようになっているが、本発明はこれに限定されるものではなく、図12に示されているように、ミラー4とフローセル6との間にシャッタ16が配置されるようになっていてもよい。要は、他の光学部品が設けられている場合であっても、シャッタ16を閉じる際にシャッタ16が少なくとも光源2とフローセル6との間における光源2からの光の光路上に配置されればよく、そうすることでフローセル6を構成するレンズなどの部品、ミラー8及び回折格子12の劣化の進行を抑制することができる。なお、図1の実施例のように、シャッタ16を他の光学部品よりも光源2に近い位置に配置することで、集光ミラー4などより多くの光学部品の劣化の進行を抑制することができる。 In the embodiment shown in FIG. 1, the shutter 16 is arranged between the light source 2 and the condenser mirror 4 when the shutter 16 is closed, but the present invention is not limited to this. 12, a shutter 16 may be disposed between the mirror 4 and the flow cell 6. In short, even when other optical components are provided, when the shutter 16 is closed, the shutter 16 is disposed at least on the optical path of the light from the light source 2 between the light source 2 and the flow cell 6. Well, by doing so, it is possible to suppress the progress of deterioration of components such as lenses, the mirror 8 and the diffraction grating 12 constituting the flow cell 6. As in the embodiment of FIG. 1, by arranging the shutter 16 closer to the light source 2 than other optical components, it is possible to suppress the progress of deterioration of more optical components such as the condensing mirror 4. it can.
 図1及び図12を用いて説明した実施例は、光源2からの光をフローセル6に導き、フローセル6を透過した光を分光器12により分光して光検出器14で検出する後分光方式の分光光度計であるが、本発明にかかる検出器はこれに限定されるものではなく、光源からの光を分光器で分光した後の光をフローセルに導き、フローセルを透過した光を光検出器で検出する前分光方式の分光光度計に対しても適用することができる。 In the embodiment described with reference to FIGS. 1 and 12, the light from the light source 2 is guided to the flow cell 6, and the light transmitted through the flow cell 6 is dispersed by the spectroscope 12 and detected by the photodetector 14. Although it is a spectrophotometer, the detector according to the present invention is not limited to this. The light after the light from the light source is separated by the spectroscope is guided to the flow cell, and the light transmitted through the flow cell is detected by the photodetector. The present invention can also be applied to a pre-spectroscopic spectrophotometer detected by the above method.
 図14は前分光方式の分光光度計に本発明を適用した実施例を示す概略構成図である。
 この実施例の検出器1aは、光源2からの光をフローセル6に導くための光学系として、ミラー40、スリット42、ミラー44、回折格子46及びミラー50を備えている。光源2からの光はミラー40によってスリット42に集光され、スリット42を透過した光はミラー44によって反射されて回折格子46に入射する。
FIG. 14 is a schematic configuration diagram showing an embodiment in which the present invention is applied to a pre-spectral spectrophotometer.
The detector 1a of this embodiment includes a mirror 40, a slit 42, a mirror 44, a diffraction grating 46, and a mirror 50 as an optical system for guiding the light from the light source 2 to the flow cell 6. The light from the light source 2 is condensed on the slit 42 by the mirror 40, and the light transmitted through the slit 42 is reflected by the mirror 44 and enters the diffraction grating 46.
 回折格子46に入射した光は波長方向に分光され、試料の吸光度測定に使用される波長成分がミラー50に導かれる。回折格子46は回折格子回転機構48によって回転軸47を中心に回転するようになっている。回折格子46の回転角度とフローセル6側へ抽出される光の波長との関係は予め設定されており、検出器制御部20aは測定に使用する波長の光が抽出されてフローセル6に照射されるように、回折格子46を回転させて設置角度を調節するようになっている。回折格子46で分光されてミラー50に入射した光はミラー50によって反射されてフローセル6に照射され、フローセル6を透過した光がフローセル6の直後に設けられた試料側光検出器54により検出される。 The light incident on the diffraction grating 46 is dispersed in the wavelength direction, and the wavelength component used for measuring the absorbance of the sample is guided to the mirror 50. The diffraction grating 46 is rotated about a rotation axis 47 by a diffraction grating rotating mechanism 48. The relationship between the rotation angle of the diffraction grating 46 and the wavelength of the light extracted toward the flow cell 6 is set in advance, and the detector control unit 20a extracts the light of the wavelength used for measurement and irradiates the flow cell 6 with it. As described above, the installation angle is adjusted by rotating the diffraction grating 46. The light split by the diffraction grating 46 and incident on the mirror 50 is reflected by the mirror 50 and applied to the flow cell 6, and the light transmitted through the flow cell 6 is detected by the sample-side photodetector 54 provided immediately after the flow cell 6. The
 ミラー50とフローセル6の間にビームスプリッタ52が設置されている。ビームスプリッタ52はミラー50からフローセル6に向かう光の一部を取り出して参照側光検出器56に導くものであり、参照側光検出器56においてフローセル6に照射される光の一部の光量が測定される。参照側光検出器56の検出信号はフローセル6に照射される光の光量の変動による影響を補正するために使用される。 A beam splitter 52 is installed between the mirror 50 and the flow cell 6. The beam splitter 52 extracts a part of the light traveling from the mirror 50 toward the flow cell 6 and guides it to the reference side photodetector 56, and the reference side photodetector 56 emits a part of the light emitted to the flow cell 6. Measured. The detection signal of the reference-side photodetector 56 is used to correct the influence due to the variation in the amount of light irradiated to the flow cell 6.
 試料側光検出器54においてフローセル6を透過した光の強度の時間的な変化が検出され、その検出信号が吸光度変化として変換されて演算制御装置23aに送られる。演算制御装置23aは試料側光検出器54と参照側光検出器56の検出信号に基づいてフローセル6を流れる試料の吸光度を求め、予め用意された吸光度と試料濃度との関係を表わす検量線に基づいて特定成分の定量を行なう。 The temporal change in the intensity of the light transmitted through the flow cell 6 is detected in the sample-side photodetector 54, and the detection signal is converted as an absorbance change and sent to the arithmetic control device 23a. The arithmetic and control unit 23a obtains the absorbance of the sample flowing through the flow cell 6 based on the detection signals of the sample-side photodetector 54 and the reference-side photodetector 56, and uses a calibration curve representing the relationship between the absorbance and the sample concentration prepared in advance. Based on this, the specific component is quantified.
 光源2からミラー40に向かう光の光路上にシャッタ16が配置されるようになっている。シャッタ16はシャッタ駆動機構18により光路上に配置され又は光路上から外される。光源2が点灯しながらも試料の分析を行っていない状態のときにシャッタ16を閉じることで、この検出器1aの光学系を構成するミラー40、ミラー44、回折格子46及びミラー50のほか、フローセル6に設けられたレンズなどの劣化の進行を抑制することができる。 A shutter 16 is arranged on the optical path of light from the light source 2 toward the mirror 40. The shutter 16 is disposed on the optical path or removed from the optical path by the shutter driving mechanism 18. In addition to the mirror 40, mirror 44, diffraction grating 46 and mirror 50 constituting the optical system of the detector 1a by closing the shutter 16 when the sample is not analyzed while the light source 2 is lit, It is possible to suppress the progress of deterioration of the lens provided in the flow cell 6.
 なお、図1及び図12を用いて説明した実施例と同様に、シャッタ16が配置される位置は光源2とミラー40との間の位置に限定されるものではなく、光源2とフローセル6との間における光源2からの光の光路上であればどこでもよく、それによってシャッタ16よりも後段側にある光学部品やフローセル6のレンズなどの部品の劣化の進行を抑制することができる。 1 and 12, the position where the shutter 16 is disposed is not limited to the position between the light source 2 and the mirror 40, and the light source 2, the flow cell 6, and the like. As long as it is on the optical path of the light from the light source 2 between them, it is possible to suppress the progress of deterioration of components such as optical components and lenses of the flow cell 6 on the rear side of the shutter 16.
 次に、減光フィルタを用いた本発明の検出器の一実施例について、図18を用いて説明する。
 この実施例の検出器1bは、図1の検出器1に減光フィルタ(以下、フィルタ)60を追加するとともにシャッタ駆動機構18をシャッタ及びフィルタ駆動機構62に変えたものである。その他の構成は図1の検出器1と同じであり、ここでの詳細な説明は省略する。光源2からミラー4に向かう光の光路上にシャッタ16とフィルタ60が配置されるようになっている。シャッタ16とフィルタ60はシャッタ及びフィルタ駆動機構62により光源2からの光の光路上に配置され又は該光路上から外されるようになっている。なお、この実施例では、シャッタ16とフィルタ60がシャッタ及びフィルタ駆動機構62という共通の機構により駆動されるようになっているが、それぞれ別々の駆動機構により駆動されるようになっていてもよい。
Next, an embodiment of the detector of the present invention using a neutral density filter will be described with reference to FIG.
The detector 1b of this embodiment is obtained by adding a neutral density filter (hereinafter referred to as a filter) 60 to the detector 1 of FIG. 1 and changing the shutter driving mechanism 18 to a shutter and filter driving mechanism 62. Other configurations are the same as those of the detector 1 of FIG. 1, and a detailed description thereof is omitted here. A shutter 16 and a filter 60 are arranged on the optical path of light from the light source 2 toward the mirror 4. The shutter 16 and the filter 60 are arranged on the optical path of the light from the light source 2 by the shutter and filter driving mechanism 62 or are removed from the optical path. In this embodiment, the shutter 16 and the filter 60 are driven by a common mechanism called the shutter and filter drive mechanism 62, but may be driven by separate drive mechanisms. .
 シャッタ16、フィルタ60、シャッタ及びフィルタ駆動機構62の構成の一例を図19に示す。この例では、フィルタ60がシャッタ16の一部領域として設けられてモータ62aにより回転駆動されるようになっている。モータ62aの回転駆動により、シャッタ16を光源2からの光の光路上に配置した状態、フィルタ60を光源2からの光の光路上に配置した状態、シャッタ16とフィルタ60のいずれも光源2からの光の光路上に配置しない状態にすることができるようになっている。 An example of the configuration of the shutter 16, the filter 60, the shutter, and the filter driving mechanism 62 is shown in FIG. In this example, the filter 60 is provided as a partial region of the shutter 16 and is driven to rotate by a motor 62a. By rotating the motor 62a, the shutter 16 is disposed on the optical path of the light from the light source 2, the filter 60 is disposed on the optical path of the light from the light source 2, and both the shutter 16 and the filter 60 are separated from the light source 2. It is possible to make it not placed on the optical path of the light.
 図1、図12及び図14を用いて説明した実施例と同様に、試料の分析をしないときはシャッタ16が光源2からの光の光路上に配置され、光学系を構成する光学部品の劣化が防止される。さらにこの実施例では、試料の分析を行なう際に光源2からの光の光路上にフィルタ60を配置することで、試料の分析時における光源2からの光のエネルギーを低減してそれよりも後段側の光学部品の劣化を抑制するとともに、光照射によるフローセル6内の試料の変質を抑制することができる。また、フローセル6を流れる試料が光照射によって変質しない性質を有するものの場合には、光源2からの光の光路上にフィルタ60を配置せずに高感度測定を実行することも可能である。 Similar to the embodiment described with reference to FIGS. 1, 12, and 14, when the sample is not analyzed, the shutter 16 is disposed on the optical path of the light from the light source 2, and the optical components constituting the optical system are deteriorated. Is prevented. Further, in this embodiment, when the sample is analyzed, the filter 60 is disposed on the optical path of the light from the light source 2, thereby reducing the energy of the light from the light source 2 at the time of analyzing the sample, and the subsequent stage. The deterioration of the sample in the flow cell 6 due to light irradiation can be suppressed while the deterioration of the optical component on the side can be suppressed. Further, in the case where the sample flowing through the flow cell 6 has a property that does not change due to light irradiation, it is possible to perform high-sensitivity measurement without arranging the filter 60 on the optical path of the light from the light source 2.
 フィルタ60として使用するフィルタの選定方法の一例として、図15に示されるような吸光度スペクトルをもつ試料の定量を波長260nmにおける吸光度測定により行なう場合について説明する。
 図15の吸光度スペクトルに示されているように、この試料は測定に使用する260nmよりも短波長側で強い吸収をもち、特に220nmよりも短波長側において強い吸収をもっている。そこで、フィルタ60として使用するフィルタの波長特性としては、図20に示されているような、220nm付近から短波長側の光を透過させにくい特性をもつフィルタを使用することが好ましい。そうすれば、試料が吸収をもつ波長成分であって測定には使用しない波長成分の光をフィルタ60により除去することができ、光照射による試料の劣化を抑制することができる。なお、フィルタ60として使用されるフィルタは複数種類用意されており、測定する試料の特性に応じて使用されるフィルタが決められるようになっていてもよい。
As an example of a method for selecting a filter to be used as the filter 60, a case will be described in which a sample having an absorbance spectrum as shown in FIG. 15 is quantified by measuring absorbance at a wavelength of 260 nm.
As shown in the absorbance spectrum of FIG. 15, this sample has strong absorption on the shorter wavelength side than 260 nm used for measurement, and particularly has strong absorption on the shorter wavelength side than 220 nm. Therefore, as the wavelength characteristics of the filter used as the filter 60, it is preferable to use a filter having characteristics that hardly transmit light on the short wavelength side from around 220 nm as shown in FIG. Then, light having a wavelength component that is absorbed by the sample and not used for measurement can be removed by the filter 60, and deterioration of the sample due to light irradiation can be suppressed. Note that a plurality of types of filters used as the filter 60 are prepared, and the filter to be used may be determined according to the characteristics of the sample to be measured.
 予め分析目的とする試料成分の吸光度スペクトルが分かっている場合は、その吸収を持つ波長範囲のうち測定に使用する波長付近の光を透過させ、測定に使用しない波長成分を減衰させる特性をもつフィルタを選択する。また、分析目的の試料成分の吸光度スペクトルが分かっていない場合でも、マルチチャネル型の吸光度検出器では容易にスペクトルを測定できるため、フィルタ60を光路に設置しない状態で目的成分の吸光度スペクトルを測定し、目的成分の吸光度スペクトルが既知の場合と同様にフィルタの波長と透過率の特性を選択する。 If the absorbance spectrum of the sample component to be analyzed is known in advance, a filter that transmits light in the vicinity of the wavelength used for measurement within the wavelength range with the absorption and attenuates wavelength components not used for measurement Select. Even if the absorbance spectrum of the sample component to be analyzed is not known, the multi-channel absorbance detector can easily measure the spectrum. Therefore, the absorbance spectrum of the target component is measured without the filter 60 being installed in the optical path. The filter wavelength and transmittance characteristics are selected as in the case where the absorbance spectrum of the target component is known.
 また、測定に使用する波長範囲よりも長波長側及び短波長側のいずれの光に対しても同程度の強さの吸収を持つ試料成分を測定する場合には、測定に使用する波長範囲よりも短波長側の光を減衰させるフィルタを選択することが好ましい。長波長側の光に比べて短波長側の光のほうが強いエネルギーをもつため、測定に使用する波長範囲よりも短波長側の光を減衰させるフィルタを選択することで、測定に使用する波長範囲よりも長波長側の光を減衰させるフィルタを選択するよりも試料成分の劣化を効率よく抑制することができる。 In addition, when measuring a sample component that has the same level of absorption for light on both the long wavelength side and the short wavelength side of the wavelength range used for measurement, the wavelength range used for measurement It is preferable to select a filter that attenuates light on the short wavelength side. Since the light on the short wavelength side has stronger energy than the light on the long wavelength side, the wavelength range used for measurement can be selected by selecting a filter that attenuates light on the short wavelength side rather than the wavelength range used for measurement. It is possible to more efficiently suppress the deterioration of the sample component than selecting a filter that attenuates light on the longer wavelength side.
 なお、図20のような光透過特性をもつフィルタは220nm以下の短波長域でもいくらかの透過率を有するため、このフィルタが吸収をもつ波長域の光を使用してフィルタを光路上に配置した状態で移動相と試料の吸光度スペクトルの差分をとって試料の吸光度スペクトルを求めることができ、試料の変質を抑制しながら正確な試料の吸光度スペクトルの測定が可能である。 Since the filter having the light transmission characteristics as shown in FIG. 20 has some transmittance even in a short wavelength region of 220 nm or less, the filter is arranged on the optical path using light in the wavelength region in which the filter absorbs. The absorbance spectrum of the sample can be obtained by taking the difference between the absorbance spectrum of the mobile phase and the sample in the state, and the absorbance spectrum of the sample can be accurately measured while suppressing the alteration of the sample.
 また、試料が220nm以下の特定の波長範囲の光により励起されて蛍光を発するものである場合に、図20のような光透過特性をもつフィルタをフィルタ60として使用することで、試料の励起を抑制して吸光度測定に影響する蛍光の発生を抑制することができる。 Further, when the sample is excited by light of a specific wavelength range of 220 nm or less and emits fluorescence, a filter having a light transmission characteristic as shown in FIG. It is possible to suppress the generation of fluorescence that inhibits the absorbance measurement.
 この実施例では、フィルタ60が光源2と集光ミラー4との間に配置されるようになっているが、本発明はこれに限定されるものではなく、光源2とフローセル6との間であってフローセル6に照射される光の光路上の位置であればどこでもよい。なお、図18の実施例のように、フィルタ60を他の光学部品よりも光源2に近い位置に配置することで、集光ミラー4などより多くの光学部品の劣化の進行を抑制することができる。 In this embodiment, the filter 60 is arranged between the light source 2 and the condenser mirror 4, but the present invention is not limited to this, and between the light source 2 and the flow cell 6. Any position on the optical path of the light irradiated to the flow cell 6 may be used. As in the embodiment of FIG. 18, the filter 60 is arranged at a position closer to the light source 2 than other optical components, thereby suppressing the progress of deterioration of more optical components such as the condenser mirror 4. it can.
 図18の実施例では、フィルタ60が駆動機構によって駆動され、光源2からの光の光路上に配置され又は光路上から外されるようになっているが、本発明はこれに限定されるものではなく、フィルタ60を光源2からの光の光路上に常時配置してもよい。その場合、図11のフローセル6のレンズ44を図18のフィルタ60の材質で構成することで実現することができる。これにより、検出器を構成する部品点数を増加させることなく、それよりも後段側の光学部品の劣化を抑制や試料の変質の抑制が可能である。また、図21に示されているように、フローセル6aの入射窓側にフィルタ60を取り付けても同様の効果を得ることができる。 In the embodiment of FIG. 18, the filter 60 is driven by a driving mechanism, and is arranged on or removed from the optical path of the light from the light source 2, but the present invention is not limited to this. Instead, the filter 60 may be always arranged on the optical path of the light from the light source 2. In that case, it can be realized by forming the lens 44 of the flow cell 6 of FIG. 11 with the material of the filter 60 of FIG. Thereby, without increasing the number of parts constituting the detector, it is possible to suppress the deterioration of the optical parts on the subsequent stage and the deterioration of the sample. Further, as shown in FIG. 21, the same effect can be obtained even if the filter 60 is attached to the entrance window side of the flow cell 6a.

Claims (15)

  1.  測定光を発する光源と、
     測定対象の試料を流すフローセルと、
     前記光源からの光を前記フローセルに導くための光学系と、
     光を検出するための光検出器と、
     前記光源から前記フローセルに導かれる光の光路上に遮光用シャッタを配置して前記光源から前記フローセルへの光を遮光することができるシャッタ機構と、
     試料の測定が実行されるときのみ前記遮光用シャッタを前記光路上から外し、試料の測定が実行されるとき以外は前記遮光用シャッタを前記光路上に配置するように前記シャッタ機構の動作を制御する光照射制御手段と、を備えた検出器。
    A light source that emits measurement light;
    A flow cell for flowing a sample to be measured;
    An optical system for guiding light from the light source to the flow cell;
    A photodetector for detecting light;
    A shutter mechanism capable of blocking light from the light source to the flow cell by disposing a light blocking shutter on an optical path of light guided from the light source to the flow cell;
    The operation of the shutter mechanism is controlled so that the light shielding shutter is removed from the optical path only when the sample measurement is performed, and the light shielding shutter is disposed on the optical path except when the sample measurement is performed. And a light irradiation control means.
  2.  前記光学系は、前記光源と前記フローセルとの間に前記光源からの光を集光して前記フローセルに導くための集光手段を備え、
     前記シャッタ機構は、前記遮光用シャッタを前記光源と前記集光手段の間に配置して前記光源から前記フローセルへの光を遮光するものである請求項1に記載の検出器。
    The optical system includes a condensing means for condensing light from the light source between the light source and the flow cell and guiding the light to the flow cell.
    2. The detector according to claim 1, wherein the shutter mechanism is configured to shield the light from the light source to the flow cell by disposing the light shielding shutter between the light source and the condensing unit.
  3.  前記光源から前記フローセルに導かれる光の光路上に配置され、前記フローセルに照射される光から測定に使用しない波長域にある光の少なくとも一部を減光又は遮光する特性をもつ減光フィルタをさらに備えた請求項1又は2に記載の検出器。 A neutral density filter disposed on an optical path of light guided from the light source to the flow cell and having a characteristic of dimming or shielding at least part of light in a wavelength range not used for measurement from the light irradiated on the flow cell; The detector according to claim 1 or 2 further provided.
  4.  減光フィルタを前記光路上に配置する動作と前記光路上から外す動作を行なうフィルタ駆動機構をさらに備え、
     前記フィルタ駆動機構は、少なくとも光照射により変質する性質をもつ試料の測定の際に前記減光フィルタを前記光路上に配置する請求項1又は2に記載の検出器。
    A filter driving mechanism for performing an operation of disposing the neutral density filter on the optical path and an operation of removing the neutral density filter from the optical path;
    The detector according to claim 1, wherein the filter driving mechanism arranges the neutral density filter on the optical path at the time of measuring a sample having a property of being altered at least by light irradiation.
  5.  前記光学系は前記フローセルを透過した光を前記光検出器に導く構成も有する請求項1から4のいずれか一項に記載の検出器。 The detector according to any one of claims 1 to 4, wherein the optical system also has a configuration for guiding light transmitted through the flow cell to the photodetector.
  6.  測定光を発する光源と、
     測定対象の試料を流すフローセルと、
     前記光源からの光を前記フローセルに導くための光学系と、
     光を検出するための光検出器と、
     少なくとも試料の測定が実行される際に前記光源から前記フローセルに導かれる光の光路上に配置され、前記フローセルに照射される光から測定に使用しない波長域にある光の少なくとも一部を減光又は遮光する特性をもつ減光フィルタと、を備えた検出器。
    A light source that emits measurement light;
    A flow cell for flowing a sample to be measured;
    An optical system for guiding light from the light source to the flow cell;
    A photodetector for detecting light;
    At least a part of the light in the wavelength range not used for measurement is dimmed from the light that is arranged on the optical path of light guided from the light source to the flow cell when the measurement of the sample is performed. Or a neutral density filter having a characteristic of shielding light.
  7.  減光フィルタを前記光路上に配置する動作と前記光路上から外す動作を行なうフィルタ駆動機構をさらに備え、
     前記フィルタ駆動機構は、少なくとも光照射により変質する性質をもつ試料の測定の際に前記減光フィルタを前記光路上に配置する請求項6に記載の検出器。
    A filter driving mechanism for performing an operation of disposing the neutral density filter on the optical path and an operation of removing the neutral density filter from the optical path;
    The detector according to claim 6, wherein the filter driving mechanism arranges the neutral density filter on the optical path when measuring at least a sample having a property of being altered by light irradiation.
  8.  前記光学系は、前記光源と前記フローセルとの間に前記光源からの光を集光して前記フローセルに導くための集光手段を備え、
     前記減光フィルタは前記光源と前記集光手段の間に配置されるものである請求項6又は7に記載の検出器。
    The optical system includes a condensing means for condensing light from the light source between the light source and the flow cell and guiding the light to the flow cell.
    The detector according to claim 6 or 7, wherein the neutral density filter is disposed between the light source and the light collecting means.
  9.  前記光学系は前記フローセルを透過した光を前記光検出器に導く構成も有する請求項6から8のいずれか一項に記載の検出器。 The detector according to any one of claims 6 to 8, wherein the optical system also has a configuration for guiding light transmitted through the flow cell to the photodetector.
  10.  分析流路と、
     前記分析流路中に試料を導入するための試料導入部と、
     前記分析流路中で移動相を送液するための移動相送液部と、
     前記分析流路上で前記試料導入部の下流側に設けられ、前記試料導入部により導入された試料を成分ごとに分離するための分析カラムと、
     前記分析流路上で前記分析カラムの下流側に設けられ、前記分析カラムで分離された試料成分を検出するための請求項1から5のいずれか一項に記載の検出器と、を備えた液体クロマトグラフ。
    An analysis channel;
    A sample introduction part for introducing a sample into the analysis flow path;
    A mobile phase liquid feeding unit for feeding a mobile phase in the analysis flow path;
    An analysis column provided on the downstream side of the sample introduction part on the analysis flow path, for separating the sample introduced by the sample introduction part for each component;
    A liquid comprising: the detector according to any one of claims 1 to 5, which is provided on the downstream side of the analysis column on the analysis flow path and detects a sample component separated by the analysis column. Chromatograph.
  11.  前記試料導入部、前記移動相送液部及び前記検出器に制御信号を送信することでその動作を制御する制御部をさらに備え、
     前記検出器の前記光照射制御手段は、前記制御部から試料の分析を開始するための信号を受信したときに前記遮光用シャッタを前記光源からの光の光路上から外し、前記制御部から試料の分析を終了するための信号を受信したときに前記遮光用シャッタを前記光路上に配置するように構成されている請求項10に記載の液体クロマトグラフ。
    A control unit for controlling the operation by transmitting a control signal to the sample introduction unit, the mobile phase liquid feeding unit, and the detector;
    The light irradiation control means of the detector removes the light blocking shutter from the light path of the light from the light source when receiving a signal for starting the analysis of the sample from the control unit, and removes the sample from the control unit. The liquid chromatograph according to claim 10, wherein the light shielding shutter is arranged on the optical path when a signal for ending the analysis is received.
  12.  前記試料導入部、前記移動相送液部及び前記検出器に制御信号を送信することでその動作を制御する制御部をさらに備え、
     前記検出器の前記光照射制御手段は、前記制御部から試料の分析を開始するための信号を受信したときに前記遮光用シャッタを前記光源からの光の光路上から外すとともにその分析が開始してからの経過時間を計時し、その分析の開始からその分析に要する時間が経過したときに前記遮光用シャッタを前記光路上に配置するように構成されている請求項10に記載の液体クロマトグラフ。
    A control unit for controlling the operation by transmitting a control signal to the sample introduction unit, the mobile phase liquid feeding unit, and the detector;
    The light irradiation control means of the detector removes the light shielding shutter from the light path of the light from the light source and starts the analysis when receiving a signal for starting the analysis of the sample from the control unit. The liquid chromatograph according to claim 10, wherein an elapsed time from the start is measured, and the light-shielding shutter is arranged on the optical path when the time required for the analysis has elapsed since the start of the analysis. .
  13.  前記移動相送液部は移動相を送液している間に移動相を送液中であることの信号を前記検出器に送信するようになっており、
     前記検出器の前記光照射制御手段は、前記移動相送液部から移動相を送液中であることの信号を受信している間は前記遮光用シャッタを前記光源からの光の光路上から外し、前記移動相送液部から移動相を送液中であることの信号を受信しなくなったときに前記遮光用シャッタを前記光路上に配置するように構成されている請求項10に記載の液体クロマトグラフ。
    The mobile phase liquid feeding unit is configured to transmit a signal indicating that the mobile phase is being fed to the detector while the mobile phase is being fed,
    While the light irradiation control means of the detector receives a signal indicating that the mobile phase is being fed from the mobile phase liquid feeding unit, the light shielding shutter is moved from the light path of the light from the light source. The shutter for light shielding is configured to be disposed on the optical path when the signal indicating that the mobile phase is being fed from the mobile phase feeding unit is not received. Liquid chromatograph.
  14.  前記検出器で得られた検出信号に基づいて試料についての演算処理を行なう演算処理部と、
     前記検出器の前記遮光用シャッタが前記光路上に配置されている状態で測定した前記光検出器の素子の暗電流値を保持した暗電流データ保持部と、をさらに備え、
     前記演算処理部は、試料についての演算処理において、試料の測定時に前記検出器で得られた検出信号から前記暗電流データ保持部に保持されている暗電流値を差し引いて前記演算処理に用いるようになっている請求項10から13のいずれか一項に記載の液体クロマトグラフ。
    An arithmetic processing unit for performing arithmetic processing on the sample based on the detection signal obtained by the detector;
    A dark current data holding unit that holds a dark current value of an element of the photodetector measured in a state where the light blocking shutter of the detector is disposed on the optical path;
    The arithmetic processing unit subtracts the dark current value held in the dark current data holding unit from the detection signal obtained by the detector during the measurement of the sample, and uses the sample for the arithmetic processing. The liquid chromatograph according to any one of claims 10 to 13, wherein
  15.  分析流路と、
     前記分析流路中に試料を導入するための試料導入部と、
     前記分析流路中で移動相を送液するための移動相送液部と、
     前記分析流路上で前記試料導入部の下流側に設けられ、前記試料導入部により導入された試料を成分ごとに分離するための分析カラムと、
     前記分析流路上で前記分析カラムの下流側に設けられ、前記分析カラムで分離された試料成分を検出するための請求項6から9のいずれか一項に記載の検出器と、を備えた液体クロマトグラフ。
    An analysis channel;
    A sample introduction part for introducing a sample into the analysis flow path;
    A mobile phase liquid feeding unit for feeding a mobile phase in the analysis flow path;
    An analysis column provided on the downstream side of the sample introduction part on the analysis flow path, for separating the sample introduced by the sample introduction part for each component;
    A liquid comprising: the detector according to any one of claims 6 to 9, which is provided on the downstream side of the analysis column on the analysis flow path and detects a sample component separated by the analysis column. Chromatograph.
PCT/JP2012/057582 2012-03-23 2012-03-23 Detector and liquid chromatograph provided with detector WO2013140617A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057582 WO2013140617A1 (en) 2012-03-23 2012-03-23 Detector and liquid chromatograph provided with detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057582 WO2013140617A1 (en) 2012-03-23 2012-03-23 Detector and liquid chromatograph provided with detector

Publications (1)

Publication Number Publication Date
WO2013140617A1 true WO2013140617A1 (en) 2013-09-26

Family

ID=49222110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057582 WO2013140617A1 (en) 2012-03-23 2012-03-23 Detector and liquid chromatograph provided with detector

Country Status (1)

Country Link
WO (1) WO2013140617A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131279A1 (en) * 2017-01-16 2018-07-19 株式会社島津製作所 Liquid chromatograph detector
JPWO2018020535A1 (en) * 2016-07-25 2018-12-27 株式会社島津製作所 Analysis equipment
WO2020148878A1 (en) * 2019-01-17 2020-07-23 株式会社島津製作所 Absorbance detector for chromatograph and standard position detection method
JP2020114154A (en) * 2019-01-16 2020-07-27 株式会社島津製作所 Chromatograph device and load switch circuit
CN111829967A (en) * 2019-04-19 2020-10-27 株式会社堀场先进技术 Optical analysis device
JP2022517432A (en) * 2019-01-18 2022-03-08 アーペー2エ Resonant optical cavity system with optical feedback suitable for detection of trace amounts of gas by Raman spectroscopy
WO2023127487A1 (en) * 2021-12-27 2023-07-06 東京エレクトロン株式会社 Foreign body detecting device, and foreign body detecting method
WO2023127488A1 (en) * 2021-12-27 2023-07-06 東京エレクトロン株式会社 Device for detecting foreign matter and method for detecting foreign matter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108648A (en) * 1989-09-22 1991-05-08 Hitachi Ltd Method and apparatus for evaluating surface condition
JP2008002849A (en) * 2006-06-20 2008-01-10 Olympus Corp Analyzer and container
JP2008111834A (en) * 2006-10-06 2008-05-15 Shiseido Co Ltd Method and device for evaluating ultraviolet radiation protective effect
JP2009145182A (en) * 2007-12-13 2009-07-02 Shimadzu Corp Analysis system
JP2012032307A (en) * 2010-07-30 2012-02-16 Shimadzu Corp Spectrophotometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108648A (en) * 1989-09-22 1991-05-08 Hitachi Ltd Method and apparatus for evaluating surface condition
JP2008002849A (en) * 2006-06-20 2008-01-10 Olympus Corp Analyzer and container
JP2008111834A (en) * 2006-10-06 2008-05-15 Shiseido Co Ltd Method and device for evaluating ultraviolet radiation protective effect
JP2009145182A (en) * 2007-12-13 2009-07-02 Shimadzu Corp Analysis system
JP2012032307A (en) * 2010-07-30 2012-02-16 Shimadzu Corp Spectrophotometer

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018020535A1 (en) * 2016-07-25 2018-12-27 株式会社島津製作所 Analysis equipment
JPWO2018131279A1 (en) * 2017-01-16 2019-06-27 株式会社島津製作所 Liquid chromatograph detector
CN109952501A (en) * 2017-01-16 2019-06-28 株式会社岛津制作所 Liquid chromatograph detector
WO2018131279A1 (en) * 2017-01-16 2018-07-19 株式会社島津製作所 Liquid chromatograph detector
US11480553B2 (en) 2017-01-16 2022-10-25 Shimadzu Corporation Liquid chromatography detector
US11451050B2 (en) 2019-01-16 2022-09-20 Shimadzu Corporation Chromatograph apparatus and load switch circuit
JP2020114154A (en) * 2019-01-16 2020-07-27 株式会社島津製作所 Chromatograph device and load switch circuit
JP7156047B2 (en) 2019-01-16 2022-10-19 株式会社島津製作所 Chromatography device and load switch circuit
JP7168917B2 (en) 2019-01-17 2022-11-10 株式会社島津製作所 Absorbance detector for chromatograph and reference position detection method
JPWO2020148878A1 (en) * 2019-01-17 2021-10-14 株式会社島津製作所 Absorbance detector for chromatograph and reference position detection method
WO2020148878A1 (en) * 2019-01-17 2020-07-23 株式会社島津製作所 Absorbance detector for chromatograph and standard position detection method
US11933772B2 (en) 2019-01-17 2024-03-19 Shimadzu Corporation Absorbance detector for chromatograph and reference position detection method
JP2022517432A (en) * 2019-01-18 2022-03-08 アーペー2エ Resonant optical cavity system with optical feedback suitable for detection of trace amounts of gas by Raman spectroscopy
JP7462655B2 (en) 2019-01-18 2024-04-05 アーペー2エ Resonant optical cavity system with optical feedback suitable for trace gas detection by Raman spectroscopy
CN111829967A (en) * 2019-04-19 2020-10-27 株式会社堀场先进技术 Optical analysis device
CN111829967B (en) * 2019-04-19 2024-03-12 株式会社堀场先进技术 Optical analysis device
WO2023127487A1 (en) * 2021-12-27 2023-07-06 東京エレクトロン株式会社 Foreign body detecting device, and foreign body detecting method
WO2023127488A1 (en) * 2021-12-27 2023-07-06 東京エレクトロン株式会社 Device for detecting foreign matter and method for detecting foreign matter

Similar Documents

Publication Publication Date Title
WO2013140617A1 (en) Detector and liquid chromatograph provided with detector
JP6075788B2 (en) Fluorescence and absorption analysis systems and methods
US7787120B2 (en) Spectrophotometer and liquid chromatography system
EP2477024B1 (en) Analyzer
US20170030827A1 (en) Analysis device (photometer) having a serial light guide
JP2016121926A (en) Optical analyzer
WO2016129033A1 (en) Multi-channel spectrophotometer and data processing method for multi-channel spectrophotometer
JPH03202754A (en) Atomic absorption spectrophotometer for simultaneous analysis of many elements and simultaneous analysis method of many elements
US10876887B2 (en) Spectroscopic detector
JPH06273333A (en) Fluorescence spectrophotometer
KR20150115036A (en) NO/NO2 multi-gases analyzer using non-dispersive ultraviolet method and NO/NO2 multi-gases analyzing method
KR101381618B1 (en) Multi-gas analysis device using non dispersion ultraviolet absorption spectrophotometer
JPS6250641A (en) Analyzing instrument having absorption spectrophotometer
US8717557B2 (en) Spectrophotometer and method for determining performance thereof
JP6385299B2 (en) Far-UV absorbance detector for liquid chromatography
JPWO2013140617A1 (en) Detector and liquid chromatograph equipped with the detector
US8913240B2 (en) Fluorescence spectrophotometer
KR100403440B1 (en) Spectral analysis apparatus
KR102608202B1 (en) UV-VIS-NIR spectroscopic analyzer for measuring transmittance
KR101317059B1 (en) Multi-gas analysis device for ultra-violet measurements
JP4146761B2 (en) Fluorescence measuring device
WO2018003045A1 (en) Beam splitter with aperture function, and detector provided with said beam splitter
EP1785719A1 (en) Optical detection method and optical detector
JP2005164255A (en) Spectroscopic analysis apparatus
CN118067645A (en) Analysis system for post-treatment process plutonium valence state

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014505944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871990

Country of ref document: EP

Kind code of ref document: A1