JP7068675B2 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP7068675B2
JP7068675B2 JP2018186950A JP2018186950A JP7068675B2 JP 7068675 B2 JP7068675 B2 JP 7068675B2 JP 2018186950 A JP2018186950 A JP 2018186950A JP 2018186950 A JP2018186950 A JP 2018186950A JP 7068675 B2 JP7068675 B2 JP 7068675B2
Authority
JP
Japan
Prior art keywords
power
converter
load
output
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018186950A
Other languages
Japanese (ja)
Other versions
JP2020043747A (en
Inventor
一男 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2018186950A priority Critical patent/JP7068675B2/en
Publication of JP2020043747A publication Critical patent/JP2020043747A/en
Application granted granted Critical
Publication of JP7068675B2 publication Critical patent/JP7068675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明の実施形態は、電力供給システムに関する。 Embodiments of the present invention relate to a power supply system.

近年、太陽光発電システム(photovoltaic(PV)system)や風力発電システムなどの再生可能エネルギーを利用した分散電源で発電した電力を自家設備(負荷)への供給電力として利用することが行われている。このとき、分散電源の出力電力は天候等の環境の影響に左右され、安定した電力供給が望めないことから、充放電が可能な二次電池(蓄電池)を併用するのが一般的である。 In recent years, power generated by a distributed power source using renewable energy such as a photovoltaic power generation system (photovoltaic (PV) system) or a wind power generation system has been used as power supply to private equipment (load). .. At this time, the output power of the distributed power source is affected by the influence of the environment such as weather, and stable power supply cannot be expected. Therefore, it is common to use a secondary battery (storage battery) capable of charging and discharging together.

このような再生可能エネルギーを利用した電力供給システムにおいて、電力会社からの系統電源に依存しない、地産地消型の独立した電力供給システムが考案されている(例えば、特許文献1参照)。 In such a power supply system using renewable energy, a local production for local consumption type independent power supply system that does not depend on the grid power supply from the power company has been devised (see, for example, Patent Document 1).

特許第6189448号公報Japanese Patent No. 6189448

系統電源から独立し、分散電源と蓄電池を用いて負荷へ電力を供給する電力供給システムにおいて、負荷の供給電力を賄うためや用途に応じて複数の分散電源を設置することがある。その場合、分散電源の容量に見合った蓄電池を必ずしも設置できるわけではない。 In a power supply system that is independent of the grid power supply and supplies power to the load using a distributed power supply and a storage battery, a plurality of distributed power supplies may be installed in order to cover the power supply of the load or depending on the application. In that case, it is not always possible to install a storage battery that matches the capacity of the distributed power source.

分散電源が複数ある場合、分散電源に接続されたPCSを使って負荷へ電力を供給するシステムにおいて、PCSが定格運転のみ可能な種類の機器の場合、負荷の変動に応じた電力を供給するといった木目細かな制御が出来ないという問題がある。すなわち、PCSが定格運転のみの場合はONまたはOFF(100%出力または0%出力)の運転になるため、PCS1台分の定格未満の電力については供給することができない。 When there are multiple distributed power sources, in a system that supplies power to the load using the PCS connected to the distributed power source, if the PCS is a type of device that can only operate at rated operation, power is supplied according to the fluctuation of the load. There is a problem that fine control of wood grain is not possible. That is, when the PCS is only rated operation, it is ON or OFF (100% output or 0% output) operation, so that it is not possible to supply power less than the rating for one PCS.

また、PCSが0~100%まで出力電力が可変な出力抑制機能を持つ種類の機器の場合、PCSは応答速度が遅いという特徴を持っているため、急激な負荷変動や天候の変動が発生して供給過多の状態になると、通常であれば分散電源で発電した電力が蓄電池の充電電力として吸収されるが、分散電源の容量と比較して蓄電池の容量が小さい場合は、蓄電池へ充電するための電力が許容量を超えると蓄電池(正確には蓄電池内または別個に設けられている電力変換器(PCS))がトリップしてしまうという問題がある。 In addition, in the case of a type of device having an output suppression function in which the output power is variable from 0 to 100%, the PCS has a characteristic that the response speed is slow, so that sudden load fluctuations and weather fluctuations occur. In a state of oversupply, the power generated by the distributed power supply is normally absorbed as the charging power of the storage battery, but if the capacity of the storage battery is smaller than the capacity of the distributed power supply, the storage battery is charged. There is a problem that the storage battery (to be exact, the power converter (PCS) provided in the storage battery or separately) trips when the power of the storage battery exceeds the permissible amount.

本実施形態は、上記のような従来技術の問題点を解決するために提案されたものである。本実施形態の目的は、分散電源と蓄電池からなる独立電源システムにおいて蓄電池のトリップを回避する電力供給システムを提供することにある。 This embodiment has been proposed to solve the above-mentioned problems of the prior art. An object of the present embodiment is to provide a power supply system that avoids tripping of a storage battery in an independent power supply system including a distributed power source and a storage battery.

上記目的を達成するため、実施形態の電力供給システムは、直流電力を出力する複数の分散電源と、前記複数の分散電源のそれぞれに接続され所定の電力を出力し互いに並列に接続された複数の第1の電力変換器と、前記複数の第1の電力変換器と並列に接続され電力を双方向に所定の電力へ変換する第2の電力変換器と、前記第2の電力変換器に接続された充放電可能な蓄電池と、前記分散電源および放電時の前記蓄電池から電力を供給される負荷と、前記第1の電力変換器の出力電力値、前記第2の電力変換器の入出力電力値、前記負荷への供給電力のそれぞれを測定する電力値把握手段と、前記複数の分散電源から前記負荷へ供給する電力が最大になるよう、前記複数の第1の電力変換器のうち1台を定格運転させ、前記負荷へ供給する電力と前記蓄電池の充放電電力と前記定格運転した第1の電力変換器の出力電力から必要な第1の電力変換器の運転台数を求め、前記必要な運転台数分の第1の電力変換器を運転させ、前記負荷へ供給する電力および前記蓄電池の充放電電力と前記1台の定格運転した第1の電力変換器の出力電力との差を案分して残りの運転している第1の電力変換器に対して出力電力値を与える制御手段と、を備えることを要旨とする。 In order to achieve the above object, the power supply system of the embodiment has a plurality of distributed power sources that output DC power, and a plurality of distributed power sources that are connected to each of the plurality of distributed power sources and output predetermined power and are connected in parallel to each other. A first power converter, a second power converter connected in parallel with the plurality of first power converters and bidirectionally converting power into predetermined power, and a second power converter connected to the second power converter. A chargeable and dischargeable storage battery, a load supplied with power from the distributed power source and the storage battery at the time of discharge, an output power value of the first power converter, and an input / output power of the second power converter. One of the plurality of first power converters so as to maximize the power supplied to the load from the plurality of distributed power sources and the power value grasping means for measuring each of the value and the power supplied to the load. The required number of operating units of the first power converter is obtained from the power supplied to the load, the charge / discharge power of the storage battery, and the output power of the first power converter that has been rated and operated. The difference between the power supplied to the load and the charge / discharge power of the storage battery and the output power of the first power converter that has been rated and operated by operating the first power converter for the number of operating units is divided. The gist is to provide a control means for giving an output power value to the remaining first power converter in operation.

また、前記制御手段は、前記複数の第1の電力変換器のうち運転回数の少ない第1の電力変換器を優先して運転させるようにしてもよい。 Further, the control means may preferentially operate the first power converter having a smaller number of operations among the plurality of first power converters.

また、前記複数の第1の電力変換器の合計定格電力容量より前記第2の電力変換器の定格電力容量が小さいとき、前記制御手段は、前記第2の電力変換器の電力値把握手段が前記第2の電力変換器の定格電力容量より大きな充電電力を測定したとき、または前記第2の電力変換器の定格電力容量に近い値の充電電力を測定したとき、前記求められた必要な第1の電力変換器の運転台数を1台減らすようにしてもよい。 Further, when the rated power capacity of the second power converter is smaller than the total rated power capacity of the plurality of first power converters, the control means is the power value grasping means of the second power converter. When the charging power larger than the rated power capacity of the second power converter is measured, or when the charging power having a value close to the rated power capacity of the second power converter is measured, the required required second is obtained. The number of operating units of one power converter may be reduced by one.

本発明の第1の実施形態を示すシステム構成図。The system block diagram which shows the 1st Embodiment of this invention. 本発明の第1の実施形態のPCSの台数制御を示すフローチャート図。The flowchart which shows the number control of PCS of 1st Embodiment of this invention. 本発明の第2の実施形態のPCSの台数制御を示すフローチャート図。The flowchart which shows the number control of PCS of 2nd Embodiment of this invention.

(第1の実施形態の構成)
以下、本発明に係る第1の実施形態の構成について図1を参照して説明する。図1は本発明の第1の実施形態を示すシステム構成図である。負荷1に電力を供給するため、その供給源として、リチウムイオン電池など充放電が可能な二次電池である蓄電池2と、蓄電池2に並列に接続された分散電源である太陽電池3から構成されている。負荷1の規模が大きい場合に、その供給電源を確保するため太陽電池3を複数設置した場合を想定した実施例である。なお、太陽電池3の台数について本実施形態では5台で構成しているが、この台数は例示であることは言うまでもない。分散電源は、本実施形態では太陽電池3を用いているがこれに限られるものでは無く、風力発電等の再生可能エネルギーを利用して直流電力を発電する装置や水素等の化学反応を利用した燃料電池でも良い。
(Structure of the first embodiment)
Hereinafter, the configuration of the first embodiment according to the present invention will be described with reference to FIG. FIG. 1 is a system configuration diagram showing a first embodiment of the present invention. In order to supply electric power to the load 1, the supply source is composed of a storage battery 2 which is a secondary battery such as a lithium ion battery that can be charged and discharged, and a solar cell 3 which is a distributed power source connected in parallel to the storage battery 2. ing. This is an embodiment assuming a case where a plurality of solar cells 3 are installed in order to secure a power supply for the load 1 when the scale of the load 1 is large. The number of solar cells 3 is composed of 5 in this embodiment, but it goes without saying that this number is an example. The distributed power source uses the solar cell 3 in the present embodiment, but is not limited to this, and uses a device that generates DC power by using renewable energy such as wind power generation and a chemical reaction such as hydrogen. It may be a fuel cell.

複数の太陽電池3のそれぞれに対応する形で、複数の電力変換器(PCS4a(第1の電力変換器))が接続され、太陽電池3が発電した直流電力を所定の電力(負荷に応じてDC/DC変換またはDC/AC変換を行う機種を選定する)へ変換する。ここで、PCS4aは、遠隔で運転/停止をすることができ、0~100%まで出力電力が可変な出力抑制機能を持つ種類の機器を用いている。 A plurality of power converters (PCS4a (first power converter)) are connected in a form corresponding to each of the plurality of solar cells 3, and the DC power generated by the solar cells 3 is converted into a predetermined power (depending on the load). Select a model that performs DC / DC conversion or DC / AC conversion). Here, the PCS4a uses a type of device that can be remotely operated / stopped and has an output suppression function in which the output power is variable from 0 to 100%.

蓄電池2にも電力変換器(PCS4b(第2の電力変換器))が接続され、PCS4bは蓄電池2を充電または放電するために双方向に電力を変換する。PCS4a、4bは並列に接続され、蓄電池2が放電時は太陽電池3とともに負荷1へ電力を供給する。蓄電池2が充電時は太陽電池3で発電された電力の一部または全部を充電する。ここで、蓄電池2の充電/放電の切替は、負荷1に供給する電力が不足した場合は放電となり、過多の場合は充電に切り替わる。 A power converter (PCS4b (second power converter)) is also connected to the storage battery 2, and the PCS4b converts power in both directions in order to charge or discharge the storage battery 2. The PCS 4a and 4b are connected in parallel, and when the storage battery 2 is discharged, power is supplied to the load 1 together with the solar cell 3. When the storage battery 2 is charged, a part or all of the electric power generated by the solar cell 3 is charged. Here, the charging / discharging switching of the storage battery 2 is switched to discharging when the power supplied to the load 1 is insufficient, and switching to charging when the power is excessive.

また電力値を測定する電力センサ5(電力値把握手段)を備えており、電力センサ5aは複数のPCS4aのそれぞれの出力電力を測定し、電力センサ5bは蓄電池2の充放電電力を測定するため本実施形態ではPCS4bの負荷1側に設置している。電力センサ5cは負荷1へ供給される電力値を測定する。ここで、本実施形態ではPCS4a、4bとは別に電力センサ5a、5bを設けているが、電力値把握手段としてはPCS4a、4b本体から出力電力を直接検出するようにしても良い。 Further, a power sensor 5 (power value grasping means) for measuring the power value is provided, the power sensor 5a measures the output power of each of the plurality of PCS4a, and the power sensor 5b measures the charge / discharge power of the storage battery 2. In this embodiment, it is installed on the load 1 side of the PCS4b. The power sensor 5c measures the power value supplied to the load 1. Here, in the present embodiment, the power sensors 5a and 5b are provided separately from the PCS4a and 4b, but as the power value grasping means, the output power may be directly detected from the PCS4a and 4b main body.

電力センサ5a、5b、5cで検出した電力値を制御装置6(制御手段)へ取り込み、そして制御手段6はPCS4aに対して運転台数を算出し、運転/停止指令を与え、出力電力値を設定する。制御装置6は、例えばPLC(Programmable Logic Controller)を使うことによって実現することができ、電力センサ5a、5bやPCS4aとの信号のやり取りは、DC4~20mA電流信号によるものやRS-485などのシリアルインターフェースなどが使用できる。 The power value detected by the power sensors 5a, 5b, and 5c is taken into the control device 6 (control means), and the control means 6 calculates the number of operating units to the PCS 4a, gives an operation / stop command, and sets the output power value. do. The control device 6 can be realized by using, for example, a PLC (Programmable Logical Controller), and the signal exchange with the power sensors 5a and 5b and the PCS4a is by a DC4 to 20 mA current signal or serial such as RS-485. Interface etc. can be used.

(第1の実施形態の作用、効果)
次に、本発明に係る第1の実施形態のPCS4aの台数制御について図2のフローチャートを使って説明する。フローチャートに示す演算や指令等は、制御装置6に例えばプログラムを構築することで実現できる。ここで、PCS4aの台数制御を行う目的は、分散電源である太陽電池3から負荷1へ供給する電力が最大になるようにするためである。
(Action and effect of the first embodiment)
Next, the number control of the PCS4a according to the first embodiment of the present invention will be described with reference to the flowchart of FIG. The operations and commands shown in the flowchart can be realized by constructing a program in the control device 6, for example. Here, the purpose of controlling the number of PCS4a is to maximize the power supplied from the solar cell 3 which is a distributed power source to the load 1.

図2のステップS1で代表PCS4aの出力を100%に設定する(定格運転)。代表PCS4aとは、複数のPCS4aのうちのいずれかのPCS4aを固定しても良いし、任意のタイミングでどのPCS4aが代表PCS4aとなるか切り替えても良い。代表PCS4aに対して100%出力の指令を与え、発電電力を電力センサ5aで計測し(X)、制御装置6に入力する。ここで、発電電力は発電源が太陽電池3であるため、代表PCS4aに対して100%出力の指令を与えたとしても天候や時間帯により発電電力は一定に定まるものではない。また、最大の発電電力を得るためにPCS4a内でMPPT制御(Maximum Power Point Tracking)を実行するようにしても良い。 In step S1 of FIG. 2, the output of the representative PCS4a is set to 100% (rated operation). The representative PCS4a may be fixed to any one of the plurality of PCS4a, or may be switched to which PCS4a becomes the representative PCS4a at an arbitrary timing. A 100% output command is given to the representative PCS4a, the generated power is measured by the power sensor 5a (X), and is input to the control device 6. Here, since the power generation source of the generated power is the solar cell 3, even if a command for 100% output is given to the representative PCS4a, the generated power is not fixedly determined depending on the weather and the time zone. Further, MPPT control (Maximum Power Point Tracking) may be executed in the PCS4a in order to obtain the maximum power generation.

ステップS2で、代表PCS4a以外のその他のPCS4aについて発電電力を電力センサ5aで計測し(Pi)、制御装置6に入力する。 In step S2, the generated power of the other PCS4a other than the representative PCS4a is measured by the power sensor 5a (Pi) and input to the control device 6.

ステップS3で、太陽電池3で発電された電力の総和を、式、
(Y)=(X)+Σ(Pi) ・・・(1)
で求める。ここで、(Y)は太陽電池3の発電電力総和で、(X)は代表PCS4aの発電電力、(Pi)は代表PCS4a以外のその他PCS4aの個々の発電電力を意味し、Σ(Pi)はその他PCS4aの個々の発電電力の和である。
In step S3, the sum of the electric power generated by the solar cell 3 is calculated by the formula.
(Y) = (X) + Σ (Pi) ・ ・ ・ (1)
Ask for. Here, (Y) is the total power generation power of the solar cell 3, (X) is the power generation power of the representative PCS4a, (Pi) is the individual power generation power of other PCS4a other than the representative PCS4a, and Σ (Pi) is. Others are the sum of the individual generated power of PCS4a.

ステップS4で、蓄電池2の充放電電力(CT)を計測する。(CT)は蓄電池2が放電時は正、充電時は負の値となる。 In step S4, the charge / discharge power (CT) of the storage battery 2 is measured. (CT) has a positive value when the storage battery 2 is discharged and a negative value when the storage battery 2 is charged.

ステップS5で、負荷1が消費する電力を計測し(A)、制御装置6に入力する。 In step S5, the power consumed by the load 1 is measured (A) and input to the control device 6.

次に、ステップS6で、PCS4aの運転台数(B)を、式、
(B)=(A)/(X)(小数点以下は切り上げ) ・・・(2)
で求める。負荷1の消費電力(A)を代表PCS4aの発電電力(X)で割ることで、負荷1の消費電力を満足するためのPCS4aの運転台数を求めることができ、商の小数点以下を切り上げることで1台(正確に言うと1台未満)多いPCS4aの運転台数を求めていることになる。もちろん、PCS4aの運転台数は設置数による制限があるため、PCS4aが全台100%で運転しても負荷1の消費電力を賄うことができない場合は、蓄電池2から足りない電力を供給することになる。
Next, in step S6, the number of operating PCS4a (B) is expressed by the formula.
(B) = (A) / (X) (rounded up to the nearest whole number) ... (2)
Ask for. By dividing the power consumption (A) of the load 1 by the generated power (X) of the representative PCS4a, the number of operating PCS4a to satisfy the power consumption of the load 1 can be obtained, and by rounding up the fractions below the quotient. This means that we are seeking the number of PCS4a in operation, which is one more (more accurately, less than one). Of course, the number of PCS4a in operation is limited by the number of installations, so if the power consumption of load 1 cannot be covered even if all PCS4a are operated at 100%, the storage battery 2 will supply insufficient power. Become.

ステップS7で、ステップS6で求めた台数分、PCS4aを運転させる。このとき、運転するPCS4aは、例えば運転回数の少ないPCS4aから優先して運転するようにすると、PCS4aの起動回数が平準化され寿命が平均化するという効果が得られる。また、運転回数の代わりに運転時間を指標として用いれば同様の効果が得られる。また、逆に運転回数の多い方または運転時間の長い方から運転するようにすれば寿命が順番に訪れることになるので、PCS4aの寿命による交換やメンテナンスを平準化できるという効果を得られる。当然ながらPCS4aを停止する場合も同様で、運転回数の多い方または運転時間の短い方から停止するようにすれば同様の効果が得られることになる。なお、PCS4aの運転回数や運転時間は制御装置6でそれぞれカウント数を積算することにより実現できる。 In step S7, PCS4a is operated for the number of units obtained in step S6. At this time, if the PCS4a to be operated is preferentially operated from, for example, the PCS4a having a smaller number of operations, the effect that the number of activations of the PCS4a is equalized and the life is averaged can be obtained. Further, if the operation time is used as an index instead of the number of operations, the same effect can be obtained. On the contrary, if the operation is performed from the one with the largest number of operations or the one with the longest operation time, the lifespan will be reached in order, so that it is possible to obtain the effect of leveling the replacement and maintenance due to the lifespan of the PCS4a. Of course, the same applies when the PCS4a is stopped, and the same effect can be obtained by stopping the PCS4a from the one with the largest number of operations or the one with the shorter operation time. The number of operations and the operation time of the PCS 4a can be realized by integrating the count numbers with the control device 6.

ステップS8で、その他PCS4aの出力設定値を、式、
(C)=[(A)-(X)]/[(B)-1] ・・・(3)
で求め、その他PCS4aに対して出力設定値を与える。なお、分子の“-(X)”と分母の“-1”は代表PCS4aの分を除いているためである。このようにすると、式(2)で求めたPCS4aの運転台数は1台多いものとなっていたが、出力設定値(C)をその他PCS4aに案分して与えることにより、負荷1の消費電力に相当する電力を供給できることになる。また、その他PCS4aは100%運転をしていないことになり余力があるため、多少の負荷変動や天候変化による発電変動についても追従できるという効果がある。
In step S8, the other output setting values of PCS4a are expressed in the formula.
(C) = [(A)-(X)] / [(B) -1] ... (3)
And other output setting values are given to PCS4a. This is because the numerator "-(X)" and the denominator "-1" exclude the representative PCS4a. By doing so, the number of operating PCS4a calculated by the equation (2) was one more, but by giving the output set value (C) to the other PCS4a in proportion, the power consumption of the load 1 was consumed. It will be possible to supply power equivalent to. In addition, since the PCS4a is not 100% operated and has a surplus capacity, there is an effect that it can follow some load fluctuations and power generation fluctuations due to weather changes.

ステップS1へ戻り、繰り返しステップS1~S8を実行することで、負荷1の消費電力および分散電力3の発電電力に応じてPCS4aの運転台数を定め、太陽電池3から負荷1への供給電力が最大になるような制御を行うことができる。 By returning to step S1 and repeatedly executing steps S1 to S8, the number of PCS4a to be operated is determined according to the power consumption of the load 1 and the generated power of the distributed power 3, and the power supplied from the solar cell 3 to the load 1 is maximum. Can be controlled so as to become.

(第2の実施形態)
以下、本発明に係る第2の実施形態について説明する。構成は第1の実施形態と同じなため説明は省略し、作用、効果について図3を参照して説明する。
(Second embodiment)
Hereinafter, a second embodiment according to the present invention will be described. Since the configuration is the same as that of the first embodiment, the description thereof will be omitted, and the actions and effects will be described with reference to FIG.

図3は、本発明に係る第2の実施形態のPCS4aの台数制御を示すフローチャートである。特に、蓄電池2の充電時にPCS4bの定格以上の電力が入力された場合(PCS4bへの過大入力)のPCS4aの台数制御を示すもので、図2のステップS6とステップS7の間にステップP1とステップP2を追加したものであり、この差異について説明する。なお、PCS4bへ過大入力がなされると機器保護機能(インターロック機能)が働き、PCS4bがトリップ(強制停止)することになる。 FIG. 3 is a flowchart showing the number control of PCS4a according to the second embodiment of the present invention. In particular, it shows the control of the number of PCS4a when the power exceeding the rating of the PCS4b is input when the storage battery 2 is charged (excessive input to the PCS4b). P2 is added, and this difference will be described. If an excessive input is made to the PCS4b, the device protection function (interlock function) is activated and the PCS4b trips (forced stop).

PCS4b過大入力の検出は、電力センサ5bがPCS4bの定格以上の値を示したことをもって検出する(ステップP1)。本実施形態では充電時と放電時とで正負があるため絶対値で判定するようにすると良い。 The detection of the PCS4b excessive input is detected when the power sensor 5b shows a value equal to or higher than the rating of the PCS4b (step P1). In this embodiment, since there are positive and negative values between charging and discharging, it is preferable to make a determination based on an absolute value.

PCS4b過大入力を検出すると、ステップP2でPCS4aの運転台数を1台減らす演算をするため、PCS4b過大入力状態を解消することができる。すなわち、もともとステップS6で小数点を切り上げてPCS4aの運転台数を算出しているので、この小数点以下に相当する分だけ電力が減ることになり、結果的にPCS4b過大入力を解消することに繋がる。なお、これも制御装置6で実現でき、実現手段であるPLCは制御周期が非常に高速であるため、PCS4b過大入力を検出してから数十~数百msec程度以内で実現することができる。もし処理が間に合わないようであれば、PCS4b過大入力を、蓄電池2の充電時にPCS4bの定格に近い値の電力が入力された場合、と置き換えても良い。そうすれば時間的な余裕ができるので、PCS4bがトリップする前に確実に充電電力を減らすことができる。これにより、PCS4b過大入力によるPCS4bのトリップを回避することができるという効果がある。 When the PCS4b excessive input is detected, the operation number of the PCS4a is reduced by one in step P2, so that the PCS4b excessive input state can be eliminated. That is, since the number of operating PCS4a is originally calculated by rounding up the decimal point in step S6, the power is reduced by the amount corresponding to the number after the decimal point, and as a result, the PCS4b excessive input is eliminated. This can also be realized by the control device 6, and since the PLC, which is the realization means, has a very high control cycle, it can be realized within about several tens to several hundreds of msec after detecting the PCS4b excessive input. If the processing is not in time, the PCS4b excessive input may be replaced with the case where a value close to the rating of the PCS4b is input when the storage battery 2 is charged. By doing so, there is time to spare, so that the charging power can be reliably reduced before the PCS4b trips. This has the effect of avoiding trips of PCS4b due to excessive input of PCS4b.

ステップP2ではPCS4aの運転台数を1台減らす演算としていたが、PCS4b過大入力電力の大きさに応じてPCS4aの運転台数を減らす数を1台より多くするようにしても良い。 In step P2, the operation of reducing the number of operating PCS4a by one is calculated, but the number of operating PCS4a may be reduced by more than one according to the magnitude of the excessive input power of PCS4b.

PCSの機種によっては、過大入力が発生するとインターロック機能によりPCSを強制停止させていたため、その場合は手動による復帰操作が伴い操作員の負担が大きいものとなっていたが、本実施形態によればトリップを回避できるため、操作員の手動による復帰操作が不要になり、操作員の負担を軽減することができる。 Depending on the model of the PCS, when an excessive input occurs, the PCS is forcibly stopped by the interlock function. In that case, a manual return operation is required and the burden on the operator is heavy. Since trips can be avoided, the manual return operation of the operator becomes unnecessary, and the burden on the operator can be reduced.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1・・・負荷
2・・・系統電源
3・・・太陽電池
4a、4b・・・PCS
5a、5b、5c・・・電力センサ
6・・・制御装置
1 ... Load 2 ... System power supply 3 ... Solar cells 4a, 4b ... PCS
5a, 5b, 5c ... Power sensor 6 ... Control device

Claims (3)

直流電力を出力する複数の分散電源と、
前記複数の分散電源のそれぞれに接続され所定の電力を出力し互いに並列に接続された複数の第1の電力変換器と、
前記複数の第1の電力変換器と並列に接続され電力を双方向に所定の電力へ変換する第2の電力変換器と、
前記第2の電力変換器に接続された充放電可能な蓄電池と、
前記分散電源および放電時の前記蓄電池から電力を供給される負荷と、
前記第1の電力変換器の出力電力値、前記第2の電力変換器の入出力電力値、前記負荷への供給電力のそれぞれを測定する電力値把握手段と、
前記複数の分散電源から前記負荷へ供給する電力が最大になるよう、前記複数の第1の電力変換器のうち1台を定格運転させ、前記負荷へ供給する電力と前記蓄電池の充放電電力と前記定格運転した第1の電力変換器の出力電力から必要な第1の電力変換器の運転台数を求め、前記必要な運転台数分の第1の電力変換器を運転させ、前記負荷へ供給する電力および前記蓄電池の充放電電力と前記1台の定格運転した第1の電力変換器の出力電力との差を案分して残りの運転している第1の電力変換器に対して出力電力値を与える制御手段と、を備える電力供給システム。
With multiple distributed power sources that output DC power,
A plurality of first power converters connected to each of the plurality of distributed power sources, output predetermined power, and connected in parallel with each other.
A second power converter that is connected in parallel with the plurality of first power converters and converts power into predetermined power in both directions.
A rechargeable and dischargeable storage battery connected to the second power converter,
The load supplied with power from the distributed power source and the storage battery at the time of discharge, and
A power value grasping means for measuring each of the output power value of the first power converter, the input / output power value of the second power converter, and the power supplied to the load.
One of the plurality of first power converters is operated in a rated manner so that the power supplied from the plurality of distributed power sources to the load is maximized, and the power supplied to the load and the charge / discharge power of the storage battery are used. The required number of operating units of the first power converter is obtained from the output power of the first power converter that has been rated and operated, and the first power converter corresponding to the required number of operating units is operated and supplied to the load. Output power to the remaining operating first power converter by prorating the difference between the power and the charge / discharge power of the storage battery and the output power of the first power converter that has been rated and operated. A power supply system with a control means that gives a value.
前記制御手段は、前記複数の第1の電力変換器のうち運転回数の少ない第1の電力変換器を優先して運転させる、請求項1に記載の電力供給システム。 The power supply system according to claim 1, wherein the control means preferentially operates the first power converter having a smaller number of operations among the plurality of first power converters. 前記複数の第1の電力変換器の合計定格電力容量より前記第2の電力変換器の定格電力容量が小さいとき、
前記制御手段は、前記第2の電力変換器の電力値把握手段が前記第2の電力変換器の定格電力容量より大きな充電電力を測定したとき、または前記第2の電力変換器の定格電力容量に近い値の充電電力を測定したとき、前記求められた必要な第1の電力変換器の運転台数を1台減らす、請求項1または請求項2に記載の電力供給システム。
When the rated power capacity of the second power converter is smaller than the total rated power capacity of the plurality of first power converters.
The control means is used when the power value grasping means of the second power converter measures a charging power larger than the rated power capacity of the second power converter, or the rated power capacity of the second power converter. The power supply system according to claim 1 or 2, wherein the number of operating units of the required first power converter is reduced by one when the charging power having a value close to is measured.
JP2018186950A 2018-09-12 2018-09-12 Power supply system Active JP7068675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018186950A JP7068675B2 (en) 2018-09-12 2018-09-12 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018186950A JP7068675B2 (en) 2018-09-12 2018-09-12 Power supply system

Publications (2)

Publication Number Publication Date
JP2020043747A JP2020043747A (en) 2020-03-19
JP7068675B2 true JP7068675B2 (en) 2022-05-17

Family

ID=69798998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018186950A Active JP7068675B2 (en) 2018-09-12 2018-09-12 Power supply system

Country Status (1)

Country Link
JP (1) JP7068675B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032419A (en) 2014-07-30 2016-03-07 パナソニックIpマネジメント株式会社 Power storage device
JP2016140206A (en) 2015-01-28 2016-08-04 京セラ株式会社 Power supply apparatus, power supply system, and power supply method
JP2018121479A (en) 2017-01-27 2018-08-02 株式会社日立産機システム Method for controlling coordination system of storage battery and power conversion device, and power conditioning system
JP2019221036A (en) 2018-06-18 2019-12-26 デルタ電子株式会社 Output control system for photovoltaic power generation and power conditioner used for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032419A (en) 2014-07-30 2016-03-07 パナソニックIpマネジメント株式会社 Power storage device
JP2016140206A (en) 2015-01-28 2016-08-04 京セラ株式会社 Power supply apparatus, power supply system, and power supply method
JP2018121479A (en) 2017-01-27 2018-08-02 株式会社日立産機システム Method for controlling coordination system of storage battery and power conversion device, and power conditioning system
JP2019221036A (en) 2018-06-18 2019-12-26 デルタ電子株式会社 Output control system for photovoltaic power generation and power conditioner used for the same

Also Published As

Publication number Publication date
JP2020043747A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US10756544B2 (en) Energy storage system and management method thereof
KR101412742B1 (en) Stand-alone Microgrid Control System and Method
KR101097260B1 (en) Grid-connected energy storage system and method for controlling grid-connected energy storage system
Diaz et al. Fuzzy-logic-based gain-scheduling control for state-of-charge balance of distributed energy storage systems for DC microgrids
JP6430775B2 (en) Storage battery device
US20130187466A1 (en) Power management system
US20130241495A1 (en) Energy storage system and method of controlling the same
JP7057933B2 (en) Power converter operation control device and operation control method
JP2012039821A (en) Power fluctuation relaxing device of power generating system and power fluctuation relaxing method
KR20170129456A (en) Battery energy storage system
JP6522901B2 (en) DC distribution system
JP6614010B2 (en) Battery system
CN106159980B (en) Power generation system and energy management method
JP2015220889A (en) Power supply system
JP2012050211A (en) Power storage system for power system
Sahoo et al. A decentralized adaptive droop based power management scheme in autonomous DC microgrid
JP6149275B2 (en) Power fluctuation suppression device using multiple power storage devices
KR102016731B1 (en) Battery energy storage system and management method thereof
JP7068675B2 (en) Power supply system
KR102210529B1 (en) ESS operation method with PMS integral PCS
Luna et al. Online energy management system for distributed generators in a grid-connected microgrid
KR101661820B1 (en) System and Method for Controlling Ramp Rate of New Renewable Generator Using Plurality of Energy Storage System
JP2014230366A (en) Power generation device
JP2023030289A (en) Control device for battery unit
JP6308014B2 (en) Power management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220415

R150 Certificate of patent or registration of utility model

Ref document number: 7068675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150