JP2012050211A - Power storage system for power system - Google Patents

Power storage system for power system Download PDF

Info

Publication number
JP2012050211A
JP2012050211A JP2010188842A JP2010188842A JP2012050211A JP 2012050211 A JP2012050211 A JP 2012050211A JP 2010188842 A JP2010188842 A JP 2010188842A JP 2010188842 A JP2010188842 A JP 2010188842A JP 2012050211 A JP2012050211 A JP 2012050211A
Authority
JP
Japan
Prior art keywords
storage battery
power
storage
command
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010188842A
Other languages
Japanese (ja)
Inventor
Hyogo Takami
表吾 高見
Masashi Kawashima
正史 川島
Tomoyuki Nakamura
朋之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010188842A priority Critical patent/JP2012050211A/en
Publication of JP2012050211A publication Critical patent/JP2012050211A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage system for a power system capable of efficiently controlling a storage battery of each user, and furthermore efficiently controlling the power system by cooperatively controlling the storage batteries of both the power system and the users according to the needs of a supply command station.SOLUTION: A power storage system for a power system comprises: a storage battery 13 for a power system being installed as such; a virtual storage battery 14 formed by a plurality of batteries 15 of users being governed by a collection/distribution device 16; and a storage battery monitoring controller 12 for controlling the storage battery 13 for the power system and the virtual storage battery 14 according to a command from a supply command station 11. The storage battery 13 for the power system responds at a high-speed to a command from the storage battery monitoring controller 12 so as to perform a charging/discharging control for a frequency adjustment and an economical load distribution. The virtual storage battery 14 responds at a low-speed to a command from the storage battery monitoring controller 12 so as to perform a charging/discharging control for an economical load distribution. Thus, the virtual storage battery 14 composed of the batteries 15 of users and the storage battery 13 for the power system are cooperatively controlled.

Description

本発明は、電力系統に連系された蓄電池を系統運用業務のために充放電制御する電力系統蓄電システムに関する。   The present invention relates to a power system power storage system that performs charge / discharge control of a storage battery linked to a power system for system operation work.

低炭素社会の構築に向け、再生可能エネルギーの導入が進められている。風力や太陽光などの自然エネルギーを源とする再生可能エネルギーは、その出力変動および出力不確実性が、安定的な電力需給を維持する上で大きな課題となる。このような中、電気自動車(EV)普及を契機に蓄電池の高性能化・大型化・長寿命化・低価格化が進行しつつあり、電力系統での活用が模索されている。   Renewable energy is being introduced to build a low-carbon society. Renewable energy sources such as wind power and solar power have major problems in maintaining stable power supply and demand due to fluctuations in output and output uncertainty. Under such circumstances, with the spread of electric vehicles (EV), the performance, size, life, and price of storage batteries are increasing, and their use in electric power systems is being sought.

蓄電池は、電力会社が保有する系統用蓄電池と、電力需要家(以下、単に需要家と呼ぶ)が保有する需要家蓄電池とに大別される。   Storage batteries are broadly classified into grid storage batteries owned by electric power companies and customer storage batteries owned by electric power consumers (hereinafter simply referred to as consumers).

系統用蓄電池は、電力系統に直接連系する大容量蓄電池であり、給電指令所が自由に活用できるものである。風力発電や太陽光発電の出力変動の影響は、均し効果により系統全体では緩和される。そのため、発電地点に蓄電池を分散配置して個別対策するよりも、系統用蓄電池を用いて系統全体で対策する方が効率的に変動調整できると考えられる。   The storage battery for a system is a large capacity storage battery that is directly connected to the power system, and can be freely used by a power supply command station. The effect of fluctuations in the output of wind power and solar power generation is mitigated throughout the system by the leveling effect. For this reason, it is considered that the variation can be adjusted more efficiently by taking countermeasures for the entire system using the storage batteries for the system rather than separately arranging storage batteries at the power generation point.

需要家蓄電池は、家庭、ビル、コミュニティ単位で、非常用電源や深夜電力の利用等のために配置される蓄電池のことである。需要家蓄電池は普段は需要家のニーズに基づいて使用されるが、用途や時期を限定して電力系統の制御にも使用できれば蓄電資源の有効活用となる。   The consumer storage battery is a storage battery that is arranged for use of an emergency power source or late-night power in a household, a building, or a community. Consumer storage batteries are usually used based on the needs of consumers. However, if they can be used for power system control with limited use and timing, it will be an effective use of storage resources.

そのようなものとして、系統用蓄電池や需要家蓄電池を区別せず、系統連系された全ての蓄電池の充放電能力を取得し、取得された充放電能力を用いて蓄電池の運転スケジュール又は充放電量を決定し、決定された運転スケジュール又は充放電量に基づいて蓄電池を制御し、電力系統をより効率的に制御するようにしたものがある(例えば、特許文献1参照)。   As such, it does not distinguish between grid storage batteries and consumer storage batteries, acquires the charge / discharge capabilities of all grid-connected storage batteries, and uses the acquired charge / discharge capabilities to schedule the storage battery operation or charge / discharge There is one in which the amount is determined, the storage battery is controlled based on the determined operation schedule or charge / discharge amount, and the power system is controlled more efficiently (for example, see Patent Document 1).

特開2006−94648号公報JP 2006-94648 A

しかし、特許文献1のものでは、系統連系された全ての蓄電池の充放電能力を用いて、運転スケジュール又は充放電量を決定し、蓄電池を制御するものであるが、系統用蓄電池や個々の需要家蓄電池に対して個別に制御することになるので制御が煩雑となる。   However, in Patent Document 1, the operation schedule or the amount of charge / discharge is determined using the charge / discharge capabilities of all the storage batteries connected to the grid, and the storage battery is controlled. Since it controls separately with respect to a consumer storage battery, control becomes complicated.

また、系統用蓄電池は系統安定化のため大容量が求められるが、需要家蓄電池は個々のニーズに応じた容量でよい。さらに、系統用蓄電池は、給電指令所のニーズで自由に充放電できるが、需要家蓄電池は、需要家のニーズによる充放電が優先し、給電指令所が利用するには一定の制限がある。このように、容量、制御自由度の異なる蓄電池を一括で協調制御するのはさらに困難である。   Moreover, although the storage battery for a system | strain requires large capacity | capacitance for system stabilization, the capacity | capacitance according to individual needs may be sufficient as a consumer storage battery. Furthermore, the grid storage battery can be freely charged / discharged according to the needs of the power supply command station, but the customer storage battery is given priority to charge / discharge according to the needs of the customer, and there are certain restrictions on the use of the power supply command station. Thus, it is further difficult to collectively control the storage batteries having different capacities and control degrees of freedom.

そこで、本発明の目的は、個々の需要家蓄電池を効率的に制御でき、しかも給電指令所のニーズに従って系統用蓄電池と需要家蓄電池を協調制御して効率的に制御できる電力系統蓄電システムを提供することである。   Accordingly, an object of the present invention is to provide an electric power storage system that can efficiently control individual customer storage batteries and that can efficiently control the storage battery for the system and the customer storage battery in accordance with the needs of the power supply command center. It is to be.

請求項1の発明に係る電力系統蓄電システムは、電力系統に配置された系統用蓄電池と、複数の需要家蓄電池を集配信装置で束ねて形成され前記集配信装置で各々の需要家蓄電池の制御を行う仮想蓄電池と、給電指令所からの指令により前記系統用蓄電池及び前記仮想蓄電池を制御する蓄電監視制御装置とを備え、前記系統用蓄電池は前記蓄電監視制御装置からの指令に応答して周波数調整や経済負荷配分のための充放電制御を行い、前記仮想蓄電池は前記蓄電監視制御装置からの指令に応答して経済負荷配分のための充放電制御を行うことを特徴とする。   The power grid storage system according to the invention of claim 1 is formed by bundling a grid storage battery arranged in the power grid and a plurality of consumer storage batteries with a collection and distribution device, and controlling each customer storage battery with the collection and distribution device. And a power storage monitoring control device for controlling the storage battery for the system and the virtual storage battery according to a command from the power supply command station, the storage battery for the system responding to a command from the power storage monitoring control device in frequency Charge / discharge control for adjustment and economic load distribution is performed, and the virtual storage battery performs charge / discharge control for economic load distribution in response to a command from the power storage monitoring and control device.

請求項2の発明に係る電力系統蓄電システムは、請求項1の発明において、前記蓄電監視制御装置は、前記電力系統に余剰電力が発生する特異日には、前記仮想蓄電池に予約制御指令を出力し、前記仮想蓄電池は前記蓄電監視制御装置からの予約制御指令に応答し、前記仮想蓄電池の前記集配信装置は前記需要家蓄電池をスケジューリング制御することを特徴とする。   A power grid storage system according to a second aspect of the present invention is the power storage system according to the first aspect, wherein the power storage monitoring and control device outputs a reservation control command to the virtual storage battery on a specific day when surplus power is generated in the power system. The virtual storage battery responds to a reservation control command from the power storage monitoring and control device, and the collection and distribution device of the virtual storage battery performs scheduling control of the consumer storage battery.

請求項3の発明に係る電力系統蓄電システムは、請求項1または2の発明において、前記蓄電監視制御装置は、前記系統用蓄電池が周波数調整や経済負荷配分のための充放電制御されていない状態で、前記系統用蓄電池を定期的に診断することを特徴とする。   A power grid storage system according to a third aspect of the present invention is the power storage monitoring control device according to the first or second aspect, wherein the power storage monitoring control device is in a state in which the storage battery for the grid is not subjected to charge / discharge control for frequency adjustment or economic load distribution The system storage battery is periodically diagnosed.

請求項4の発明に係る電力系統蓄電システムは、請求項1乃至3のいずれか1項に記載の発明において、前記仮想蓄電池の集配信装置は、前記仮想蓄電池の各々の前記需要家蓄電池が経済負荷配分のための充放電制御やスケジューリング制御されていない状態で、前記仮想蓄電池の各々の前記需要家蓄電池を定期的に診断することを特徴とする。   The electric power storage system according to the invention of claim 4 is the power storage system according to any one of claims 1 to 3, wherein the virtual storage battery collection and distribution device is an economy of each consumer storage battery of the virtual storage battery. The customer storage battery of each of the virtual storage batteries is periodically diagnosed in a state where charge / discharge control for load distribution and scheduling control are not performed.

請求項1の発明によれば、複数の需要家蓄電池を集配信装置で束ねて仮想蓄電池とし、蓄電監視制御装置は、仮想蓄電池と系統用蓄電池とを同等に扱い、系統用蓄電池は蓄電監視制御装置からの指令に応答して周波数調整のための充放電制御を行い、仮想蓄電池は蓄電監視制御装置からの指令に応答して経済負荷配分のための充放電制御を行うので、需要家蓄電池からなる仮想蓄電池と系統用蓄電池とを容易に協調制御できる。   According to the first aspect of the present invention, a plurality of consumer storage batteries are bundled by a concentrator / distributor to form a virtual storage battery. The power storage monitoring and control device treats the virtual storage battery and the power storage battery equally, and the power storage battery controls the power storage monitoring control. Charge / discharge control for frequency adjustment is performed in response to the command from the device, and the virtual storage battery performs charge / discharge control for economic load distribution in response to the command from the power storage monitoring control device. Thus, the virtual storage battery and the system storage battery can be easily cooperatively controlled.

請求項2の発明によれば、電力系統に余剰電力が発生する特異日には、仮想蓄電池は余剰電力を吸収するための充放電の予約制御を行い、その際には仮想蓄電池の集配信装置は、需要家蓄電池をスケジューリング制御するので、電力系統の余剰電力を需要家蓄電池で吸収した経済負荷配分の制御が行える。   According to the second aspect of the present invention, the virtual storage battery performs charge / discharge reservation control for absorbing the surplus power on a specific day when surplus power is generated in the power system, and in that case, the virtual storage battery collection and distribution device Since scheduling control is performed on the consumer storage battery, it is possible to control the economic load distribution in which surplus power of the power system is absorbed by the consumer storage battery.

請求項3の発明によれば、系統用蓄電池を定期的に診断するので、系統用蓄電池の経年変化に伴う特性変化を把握できる。従って、現状の系統用蓄電池の特性を精度よく把握でき、各々の系統用蓄電池の充放電制御を適正に行うことができる。   According to invention of Claim 3, since the storage battery for system | strains is diagnosed regularly, the characteristic change accompanying the secular change of the storage battery for system | strains can be grasped | ascertained. Therefore, the characteristics of the current system storage battery can be accurately grasped, and charge / discharge control of each system storage battery can be appropriately performed.

請求項4の発明によれば、仮想蓄電池の各々の需要家蓄電池を定期的に診断するので、需要家蓄電池の経年変化に伴う特性変化を把握できる。従って、現状の需要家蓄電池の特性を精度よく把握でき、各々の需要家蓄電池の充放電制御を適正に行うことができる。   According to invention of Claim 4, since each consumer storage battery of a virtual storage battery is diagnosed regularly, the characteristic change accompanying a secular change of a consumer storage battery can be grasped | ascertained. Accordingly, it is possible to accurately grasp the characteristics of the current consumer storage battery and appropriately perform charge / discharge control of each consumer storage battery.

本発明の実施形態に係る電力系統蓄電システムの構成図。The block diagram of the electric power grid | system electrical storage system which concerns on embodiment of this invention. 1日の電力需要曲線の一例を示すグラフ。The graph which shows an example of the electric power demand curve of 1 day. 特異日の電力需要曲線及び電力供給曲線の一例を示すグラフ。The graph which shows an example of the electric power demand curve and electric power supply curve of a special day.

以下、本発明の実施の形態を説明する。図1は本発明の実施形態に係る電力系統蓄電システムの構成図である。給電指令所11は電力系統の系統運用業務を行うものであり、送電系統に連系される図示省略の発電所群と1対Nの情報通信網を整備し情報の授受を行い電力の需給バランスを図るようにしている。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of an electric power storage system according to an embodiment of the present invention. The power supply command station 11 is responsible for power system operation. A power station group (not shown) connected to the power transmission system and a 1-to-N information communication network are provided to exchange information and supply and demand balance of power. I try to plan.

また、本発明の実施の形態では、給電指令所11は、蓄電監視制御装置12を介して、電力系統に設置された複数の系統用蓄電池13a〜13n及び複数の仮想蓄電池14a〜14mへの制御指令を出力するように構成されている。   In the embodiment of the present invention, the power supply command station 11 controls the plurality of system storage batteries 13a to 13n and the plurality of virtual storage batteries 14a to 14m installed in the power system via the power storage monitoring control device 12. It is configured to output a command.

系統用蓄電池13a〜13nは、系統運用業務のために電力系統に設置された蓄電池であり、給電指令所のニーズにより自由に充放電が可能となる蓄電池である。系統用蓄電池13a〜13nは、蓄電池本体と交直変換装置PCS(Power Conditioning System)とから構成されている。蓄電池本体は、例えば、ナトリウム硫黄(NAS)電池、リチウムイオン電池やニッケル水素電池などの電力を蓄電する電池本体であり、交直変換装置PCSは、系統の交流電力を直流電力に変換して蓄電池本体に充電し、あるいは蓄電池本体に充電された直流電力を交流電力に変換して系統に出力する電力変換装置である。   The system storage batteries 13a to 13n are storage batteries installed in the power system for system operation, and can be freely charged and discharged according to the needs of the power supply command center. The system storage batteries 13a to 13n are composed of a storage battery main body and an AC / DC converter PCS (Power Conditioning System). The storage battery main body is a battery main body that stores electric power, such as a sodium sulfur (NAS) battery, a lithium ion battery, or a nickel hydride battery, and the AC / DC converter PCS converts the AC power of the system into DC power to store the main body of the storage battery. It is a power conversion device that converts the DC power charged in the battery or the storage battery body into AC power and outputs it to the system.

一方、仮想蓄電池14a〜14mは、複数の需要家蓄電池15を集配信装置16で束ねて形成され、仮想的に一つの蓄電池として取り扱われる。例えば、図1では、仮想蓄電池14aは2個の需要家蓄電池15a1、15a2を集配信装置16aで束ねて形成され、仮想蓄電池14bは3個の需要家蓄電池15b1、15b2、15b3を集配信装置16bで束ねて形成された場合を示している。集配信装置16で束ねられる需要家蓄電池15は、配置地域毎あるいは設備種類毎にまとめるようにしてもよい。また、需要家蓄電池15についても、系統用蓄電池13と同様に、蓄電池本体と交直変換装置PCSとから構成され、蓄電池本体としては、例えば、リチウムイオン電池やニッケル水素電池が用いられる。この電池は、定置型電池だけでなく、電気自動車やプラグインハイブリッド車の車載電池も含まれる。   On the other hand, the virtual storage batteries 14a to 14m are formed by bundling a plurality of customer storage batteries 15 by the collection and distribution device 16, and are virtually handled as one storage battery. For example, in FIG. 1, the virtual storage battery 14a is formed by bundling two consumer storage batteries 15a1 and 15a2 with a collection / distribution device 16a, and the virtual storage battery 14b is composed of three consumer storage batteries 15b1, 15b2, and 15b3. It shows the case of being formed by bundling. The customer storage batteries 15 bundled by the collection / distribution device 16 may be collected for each arrangement area or for each equipment type. Similarly to the system storage battery 13, the consumer storage battery 15 includes a storage battery main body and an AC / DC converter PCS. As the storage battery main body, for example, a lithium ion battery or a nickel hydrogen battery is used. This battery includes not only a stationary battery but also an in-vehicle battery of an electric vehicle or a plug-in hybrid vehicle.

次に、蓄電監視制御装置12は給電指令所11からの指令により、系統用蓄電池13及び仮想蓄電池14を制御するものである。例えば、給電指令所11から周波数調整や負荷調整の指令があったとすると、蓄電監視制御装置12は、系統用蓄電池13及び仮想蓄電池14の双方にそれぞれ適した指令を出力する。   Next, the power storage monitoring control device 12 controls the system storage battery 13 and the virtual storage battery 14 in accordance with a command from the power supply command station 11. For example, if there is a frequency adjustment or load adjustment command from the power supply command station 11, the power storage monitoring control device 12 outputs a command suitable for both the system storage battery 13 and the virtual storage battery 14.

系統用蓄電池13は、蓄電監視制御装置12からの指令に高速(例えば数秒単位で)応答して充放電制御を行い、周波数の変動周期のうち数分〜20分程度の周期で変動する周波数調整{周波数制御LFC(Load Frequency Control)}や数十分以上の周期で変動する負荷調整{経済負荷配分ELD(Economic Load Dispatching)}を分担する。さらに、数分以下の周期で変動する負荷変動に対して発電機側で自動出力調整するガバナフリーの代替として、系統用蓄電池13を用いてもよい。   The system storage battery 13 performs charge / discharge control in response to a command from the power storage monitoring and control device 12 at a high speed (for example, in units of several seconds), and frequency adjustment that fluctuates in a period of about several minutes to about 20 minutes in the frequency fluctuation period. {Frequency control LFC (Load Frequency Control)} and load adjustment {Economic Load Dispatching (ELD)} that fluctuates with a period of several tens of minutes or more are shared. Furthermore, the storage battery 13 for system | strains may be used as an alternative of the governor free which adjusts output automatically by the generator side with respect to the load fluctuation | variation which fluctuates with a period of several minutes or less.

一方、仮想蓄電池14は蓄電監視制御装置12からの指令に低速(例えば数分から数十分単位で)応答して充放電制御を行う。これは、仮想蓄電池14は、集配信装置16で複数の需要家蓄電池15を束ねており、需要家蓄電池15の使用可能容量を個々に調査し、仮想蓄電池14全体として使用可能容量を把握するまでに時間がかかるからである。仮想蓄電池14は、系統用蓄電池13での充放電制御で経済負荷配分の不足分について、集配信装置16で需要家蓄電池15を充放電制御する。   On the other hand, the virtual storage battery 14 performs charge / discharge control in response to a command from the power storage monitoring and control device 12 at a low speed (for example, from several minutes to several tens of minutes). This is because the virtual storage battery 14 bundles a plurality of customer storage batteries 15 with the concentrator / distributor 16, until the usable capacity of the customer storage battery 15 is individually investigated and the usable capacity of the virtual storage battery 14 as a whole is grasped. This is because it takes time. The virtual storage battery 14 performs charge / discharge control of the customer storage battery 15 with the collector / distributor 16 for the insufficient economic load distribution by charge / discharge control in the system storage battery 13.

図2は1日の電力需要曲線の一例を示すグラフである。電力需要曲線は数十分以上の周期で変動する基本変動成分S1と、数分〜20分程度の周期で変動する短周期変動成分S2とがあり、系統用蓄電池13は、主として短周期変動成分S2の変動を吸収するように充放電制御を行い、仮想蓄電池14は、主として基本変動成分S1の変動を吸収するように充放電制御を行う。   FIG. 2 is a graph showing an example of a daily power demand curve. The power demand curve has a basic fluctuation component S1 that fluctuates in a cycle of several tens of minutes and a short-period fluctuation component S2 that fluctuates in a cycle of several minutes to 20 minutes. The charge / discharge control is performed so as to absorb the fluctuation of S2, and the virtual storage battery 14 performs the charge / discharge control mainly so as to absorb the fluctuation of the basic fluctuation component S1.

このように、複数の需要家蓄電池15を集配信装置16で束ねて仮想蓄電池14とし、蓄電監視制御装置12は、仮想蓄電池14と系統用蓄電池13とを同等に扱い、系統用蓄電池13は蓄電監視制御装置12からの指令に高速応答するので周波数調整のための充放電制御を行うことができる。仮想蓄電池14は蓄電監視制御装置12からの指令に低速応答するので、経済負荷配分のための充放電制御を行うことができる。従って、需要家蓄電池15からなる仮想蓄電池14と系統用蓄電池13とを協調制御でき、基本変動成分S1の変動と短周期変動成分S2の変動との双方を吸収できる。   In this way, a plurality of customer storage batteries 15 are bundled by the collection and distribution device 16 to form a virtual storage battery 14, and the power storage monitoring control device 12 treats the virtual storage battery 14 and the system storage battery 13 equally, and the system storage battery 13 stores power. Since it responds at high speed to the command from the monitoring control device 12, charge / discharge control for frequency adjustment can be performed. Since the virtual storage battery 14 responds at a low speed to the command from the power storage monitoring and control device 12, charge / discharge control for economic load distribution can be performed. Therefore, the virtual storage battery 14 including the customer storage battery 15 and the system storage battery 13 can be cooperatively controlled, and both the fluctuation of the basic fluctuation component S1 and the fluctuation of the short cycle fluctuation component S2 can be absorbed.

次に、電力系統に余剰電力が発生する特異日には、蓄電監視制御装置12は仮想蓄電池14に予約制御指令を出力し、仮想蓄電池14の需要家蓄電池15をスケジューリング制御するようにしてもよい。   Next, on a specific day when surplus power is generated in the power system, the power storage monitoring and control device 12 may output a reservation control command to the virtual storage battery 14 and perform scheduling control on the customer storage battery 15 of the virtual storage battery 14. .

日曜日や祭日の休日には電力系統に余剰電力が発生することがある。図3は特異日の電力需要曲線及び電力供給曲線の一例を示すグラフである。図3に示すように、電力供給は原子力発電、流込式水力発電及び火力発電の最低出力曲線S10でベース供給を担い、火力発電での最低出力曲線S10を超えた運転や揚水発電所における揚水発電で負荷変動に対応している。火力発電は出力を保持するための最低出力曲線S10があるので、例えば、夜間(23時〜7時)において揚水発電所の水を上池に汲み上げ、火力発電の最低出力を保つようにしている。近年においては太陽光発電設備による太陽光発電が導入されているが、この太陽光発電は天候により出力が変動するので負荷変動を補償するよりも、変動を増す方向へ働く。   Surplus power may be generated in the power grid on Sundays and holidays. FIG. 3 is a graph showing an example of a power demand curve and a power supply curve on a specific day. As shown in FIG. 3, the power supply is based on the minimum output curve S10 of nuclear power generation, inflow-type hydropower generation, and thermal power generation, and operation exceeding the minimum output curve S10 in thermal power generation or pumping in a pumped storage power plant It responds to load fluctuations with power generation. Since thermal power generation has a minimum output curve S10 for maintaining output, for example, the water of a pumped storage power plant is pumped into the upper pond at night (from 23:00 to 7:00), and the minimum output of thermal power generation is maintained. . In recent years, solar power generation by a solar power generation facility has been introduced. Since the output of this solar power generation fluctuates depending on the weather, it works in the direction of increasing fluctuations rather than compensating for load fluctuations.

特異日(例えば、休日)の電力需要は平日の場合より減少するので、その電力需要曲線S11は電力供給曲線S12より下回ることがある。そうすると、太陽光発電の電力が余剰電力として発生する。図3では10時〜19時において、余剰電力が発生した場合を示している。   Since the power demand on a specific day (for example, a holiday) decreases from that on weekdays, the power demand curve S11 may be lower than the power supply curve S12. Then, photovoltaic power is generated as surplus power. FIG. 3 shows a case where surplus power is generated from 10:00 to 19:00.

このような余剰電力の全てを吸収できる系統用蓄電池13を配置するのは、電力会社にとって負担増となる。そのため、余剰電力が発生することが予測できる場合には、蓄電監視制御装置12は、その余剰電力のうち系統用蓄電池13で吸収できない分を仮想蓄電池14で吸収するよう予約制御指令を出力する。仮想蓄電池14の集配信装置16は蓄電監視制御装置12から予約制御指令を入力すると、余剰電力を吸収するように需要家蓄電池15をスケジューリング制御する。これにより、電力系統の余剰電力を需要家蓄電池で吸収した経済負荷配分の制御が行える。   Arranging the storage battery 13 for the system that can absorb all of such surplus power increases the burden on the electric power company. Therefore, when it can be predicted that surplus power will be generated, the power storage monitoring control device 12 outputs a reservation control command so that the virtual storage battery 14 absorbs the excess power that cannot be absorbed by the grid storage battery 13. When the collection / distribution device 16 of the virtual storage battery 14 receives a reservation control command from the power storage monitoring control device 12, the consumer storage battery 15 is subjected to scheduling control so as to absorb surplus power. Thereby, it is possible to control the economic load distribution in which surplus power of the power system is absorbed by the customer storage battery.

次に、蓄電監視制御装置12は、系統用蓄電池13を定期的に診断するようにしてもよい。一般的にリチウムイオン電池の充電状態(SOC:State Of Charge)は、開回路電圧と積算電流値の二つを組み合わせて管理される。しかしながらリチウムイオン電池に限らず化学電池は充放電サイクルや時間経過に伴い電池容量が低下する為、SOCと実際の充放電容量とに乖離が生じる。電池容量の低下の程度は、電池の使い方や周囲環境に大きく左右される為、充放電サイクルや経年のパラメータだけで一義的に決めることは難しい。従って系統用蓄電池は定期的に診断を行うことが望ましく、蓄電監視制御装置で一元管理することにより、各々の系統用蓄電池の特性を効率よく診断できるようになる。   Next, the power storage monitoring and control device 12 may periodically diagnose the system storage battery 13. Generally, the state of charge (SOC) of a lithium ion battery is managed by combining two of an open circuit voltage and an integrated current value. However, chemical batteries, not limited to lithium ion batteries, have a battery capacity that decreases with charge / discharge cycles and the passage of time, resulting in a difference between the SOC and the actual charge / discharge capacity. The degree of decrease in battery capacity is greatly influenced by the usage of the battery and the surrounding environment, so it is difficult to uniquely determine only by the charge / discharge cycle and aging parameters. Therefore, it is desirable to periodically diagnose the storage battery for the system, and the characteristics of each storage battery for each system can be efficiently diagnosed by centrally managing the storage battery for the storage system.

診断対象の系統用蓄電池13が周波数調整や経済負荷配分のための充放電制御されていない状態を蓄電監視制御装置が作り出す。例えば、稼働率が低い深夜の時間帯において行う。診断対象の系統用蓄電池13を放電終了電圧まで放電させSOCを0%にした後、CC−CV充電によりSOC100%まで充電させたときの系統用蓄電池13の電池容量を確認し、電池容量を補正する。これにより、系統用蓄電池13の経年変化に伴う特性変化を把握でき、現状の系統用蓄電池13の特性を精度よく把握できる。従って、各々の系統用蓄電池13の充放電制御を適正に行うことができる。   The power storage monitoring and control device creates a state in which the storage battery for system 13 to be diagnosed is not subjected to charge / discharge control for frequency adjustment or economic load distribution. For example, it is performed in the midnight time zone when the operation rate is low. After the system storage battery 13 to be diagnosed is discharged to the discharge end voltage and the SOC is reduced to 0%, the battery capacity of the system storage battery 13 is confirmed when the SOC is charged to 100% by CC-CV charging, and the battery capacity is corrected. To do. Thereby, the characteristic change accompanying the secular change of the storage battery 13 for system | strains can be grasped | ascertained, and the characteristic of the current storage battery 13 for system | strains can be grasped | ascertained accurately. Therefore, charge / discharge control of each storage battery 13 can be appropriately performed.

同様に、仮想蓄電池14の集配信装置16は、仮想蓄電池14の各々の需要家蓄電池15を定期的に診断する。その診断は、仮想蓄電池14の各々の需要家蓄電池15が経済負荷配分のための充放電制御やスケジューリング制御されていない状態で、例えば、深夜の時間帯で行う。   Similarly, the collection / delivery device 16 of the virtual storage battery 14 periodically diagnoses each customer storage battery 15 of the virtual storage battery 14. The diagnosis is performed, for example, in the late-night time period in a state where each customer storage battery 15 of the virtual storage battery 14 is not subjected to charge / discharge control or scheduling control for economic load distribution.

また、その診断方法も、系統用蓄電池13の場合と同様に、診断対象の需要家蓄電池15を放電終了電圧まで放電させSOCを0%にした後、CC−CV充電によりSOC100%まで充電させたときの需要家蓄電池15の電池容量を確認し電池容量を補正する。これにより、需要家蓄電池15の経年変化に伴う特性変化を把握でき、現状の需要家蓄電池15の特性を精度よく把握できる。従って、各々の需要家蓄電池15の充放電制御を適正に行うことができる。   Also, in the diagnosis method, as in the case of the grid storage battery 13, the consumer storage battery 15 to be diagnosed is discharged to the discharge end voltage, the SOC is reduced to 0%, and then charged to 100% SOC by CC-CV charging. The battery capacity of the consumer storage battery 15 at the time is confirmed and the battery capacity is corrected. Thereby, the characteristic change accompanying the secular change of the customer storage battery 15 can be grasped | ascertained, and the characteristic of the present customer storage battery 15 can be grasped | ascertained accurately. Therefore, charge / discharge control of each customer storage battery 15 can be performed appropriately.

11…給電指令所、12…蓄電監視制御装置、13…系統用蓄電池、14…仮想蓄電池、15…需要家蓄電池、16…集配信装置 DESCRIPTION OF SYMBOLS 11 ... Power supply command place, 12 ... Power storage monitoring control apparatus, 13 ... Storage battery for system | strain, 14 ... Virtual storage battery, 15 ... Consumer storage battery, 16 ... Collection delivery apparatus

Claims (4)

電力系統に配置された系統用蓄電池と、複数の需要家蓄電池を集配信装置で束ねて形成され前記集配信装置で各々の需要家蓄電池の制御を行う仮想蓄電池と、給電指令所からの指令により前記系統用蓄電池及び前記仮想蓄電池を制御する蓄電監視制御装置とを備え、前記系統用蓄電池は前記蓄電監視制御装置からの指令に応答して周波数調整や経済負荷配分のための充放電制御を行い、前記仮想蓄電池は前記蓄電監視制御装置からの指令に応答して経済負荷配分のための充放電制御を行うことを特徴とする電力系統蓄電システム。 A storage battery for a system arranged in the power system, a virtual storage battery formed by bundling a plurality of customer storage batteries with a collection and distribution device and controlling each customer storage battery with the collection and distribution device, and a command from a power supply command center A power storage monitoring control device for controlling the storage battery for the system and the virtual storage battery, and the storage battery for the system performs charge / discharge control for frequency adjustment and economic load distribution in response to a command from the power storage monitoring control device. The virtual storage battery performs charge / discharge control for economic load distribution in response to a command from the power storage monitoring and control device. 前記蓄電監視制御装置は、前記電力系統に余剰電力が発生する特異日には、前記仮想蓄電池に予約制御指令を出力し、前記仮想蓄電池は前記蓄電監視制御装置からの予約制御指令に応答し、前記仮想蓄電池の前記集配信装置は前記需要家蓄電池をスケジューリング制御することを特徴とする請求項1記載の電力系統蓄電システム。 The storage monitoring control device outputs a reservation control command to the virtual storage battery on a specific day when surplus power is generated in the power system, and the virtual storage battery responds to the reservation control command from the storage monitoring control device, The electric power storage system according to claim 1, wherein the collection / delivery device of the virtual storage battery performs scheduling control of the consumer storage battery. 前記蓄電監視制御装置は、前記系統用蓄電池が周波数調整や経済負荷配分のための充放電制御されていない状態で、前記系統用蓄電池を定期的に診断することを特徴とする請求項1または2に記載の電力系統蓄電システム。 3. The power storage monitoring and control device periodically diagnoses the power storage battery in a state where the power storage battery is not subjected to charge / discharge control for frequency adjustment or economic load distribution. The power grid storage system described in 1. 前記仮想蓄電池の集配信装置は、前記仮想蓄電池の各々の前記需要家蓄電池が経済負荷配分のための充放電制御やスケジューリング制御されていない状態で、前記仮想蓄電池の各々の前記需要家蓄電池を定期的に診断することを特徴とする請求項1乃至3のいずれか1項に記載の電力系統蓄電システム。 The virtual storage battery collecting and distributing device periodically sets the consumer storage batteries of each of the virtual storage batteries in a state where the consumer storage batteries of each of the virtual storage batteries are not subjected to charge / discharge control or scheduling control for economic load distribution. The electric power storage system according to any one of claims 1 to 3, characterized in that diagnosis is performed on a systematic basis.
JP2010188842A 2010-08-25 2010-08-25 Power storage system for power system Pending JP2012050211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010188842A JP2012050211A (en) 2010-08-25 2010-08-25 Power storage system for power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010188842A JP2012050211A (en) 2010-08-25 2010-08-25 Power storage system for power system

Publications (1)

Publication Number Publication Date
JP2012050211A true JP2012050211A (en) 2012-03-08

Family

ID=45904422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010188842A Pending JP2012050211A (en) 2010-08-25 2010-08-25 Power storage system for power system

Country Status (1)

Country Link
JP (1) JP2012050211A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202044A (en) * 2013-09-12 2015-11-12 日本電気株式会社 Controller, power storage device, battery control system, battery controller, control method, battery control method and recording medium
CN107171349A (en) * 2017-04-07 2017-09-15 赫普热力发展有限公司 A kind of large-scale virtual accumulator charging/discharging system
CN107359624A (en) * 2017-07-18 2017-11-17 国网新疆电力公司电力科学研究院 The method for improving unit primary frequency modulation response precision
WO2019116710A1 (en) * 2017-12-15 2019-06-20 パナソニックIpマネジメント株式会社 Group management system, power control device, and power storage system
JP2019161845A (en) * 2018-03-13 2019-09-19 日本電気株式会社 Processor, control device for power storage system, power storage system, processing method and program
US10535999B2 (en) 2015-02-25 2020-01-14 Kyocera Corporation Power control system, power control apparatus, and power control method
CN116093998A (en) * 2022-11-28 2023-05-09 国网冀北电力有限公司经济技术研究院 Virtual storage battery control method based on controllable load

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10056757B2 (en) 2013-09-12 2018-08-21 Nec Corporation Control device, power storage device, battery control system, battery control device, control method, battery control method, and recording medium
JP2015202044A (en) * 2013-09-12 2015-11-12 日本電気株式会社 Controller, power storage device, battery control system, battery controller, control method, battery control method and recording medium
US10535999B2 (en) 2015-02-25 2020-01-14 Kyocera Corporation Power control system, power control apparatus, and power control method
US11258259B2 (en) 2015-02-25 2022-02-22 Kyocera Corporation Power control system, power control apparatus, and power control method
CN107171349A (en) * 2017-04-07 2017-09-15 赫普热力发展有限公司 A kind of large-scale virtual accumulator charging/discharging system
CN107359624A (en) * 2017-07-18 2017-11-17 国网新疆电力公司电力科学研究院 The method for improving unit primary frequency modulation response precision
CN107359624B (en) * 2017-07-18 2020-04-10 国网新疆电力公司电力科学研究院 Method for improving primary frequency modulation response accuracy of unit
WO2019116710A1 (en) * 2017-12-15 2019-06-20 パナソニックIpマネジメント株式会社 Group management system, power control device, and power storage system
JPWO2019116710A1 (en) * 2017-12-15 2020-07-16 パナソニックIpマネジメント株式会社 Group management system, power control device, power storage system
JP2019161845A (en) * 2018-03-13 2019-09-19 日本電気株式会社 Processor, control device for power storage system, power storage system, processing method and program
JP7120600B2 (en) 2018-03-13 2022-08-17 日本電気株式会社 Processing device, processing method and program
CN116093998A (en) * 2022-11-28 2023-05-09 国网冀北电力有限公司经济技术研究院 Virtual storage battery control method based on controllable load
CN116093998B (en) * 2022-11-28 2024-03-08 国网冀北电力有限公司经济技术研究院 Virtual storage battery control method based on controllable load

Similar Documents

Publication Publication Date Title
JP5590033B2 (en) Energy system
JP6156919B2 (en) Storage battery system, storage battery control device, and storage battery system control method
JP5265639B2 (en) Apartment house energy storage system, integrated power management system and control method therefor
CN102427249B (en) Method and system for controlling distributed micro-grid parallel operation
CN107005055B (en) Management of charging and discharging device
Datta et al. A review of key functionalities of battery energy storage system in renewable energy integrated power systems
US20160204480A1 (en) Method and device for storing electrical energy in electrochemical energy accumulators
KR101863141B1 (en) Power-controlled energy management system using lithium battery and supercapacitor
US20130245850A1 (en) Electric power supply-and-demand control apparatus
JP2012050211A (en) Power storage system for power system
JP2014023376A (en) Power control device
CN103703648A (en) Power management system and management method
Vega-Garita et al. Review of residential PV-storage architectures
JP2014054072A (en) Power storage device
Chen et al. Energy exchange model of PV-based battery switch stations based on battery swap service and power distribution
KR101545136B1 (en) Method and System for controlling generator output of islanded microgrids
Subburaj et al. Analysis and review of grid connected battery in wind applications
KR20150005040A (en) Apparatus and method for energy storage system controlling operating mode
KR102016731B1 (en) Battery energy storage system and management method thereof
Yeting et al. Application of island microgrid based on hybrid batteries storage
CN104281984A (en) Power supply method for microgrid economical operation
Georgiev et al. Flexible load control in electric power systems with distributed energy resources and electric vehicle charging
CN104767248A (en) Intelligent energy source efficient management system
Amin et al. Implementation of nanogrids for future power system
Iqbal et al. Impact of charging station operator (CSO) on V2G method for primary frequency control (PFC) in an industrial microgrid