JP7065554B2 - Self-propelled transfer device - Google Patents

Self-propelled transfer device Download PDF

Info

Publication number
JP7065554B2
JP7065554B2 JP2018011187A JP2018011187A JP7065554B2 JP 7065554 B2 JP7065554 B2 JP 7065554B2 JP 2018011187 A JP2018011187 A JP 2018011187A JP 2018011187 A JP2018011187 A JP 2018011187A JP 7065554 B2 JP7065554 B2 JP 7065554B2
Authority
JP
Japan
Prior art keywords
coil
side coil
self
transport
transport vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018011187A
Other languages
Japanese (ja)
Other versions
JP2019129657A (en
Inventor
英敏 松木
文博 佐藤
拓 佐藤
哲也 田倉
賢 稲田
ミュウ 于
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittoku Co Ltd
Original Assignee
Nittoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoku Co Ltd filed Critical Nittoku Co Ltd
Priority to JP2018011187A priority Critical patent/JP7065554B2/en
Publication of JP2019129657A publication Critical patent/JP2019129657A/en
Application granted granted Critical
Publication of JP7065554B2 publication Critical patent/JP7065554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、ワークを搭載可能な搬送車を走行させることにより、その搬送車に搭載されたワークをワーク搬送路に沿って搬送させる自走式搬送装置に関するものである。 The present invention relates to a self-propelled transport device for transporting a work mounted on the transport vehicle along a work transport path by traveling a transport vehicle on which the work can be mounted.

従来、生産ライン上で製品あるいは部品等の物品(本明細書ではこれらを「ワーク」と呼ぶ)を搬送するためのワーク搬送システムとして、レール上を自走するワーク搬送パレットを利用した自走式搬送装置が提案されている(例えば、特許文献1参照。)。 Conventionally, as a work transfer system for transporting articles such as products or parts (these are referred to as "work" in this specification) on a production line, a self-propelled type using a work transfer pallet that runs on a rail. A transport device has been proposed (see, for example, Patent Document 1).

この自走式搬送装置における自走式ワーク搬送パレットは、ワーク搬送パレット用レールの当該軌道上を回転する両側の車輪と、この車輪を回転させる電動モータと、その電動モータを駆動する蓄電可能なバッテリを具備するものとしている。 The self-propelled work transfer pallet in this self-propelled transfer device is capable of storing the wheels on both sides of the work transfer pallet rail that rotate on the track, the electric motor that rotates the wheels, and the electric motor that drives the electric motor. It shall be equipped with a battery.

そして、そのバッテリへの給電手段として、ワーク搬送パレット用レールにレール側非接触給電手段を設けるとともに、このレール側非接触給電手段と対向する本体部側非接触給電手段を自走式ワーク搬送パレットに内蔵させ、当該自走式ワーク搬送パレットの停止時あるいは通過時に非接触でバッテリへの給電を行わせるとしている。 Then, as the power feeding means to the battery, the rail side non-contact power feeding means is provided on the work transport pallet rail, and the self-propelled work transport pallet is provided with the main body side non-contact power feeding means facing the rail side non-contact power feeding means. It is said that the self-propelled work transfer pallet is built in the pallet to supply power to the battery in a non-contact manner when the self-propelled work transfer pallet is stopped or passed.

このような自走式搬送装置では、自走式ワーク搬送パレットにバッテリを設け、自走式ワーク搬送パレット自体を蓄電可能としたことから常時給電の必要がなく、しかも、非接触給電するためブラシ摩耗の問題が解消し、発塵が抑えられる。また、接触状態に依存することもないから安定した状態で給電することが可能となるとしている。 In such a self-propelled transfer device, a battery is provided in the self-propelled work transfer pallet so that the self-propelled work transfer pallet itself can store electricity, so that there is no need for constant power supply, and a brush for non-contact power supply. The problem of wear is solved and dust generation is suppressed. In addition, since it does not depend on the contact state, it is possible to supply power in a stable state.

特開2003-306144号公報Japanese Patent Application Laid-Open No. 2003-306144

しかし、上記従来の自走式搬送装置では、自走式ワーク搬送パレット自体を蓄電可能とするために、自走式ワーク搬送パレットにバッテリを設けているけれども、バッテリ自体が比較的大きくかつ重量のあるものであるので、自走する搬送パレット自体の重量の増加を生じさせる不具合がある。そしてこの重量の増加は、搬送時における自走式ワーク搬送パレットの加速度及び減速度の低下を生じさせて、速やかなワークの搬送が困難になるという未だ解決すべき課題が残存していた。 However, in the above-mentioned conventional self-propelled transfer device, although the self-propelled work transfer pallet itself is provided with a battery in order to be able to store electricity, the battery itself is relatively large and heavy. Since it is a certain one, there is a problem that the weight of the self-propelled transport pallet itself is increased. This increase in weight causes a decrease in acceleration and deceleration of the self-propelled work transfer pallet during transportation, and there still remains a problem to be solved that prompt work transfer becomes difficult.

この不具合を解消させるために、自走式ワーク搬送パレットのような搬送車にバッテリを搭載せずに、給電手段により給電される電力により直接電動モータを駆動させて、自走式ワーク搬送パレットのような搬送車をその電力により直接走行させることが考えられる。 In order to solve this problem, instead of mounting a battery on a transport vehicle such as a self-propelled work transfer pallet, the electric motor is directly driven by the electric power supplied by the power feeding means to drive the self-propelled work transfer pallet. It is conceivable to drive such a transport vehicle directly by its electric power.

しかし、上記従来の自走式搬送装置における非接触給電手段は給電トランスであって、その非接触給電手段を搬送経路中に所定の間隔を開けて存在する各作業ステーション毎に分散させるとしており、そこに自走式ワーク搬送パレットのような搬送車が停止した時、又は、そこを通過したときにのみに給電が可能となるのであって、その搬送車の走行中に常時給電されるものではない。このため、給電手段により給電される電力により直接電動モータを駆動させることができずに、自走式ワーク搬送パレットのような搬送車におけるバッテリの搭載を不要にすることができない現実がある。 However, the non-contact power feeding means in the conventional self-propelled transport device is a power feeding transformer, and the non-contact power feeding means is distributed to each work station existing at a predetermined interval in the transport path. Power can be supplied only when a transport vehicle such as a self-propelled work transfer pallet stops or passes there, and power is always supplied while the transport vehicle is running. not. Therefore, there is a reality that the electric motor cannot be directly driven by the electric power supplied by the power feeding means, and it is not possible to eliminate the need to mount the battery in the transport vehicle such as the self-propelled work transport pallet.

本発明の目的は、搬送車への常時給電を可能として、搬送車の重量を軽減し得る自走式搬送装置を提供することにある。 An object of the present invention is to provide a self-propelled transport device capable of constantly supplying power to a transport vehicle and reducing the weight of the transport vehicle.

本発明は、ワーク搬送路と、ワーク搬送路に案内されて自走可能な搬送車と、搬送車を自走させる電動モータと、電動モータに給電する給電手段とを備えた自走式搬送装置の改良である。 The present invention is a self-propelled transport device including a work transport path, a self-propelled transport vehicle guided by the work transport path, an electric motor for self-propelling the transport vehicle, and a power feeding means for supplying power to the electric motor. It is an improvement of.

その特徴ある構成は、給電手段が、ワーク搬送路に沿って設けられた給電側コイルと、搬送車に設けられた受電側コイルと、搬送車に設けられ給電側コイルで発生した磁束を受電側コイルに伝達するための負荷整合を行う整合コイルとを備えたところにある。 Its characteristic configuration is that the power feeding means receives the magnetic flux generated by the feeding side coil provided along the work transport path, the power receiving side coil provided in the transport vehicle, and the feeding side coil provided in the transport vehicle. It is equipped with a matching coil that performs load matching for transmission to the coil.

この場合、給電側コイルが平行部を有する長円状コイルであって、非磁性体から成る走行板がワーク搬送路に沿って設けられ、平行部がワーク搬送路の搬送方向に延びるように給電側コイルが走行板に配索されることが好ましい。 In this case, the feeding side coil is an oval coil having a parallel portion, and a traveling plate made of a non-magnetic material is provided along the work transport path, and the parallel portion is fed so as to extend in the transport direction of the work transport path. It is preferable that the side coil is arranged on the traveling plate.

そして、整合コイルが渦巻き状に形成されてワーク搬送路を自走する搬送車の走行板に対向する対向部位に取付けられ、受電側コイルが整合コイルを包囲可能な渦巻き状に形成されて対向部位に整合コイルを包囲するように取付けられることが好ましい。 Then, the matching coil is formed in a spiral shape and is attached to the facing portion facing the traveling plate of the transport vehicle self-propelled on the work transport path, and the power receiving side coil is formed in a spiral shape capable of surrounding the matching coil and facing the facing portion. It is preferable that the matching coil is mounted so as to surround the matching coil.

一方、ワーク搬送路に搬送車が自走可能に走行板が敷設された場合、整合コイルが渦巻き状に形成されて走行板に対向する搬送車の下面に取付けられ、受電側コイルが整合コイルを包囲可能な渦巻き状に形成されて搬送車の下面に整合コイルを包囲するように取付けることもできる。 On the other hand, when a traveling plate is laid on the work transfer path so that the transport vehicle can run on its own, the matching coil is formed in a spiral shape and attached to the lower surface of the transport vehicle facing the traveling plate, and the power receiving side coil serves as the matching coil. It is also formed in a swirl shape that can be surrounded and can be attached to the lower surface of the transport vehicle so as to surround the matching coil.

また、整合コイル及び受電側コイルと搬送車の間に軟磁性材料から成る遮蔽板を介装させることが好ましく、給電側コイルの平行部の幅寸法をL、整合コイルを包囲する受電側コイルの外径をODとするとき 、L≧ODであることが更に好ましい。 Further, it is preferable to interpose a shielding plate made of a soft magnetic material between the matching coil and the power receiving side coil and the transport vehicle, the width dimension of the parallel portion of the feeding side coil is L, and the power receiving side coil surrounding the matching coil. When the outer diameter is OD, it is more preferable that L ≧ OD.

そして、搬送車に設けられ給電手段により供給される電力により駆動して電動モータを制御する制御装置と、制御装置に制御信号を無線にて発する操作装置とを更に備えることもできる。 Further, a control device provided in the transport vehicle and driven by electric power supplied by the power feeding means to control the electric motor, and an operation device that wirelessly emits a control signal to the control device can be further provided.

本発明の自走式搬送装置では、給電手段が、給電側コイルと、搬送車に設けられた受電側コイルとを備えるいわゆる非接触給電手段である。このため、従来から用いられている接触式給電手段に比較して、接触する給電用のブラシが摩耗することに起因する塵埃の発生を抑制することができる。 In the self-propelled transport device of the present invention, the power feeding means is a so-called non-contact power feeding means including a power feeding side coil and a power receiving side coil provided in the transport vehicle. Therefore, as compared with the conventional contact type power feeding means, it is possible to suppress the generation of dust due to the wear of the contacting power feeding brush.

一方、給電側コイルと受電側コイルから成る非接触給電手段にあっては、給電側コイルと受電側コイルとの間の距離(Gap)が離れた場合や、それらの位置がずれた場合など、十分な給電が困難となるけれども、本発明の自走式搬送装置では、給電手段が、給電側コイルで発生した磁束を受電側コイルに伝達するための負荷整合を行う整合コイルを備えるので、給電側コイルと受電側コイルの距離及び位置ずれによって発生する結合係数の低下と負荷整合のずれにより伝送効率が悪化する特性を、効率最大化にできる利点を持つ。 On the other hand, in the non-contact power feeding means including the power feeding side coil and the power receiving side coil, when the distance (Gap) between the power feeding side coil and the power receiving side coil is separated, or when their positions are displaced, etc. Although sufficient power supply becomes difficult, in the self-propelled transfer device of the present invention, the power supply means includes a matching coil for load matching for transmitting the magnetic flux generated in the power supply side coil to the power supply side coil. It has the advantage of maximizing the efficiency of the characteristics that the transmission efficiency deteriorates due to the decrease in coupling coefficient and the deviation of load matching caused by the distance and position deviation between the side coil and the power receiving side coil.

このため、給電側コイルをワーク搬送路に沿って設けることにより、走行中に常時給電させることが可能となり、給電手段により給電される電力により直接電動モータを駆動させることが可能となる。すると、搬送車におけるバッテリの搭載が不要になり、搬送車の重量を軽減させることが可能となるのである。 Therefore, by providing the feeding side coil along the work transport path, it is possible to constantly supply power during traveling, and it is possible to directly drive the electric motor by the power supplied by the feeding means. Then, it becomes unnecessary to mount the battery in the transport vehicle, and it becomes possible to reduce the weight of the transport vehicle.

また、本発明の自走式搬送装置では、給電側コイルで発生した磁束を整合コイルにて集めて効率よく受電側コイルに受け渡すこととしたため、給電側コイルが受電側コイルに比べて大きい場合でも適切な電力伝送を行うことができる。従って、例えば、給電側コイルがワーク搬送路の搬送方向に延びる長円状コイルであれば、受電側コイルを有する搬送車をそのワーク搬送路に沿って複数台同時に走行させることも可能となる。 Further, in the self-propelled transfer device of the present invention, since the magnetic flux generated in the power feeding side coil is collected by the matching coil and efficiently transferred to the power receiving side coil, the power feeding side coil is larger than the power receiving side coil. However, appropriate power transmission can be performed. Therefore, for example, if the feeding side coil is an elliptical coil extending in the transporting direction of the work transport path, it is possible to simultaneously run a plurality of transport vehicles having the power receiving side coil along the work transport path.

そして、複数台の搬送車をワーク搬送路に沿って走行させる場合、電動モータに供給される電力により駆動して電動モータを制御する制御装置を搬送車に設け、その制御装置に制御信号を無線にて発する操作装置を備えることにより、その複数台の搬送車を別々に操作することも可能となり、搬送形態の多様性を図ることができる。 When a plurality of transport vehicles are driven along the work transport path, the transport vehicle is provided with a control device that is driven by the electric power supplied to the electric motor to control the electric motor, and the control signal is wirelessly transmitted to the control device. By providing the operation device that emits at the above, it is possible to operate the plurality of transport vehicles separately, and it is possible to achieve a variety of transport modes.

本発明実施形態の自走式搬送装置の構成を示す図4のA-A線断面図である。FIG. 6 is a sectional view taken along line AA of FIG. 4 showing a configuration of a self-propelled transport device according to an embodiment of the present invention. 図1のB-B線断面図である。It is sectional drawing BB of FIG. 図1のC-C線断面図である。It is a cross-sectional view taken along the line CC of FIG. その自走式搬送装置の構成を示す上面図である。It is a top view which shows the structure of the self-propelled transfer device. その給電手段により生じる磁束の状態を示す模式図である。It is a schematic diagram which shows the state of the magnetic flux generated by the feeding means. 本発明の別の自走式搬送装置の構成を示す図1に対応する断面図である。It is sectional drawing corresponding to FIG. 1 which shows the structure of another self-propelled transfer apparatus of this invention.

次に、本発明を実施するための最良の形態を図面に基づいて説明する。 Next, the best mode for carrying out the present invention will be described with reference to the drawings.

本発明の自走式搬送装置を図1に示す。本発明の自走式搬送装置10は、ワーク搬送路11と、そのワーク搬送路11に案内されて自走可能な搬送車20とを備える。 The self-propelled transfer device of the present invention is shown in FIG. The self-propelled transport device 10 of the present invention includes a work transport path 11 and a transport vehicle 20 guided by the work transport path 11 and capable of self-propelling.

図4に示す様に、この実施の形態におけるワーク搬送路11は、組立、加工、洗浄等の工程を別々に行う作業ステーション1~4をトラック状に連結して、その連結経路に沿って搬送車20を順番に走行させるものを例示する。 As shown in FIG. 4, the work transfer path 11 in this embodiment connects work stations 1 to 4 that separately perform processes such as assembly, processing, and cleaning in a truck shape, and conveys the work along the connection path. An example is shown in which the vehicles 20 are driven in order.

図1に示すように、この実施の形態におけるワーク搬送路11は、搬送車20を走行させるために、搬送方向に長い平板路12と、その平板路12の幅方向両側にその平板路12を挟むように立設されて、平板路12を走行する搬送車20の幅方向の移動を禁止する一対の側壁13,14とを有するものとする。ここで、図1では、平板路12と一対の側壁13,14はそれぞれ非磁性材料から成り、それらが一体的に形成されるものを示す。そして、図におけるワーク搬送路11は、平板路12の下面から下方に延びる様に設けられた支柱16を介して設置場所10aに設置される場合を示す。 As shown in FIG. 1, the work transport path 11 in this embodiment has a flat plate path 12 long in the transport direction and the flat plate paths 12 on both sides of the flat plate path 12 in the width direction in order to drive the transport vehicle 20. It shall have a pair of side walls 13 and 14 which are erected so as to be sandwiched between them and prohibit the movement of the transport vehicle 20 traveling on the flat plate road 12 in the width direction. Here, in FIG. 1, the flat plate path 12 and the pair of side walls 13 and 14 are each made of a non-magnetic material, and they are integrally formed. The work transport path 11 in the figure shows a case where the work transfer path 11 is installed at the installation location 10a via a support column 16 provided so as to extend downward from the lower surface of the flat plate path 12.

図1及び図3に示すように、このワーク搬送路11に走行経路が案内される搬送車20は、一対の側壁13,14の間に水平状態で進入可能な車台板21と、その車台板21を平板路12に沿って走行させる複数のタイヤ22と、その内の少なくとも1本のタイヤ22を回転させて搬送車20を自走させる電動モータ23を備える。図3に示すように、この実施の形態では、3本のタイヤ22が、それらの回転軸を平行にして車台板21に枢支され、その内の1本のタイヤ22にプーリ24が同軸に設けられる。 As shown in FIGS. 1 and 3, the transport vehicle 20 whose traveling route is guided to the work transport path 11 has a chassis plate 21 that can enter horizontally between the pair of side walls 13 and 14, and the chassis plate thereof. A plurality of tires 22 for running 21 along a flat road 12 and an electric motor 23 for rotating at least one of the tires 22 to self-propell the transport vehicle 20 are provided. As shown in FIG. 3, in this embodiment, three tires 22 are pivotally supported on a chassis plate 21 with their rotation axes parallel to each other, and a pulley 24 is coaxially supported on one of the tires 22. It will be provided.

また、電動モータ23は、直流(DC)により、その回転軸23aを回転させるものであって、その回転軸23aがタイヤ22の回転軸に平行になるように車台板21に設けられ、その回転軸23aにはプーリ23bが更に設けられる。そして、タイヤ22におけるプーリ24と電動モータ23におけるプーリ23bの間にはベルト25が架設され、電動モータ23が駆動してその回転軸23aがプーリ23bとともに回転すると、ベルト25を介してタイヤ22が回転して搬送車20を走行させるように構成される。 Further, the electric motor 23 rotates the rotating shaft 23a by DC (DC), and the rotating shaft 23a is provided on the chassis plate 21 so as to be parallel to the rotating shaft of the tire 22, and the rotation thereof is performed. A pulley 23b is further provided on the shaft 23a. Then, a belt 25 is erected between the pulley 24 of the tire 22 and the pulley 23b of the electric motor 23, and when the electric motor 23 is driven and the rotating shaft 23a rotates together with the pulley 23b, the tire 22 is moved via the belt 25. It is configured to rotate and run the transport vehicle 20.

また、この車台板21には、その幅方向の両側に側壁13,14に平行になるような支持片26がそれぞれ取付けられ、それらの支持片26の前後には側壁13,14に接触可能なローラ27がそれぞれ枢支される。このように、ローラ27が、支持片26を介して車台板21の4角に枢支され、これにより、搬送車20がワーク搬送路11に沿って速やかに走行可能に構成される。 Further, support pieces 26 are attached to the chassis plate 21 so as to be parallel to the side walls 13 and 14 on both sides in the width direction thereof, and the side walls 13 and 14 can be contacted in front of and behind the support pieces 26. Laura 27 is pivotally supported respectively. In this way, the rollers 27 are pivotally supported at the four corners of the chassis plate 21 via the support piece 26, whereby the transport vehicle 20 is configured to be able to travel quickly along the work transport path 11.

なお、図1に示す様に、車台板21には複数の支持柱29がその上面に立設され、その支持柱29の上端にはワークを搭載する搭載部28が車台板21と平行に設けられるものとする。そして、本発明の自走式搬送装置10は、複数のタイヤ22の内の少なくとも1本のタイヤ22を回転させて搬送車20を自走させる電動モータ23に給電する給電手段30を備える。 As shown in FIG. 1, a plurality of support pillars 29 are erected on the upper surface of the chassis plate 21, and a mounting portion 28 for mounting a work is provided on the upper end of the support pillar 29 in parallel with the chassis plate 21. It shall be. The self-propelled transport device 10 of the present invention includes a power feeding means 30 that rotates at least one of the plurality of tires 22 to supply power to the electric motor 23 that self-propels the transport vehicle 20.

この給電手段30は、ワーク搬送路11に沿って設けられた給電側コイル31と、搬送車20に設けられた受電側コイル32と、その搬送車20に設けられて給電側コイル31で発生した磁束を受電側コイル32に伝達するための負荷整合を行う整合コイル33とを備えており、給電側コイル31に電流を流して発生した磁束を媒介として受電側コイル32に電力を伝送するものである。 The power feeding means 30 is generated by the feeding side coil 31 provided along the work transport path 11, the power receiving side coil 32 provided in the transport vehicle 20, and the feeding side coil 31 provided in the transport vehicle 20. It is equipped with a matching coil 33 that performs load matching for transmitting the magnetic flux to the power receiving side coil 32, and transmits power to the power receiving side coil 32 via the magnetic flux generated by passing a current through the feeding side coil 31. be.

即ち、本実施の形態における給電手段30は、図5に示すように、給電側コイル31に高周波電源装置34より電力を供給し、その給電側コイル31に磁束Bを生じさせ、その磁束Bにより受電側コイル32に生じる電磁誘導を利用して非接触にて電力を供給するものである。そして、給電側コイル31や受電側コイル32及び整合コイル33は、それぞれ単線やリッツ線などによる巻き線により作成されていてもよいし、フレキシブル基板(FPC)やプリント基板(FR-4基板)等の平面基板上に作製することとしてもよい。 That is, as shown in FIG. 5, the power feeding means 30 in the present embodiment supplies electric power to the feeding side coil 31 from the high frequency power supply device 34, generates a magnetic flux B in the feeding side coil 31, and causes the magnetic flux B to generate electric power. Power is supplied in a non-contact manner by utilizing the electromagnetic induction generated in the power receiving side coil 32. The feeding side coil 31, the power receiving side coil 32, and the matching coil 33 may be formed by winding with a single wire, a litz wire, or the like, respectively, or may be a flexible substrate (FPC), a printed circuit board (FR-4 substrate), or the like. It may be manufactured on a flat substrate of.

図4及び図5に示す様に、この実施の形態における給電側コイル31は単線やリッツ線などによる巻き線により、平行部31b,31cと、その平行部31b,31cの両側を円弧状に連結する連結部31d,31eとを有する長円状に作成される。そして、この平行部31b,31cの長さは、搬送経路の全長に略等しくなるように形成される。 As shown in FIGS. 4 and 5, the feeding side coil 31 in this embodiment connects the parallel portions 31b and 31c and both sides of the parallel portions 31b and 31c in an arc shape by winding with a single wire or a litz wire. It is created in an oval shape having connecting portions 31d and 31e. The lengths of the parallel portions 31b and 31c are formed so as to be substantially equal to the total length of the transport path.

図1に示すように、ワーク搬送路11における平板路12には、搬送車20が自走可能な走行板17がその全長に亘って敷設される。走行板17は非磁性体から成り、幅方向における両側が厚肉に形成され、中央部分に平板路12との間に隙間が形成される。そして、長円状を成す給電側コイル31は、平板路12との間に隙間が形成された走行板17の下面に、ワーク搬送路11に沿って、その全長に亘って平行部31b,31cが所定の幅寸法Lを保った状態で配索される(図4)。 As shown in FIG. 1, on the flat plate road 12 in the work transport path 11, a traveling plate 17 capable of self-propelling the transport vehicle 20 is laid over the entire length thereof. The traveling plate 17 is made of a non-magnetic material, is formed thick on both sides in the width direction, and a gap is formed between the traveling plate 17 and the flat plate road 12 in the central portion. The feeding side coil 31 forming an oval shape has parallel portions 31b, 31c over the entire length of the work transport path 11 on the lower surface of the traveling plate 17 having a gap formed between the coil 31 and the flat plate path 12. Is laid out while maintaining a predetermined width dimension L (FIG. 4).

一方、受電側コイル32は単線やリッツ線を渦巻き状に巻回することにより形成され、搬送車20の下面に取付けられる。また、整合コイル33にあっても、単線やリッツ線を渦巻き状に巻回することにより形成されて、走行板17に対向する搬送車20の下面に取付けられる。 On the other hand, the power receiving side coil 32 is formed by winding a single wire or a litz wire in a spiral shape, and is attached to the lower surface of the transport vehicle 20. Further, even in the matching coil 33, it is formed by winding a single wire or a litz wire in a spiral shape and is attached to the lower surface of the transport vehicle 20 facing the traveling plate 17.

搬送車20における車台板21の下面には軟磁性材料から成る遮蔽板36が添着される。軟磁性材料としては、例えば、アモルファス合金、パーマロイ、珪素鋼、センダスト合金及び軟磁性フェライト等の軟磁性体であって、一種類もしくは、複数の異なる透磁率を持った磁性材料を組み合わせた複合材を使用することもできる。 A shielding plate 36 made of a soft magnetic material is attached to the lower surface of the chassis plate 21 of the transport vehicle 20. The soft magnetic material is, for example, a soft magnetic material such as an amorphous alloy, permalloy, silicon steel, sendust alloy, and soft magnetic ferrite, and is a composite material in which one kind or a plurality of magnetic materials having different magnetic permeabilitys are combined. Can also be used.

整合コイル33及び受電側コイル32は、この遮蔽板36の下面に添着される。このようにして、整合コイル33及び受電側コイル32と搬送車20との間に軟磁性材料から成る遮蔽板36が介装される。このように、遮蔽板36を介装させることにより、その遮蔽板36は、それより下方で生じる磁束が車台板21の上面に搭載される各回路に影響を与えることを回避するものである。 The matching coil 33 and the power receiving side coil 32 are attached to the lower surface of the shielding plate 36. In this way, a shielding plate 36 made of a soft magnetic material is interposed between the matching coil 33 and the power receiving side coil 32 and the transport vehicle 20. By interposing the shielding plate 36 in this way, the shielding plate 36 prevents the magnetic flux generated below the shielding plate 36 from affecting each circuit mounted on the upper surface of the chassis plate 21.

また、本実施の形態による受電側コイル32は、整合コイル33を包囲可能な渦巻き状に形成されて、搬送車20の下面に整合コイル33を包囲するように取付けられる。そして、搬送車20が走行板17の上面を走行した場合に生じる給電側コイル31と受電側コイル32及び整合コイル33との間の隙間は、給電側コイル31において発生した磁束を媒介として受電側コイル32に電力を伝送可能とする範囲となるように、タイヤ22の大きさや遮蔽板36の厚さが選定されるものとする。 Further, the power receiving side coil 32 according to the present embodiment is formed in a spiral shape capable of surrounding the matching coil 33, and is attached to the lower surface of the transport vehicle 20 so as to surround the matching coil 33. The gap between the feeding side coil 31, the power receiving side coil 32, and the matching coil 33 that occurs when the transport vehicle 20 travels on the upper surface of the traveling plate 17 is on the power receiving side through the magnetic flux generated in the feeding side coil 31. It is assumed that the size of the tire 22 and the thickness of the shielding plate 36 are selected so as to be within the range in which electric power can be transmitted to the coil 32.

ここで、図5に示すように、受電側コイル32は、給電側コイル31に所定の周波数の交流を流した場合に発生する磁束Bにより交流を生じさせるものであり、この電力により電動モータ23(図3)を駆動させるために、この受電側コイル32には整流回路37が接続される。そして、図3に示すように、この整流回路37は車台板21に設けられる。 Here, as shown in FIG. 5, the power receiving side coil 32 generates an alternating current by the magnetic flux B generated when an alternating current of a predetermined frequency is passed through the feeding side coil 31, and the electric motor 23 is generated by this electric power. A rectifier circuit 37 is connected to the power receiving side coil 32 in order to drive (FIG. 3). Then, as shown in FIG. 3, the rectifier circuit 37 is provided on the chassis plate 21.

図5に戻って、整合コイル33は、所定周波数で共振することにより負荷整合を行い、給電側コイル31で発生した磁束Bを集めて受電側コイル32に効率よく受け渡すためのものである。このため、この整合コイル33は、所定周波数を共振周波数とするように、コンデンサ38が直列的に又は並列的に付加されて調整される。 Returning to FIG. 5, the matching coil 33 resonates at a predetermined frequency to perform load matching, collects the magnetic flux B generated in the feeding side coil 31, and efficiently transfers it to the power receiving side coil 32. Therefore, the matching coil 33 is adjusted by adding a capacitor 38 in series or in parallel so that a predetermined frequency is set as the resonance frequency.

この所定周波数とは、高周波電源装置34から磁束Bを発生させるために給電側コイル31に流す電流の周波数である。そして、整合コイル33の共振周波数は、付加されたコンデンサ38の容量や、整合コイル33自体の自己共振やこの整合コイル33が設けられる遮蔽板36(図1)との重なりによって生じた容量成分を利用することによって調整される。 This predetermined frequency is the frequency of the current flowing from the high-frequency power supply device 34 to the feeding side coil 31 in order to generate the magnetic flux B. The resonance frequency of the matching coil 33 is a capacitance component generated by the capacitance of the added capacitor 38, the self-resonance of the matching coil 33 itself, and the overlap with the shielding plate 36 (FIG. 1) on which the matching coil 33 is provided. Adjusted by using.

例えば、図5に示すように、整合コイル33がコンデンサ38と直列共振回路を構成した場合は低負荷で高効率となり、図示しないが、整合コイル33がコンデンサ38と並列共振回路を構成した場合は高負荷で高効率となる。従って、整合コイル33を配置した構成では、広い負荷範囲で高効率を得ることが可能となるのである。 For example, as shown in FIG. 5, when the matching coil 33 constitutes a series resonance circuit with the capacitor 38, the load becomes high and the efficiency becomes high. High load and high efficiency. Therefore, in the configuration in which the matching coil 33 is arranged, it is possible to obtain high efficiency in a wide load range.

ここで、給電側コイル31の平行部31b,31cの幅寸法をL、整合コイル33を包囲する受電側コイル32の外径をODとするとき、L≧ODであるように構成される。このような関係式を満たす場合に、給電側コイル31で発生した磁束Bを効率よく集めて、受電側コイル32に受け渡すことが可能となる。 Here, when the width dimension of the parallel portions 31b and 31c of the feeding side coil 31 is L and the outer diameter of the power receiving side coil 32 surrounding the matching coil 33 is OD, L ≧ OD. When such a relational expression is satisfied, the magnetic flux B generated in the power feeding side coil 31 can be efficiently collected and transferred to the power receiving side coil 32.

図3に示すように、車台板21には、給電手段30により供給される電力により駆動して電動モータ23を制御する制御装置39が設けられる。図における制御装置39は、整流回路37により変換されたDC電力により駆動して、電動モータ23を駆動させるモータ制御回路39aと、そのモータ制御回路39aに連結された無線通信ユニット39bとを備える。 As shown in FIG. 3, the chassis plate 21 is provided with a control device 39 that is driven by the electric power supplied by the power feeding means 30 to control the electric motor 23. The control device 39 in the figure includes a motor control circuit 39a that is driven by DC power converted by a rectifier circuit 37 to drive an electric motor 23, and a wireless communication unit 39b connected to the motor control circuit 39a.

また、図4に示すように、ワーク搬送路11の外部には、搬送車20に設けられた制御装置39に制御信号を無線にて発する操作装置41が設置され、この操作装置41が発して制御装置39における無線通信ユニット39bが受信した制御信号により、モータ制御回路39aから電動モータ23に電力が供給されて、その制御信号に基づいて搬送車20を走行させるように構成される。 Further, as shown in FIG. 4, outside the work transport path 11, an operating device 41 that wirelessly emits a control signal to the control device 39 provided in the transport vehicle 20 is installed, and the operating device 41 emits the control device 41. Power is supplied from the motor control circuit 39a to the electric motor 23 by the control signal received by the wireless communication unit 39b in the control device 39, and the carrier vehicle 20 is driven based on the control signal.

次に、このような自走式搬送装置における動作を説明する。 Next, the operation in such a self-propelled transfer device will be described.

この自走式搬送装置10では、搬送する図示しないワークは搬送車20における搭載部28に搭載され、その状態で搬送車20を走行させる。搬送車20を走行させるには、先ず給電手段30を稼動させて、搬送車20に設けられた制御装置39を稼動させる。そのために、高周波電源装置34により、給電側コイル31に所定周波数の電流を流し、図5に示すように、その給電側コイル31に磁束Bを発生させる。すると、搬送車20に設けられた受電側コイル32では、その磁束Bの電磁誘導により電力が生じ、その電力により制御装置39(図3)が稼動されることになる。 In the self-propelled transport device 10, a work (not shown) to be transported is mounted on a mounting portion 28 of the transport vehicle 20, and the transport vehicle 20 is driven in that state. In order to drive the transport vehicle 20, first, the power feeding means 30 is operated, and then the control device 39 provided in the transport vehicle 20 is operated. Therefore, the high-frequency power supply device 34 causes a current of a predetermined frequency to flow through the feeding-side coil 31, and as shown in FIG. 5, a magnetic flux B is generated in the feeding-side coil 31. Then, in the power receiving side coil 32 provided in the transport vehicle 20, electric power is generated by the electromagnetic induction of the magnetic flux B, and the control device 39 (FIG. 3) is operated by the electric power.

このように、本発明の自走式搬送装置では、給電手段30が、給電側コイル31と、搬送車20に設けられた受電側コイル32とを備えるいわゆる非接触給電手段30であるので、従来から用いられている電極に接触する接触ブラシを有する接触式給電手段に比較して、接触する給電用のブラシが摩耗することに起因する塵埃の発生等の不具合を生じさせることはない。 As described above, in the self-propelled transport device of the present invention, the power feeding means 30 is a so-called non-contact power feeding means 30 including the feeding side coil 31 and the power receiving side coil 32 provided in the transport vehicle 20. As compared with the contact type feeding means having a contact brush in contact with the electrode used from the above, it does not cause a problem such as generation of dust due to wear of the contacting feeding brush.

一方、給電側コイル31と受電側コイル32のみから成るような非接触給電手段にあっては、給電側コイル31と受電側コイル32との間の距離(Gap)が離れた場合や、それらの位置がずれた場合など、十分な給電が困難となるけれども、本発明の自走式搬送装置では、給電手段30が、給電側コイル31と受電側コイル32のみならず、給電側コイル31で発生した磁束を受電側コイル32に伝達するための負荷整合を行う整合コイル33を備える。 On the other hand, in the non-contact power feeding means including only the power feeding side coil 31 and the power receiving side coil 32, when the distance (Gap) between the power feeding side coil 31 and the power receiving side coil 32 is separated, or their In the self-propelled transfer device of the present invention, the power feeding means 30 is generated not only in the power feeding side coil 31 and the power receiving side coil 32 but also in the power feeding side coil 31, although it becomes difficult to sufficiently supply power when the position is displaced. A matching coil 33 for load matching for transmitting the generated magnetic flux to the power receiving side coil 32 is provided.

この整合コイル33には、給電側コイル31に流れる電流の駆動周波数に同調するように共振コンデンサ38が付加されて、LCブースト回路を構成するものであって、給電側コイル31に磁束Bが発生すると、搬送車20に設けられた整合コイル33は、所定周波数で共振することになり、その共振により整合コイル33は、給電側コイル31で発生した磁束Bを集めて受電側コイル32に効率よく受け渡す。これにより、給電側コイル31と受電側コイル32の距離及び位置ずれによって発生する結合係数の低下と負荷整合のずれにより伝送効率が悪化することは防止され、伝達効率は最大化することになる。 A resonance capacitor 38 is added to the matching coil 33 so as to be tuned to the drive frequency of the current flowing through the feeding side coil 31 to form an LC boost circuit, and a magnetic flux B is generated in the feeding side coil 31. Then, the matching coil 33 provided in the transport vehicle 20 resonates at a predetermined frequency, and the matching coil 33 collects the magnetic flux B generated in the feeding side coil 31 due to the resonance and efficiently collects the magnetic flux B generated in the feeding side coil 31 to the power receiving side coil 32. Hand over. As a result, it is possible to prevent the transmission efficiency from being deteriorated due to the decrease in the coupling coefficient and the load matching deviation caused by the distance and the positional deviation between the power feeding side coil 31 and the power receiving side coil 32, and to maximize the transmission efficiency.

このように、給電側コイル31で発生した磁束Bを整合コイル33にて集めて効率よく受電側コイル32に受け渡すこととしたため、給電側コイル31が受電側コイル32に比べて大きい場合でも適切な電力伝送を行うことができる。よって、ワーク搬送路11に沿って、搬送車20が走行すべき経路の全長に亘って給電側コイル31を設けることにより、そのワーク搬送路11のいずれの箇所に搬送車20が停止又は走行していても、搬送車20への給電が可能になる。 In this way, since the magnetic flux B generated in the power feeding side coil 31 is collected by the matching coil 33 and efficiently delivered to the power receiving side coil 32, it is appropriate even when the power feeding side coil 31 is larger than the power receiving side coil 32. Power transmission is possible. Therefore, by providing the feeding side coil 31 along the work transport path 11 over the entire length of the path on which the transport vehicle 20 should travel, the transport vehicle 20 stops or travels at any position on the work transport path 11. Even if it is, the power supply to the transport vehicle 20 becomes possible.

このように、搬送車20の走行中における常時給電が可能となる本発明に依れば、この給電手段30により給電される電力により直接電動モータ23を駆動させることが可能となるので、電動モータ23を駆動させるバッテリ等の蓄電手段を搬送車20に搭載することが不要になる。このため、本発明における搬送車20は、バッテリの搭載を必要とする従来の搬送車に比較して、バッテリを搭載しないことにより、搬送車20の重量を軽減させることが可能となる。そして、搬送車20の重量が軽減されると、搬送時における搬送車の加速度及び減速度を向上させることが可能となり、速やかにワークを搬送し得る自走式搬送装置10となる。 As described above, according to the present invention in which the electric power can be constantly supplied while the transport vehicle 20 is running, the electric motor 23 can be directly driven by the electric power supplied by the electric power supply means 30. Therefore, the electric motor can be driven directly. It is no longer necessary to mount a power storage means such as a battery for driving the 23 on the transport vehicle 20. Therefore, the transport vehicle 20 in the present invention can reduce the weight of the transport vehicle 20 by not mounting the battery as compared with the conventional transport vehicle that requires the mounting of the battery. When the weight of the transport vehicle 20 is reduced, the acceleration and deceleration of the transport vehicle during transport can be improved, and the self-propelled transport device 10 can quickly transport the work.

図3に示すように、車台板21には、給電手段30により供給される電力により制御装置39が駆動すると、ワーク搬送路11の外部に設置された操作装置41により、搬送車20に設けられた制御装置39に制御信号を無線にて発することが可能となる。そして、操作装置41が制御信号を発すると、制御装置39における無線通信ユニット39bがそれを受信して、その制御信号により、モータ制御回路39aから電動モータ23に電力が供給されて回転軸23aを回転させるように駆動し、その制御信号に基づいて搬送車20を走行させることになる。 As shown in FIG. 3, when the control device 39 is driven by the electric power supplied by the power feeding means 30, the chassis plate 21 is provided on the carrier vehicle 20 by the operation device 41 installed outside the work transfer path 11. It is possible to wirelessly emit a control signal to the control device 39. Then, when the operating device 41 emits a control signal, the wireless communication unit 39b in the control device 39 receives it, and the motor control circuit 39a supplies power to the electric motor 23 by the control signal to provide the rotary shaft 23a. It is driven so as to rotate, and the transport vehicle 20 is driven based on the control signal.

従って、搬送車20の走行及び停止は制御装置39からの指令によるものとなるので、図4に示すように、給電側コイル31がワーク搬送路11の搬送方向に延びて、その全長に亘って設けられた長円状コイルであれば、受電側コイル32を有する搬送車20をそのワーク搬送路11に沿って複数台同時に走行させることも可能となる。 Therefore, since the traveling and stopping of the transport vehicle 20 is based on the command from the control device 39, as shown in FIG. 4, the feeding side coil 31 extends in the transport direction of the work transport path 11 and extends over the entire length thereof. With the provided elliptical coil, it is possible to simultaneously run a plurality of transport vehicles 20 having the power receiving side coil 32 along the work transport path 11.

そして、複数台の搬送車20をワーク搬送路11に沿って走行させる場合、各搬送車20の制御装置39に制御信号を無線にて別々に発する操作装置41を備えることにより、その複数台の搬送車20を別々に操作することも可能となり、搬送形態の多様性を図ることができることになるのである。 When a plurality of transport vehicles 20 are traveled along the work transport path 11, the control device 39 of each transport vehicle 20 is provided with an operation device 41 that wirelessly and separately emits control signals, whereby the plurality of transport vehicles 20 are provided. It is also possible to operate the transport vehicle 20 separately, and it is possible to achieve a variety of transport modes.

なお、上述した実施の形態では、平板路12の幅方向両側に一対の側壁13,14が立設されたワーク搬送路11を説明した。けれども、搬送車20を案内しうる限り、ワーク搬送路はこれに限らず、従来から用いられているレールのようなものであっても良い。 In the above-described embodiment, the work transport path 11 in which a pair of side walls 13 and 14 are erected on both sides of the flat plate path 12 in the width direction has been described. However, as long as the transport vehicle 20 can be guided, the work transport path is not limited to this, and may be something like a rail that has been conventionally used.

また、上述した実施の形態では、電動モータ23がタイヤ22を回転させて搬送車20を走行させる場合を説明した。けれども、電動モータ23が搬送車20を自走させ得る限り、電動モータ23が回転させるものはタイヤ22に限られない。例えば、ワーク搬送路がレールのようなものである場合、そのレールに転動可能な車輪を電動モータが回転させて搬送車20を走行させるようにしても良く、ワーク搬送路がラックギヤのようなものを備える場合、そのラックギヤに転動可能なピニオンギヤを電動モータが回転させるようにして搬送車20を走行させるようにしても良い。 Further, in the above-described embodiment, the case where the electric motor 23 rotates the tire 22 to drive the transport vehicle 20 has been described. However, as long as the electric motor 23 can self-propell the transport vehicle 20, what the electric motor 23 rotates is not limited to the tire 22. For example, when the work transport path is like a rail, the electric motor may rotate the wheels that can be rolled on the rail to run the transport vehicle 20, and the work transport path is like a rack gear. If the equipment is provided, the transport vehicle 20 may be driven by rotating a rollable pinion gear on the rack gear by an electric motor.

また、上述した実施の形態では、操作装置41が発した制御信号に基づいて搬送車20を走行させ、ワーク搬送路11に沿って複数台の搬送車20を別々に走行制御可能となる場合を説明した。けれども、ワーク搬送路11に設けられた複数台の搬送車20を同一に制御する様な場合には、搬送車20に必ずしも制御装置39を設けることを必要としない。例えば、給電手段30により電力が供給されたときに搬送車20を走行させ、その電力の供給を停止することにより搬送車20を停止させるようにしても良い。 Further, in the above-described embodiment, the transport vehicle 20 is driven based on the control signal emitted by the operating device 41, and a plurality of transport vehicles 20 can be separately controlled to travel along the work transport path 11. explained. However, in the case where a plurality of transport vehicles 20 provided in the work transport path 11 are controlled in the same manner, it is not always necessary to provide the control device 39 in the transport vehicle 20. For example, the transport vehicle 20 may be driven when the electric power is supplied by the power feeding means 30, and the transport vehicle 20 may be stopped by stopping the supply of the electric power.

また、上述した実施の形態では、単線やリッツ線などを渦巻き状に巻回した給電側コイル31や受電側コイル32及び整合コイル33を説明したが、給電可能である限り、渦巻き状に限らず、給電側コイル31や受電側コイル32及び整合コイル33は螺旋状に巻回されたものであっても良く、渦巻きと螺旋が組み合わされたもの、例えば、α巻き等から成るものであっても良い。 Further, in the above-described embodiment, the power feeding side coil 31, the power receiving side coil 32, and the matching coil 33, in which a single wire or a litz wire is wound in a spiral shape, have been described, but the power supply side coil 32 and the matching coil 33 are not limited to the spiral shape as long as power can be supplied. The feeding side coil 31, the power receiving side coil 32, and the matching coil 33 may be wound in a spiral shape, or may be a combination of a spiral and a spiral, for example, an α winding or the like. good.

更に、上述した実施の形態では、給電側コイル31が設けられる走行板17がワーク搬送路11に敷設され、搬送車20の下面に受電側コイル32と整合コイル33が取付けられる場合を説明した。けれども、給電側コイル31が設けられる走行板17は、ワーク搬送路11に敷設される場合に限られない。 Further, in the above-described embodiment, the case where the traveling plate 17 provided with the feeding side coil 31 is laid on the work transport path 11 and the power receiving side coil 32 and the matching coil 33 are attached to the lower surface of the transport vehicle 20 has been described. However, the traveling plate 17 provided with the feeding side coil 31 is not limited to the case where it is laid in the work transport path 11.

例えば、図6に示す様に、ワーク搬送路11に隣接して、走行板17をワーク搬送路11の全長に亘って立設させても良い。このような場合であっても、平行部31b,31cがワーク搬送路11の搬送方向に延びるように給電側コイル31を走行板17に配索し、その給電側コイル31に対向する搬送車20の対向部位に受電側コイル32及び整合コイル33を取付けても良い。 For example, as shown in FIG. 6, the traveling plate 17 may be erected adjacent to the work transport path 11 over the entire length of the work transport path 11. Even in such a case, the feeding side coil 31 is arranged on the traveling plate 17 so that the parallel portions 31b and 31c extend in the transporting direction of the work transport path 11, and the transporting vehicle 20 facing the feeding side coil 31 is arranged. The power receiving side coil 32 and the matching coil 33 may be attached to the facing portions of the above.

図6では、ワーク搬送路11の側壁14に走行板17を立設させ、その走行板17に所定の間隔を開けて対向するようにワーク搬送車20に補助板20aを設け、その補助板20aに受電側コイル32及び整合コイル33を取付けた場合を示す。このように、整合コイル33を渦巻き状に形成してワーク搬送路11を自走する搬送車20の走行板17に対向する対向部位に取付け、受電側コイル32をその整合コイル33を包囲可能な渦巻き状に形成して、その対向部位に整合コイル33を包囲するように取付けたとしても、搬送車20への常時給電が可能となり、搬送車20にバッテリ等の蓄電手段の搭載を不要にして、その搬送車20の軽量化を図ることができる。 In FIG. 6, a traveling plate 17 is erected on the side wall 14 of the work transport path 11, and an auxiliary plate 20a is provided on the work transport vehicle 20 so as to face the traveling plate 17 at a predetermined interval, and the auxiliary plate 20a is provided. The case where the power receiving side coil 32 and the matching coil 33 are attached to the above is shown. In this way, the matching coil 33 can be formed in a spiral shape and attached to a portion facing the traveling plate 17 of the self-propelled transport vehicle 20 on the work transport path 11, and the power receiving side coil 32 can surround the matching coil 33. Even if the matching coil 33 is formed in a spiral shape and attached so as to surround the matching coil 33, it is possible to constantly supply power to the transport vehicle 20, and it is not necessary to mount a storage means such as a battery on the transport vehicle 20. , The weight of the transport vehicle 20 can be reduced.

10 自走式搬送装置
11 ワーク搬送路
17 走行板
20 搬送車
23 電動モータ
30 給電手段
31 給電側コイル
31b,31c 平行部
32 受電側コイル
33 整合コイル
36 遮蔽板
39 制御装置
41 操作装置
B 磁束
L 給電側コイルの平行部の幅寸法
OD 受電側コイルの外径
10 Self-propelled transport device 11 Work transport path 17 Travel plate 20 Transport vehicle 23 Electric motor 30 Feeding means 31 Feeding side coil 31b, 31c Parallel part 32 Power receiving side coil 33 Matching coil 36 Shielding plate 39 Control device 41 Operating device B Magnetic flux L Width dimension of parallel part of power feeding side coil OD Outer diameter of power receiving side coil

Claims (6)

ワーク搬送路(11)と、前記ワーク搬送路(11)に案内されて自走可能な搬送車(20)と、前記搬送車(20)を自走させる電動モータ(23)と、前記電動モータ(23)に給電する給電手段(30)とを備えた自走式搬送装置において、
給電手段(30)が、前記ワーク搬送路(11)に沿って設けられた給電側コイル(31)と、前記搬送車(20)に設けられた受電側コイル(32)と、前記搬送車(20)に設けられ前記給電側コイル(31)で発生した磁束(B)を前記受電側コイル(32)に伝達するための負荷整合を行う整合コイル(33)とを備え
前記給電側コイル(31)が平行部(31b,31c)を有する長円状コイルであって、
非磁性体から成る走行板(17)が前記ワーク搬送路(11)に沿って設けられ、
前記平行部(31b,31c)が前記ワーク搬送路(11)の搬送方向に延びるように前記給電側コイル(31)が前記走行板(17)に配索された
ことを特徴とする自走式搬送装置。
A work transport path (11), a self-propelled transport vehicle (20) guided by the work transport path (11), an electric motor (23) for self-propelling the transport vehicle (20), and the electric motor. In a self-propelled transport device equipped with a power feeding means (30) for supplying power to (23),
The power feeding means (30) includes a power feeding side coil (31) provided along the work transport path (11), a power receiving side coil (32) provided in the transport vehicle (20), and the transport vehicle ( It is provided with a matching coil (33) provided in 20) for load matching for transmitting the magnetic flux (B) generated by the feeding side coil (31) to the receiving side coil (32).
The feeding side coil (31) is an oval coil having parallel portions (31b, 31c).
A traveling plate (17) made of a non-magnetic material is provided along the work transport path (11).
The feeding side coil (31) is arranged on the traveling plate (17) so that the parallel portions (31b, 31c) extend in the transport direction of the work transport path (11).
A self-propelled transport device characterized by this .
整合コイル(33)が渦巻き状に形成されてワーク搬送路(11)を自走する搬送車(20)の走行板(17)に対向する対向部位に取付けられ、
受電側コイル(32)が前記整合コイル(33)を包囲可能な渦巻き状に形成されて前記対向部位に前記整合コイル(33)を包囲するように取付けられた
請求項1記載の自走式搬送装置。
The matching coil (33) is formed in a spiral shape and is attached to a portion facing the traveling plate (17) of the transport vehicle (20) that self-propells on the work transport path (11).
The power receiving side coil (32) is formed in a spiral shape capable of surrounding the matching coil (33), and is attached to the facing portion so as to surround the matching coil (33).
The self-propelled transport device according to claim 1 .
ワーク搬送路(11)に搬送車(20)が自走可能に走行板(17)が敷設され、
整合コイル(33)が渦巻き状に形成されて前記走行板(17)に対向する前記搬送車(20)の下面に取付けられ、
受電側コイル(32)が前記整合コイル(33)を包囲可能な渦巻き状に形成されて前記搬送車(20)の下面に前記整合コイル(33)を包囲するように取付けられた
請求項1記載の自走式搬送装置。
A traveling plate (17) is laid on the work transport path (11) so that the transport vehicle (20) can run on its own.
The matching coil (33) is formed in a spiral shape and is attached to the lower surface of the transport vehicle (20) facing the traveling plate (17).
The power receiving side coil (32) is formed in a spiral shape capable of surrounding the matching coil (33), and is attached to the lower surface of the transport vehicle (20) so as to surround the matching coil (33).
The self-propelled transport device according to claim 1 .
整合コイル(33)及び受電側コイル(32)と搬送車(20)の間に軟磁性材料から成る遮蔽板(36)が介装された請求項2又は3記載の自走式搬送装置。 The self-propelled transfer device according to claim 2 or 3 , wherein a shielding plate (36) made of a soft magnetic material is interposed between the matching coil (33) and the power receiving side coil (32) and the transfer vehicle (20). 給電側コイル(31)の平行部(31b,31c)の幅寸法をL、
前記整合コイル(33)を包囲する受電側コイル(32)の外径をODとするとき 、
L≧ODである請求項2ないし4いずれか1項に記載の自走式搬送装置。
The width dimension of the parallel part (31b, 31c) of the feeding side coil (31) is L,
When the outer diameter of the power receiving side coil (32) surrounding the matching coil (33) is OD,
The self-propelled transport device according to any one of claims 2 to 4 , wherein L ≧ OD.
搬送車(20)に設けられ給電手段により供給される電力により駆動して電動モータ(23)を制御する制御装置(39)と、前記制御装置(39)に制御信号を無線にて発する操作装置(41)とを更に備えた請求項1ないし5いずれか1項に記載の自走式搬送装置。

A control device (39) provided in the transport vehicle (20) and driven by electric power supplied by a power feeding means to control an electric motor (23) , and an operation device that wirelessly emits a control signal to the control device (39). The self-propelled transfer device according to any one of claims 1 to 5, further comprising (41).

JP2018011187A 2018-01-26 2018-01-26 Self-propelled transfer device Active JP7065554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018011187A JP7065554B2 (en) 2018-01-26 2018-01-26 Self-propelled transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018011187A JP7065554B2 (en) 2018-01-26 2018-01-26 Self-propelled transfer device

Publications (2)

Publication Number Publication Date
JP2019129657A JP2019129657A (en) 2019-08-01
JP7065554B2 true JP7065554B2 (en) 2022-05-12

Family

ID=67472501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018011187A Active JP7065554B2 (en) 2018-01-26 2018-01-26 Self-propelled transfer device

Country Status (1)

Country Link
JP (1) JP7065554B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455008B2 (en) * 2020-06-23 2024-03-25 株式会社ダイフク Goods conveyance equipment
CN113635790A (en) * 2021-08-24 2021-11-12 哈尔滨工业大学 Electric automobile wheel hub motor wireless power transmission system based on coil structure under spring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239334A (en) 2011-05-12 2012-12-06 Ihi Corp Vehicle and non contact power supply system
JP2015015891A (en) 2009-05-26 2015-01-22 株式会社ヘッズ Non-contact power supply device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015891A (en) 2009-05-26 2015-01-22 株式会社ヘッズ Non-contact power supply device
JP2012239334A (en) 2011-05-12 2012-12-06 Ihi Corp Vehicle and non contact power supply system

Also Published As

Publication number Publication date
JP2019129657A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
US8499910B2 (en) Device for transmitting electrical energy
WO2014038707A1 (en) Vehicle power feeding device
JP7065554B2 (en) Self-propelled transfer device
JP5287810B2 (en) Traveling vehicle system
JP2006136197A (en) Contactless power feeding type run truck
JP2003079074A (en) Conveyance equipment
US20170008406A1 (en) Wireless power transfer system and vehicle power supply device
JP2019213330A (en) Self-propelled conveyance device and charging method thereof
KR20190054688A (en) Carriage system
JP5981470B2 (en) Transport system and transport device
JP4640035B2 (en) Contactless power supply equipment
JP5146163B2 (en) Transportation vehicle system
JP2005186842A (en) Track carriage system
JP3575925B2 (en) Transfer equipment with branch tracks
JPH08308150A (en) Noncontact power distribution system
JP2002067747A (en) Power supply facilities
JPH118904A (en) Non-contact power supply facility for carriage
JP5624109B2 (en) Non-contact power feeder
JP3389757B2 (en) Transport device for self-propelled vehicles
JP5119918B2 (en) Tracked cart system
JPH0898438A (en) Noncontact power supply method and system for magnetic levitation carrier
JP7455008B2 (en) Goods conveyance equipment
JP3344224B2 (en) Power supply pickup device and moving body
WO2013080861A1 (en) Non-contact power supply device
JP3906950B2 (en) Contactless power supply device for transport cart

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R150 Certificate of patent or registration of utility model

Ref document number: 7065554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150