JP7061300B1 - Inspection method for contamination of powdery waste with radioactive substances - Google Patents

Inspection method for contamination of powdery waste with radioactive substances Download PDF

Info

Publication number
JP7061300B1
JP7061300B1 JP2021148005A JP2021148005A JP7061300B1 JP 7061300 B1 JP7061300 B1 JP 7061300B1 JP 2021148005 A JP2021148005 A JP 2021148005A JP 2021148005 A JP2021148005 A JP 2021148005A JP 7061300 B1 JP7061300 B1 JP 7061300B1
Authority
JP
Japan
Prior art keywords
waste
powdery
inspection method
contamination
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021148005A
Other languages
Japanese (ja)
Other versions
JP2023040830A (en
Inventor
道教 茂木
達郎 昆
尚之 菅井
弘 菅井
Original Assignee
株式会社スリー・アール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スリー・アール filed Critical 株式会社スリー・アール
Priority to JP2021148005A priority Critical patent/JP7061300B1/en
Application granted granted Critical
Publication of JP7061300B1 publication Critical patent/JP7061300B1/en
Publication of JP2023040830A publication Critical patent/JP2023040830A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

【課題】原子力施設等から出るNR廃棄物の対象となる粉体状の廃棄物の放射性物質による表面汚染の検査(念のための放射線測定)方法を提供する。【解決手段】本発明は、放射性廃棄物でない廃棄物の対象となる粉体状の廃棄物の放射性物質による汚染を検査するための検査方法であって、(a)放射線測定器の検出面の幅以下の幅を持つ少なくとも1つ以上の開口部を有する測定用トレイを準備する工程と、(b)測定用トレイ中に粉体状の廃棄物を略一様な厚さで敷き詰める工程と、(c)敷き詰められた粉体状の廃棄物の表面に放射線測定器の検出面を近接させて走査しながら、粉体状の廃棄物の表面放射能密度をβ線測定により求める工程とを含み、略一様な厚さは、粉体状の廃棄物から放出されるβ線を完全に遮蔽しない最大飛程以下であることを特徴とする。【選択図】図1PROBLEM TO BE SOLVED: To provide a method for inspecting surface contamination (radiation measurement just in case) by a radioactive substance of powdery waste which is a target of NR waste generated from a nuclear facility or the like. The present invention is an inspection method for inspecting contamination of powdery waste, which is a target of non-radioactive waste, with radioactive substances, and (a) a detection surface of a radiation measuring instrument. A step of preparing a measuring tray having at least one opening having a width equal to or less than the width, and (b) a step of spreading powdery waste in the measuring tray to a substantially uniform thickness. (C) Includes a step of determining the surface radioactivity density of the powdered waste by β-ray measurement while scanning the surface of the powdered waste spread close to the detection surface of the radiation measuring instrument. The substantially uniform thickness is characterized by being less than or equal to the maximum flight distance that does not completely block β-rays emitted from powdery waste. [Selection diagram] Fig. 1

Description

本発明は、一般的には、粉体状の廃棄物の放射性物質による汚染の検査方法に関し、より具体的には、原子力施設等から出る放射性廃棄物でない廃棄物の対象となる粉体状の廃棄物の放射性物質による汚染の検査方法に関する。 The present invention generally relates to a method for inspecting powdery waste for contamination by radioactive substances, and more specifically, for powdery waste that is a target of non-radioactive waste generated from nuclear facilities and the like. Regarding the inspection method of contamination by radioactive substances in waste.

原子力施設等の核燃料物質または核原料物質(以下、核燃料物質等とも略して呼ぶ場合がある。)を扱う施設において放射線防御の観点から特別の管理を必要とする放射性廃棄物のほかに、放射性廃棄物でない廃棄物(以下、「NR廃棄物」とも呼ぶ。)も大量に発生する。このNR廃棄物については、経済産業省がその取扱いについてのガイドライン(指示)を出しており(非特許文献1)、その内容に沿って廃棄物として判断し管理等を行う必要がある。例えば、NR廃棄物であると判断される、汚染の恐れがある管理区域に設置された資材等及び汚染の恐れがある管理区域で使用された物品は、念のための放射線測定評価を行うこと等が求められる。 In addition to radioactive waste that requires special management from the viewpoint of radiation protection at facilities that handle nuclear fuel materials or nuclear raw materials (hereinafter, may be abbreviated as nuclear fuel materials, etc.) such as nuclear facilities, radioactive waste A large amount of non-material waste (hereinafter, also referred to as “NR waste”) is generated. Regarding this NR waste, the Ministry of Economy, Trade and Industry has issued guidelines (instructions) on its handling (Non-Patent Document 1), and it is necessary to judge it as waste and manage it according to the contents. For example, materials installed in a controlled area where there is a risk of contamination and articles used in a controlled area where there is a risk of contamination, which are judged to be NR waste, should be subjected to radiation measurement evaluation just in case. Etc. are required.

また、管理区域から持ち出す物品(廃棄物を含む)については、他の規定、例えば電離放射線障害防止規則(昭和47年9月30日労働省令第41号)等に沿って、汚染が無いことを確認した上で搬出等を行う必要がある。したがって、原子力施設等で発生するNR廃棄物を処理する際には、そうした各種の規制に従った適切な放射線測定を含む処理、管理を行うことが求められる。 In addition, regarding articles (including waste) taken out of the controlled area, it should be said that there is no contamination in accordance with other regulations, such as the Ionizing Radiation Hazard Prevention Regulations (September 30, 1972, Ministry of Labor Ordinance No. 41). It is necessary to carry out after confirming. Therefore, when treating NR waste generated in nuclear facilities, etc., it is required to carry out treatment and management including appropriate radiation measurement in accordance with such various regulations.

上述した念のための放射線測定等において、NR廃棄物の核燃料物質等の放射性物質による表面放射性汚染(以下、表面汚染密度、表面放射能密度、あるいは単に表面汚染とも呼ぶ。)を検査するために、直接サーベイ法や間接サーベイ法(以下、スミヤ法とも呼ぶ。)によるα線測定が行われることが多い。こうしたα線測定では測定対象物の表面近傍にα線検出器を当てて、あるいは測定対象物の表面を拭き取ったスミヤろ紙にα線検出器を当てて測定する必要がある。 In order to inspect surface radioactive contamination (hereinafter, also referred to as surface contamination density, surface radioactive density, or simply surface contamination) by radioactive substances such as nuclear fuel material of NR waste in the above-mentioned radiation measurement just in case. , The α-ray measurement by the direct survey method or the indirect survey method (hereinafter, also referred to as the Sumiya method) is often performed. In such α-ray measurement, it is necessary to apply an α-ray detector near the surface of the object to be measured, or to apply an α-ray detector to a smear filter paper from which the surface of the object to be measured has been wiped off.

NR廃棄物が粉体状の廃棄物である場合も、基本的に放射性物質による表面汚染を検査するために直接または間接サーベイ法によるα線測定を用いることができる。しかし、粉体の内部(特に下部深く)に入り込んだ放射性物質による汚染を直接または間接サーベイ法によるα線測定によって検査することは困難である。また、粉体状のNR廃棄物を収納した容器の外側からのγ線測定により粉体内部の平均的な放射性物質濃度を測定することもできるが、その場合粉体状のNR廃棄物の局所的な放射性物質残留の有無の確認は困難である。 Even when the NR waste is a powdery waste, α-ray measurement by a direct or indirect survey method can be basically used to inspect the surface contamination by radioactive substances. However, it is difficult to inspect contamination by radioactive substances that have entered the inside of the powder (especially deep in the lower part) by α-ray measurement by the direct or indirect survey method. It is also possible to measure the average concentration of radioactive substances inside the powder by measuring γ-rays from the outside of the container containing the powdered NR waste, but in that case, the local powdered NR waste is locally measured. It is difficult to confirm the presence or absence of residual radioactive materials.

特許文献1には、原子力設備から排出される、放射性物質と非放射性物質を含む廃棄物から、非放射性の廃棄物を分離して処理する方法を開示する。その処理方法は、廃棄物を収集する工程と、第1の放射線検出ステーション(18)にて、収集された廃棄物について放射性物質による表面汚染の有無を確認するためにβ線を測定する工程と、汚染が確認されなかった廃棄物について、第2の放射線検出ステーション(22)にて、γ線の測定を行う工程と、汚染が確認されなかった廃棄物を容器(36)に収納する工程と、第3の放射線検出ステーション(40)にて、容器の外側からγ線を測定して汚染の有無を確認する工程を含む。 Patent Document 1 discloses a method for separating and treating non-radioactive waste from waste containing radioactive substances and non-radioactive substances discharged from nuclear equipment. The treatment method includes a step of collecting waste and a step of measuring β-rays at the first radiation detection station (18) in order to confirm the presence or absence of surface contamination by radioactive substances in the collected waste. A step of measuring γ-rays at the second radiation detection station (22) and a step of storing the uncontaminated waste in a container (36). The third radiation detection station (40) includes a step of measuring γ-rays from the outside of the container to confirm the presence or absence of contamination.

特許文献2では、原子力施設の解体撤去に伴う解体廃棄物から分別されたクリアランス対象物のクリアランス前測定(表面汚染密度の測定、γ線測定とβ線測定)とクリアランス測定(平均放射能濃度、γ線測定)を含む分別・クリアランス処理システムを開示する。そのクリアランス前測定では、測定対象物を測定用トレイに載せて移動させながら測定用トレイの上下からβ線測定をすることを開示する(特許文献2の段落0046)。 In Patent Document 2, pre-clearance measurement (measurement of surface contamination density, γ-ray measurement and β-ray measurement) and clearance measurement (average radioactivity concentration,) of the clearance target separated from the dismantled waste associated with the dismantling and removal of the nuclear facility Disclose a separation / clearance processing system including γ-ray measurement). In the pre-clearance measurement, it is disclosed that β-ray measurement is performed from above and below the measurement tray while the measurement object is placed on the measurement tray and moved (paragraph 0046 of Patent Document 2).

しかし、特許文献1、2では、いずれも粉体状のNR廃棄物を測定対象とするものではなく、粉体内部を含む放射線物質による汚染を含む放射性表面汚染(表面放射能密度)の検査方法を開示してはいない。 However, in Patent Documents 1 and 2, neither of them is intended to measure powdery NR waste, and is a method for inspecting radioactive surface contamination (surface radioactivity density) including contamination by radioactive substances including the inside of powder. Is not disclosed.

特開昭61-68577号公報Japanese Unexamined Patent Publication No. 61-68577 特開2007-248066号公報Japanese Unexamined Patent Publication No. 2007-248066

原子力施設における「放射性廃棄物でない廃棄物」の取扱いについて(指示)、経済産業省原子力安全・保安院、NISA-111a-08-1、平成20年5月27日Regarding the handling of "non-radioactive waste" in nuclear facilities (instruction), NISA, NISA-111a-08-1, Ministry of Economy, Trade and Industry, May 27, 2008

本発明は、上述した従来技術の課題に鑑みてなされたものであって、原子力施設等から出るNR廃棄物の対象となる粉体状の廃棄物の放射性物質による表面汚染の検査(念のための放射線測定)方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and is an inspection of surface contamination of powdery waste, which is a target of NR waste generated from nuclear facilities, etc., by radioactive substances (just in case). Radiation measurement) is intended to provide a method.

本発明の一態様は、放射性廃棄物でない廃棄物の対象となる粉体状の廃棄物の放射性物質による汚染の有無を検査するための検査方法を提供する。その検査方法は、(a)放射線測定器の検出面の幅以下の幅を持つ少なくとも1つ以上の開口部を有する測定用トレイを準備する工程と、(b)測定用トレイ中に粉体状の廃棄物を略一様な厚さで敷き詰める工程と、(c)敷き詰められた粉体状の廃棄物の表面に放射線測定器の検出面を近接させて走査しながら、粉体状の廃棄物の表面放射能密度をβ線測定により求める工程とを含み、その略一様な厚さは、粉体状の廃棄物から放出されるβ線を完全に遮蔽しない最大飛程以下であることを特徴とする。 One aspect of the present invention provides an inspection method for inspecting the presence or absence of contamination of powdery waste, which is a target of non-radioactive waste, with radioactive substances. The inspection methods include (a) a step of preparing a measuring tray having at least one opening having a width equal to or less than the width of the detection surface of the radiation measuring instrument, and (b) a powdery state in the measuring tray. While scanning the process of laying the waste in a substantially uniform thickness and (c) the detection surface of the radiation measuring instrument close to the surface of the laid powdery waste, the powdery waste Including the step of determining the surface radioactivity density of the It is a feature.

本発明の他の一態様では、略一様な厚さは、β線測定により得られる表面放射能密度が、0.4Bq/cm未満となるように設定される。本発明の別の一態様では、略一様な厚さは、1.5g/cm以下の厚さとなるように設定される。 In another aspect of the invention, the substantially uniform thickness is set so that the surface radioactivity density obtained by β-ray measurement is less than 0.4 Bq / cm 2 . In another aspect of the invention, the substantially uniform thickness is set to a thickness of 1.5 g / cm 2 or less.

本発明の一実施形態の検査方法のフローを示す図である。It is a figure which shows the flow of the inspection method of one Embodiment of this invention. 本発明の一実施形態の測定用トレイを示す図である。It is a figure which shows the measuring tray of one Embodiment of this invention. 本発明の一実施形態のβ線測定器(サーベイメータ)を示す図である。It is a figure which shows the β ray measuring instrument (survey meter) of one Embodiment of this invention.

図面を参照しながら本発明の実施の形態を説明する。図1は、本発明の一実施形態の検査方法のフローを示す図である。工程S1において、測定用トレイを準備する。図2は、本発明の一実施形態の測定用トレイを示す図である。図2(a)は、測定用トレイ1の上面図であり、(b)はB-B’位置での断面図である。測定用トレイ1は、四辺を囲む枠2、中央の仕切り部4、及び底部5から構成される。枠2、仕切り部4、及び底部5は、木材、金属、あるいはプラスチック等の加工が比較的容易な材質からなる。底部5は、粉体状の廃棄物が保持可能なピッチ(開口)を持つワイヤメッシュ、あるいは薄いポリプロピレン(PP)フィルム等で構成してもよい。その場合、必要に応じて選択的に追加で、底部5の下側から放射線測定器の検出面18を当てて、念のための放射線(β線)測定が可能となる。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a flow of an inspection method according to an embodiment of the present invention. In step S1, a measuring tray is prepared. FIG. 2 is a diagram showing a measuring tray according to an embodiment of the present invention. FIG. 2A is a top view of the measuring tray 1, and FIG. 2B is a cross-sectional view taken at the position BB'. The measuring tray 1 is composed of a frame 2 surrounding four sides, a central partition portion 4, and a bottom portion 5. The frame 2, the partition 4, and the bottom 5 are made of a material such as wood, metal, or plastic that is relatively easy to process. The bottom 5 may be made of a wire mesh having a pitch (opening) capable of holding powdery waste, a thin polypropylene (PP) film, or the like. In that case, if necessary, additionally, the detection surface 18 of the radiation measuring instrument is applied from the lower side of the bottom portion 5, and radiation (β-ray) measurement can be performed just in case.

枠2と仕切り4の間は、粉体状の廃棄物を敷き詰めることが可能な開口部3A、3Bとなる。1つの開口部の幅Wは、放射線測定器の検出面18の幅と略同一またはそれ以下の幅を有する。これにより、放射線測定器の検出面18を開口部3A、3Bの長さ方向(矢印A方向)に沿って一回走査することにより、未測定領域を残すことなく、開口部全体での測定を確実に行うことが可能となる。枠2(4つの縁部)は、底部5の表面(底面)から約10~20mmの高さTを有する。なお、図2では、仕切り部4が1つで開口部が2つであるが、測定対象の粉体状の廃棄物の量、測定作業効率等に応じて、枠2を広げ、かつ仕切り部4を2つ以上設けて開口部を3つ以上にすることができる。 Between the frame 2 and the partition 4, there are openings 3A and 3B on which powdery waste can be spread. The width W of one opening has a width substantially equal to or less than the width of the detection surface 18 of the radiation measuring instrument. As a result, the detection surface 18 of the radiation measuring instrument is scanned once along the length direction (arrow A direction) of the openings 3A and 3B, so that the measurement of the entire opening can be performed without leaving an unmeasured area. It will be possible to do it reliably. The frame 2 (four edges) has a height T of about 10 to 20 mm from the surface (bottom surface) of the bottom portion 5. In FIG. 2, there is one partition 4 and two openings, but the frame 2 can be expanded and the partition can be expanded according to the amount of powdery waste to be measured, measurement work efficiency, and the like. Two or more of 4 can be provided to make three or more openings.

図1の工程S2で、測定用トレイへの粉体状の廃棄物の敷き詰めを行う。ここで言う粉体状の廃棄物は、核燃料物質等を扱う施設で発生するNR廃棄物の対象となる粉体状の廃棄物(以下、「粉体状のNR廃棄物」とも呼ぶ。)を意味する。核燃料物質等には、α線源やβ線源となるウラン、トリウム、及びそれらの化合物が含まれる。核燃料物質等を扱う施設には、原子力施設の他に原子力とは直接的には関係のない、例えば、精製ウランを取り扱う施設、ウランを触媒として使用する化学工場等の製造施設、加工施設も含まれる。原子力施設には、例えば非特許文献1に記載される精錬施設、原子炉施設、再処理施設等が含まれる。さらに、NR廃棄物は、基本的に非特許文献1のガイドラインに沿って判断されるものを言うが、対象となる廃棄物が発生する施設には、原子力施設の他に上述した原子力とは直接的には関係のない施設も含むものとする。 In step S2 of FIG. 1, the powdery waste is spread on the measuring tray. The powdery waste referred to here refers to powdery waste (hereinafter, also referred to as “powdered NR waste”) that is a target of NR waste generated in facilities that handle nuclear fuel materials and the like. means. Nuclear fuel materials and the like include uranium and thorium, which are α-ray sources and β-ray sources, and their compounds. Facilities that handle nuclear fuel materials include, in addition to nuclear facilities, facilities that handle refined uranium, manufacturing facilities such as chemical factories that use uranium as a catalyst, and processing facilities that are not directly related to nuclear power. Is done. Nuclear facilities include, for example, refining facilities, nuclear reactor facilities, reprocessing facilities and the like described in Non-Patent Document 1. Further, NR waste is basically determined in accordance with the guidelines of Non-Patent Document 1, but in the facility where the target waste is generated, in addition to the nuclear facility, the above-mentioned nuclear power is directly referred to. It shall include facilities that are not related to the subject.

工程S2において、例えば図2の測定用トレイ1を用いる場合では、開口部3A、3Bにほぼ一様の厚さになるように粉体状のNR廃棄物を敷き詰める。ここで、粉体状のNR廃棄物で言う粉体状とは、砂や土のような細かさの粉体のみならず、約1mmから数mm程度(<約10mm)のサイズの細粒物や裁断物を含み得る。廃棄物には、塗装や錆びた鉄の剥離片、金属、小石、木材、紙、プラスチック、ビニール等の任意の材質が含まれ得る。 In step S2, for example, when the measurement tray 1 of FIG. 2 is used, powdery NR waste is spread over the openings 3A and 3B so as to have a substantially uniform thickness. Here, the powdery NR waste is not only fine powder such as sand or soil, but also fine granules having a size of about 1 mm to several mm (<about 10 mm). And may include cuts. The waste can include any material such as paint or rusted iron strips, metal, pebbles, wood, paper, plastic, vinyl and the like.

粉体状のNR廃棄物のほぼ一様の厚さは、少なくとも測定用トレイ1の底部5の表面(底面)近傍を含む粉体状のNR廃棄物全体から放出されるβ線が廃棄物の上面から測定可能である厚さ、言い換えれば、粉体状のNR廃棄物全体がほぼ一様に放射性物質で汚染されていると仮定した場合に、粉体状のNR廃棄物から放出されるβ線を完全に遮蔽しない最大飛程以下の厚さにしなければならない。これにより、仮に測定用トレイの底面に放射性物質のホットスポットが存在しその上を粉体状のNR廃棄物が覆っていたとしてもそのホットスポットを見逃してしまうことを防ぐことができる。 The substantially uniform thickness of the powdery NR waste is such that β-rays emitted from the entire powdery NR waste including at least the vicinity of the surface (bottom surface) of the bottom 5 of the measuring tray 1 are the waste. Thickness that can be measured from the top surface, in other words, β released from powdered NR waste, assuming that the entire powdered NR waste is almost uniformly contaminated with radioactive material. The thickness must be less than or equal to the maximum range that does not completely shield the wire. As a result, even if a hot spot of radioactive material exists on the bottom surface of the measuring tray and is covered with powdery NR waste, it is possible to prevent the hot spot from being overlooked.

また、最大飛程以下の厚さにした場合の表面汚染密度(表面放射能密度)の検出限界は、管理区域外への搬出基準である、α放射性核種(例えばウラン)による汚染密度0.4Bq/cm以下である必要がある。それにより、放射性物質による表面汚染の有無の判定では、表面汚染密度が0.4Bq/cm以上である場合に汚染が有ると判断し、それ未満である場合に汚染が無いと判断することができる。この判断基準値である0.4Bq/cmは、電離放射線障害防止規則(昭和47年9月30日労働省令第41号)の別表第3に定められている「α線を放出する放射線同位元素」による表面汚染の限度(4Bq/cm)の1/10に相当し、当該物品を施設外に持ち出す際にその値(限度の1/10)を越えてはいけないとされているものである。 In addition, the detection limit of the surface contamination density (surface radioactivity density) when the thickness is set to the maximum range or less is the contamination density 0.4Bq by α-radionuclide (for example, uranium), which is the standard for carrying out to the outside of the controlled area. Must be less than / cm2 . As a result, in the determination of the presence or absence of surface contamination by radioactive substances, it can be determined that there is contamination when the surface contamination density is 0.4 Bq / cm 2 or more, and it is determined that there is no contamination when the surface contamination density is less than 0.4 Bq / cm 2. can. This judgment standard value of 0.4 Bq / cm 2 is the "radiation isotope that emits α rays" specified in Appendix 3 of the Ionizing Radiation Hazard Prevention Regulations (September 30, 1972, Ministry of Labor Ordinance No. 41). It corresponds to 1/10 of the limit of surface contamination by "elements" (4Bq / cm 2 ), and it is said that the value (1/10 of the limit) must not be exceeded when the article is taken out of the facility. be.

α線検出器による測定が困難な箇所における表面汚染の有無の判定は、β線検出器による測定結果から表面汚染密度が0.4Bq/cm以上である場合に汚染が有ると判断し、それ未満である場合に汚染が無いと判断する。この判断基準値である0.4Bq/cmは、上述したα線における施設外に持ち出す際の基準値と同等であり、電離放射線障害防止規則(昭和47年9月30日労働省令第41号)の別表第3に定められている「α線を放出しない放射性同位元素」による表面汚染の限度(40Bq/cm)の1/100に相当し、当該物品を施設外に持ち出す際にその値(4.0Bq/cm)の限度の1/10に相当する。 Judgment of the presence or absence of surface contamination in places where measurement by the α-ray detector is difficult is performed by judging from the measurement results by the β-ray detector that there is contamination when the surface contamination density is 0.4 Bq / cm 2 or more. If it is less than, it is judged that there is no contamination. This judgment standard value of 0.4 Bq / cm 2 is equivalent to the above-mentioned standard value for taking out the facility with α rays, and is the Ionizing Radiation Hazard Prevention Regulations (September 30, 1972, Ministry of Labor Ordinance No. 41). ) Corresponds to 1/100 of the limit of surface contamination (40Bq / cm 2 ) by "radioactive isotopes that do not emit α rays" specified in Attached Table 3 of), and the value when the article is taken out of the facility. It corresponds to 1/10 of the limit of (4.0 Bq / cm 2 ).

そこで、本発明者らは、β線の標準線源を用いて粉体状のNR廃棄物の厚さを変えながら実際に実験を行って、β線がNR廃棄物の上面から測定可能である厚さ(β線の最大飛程以下の厚さ)及び測定時の検出感度が検出限密度以下であることの確認を以下に述べる方法にて行った。 Therefore, the present inventors can actually perform an experiment while changing the thickness of the powdered NR waste using a standard β-ray source, and the β-ray can be measured from the upper surface of the NR waste. The thickness (thickness below the maximum range of β rays) and the detection sensitivity at the time of measurement were confirmed to be below the detection limit density by the method described below.

表面放射能密度の測定方法は、JIS Z 4504に規定されており、本発明ではその方法に準じて粉体状のNR廃棄物の表面放射能密度の測定を創出する。下記の式(1)は、JIS Z 4504に規定されている表面放射能密度(Bq/cm)の算出式である。

Figure 0007061300000002
The method for measuring the surface radioactivity density is specified in JIS Z 4504, and in the present invention, the measurement of the surface radioactivity density of the powdery NR waste is created according to the method. The following formula (1) is a formula for calculating the surface radioactivity density (Bq / cm 2 ) specified in JIS Z 4504.
Figure 0007061300000002

式(1)によると、機器効率εと線源効率εを求める必要がある。そこで、標準線源を用いて以下のようにして2つの効率を算出した。その際、放射性物質がウラン(238U)であり、その崩壊過程で発生するPa-234mが放出する最大エネルギー2.273MeVのβ線を想定し、ほぼ同じ最大エネルギー値2.280MeVを持つSr-90-Y-90校正用標準線源(放出面の面積10×10cm)を用いた。β線測定器(サーベイメータ)は、ATOMTEX社製BDPB-03(窓面積300cm、機器効率0.486)を使用した。 According to the equation (1), it is necessary to obtain the equipment efficiency ε i and the radiation source efficiency ε s . Therefore, using a standard radioactive source, the two efficiencies were calculated as follows. At that time, the radioactive substance is uranium ( 238 U), and assuming β-rays with a maximum energy of 2.273 MeV emitted by Pa-234 m generated in the decay process, Sr- has almost the same maximum energy value of 2.280 MeV. A 90-Y-90 calibration standard radiation source (emission surface area 10 × 10 cm) was used. As the β-ray measuring instrument (survey meter), BDBP-03 (window area 300 cm 2 , equipment efficiency 0.486) manufactured by ATOMTEX was used.

β線検出器BDPB-03の5台について、Sr-90-Y-90校正用標準線源を用いて値付けされた2次線源(30×30cmの放出面を持つトリウム線源)を用いて、機器効率εを求めた結果、5台の平均値は0.532であった。 For 5 units of β-ray detector BDBP-03, a secondary radiation source (thorium radiation source with a emission surface of 30 × 30 cm) priced using a standard radiation source for Sr-90-Y-90 calibration was used. As a result of obtaining the equipment efficiency ε i , the average value of the five units was 0.532.

線源効率εを求めるにあたり、まず粉体状のNR廃棄物の厚さを変えてβ線の吸収率(透過率)を求め、粉体状のNR廃棄物がトレイ上に均一の濃度で敷き詰められていると仮定して、線源効率εを求めた。具体的には以下のようにして求めた。 In order to obtain the radiation source efficiency ε s , first, the absorption rate (transmittance) of β rays is obtained by changing the thickness of the powdery NR waste, and the powdery NR waste is placed on the tray at a uniform concentration. The source efficiency ε s was calculated on the assumption that it was spread. Specifically, it was obtained as follows.

(i)粉体状のNR廃棄物によるβ線吸収率の測定方法
測定用トレイ1の下面にβ線検出器(BDPB-03)をセットし、測定用トレイ1の底部5の構造物(0.2mm厚のPPフィルム)の上に計量した粉状体のNR廃棄物をほぼ均一に敷き、Sr-90-Y-90標準線源をNR廃棄物の上に置いて計数率を測定した。粉体状のNR廃棄物の厚さ(g/cm)を段階的に増やしながら計数率を記録した。吸収層の厚さをPPフィルムの0.2mmにNR廃棄物の厚さ(g/cm)を加えたものとし、吸収率は(NR廃棄物有りのNet cps)/(NR廃棄物無しのNet cps)とした。
(I) Method for measuring β-ray absorption rate by powdery NR waste A β-ray detector (BDBP-03) is set on the lower surface of the measuring tray 1, and the structure (0) at the bottom 5 of the measuring tray 1 is set. A weighed powdery NR waste was spread almost uniformly on a PP film having a thickness of 2 mm), and an Sr-90-Y-90 standard radiation source was placed on the NR waste to measure the counting rate. The counting rate was recorded while gradually increasing the thickness (g / cm 2 ) of the powdery NR waste. The thickness of the absorption layer is 0.2 mm of the PP film plus the thickness of NR waste (g / cm 2 ), and the absorption rate is (Net cps with NR waste) / (without NR waste). Net cps).

(ii)粉体状廃棄物の透過率の測定
任意に抽出した5つの粉体状のNR廃棄物のサンプルを用いて、NR廃棄物の厚さと透過率の試験を行った。NR廃棄物によってややばらつきはあるが、ほぼ同様の透過率近似式が得られた。下記の表1は、粉体状のNR廃棄物の厚さ(遮蔽厚)と透過率の測定結果(5つのサンプルの平均値)である。当該β線エネルギーでのアルミニウム金属中での最大飛程は、1.097g/cmであるが、粉体状のNR廃棄物ではそれよりやや厚い遮蔽厚(吸収厚)の1.174g/cmでも約0.3%透過してくることがわかる。

Figure 0007061300000003
(Ii) Measurement of transmittance of powdery waste Five samples of powdery NR waste extracted arbitrarily were used to test the thickness and transmittance of NR waste. Although there are some variations depending on the NR waste, almost the same transmittance approximation formula was obtained. Table 1 below shows the measurement results of the thickness (shielding thickness) and transmittance of powdered NR waste (average value of 5 samples). The maximum range of aluminum metal at the β-ray energy is 1.097 g / cm 2 , but for powdered NR waste, the shielding thickness (absorption thickness) is 1.174 g / cm, which is slightly thicker than that. It can be seen that even with 2 , the transmission is about 0.3%.
Figure 0007061300000003

(iii)線源効率ε
線源効率εに関してJISには、最大エネルギーが0.4MeV以上のβ線の場合は0.5、α線又は最大エネルギーが0.15MeV以上0.4MeV未満のβ線の場合は0.25、なお、放射能密度の線源効率があらかじめ明らかな場合はその値を用いることができるとされている。そこで、測定した粉体状のNR廃棄物の厚さに対する透過率の値を用い、粉体状のNR廃棄物中の放射能濃度が均一であるとして、透過率を厚さ方向に積分することにより線源効率εを求めた。その際、2π方向の測定なので吸収体なしで0.5となるように規格化した。計算結果を下記の表2に示す。

Figure 0007061300000004
(Iii) Source efficiency ε s
Regarding the radiation source efficiency ε s , JIS indicates 0.5 for β rays with a maximum energy of 0.4 MeV or more, and 0.25 for α rays or β rays with a maximum energy of 0.15 MeV or more and less than 0.4 MeV. If the radiation source efficiency of the radioactivity density is known in advance, that value can be used. Therefore, using the measured transmittance value for the thickness of the powdery NR waste, assuming that the radioactivity concentration in the powdery NR waste is uniform, the transmittance is integrated in the thickness direction. The source efficiency ε s was obtained from the above. At that time, since it was measured in the 2π direction, it was standardized so that it would be 0.5 without an absorber. The calculation results are shown in Table 2 below.
Figure 0007061300000004

表面放射能密度(Bq/cm)は、算出された機器効率ε(平均値0.532)及び表2の粉体状の廃棄物の厚さに応じた線源効率εを用いて、上述したJIS Z 4504に規定の算出式(1)により計算することができる。次に、表面放射能密度の限界値(検出限界密度)を求める。直接法による検出限界密度の算出には、日本放射線安全管理学会「放射線施設廃止のための確認手順と放射能測定マニュアル」にある下記の式(2)を使用した。

Figure 0007061300000005
The surface radioactivity density (Bq / cm 2 ) is determined using the calculated equipment efficiency ε i (mean value 0.532) and the source efficiency ε s according to the thickness of the powdery waste in Table 2. , Can be calculated by the calculation formula (1) specified in JIS Z 4504 described above. Next, the limit value (detection limit density) of the surface radioactivity density is obtained. The following formula (2) in the "Confirmation Procedure for Abolition of Radiation Facilities and Radioactivity Measurement Manual" of the Japan Society for Radiation Safety Management was used to calculate the detection limit density by the direct method.
Figure 0007061300000005

計算結果を下記の表3に示す。表3から、粉体状のNR廃棄物の厚さ(g/cm)が増すごとに検出限界密度(Bq/cm)は上昇するが、厚さ1.46g/cmでの検出限界密度は0.36Bq/cmであり、上述した管理区域外への搬出基準である汚染密度0.4Bq/cmを下回ることが分かった。したがって、一度に測定できるNR廃棄物の量はできるだけ多いほうが作業効率上良いことも踏まえると、β線の最大飛程以内で測定可能な厚さ(厚さ密度)としては、約1.5g/cm以下の厚さ(厚さ密度)であれば良いことがわかった。

Figure 0007061300000006
The calculation results are shown in Table 3 below. From Table 3, the detection limit density (Bq / cm 2 ) increases as the thickness of the powdery NR waste (g / cm 2 ) increases, but the detection limit at a thickness of 1.46 g / cm 2 . The density was 0.36 Bq / cm 2 , which was found to be lower than the contamination density of 0.4 Bq / cm 2 , which is the standard for carrying out of the controlled area described above. Therefore, considering that it is better for work efficiency to measure as much NR waste as possible at one time, the thickness (thickness density) that can be measured within the maximum range of β rays is about 1.5 g / g. It was found that the thickness (thickness density) of cm 2 or less is sufficient.
Figure 0007061300000006

次に、図1の工程S3において、粉体状のNR廃棄物の表面からのβ線測定を行う。図3は、本発明の一実施形態のβ線測定の模式図である。工程S2で測定トレイ1中に敷き詰められた粉体状のNR廃棄物の表面近傍に、β線測定器(サーベイメータ)16の測定面(検出面)18が当接される。図2の説明でも触れたように、検出面18の幅は、測定トレイ1の1つの開口部の幅Wと略同一またはそれ以上の幅を有するようにする。それにより、検出面18を測定トレイ1の開口部3A、3Bの長さ方向(矢印A方向)に沿って一回走査することにより、未測定領域を残すことなく、開口部全体でのβ線測定を確実に行うことが可能となる。 Next, in step S3 of FIG. 1, β-ray measurement from the surface of the powdery NR waste is performed. FIG. 3 is a schematic diagram of β-ray measurement according to an embodiment of the present invention. The measurement surface (detection surface) 18 of the β-ray measuring instrument (survey meter) 16 is brought into contact with the surface of the powdery NR waste spread in the measuring tray 1 in step S2. As mentioned in the description of FIG. 2, the width of the detection surface 18 is set to have a width substantially equal to or wider than the width W of one opening of the measuring tray 1. As a result, by scanning the detection surface 18 once along the length direction (arrow A direction) of the openings 3A and 3B of the measurement tray 1, β-rays in the entire opening without leaving an unmeasured region. It is possible to perform the measurement reliably.

β線測定器16としては、例えばプラスチックシンチレーション検出器を用いることができる。β線測定器16は、通信ケーブル19を介して表示器20へ検出信号を送る。表示器20は、そのβ線測定結果を表示することができ、さらにその測定データをパーソナルコンピュータ40に有線または無線で送信できるようにすることもできる。β線検出器による測定結果から得られる表面汚染密度が0.4Bq/cm以上である場合に汚染が有ると判断し、それ未満である場合に汚染が無いと判断することができる。なお、図2の説明において既述したように、測定用トレイ1の底部5を粉体状の廃棄物が保持可能なピッチ(開口)を持つワイヤメッシュ、あるいは薄いポリプロピレン(PP)フィルム等で構成した場合、必要に応じて選択的に追加で、底部5の下側からβ線測定器16の検出面18を当てて、念のための放射線(β線)測定を行うことができる。 As the β-ray measuring device 16, for example, a plastic scintillation detector can be used. The β-ray measuring instrument 16 sends a detection signal to the display 20 via the communication cable 19. The display 20 can display the β-ray measurement result, and can also enable the measurement data to be transmitted to the personal computer 40 by wire or wirelessly. When the surface contamination density obtained from the measurement result by the β-ray detector is 0.4 Bq / cm 2 or more, it can be determined that there is contamination, and when it is less than that, it can be determined that there is no contamination. As described above in the description of FIG. 2, the bottom 5 of the measuring tray 1 is made of a wire mesh having a pitch (opening) capable of holding powdery waste, a thin polypropylene (PP) film, or the like. If this is the case, the detection surface 18 of the β-ray measuring instrument 16 can be selectively added from the lower side of the bottom 5 to perform radiation (β-ray) measurement just in case.

本発明の実施形態について、図を参照しながら説明をした。しかし、本発明はこれらの実施形態に限られるものではない。本発明はその趣旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変形を加えた態様で実施できるものである。 An embodiment of the present invention has been described with reference to the drawings. However, the present invention is not limited to these embodiments. The present invention can be carried out in a mode in which various improvements, modifications and modifications are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

1 測定用トレイ
2 測定用トレイの外枠
3A、3B 測定用トレイの内部(粉体状の廃棄物の収納部)
4 測定用トレイ内の仕切り板
5 測定用トレイの底部
16 β線測定器(サーベイメータ)
18 測定面(検出面)
19 通信ケーブル
30 表示部
40 パーソナルコンピュータ(PC)
1 Measurement tray 2 Measurement tray outer frame 3A, 3B Inside the measurement tray (powder-like waste storage)
4 Partition plate in the measuring tray 5 Bottom of the measuring tray 16 β-ray measuring instrument (survey meter)
18 Measurement surface (detection surface)
19 Communication cable 30 Display unit 40 Personal computer (PC)

Claims (6)

放射性廃棄物でない廃棄物の対象となる粉体状の廃棄物の放射性物質による汚染を検査するための検査方法であって、
(a)放射線測定器の検出面の幅以下の幅を持つ少なくとも1つ以上の開口部を有する測定用トレイを準備する工程と、
(b)前記測定用トレイの前記開口部中に前記粉体状の廃棄物を略一様な厚さで敷き詰める工程と、
(c)敷き詰められた前記粉体状の廃棄物の表面に前記放射線測定器の検出面を近接させて走査しながら、前記粉体状の廃棄物の表面放射能密度をβ線測定により求める工程と、を含み、
前記略一様な厚さは、前記粉体状の廃棄物から放出されるβ線最大飛程以下であることを特徴とする、検査方法。
It is an inspection method for inspecting the contamination of powdery waste that is the target of non-radioactive waste with radioactive substances.
(A) A step of preparing a measuring tray having at least one opening having a width equal to or less than the width of the detection surface of the radiation measuring instrument, and a step of preparing a measuring tray.
(B) A step of spreading the powdery waste in the opening of the measuring tray to a substantially uniform thickness.
(C) A step of determining the surface radioactivity density of the powdery waste by β-ray measurement while scanning the surface of the powdery waste spread close to the detection surface of the radiation measuring instrument. And, including
The inspection method, wherein the substantially uniform thickness is equal to or less than the maximum range of β rays emitted from the powdery waste.
前記略一様な厚さは、前記β線測定により得られる前記表面放射能密度が、0.4Bq/cm未満となるように設定される、請求項1の検査方法。 The inspection method according to claim 1, wherein the substantially uniform thickness is set so that the surface radioactivity density obtained by the β-ray measurement is less than 0.4 Bq / cm 2 . 前記略一様な厚さは、1.5g/cm以下の厚さとなるように設定される、請求項1または2のいずれか一項の検査方法。 The inspection method according to any one of claims 1 or 2, wherein the substantially uniform thickness is set to a thickness of 1.5 g / cm 2 or less. 前記放射線測定器は、β線測定可能なプラスチックシンチレーション検出器(サーベイメータ)である、請求項1~3のいずれか一項の検査方法。 The inspection method according to any one of claims 1 to 3, wherein the radiation measuring instrument is a plastic scintillation detector (survey meter) capable of measuring β rays. 前記測定用トレイは方形であり、4つの枠部が底面から10~20mmの高さを有し、さらに、前記放射線測定器の検出面の幅と略同一な幅毎に一枠部から対向する他の一枠部へ延びる少なくとも1つの仕切り部を有する、請求項1~4のいずれか一項の検査方法。 The measuring tray is square, and the four frame portions have a height of 10 to 20 mm from the bottom surface, and further, the widths substantially equal to the width of the detection surface of the radiation measuring instrument face each other from the frame portion. The inspection method according to any one of claims 1 to 4, which has at least one partition extending to another frame. 前記検査方法は、精製ウランを取り扱う施設において実行される検査方法である、請求項1~5のいずれか一項の検査方法。 The inspection method according to any one of claims 1 to 5, which is an inspection method performed in a facility that handles purified uranium.
JP2021148005A 2021-09-10 2021-09-10 Inspection method for contamination of powdery waste with radioactive substances Active JP7061300B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021148005A JP7061300B1 (en) 2021-09-10 2021-09-10 Inspection method for contamination of powdery waste with radioactive substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021148005A JP7061300B1 (en) 2021-09-10 2021-09-10 Inspection method for contamination of powdery waste with radioactive substances

Publications (2)

Publication Number Publication Date
JP7061300B1 true JP7061300B1 (en) 2022-04-28
JP2023040830A JP2023040830A (en) 2023-03-23

Family

ID=81448159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021148005A Active JP7061300B1 (en) 2021-09-10 2021-09-10 Inspection method for contamination of powdery waste with radioactive substances

Country Status (1)

Country Link
JP (1) JP7061300B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115524259A (en) * 2022-11-03 2022-12-27 蓝冰河(常州)精密测量技术有限责任公司 Beta-ray electrolytic copper foil surface density quality detection device based on Kr-85 realization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248066A (en) 2006-03-13 2007-09-27 Japan Atom Power Co Ltd:The System and method for classification-clearance disposal of radioactive waste with high efficiency and high reliability
JP2013033012A (en) 2011-08-03 2013-02-14 Nippon Steel & Sumitomo Metal Object's radioactivity concentration measurement method
JP2017508994A (en) 2014-03-10 2017-03-30 ヌケム・テヒノロギース・エンジニアリング・サービシーズ・ゲーエムベーハーNukem Technologies Engineering Services Gmbh Method for measuring the safety level of bulk materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248066A (en) 2006-03-13 2007-09-27 Japan Atom Power Co Ltd:The System and method for classification-clearance disposal of radioactive waste with high efficiency and high reliability
JP2013033012A (en) 2011-08-03 2013-02-14 Nippon Steel & Sumitomo Metal Object's radioactivity concentration measurement method
JP2017508994A (en) 2014-03-10 2017-03-30 ヌケム・テヒノロギース・エンジニアリング・サービシーズ・ゲーエムベーハーNukem Technologies Engineering Services Gmbh Method for measuring the safety level of bulk materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115524259A (en) * 2022-11-03 2022-12-27 蓝冰河(常州)精密测量技术有限责任公司 Beta-ray electrolytic copper foil surface density quality detection device based on Kr-85 realization

Also Published As

Publication number Publication date
JP2023040830A (en) 2023-03-23

Similar Documents

Publication Publication Date Title
Pérot et al. The characterization of radioactive waste: a critical review of techniques implemented or under development at CEA, France
JP7061300B1 (en) Inspection method for contamination of powdery waste with radioactive substances
JP6519070B1 (en) Inspection apparatus for radioactive contamination and inspection method
Lee et al. Development of mobile scanning system for effective in-situ spatial prediction of radioactive contamination at decommissioning sites
EP1145043A1 (en) Apparatus and methods for investigation of radioactive sources in a sample
JP7043045B1 (en) Inspection method for contamination of waste with radioactive substances
Mauerhofer et al. Prompt gamma neutron activation analysis of a 200 L steel drum homogeneously filled with concrete
JP7266342B1 (en) Measurement method of radioactivity of uranium
JPH07159541A (en) Radioactivity concentration measuring apparatus for radioactive waste container
Yokoyama et al. Development of clearance verification equipment for uranium-bearing waste
JPS61107183A (en) Method for measuring radioactive quantity of radioactive waste contained in receptacle
Suran et al. New high-throughput measurement systems for radioactive wastes segregation and free release
US20230280484A1 (en) System for correlating alpha and gamma spectrometry measurements for in situ radiological characterisation of a sample
US7408161B2 (en) Investigations
JP2703409B2 (en) Radioactivity measurement method
JP2019144214A (en) Method for processing waste different from radioactive waste
JP6270556B2 (en) Radioactivity concentration measuring device for waste and radioactivity concentration measuring method for waste
Tawfik et al. Radiological doses and risk assessment of NORM scrap metal by using RESRAD-RECYCLE computer code
JP2019148578A (en) Inspection method of uranium contamination of surface of inspection object
Gatea et al. Radioactive safety assessment for surface contamination by using SAFRAN tool
Kim et al. Development of a CsI (Tl) scintillator based gamma probe for the identification of nuclear materials in unknown areas
JPH0545467A (en) Radioactive contamination measuring system
Kowatari et al. Preliminary Study on Determination of Surface Contamination Density on Soil in Heavily Contaminated Areas Using a CeBr3 Scintillation Detector Coupled with Lead Shielding
Pylypchynets et al. Empirical formula for the dependence of HPGe-detector efficiency on energy and distance for shielded gamma-ray sources
Spahiu et al. In-situ measurement of natural radioactivity in phosphogypsum disposal site in Kosovo.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220114

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220401

R150 Certificate of patent or registration of utility model

Ref document number: 7061300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150