JP2019148578A - Inspection method of uranium contamination of surface of inspection object - Google Patents

Inspection method of uranium contamination of surface of inspection object Download PDF

Info

Publication number
JP2019148578A
JP2019148578A JP2018164087A JP2018164087A JP2019148578A JP 2019148578 A JP2019148578 A JP 2019148578A JP 2018164087 A JP2018164087 A JP 2018164087A JP 2018164087 A JP2018164087 A JP 2018164087A JP 2019148578 A JP2019148578 A JP 2019148578A
Authority
JP
Japan
Prior art keywords
inspection
contamination
inspection object
waste
uranium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018164087A
Other languages
Japanese (ja)
Inventor
道教 茂木
Michinori Mogi
道教 茂木
弘 菅井
Hiroshi Sugai
弘 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3R CORP
Original Assignee
3R CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3R CORP filed Critical 3R CORP
Priority to JP2018164087A priority Critical patent/JP2019148578A/en
Publication of JP2019148578A publication Critical patent/JP2019148578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measurement Of Radiation (AREA)

Abstract

To provide an inspection method for rapidly and efficiently inspecting the presence/absence of uranium contamination of a surface of an inspection object such as a waste other than a radioactive waste.SOLUTION: An inspection method of the present invention includes: (a) a process of radiating an ultraviolet ray to a surface of an inspection object; (b) a process of determining a region in which fluorescence of green, blue, or both is emitted on the surface of the inspection object under the irradiation of the ultraviolet ray; and (c) a process of measuring the presence/absence of the uranium contamination of the region emitting the fluorescence by α-ray detection using a direct survey method.SELECTED DRAWING: Figure 1

Description

本発明は、検査対象物の表面のウラン汚染の検査方法に関し、より具体的には、放射性廃棄物でない廃棄物などの検査対象物の表面のウラン汚染の有無を迅速かつ効率的に検査するための検査方法に関する。 The present invention relates to a method for inspecting uranium contamination on the surface of an inspection object, and more specifically, for quickly and efficiently inspecting the presence or absence of uranium contamination on the surface of an inspection object such as waste that is not radioactive waste. It relates to the inspection method.

原子力施設等の核燃料物質を扱う施設において放射線防御の観点から特別の管理を必要とする放射性廃棄物のほかに、放射性廃棄物でない廃棄物も大量に発生する。この放射性廃棄物でない廃棄物については、経済産業省がその取扱いについてのガイドライン(指示)を出しており(非特許文献1)、その内容に沿って廃棄物として判断し管理等を行う必要がある。例えば、放射性廃棄物でない廃棄物であると判断される、汚染の恐れがある管理区域に設置された資材等及び汚染の恐れがある管理区域で使用された物品は、念ための放射線測定評価を行うこと等が求められる。 In addition to radioactive waste that requires special management from the viewpoint of radiation protection in facilities that handle nuclear fuel materials such as nuclear facilities, a large amount of waste that is not radioactive waste is also generated. Regarding waste that is not radioactive waste, the Ministry of Economy, Trade and Industry has issued guidelines (instructions) on its handling (Non-Patent Document 1), and it is necessary to judge and manage it as waste according to its contents. . For example, materials installed in a control area that is likely to be contaminated and that are used in a control area that is likely to be contaminated, and that are used in a control area that is likely to be contaminated, should be subjected to a radiological evaluation. What to do is required.

また、管理区域から持ち出す物品(廃棄物を含む)については、他の規定、例えば電離放射線障害防止規則(昭和47年9月30日労働省令第41号)等に沿って、放射線同位元素による表面汚染が規定上の限度以下であることを確認した上で搬出等を行う必要がある。したがって、原子力施設で発生する放射性廃棄物でない廃棄物を処理する際には、そうした各種の規制に従った適切な放射線測定を含む処理、管理を行うことが求められる。 In addition, for articles (including waste) taken out from the management area, the surface with radioactive isotopes in accordance with other regulations, such as the Regulation for Prevention of Ionizing Radiation Hazards (Ministry of Labor Ordinance No. 41 of September 30, 1972), etc. It is necessary to carry out removal after confirming that the contamination is below the specified limit. Therefore, when processing non-radioactive waste generated at nuclear facilities, it is required to perform processing and management including appropriate radiation measurement in accordance with such various regulations.

特許文献1は、放射性廃棄物についてα線核種を含むものとα線核種を含まないものに仕分けする放射性廃棄物の仕分け方法、仕分け装置およびα線測定装置を開示する。しかし、特許文献1は放射性廃棄物でない廃棄物の放射線測定評価について開示するものではない。また、α線測定を迅速かつ効率的に行うことを開示するものではない。 Patent Document 1 discloses a radioactive waste sorting method, a sorting device, and an α-ray measuring device that sorts radioactive waste into those containing α-ray nuclides and those that do not contain α-ray nuclides. However, Patent Document 1 does not disclose radiation measurement evaluation of waste that is not radioactive waste. Moreover, it does not disclose that the α-ray measurement is performed quickly and efficiently.

特許文献2は、原子力施設の解体撤去に伴う解体廃棄物から分別されたクリアランス対象物のクリアランス前測定(表面汚染密度の測定、γ線測定とβ線測定)とクリアランス測定(平均放射能濃度、γ線測定)を含む分別・クリアランス処理システムを開示する。しかし、特許文献2はクリアランス対象物から汚染の高い部位を除去する除染を行うことを前提としており、放射性廃棄物でない廃棄物の放射線測定評価及び処理について具体的に開示するものではない。また、表面汚染密度の測定を迅速かつ効率的に行うことを開示するものではない。 Patent Document 2 describes the pre-clearance measurement (measurement of surface contamination density, γ-ray measurement and β-ray measurement) and clearance measurement (average radioactivity concentration, Disclosed is a separation / clearance processing system including γ-ray measurement. However, Patent Document 2 is based on the premise that decontamination is performed to remove highly contaminated parts from the clearance object, and does not specifically disclose radiation measurement evaluation and treatment of waste that is not radioactive waste. Further, it does not disclose that the surface contamination density is measured quickly and efficiently.

特許文献3は、紫外のレーザ光を固体試料に照射して発生する蛍光を分光分析してウラン濃度を測定する分析方法を開示する。しかし、特許文献3は、検査対象物の表面のウラン汚染の有無を迅速かつ効率的に検査するための検査方法を開示するものではない。 Patent Document 3 discloses an analysis method for measuring the uranium concentration by spectroscopically analyzing fluorescence generated by irradiating a solid sample with ultraviolet laser light. However, Patent Document 3 does not disclose an inspection method for quickly and efficiently inspecting the presence or absence of uranium contamination on the surface of an inspection object.

特開2014−92519JP2014-92519 特許第4268970Japanese Patent No. 4268970 特開昭63−26558JP-A 63-26558

原子力施設における「放射性廃棄物でない廃棄物」の取扱いについて(指示)、経済産業省原子力安全・保安院、NISA−111a−08−1、平成20年5月27日Handling of “Waste that is not radioactive waste” at nuclear facilities (instruction), Ministry of Economy, Trade and Industry, NISA, NISA-111a-08-1, May 27, 2008

本発明は、放射性廃棄物でない廃棄物などの検査対象物の表面のウラン汚染の有無を迅速かつ効率的に検査するための検査方法を提供することを目的とする。 An object of the present invention is to provide an inspection method for quickly and efficiently inspecting the presence or absence of uranium contamination on the surface of an inspection object such as waste that is not radioactive waste.

本発明は、検査対象物の表面のウラン汚染の有無を検査する検査方法を提供する。その検査方法は、(a)検査対象物の表面に紫外線を照射する工程と、(b)紫外線の照射下における検査対象物の表面での緑色、青色、またはこれら両方を含む蛍光を発する領域を特定する工程と、(c)蛍光を発する領域のウラン汚染の有無を直接サーベイ法を用いたα線検出により測定する工程と、を含む。 The present invention provides an inspection method for inspecting the presence or absence of uranium contamination on the surface of an inspection object. The inspection method includes (a) a step of irradiating the surface of the inspection object with ultraviolet light, and (b) a region emitting fluorescence including green, blue, or both on the surface of the inspection object under the irradiation of ultraviolet light. And (c) a step of measuring the presence or absence of uranium contamination in the fluorescence emitting region by α ray detection using a direct survey method.

本発明によれば最初に紫外線照射によって定対象物の表面での蛍光を発する領域を特定した上でその領域での放射線(α線)検出による測定を行うので、測定領域が予め限定されていることから、ウラン汚染の有無を迅速かつ効率的に検査することができる。特に、飛程の短いα線検出では、検出器を検査対象物の表面に当ててあるいはごく近傍に置いて測定し、順次検出器を移動させて測定領域を変えながら測定する必要があることから、その測定領域が事前に特定/限定されることは測定作業時間を大幅に短縮でき、かつ測定漏れを減らすことができるという大きな利点がある。 According to the present invention, first, a region that emits fluorescence on the surface of a fixed object is identified by ultraviolet irradiation, and then measurement is performed by detecting radiation (α-rays) in that region, so the measurement region is limited in advance. Therefore, the presence or absence of uranium contamination can be inspected quickly and efficiently. Especially for alpha ray detection with a short range, it is necessary to measure by placing the detector on the surface of the object to be inspected or in close proximity, and moving the detector sequentially to change the measurement area. Since the measurement area is specified / limited in advance, there is a great advantage that the measurement work time can be greatly shortened and measurement omission can be reduced.

本発明の一実施形態の検査方法の工程を示す図である。It is a figure which shows the process of the inspection method of one Embodiment of this invention. 本発明の一実施形態の検査対象への紫外線照射と蛍光発光の様子を示す模式図である。It is a schematic diagram which shows the mode of the ultraviolet irradiation and fluorescence emission to the test object of one Embodiment of this invention. 本発明の一実施形態の紫外線光源の例を示す模式図である。It is a schematic diagram which shows the example of the ultraviolet light source of one Embodiment of this invention. 本発明の一実施形態の検査対象への紫外線照射と蛍光発光の撮影の様子を示す模式図である。It is a schematic diagram which shows the mode of the imaging | photography of the ultraviolet irradiation and fluorescence emission to the test object of one Embodiment of this invention. 本発明の一実施形態の検査対象の蛍光領域の放射線測定の様子を示す模式図である。It is a schematic diagram which shows the mode of the radiation measurement of the fluorescent region of the test object of one Embodiment of this invention. 本発明の他の一実施形態の検査対象の蛍光領域の放射線測定の様子を示す模式図である。It is a schematic diagram which shows the mode of the radiation measurement of the fluorescent region of the test object of other one Embodiment of this invention. 本発明の他の一実施形態の検査対象への紫外線照射と蛍光発光の様子を示す模式図である。It is a schematic diagram which shows the mode of the ultraviolet irradiation and fluorescence emission to the test object of other one Embodiment of this invention. 本発明の一実施形態のスミヤ法を用いた蛍光領域の放射線測定の模式図である。It is a schematic diagram of the radiation measurement of the fluorescence area | region using the smear method of one Embodiment of this invention.

図面を参照しながら本発明の実施の形態を説明する。図1は、本発明の一実施形態の検査対象物の表面のウラン汚染の有無を検査する検査方法の工程を示す図である。本発明の検査対象となる検査対象物は、基本的に核燃料物質を扱う施設においてその表面がウランで汚染される可能性があるあらゆる物が該当するが、以下の説明ではその一例として、放射性廃棄物でない廃棄物を例として挙げて説明を行う。また、本明細書で言う「ウラン」とは、紫外線を当てるとウラン特有の蛍光、すなわち緑色、青色、またはこれらの両方(混合色)を含む蛍光を発する性質を有する6価のウランを意味し、廃棄物中での存在形態としては、例えば、ウラニルイオン(UO 2+)を含むウラニル化合物、ウラニル塩が挙げられる。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the steps of an inspection method for inspecting the presence or absence of uranium contamination on the surface of an inspection object according to an embodiment of the present invention. The inspection object to be inspected according to the present invention basically includes any object whose surface may be contaminated with uranium in a facility that handles nuclear fuel materials. In the following description, as an example, radioactive waste An explanation will be given by taking a waste that is not a waste as an example. In addition, “uranium” as used in this specification means hexavalent uranium having a property of emitting fluorescence characteristic of uranium, ie, green, blue, or both (mixed colors) when irradiated with ultraviolet rays. Examples of the existing form in waste include uranyl compounds and uranyl salts containing uranyl ions (UO 2 2+ ).

核燃料物質を扱う施設には、原子力施設の他に原子力とは直接的には関係がないが、6価のウラン(例えばウラニルイオン(UO 2+))を扱うことがある化学工場等の製造施設、加工施設も含まれる。原子力施設には、例えば非特許文献1に記載される精錬施設、原子炉施設、再処理施設等が含まれる。さらに、放射性廃棄物でない廃棄物(以下、NR廃棄物と呼ぶ)は、基本的に非特許文献1のガイドラインに沿って判断されるものを言うが、対象となる廃棄物が発生する施設には、原子力施設の他に上述した原子力とは直接的には関係のない化学工場等も含むものとする。 In addition to nuclear facilities, facilities that handle nuclear fuel materials are not directly related to nuclear power, but manufacturing facilities such as chemical factories that may handle hexavalent uranium (eg, uranyl ions (UO 2 2+ )) Processing facilities are also included. The nuclear facility includes, for example, a refining facility, a nuclear reactor facility, a reprocessing facility described in Non-Patent Document 1. Furthermore, waste that is not radioactive waste (hereinafter referred to as NR waste) is basically determined in accordance with the guidelines of Non-Patent Document 1, but in facilities where target waste is generated, In addition to nuclear facilities, chemical factories that are not directly related to nuclear energy are also included.

図1の工程S1において、検査対象物の表面に紫外線を照射する。検査対象物は上述したように例えば核燃料物質を扱う施設において収集されたNR廃棄物である。このNR廃棄物には、核燃料物質を扱う施設において設置された資材または使用された物品であって核燃料物質によって汚染された物で廃棄しようとするものではない廃棄物が含まれる。その設置された資材または使用された物品には、構造材プレート、機器部材、鋼材、金物、配管、電線管類、及び機器類等の解体物や切断材が含まれる。これらの解体物や切断材は、概ね1〜2m程度のサイズを有し台車等に載せて移動可能な状態になっている。収集されたNR廃棄物は、これらの各部材ごとに選別された後に、番号が付され重量が測定されて、各情報がパソコン等にデータとして登録(保管)されている。 In step S1 of FIG. 1, the surface of the inspection object is irradiated with ultraviolet rays. As described above, the inspection object is, for example, NR waste collected in a facility that handles nuclear fuel material. This NR waste includes materials installed in facilities that handle nuclear fuel materials or used items that are not intended to be disposed of with materials contaminated with nuclear fuel materials. The installed materials or used articles include dismantled materials and cutting materials such as structural material plates, equipment members, steel materials, hardware, pipes, conduits, and equipment. These dismantled materials and cutting materials have a size of about 1 to 2 m and are movable on a carriage or the like. The collected NR waste is sorted for each of these members, then numbered and weighted, and each information is registered (stored) in a personal computer or the like as data.

図2は、本発明の一実施形態の検査対象物への紫外線照射と蛍光発光の様子を示す模式図である。ここでは、検査対象物との一例として構造材プレート1を用い、その表面に紫外線光源10から紫外線12を照射する例を示している。紫外線光源10は、基本的に波長が400nmより短い不可視な電磁波を発することができる光源であればよいが、本発明ではウランの蛍光を検出する必要があることから、ウランが蛍光を発しやすい波長域を含む紫外線を発することができる紫外線光源が望ましいい。その波長域はウランガラスを用いた測定データから、例えば327nm付近にピークを持つ波長域、あるいは420nm付近にピークを持つ波長域が望ましいが、少なくともこれらの波長域を含む紫外線を発する紫外線光源であればよい。市販の紫外線光源としては、例えばUV−LED、ブラックライト、または紫外線殺菌灯などを用いることができる。 FIG. 2 is a schematic diagram showing the state of ultraviolet irradiation and fluorescence emission on an inspection object according to an embodiment of the present invention. Here, an example in which the structural material plate 1 is used as an example of an inspection object and the surface is irradiated with ultraviolet rays 12 from an ultraviolet light source 10 is shown. The ultraviolet light source 10 may basically be any light source that can emit an invisible electromagnetic wave having a wavelength shorter than 400 nm. However, in the present invention, since it is necessary to detect uranium fluorescence, the wavelength at which uranium easily emits fluorescence. An ultraviolet light source capable of emitting ultraviolet light including a region is desirable. The wavelength range is preferably a wavelength range having a peak near 327 nm or a wavelength range having a peak near 420 nm, for example, from measurement data using uranium glass, but at least an ultraviolet light source that emits ultraviolet rays including these wavelength ranges. That's fine. As a commercially available ultraviolet light source, for example, a UV-LED, a black light, or an ultraviolet germicidal lamp can be used.

図3は、一実施形態の紫外線光源の例(形状)を示す模式図である。図3(a)はランプ型の紫外線光源14であり、内蔵する発光素子(例えばUVランプ、格子状のUV−LED等)からの紫外線を表面から放射状に発するタイプである。スポット的に所定の広がりを持つ紫外線を照射できるので、検査対象物の表面が比較的小さい場合に特に有効な光源である。(b)はライン状に複数の発光素子(例えばUV−LED)を配置したライン紫外線光源15である。所定の長さの領域に紫外線を照射できるので、図1の構造材プレート1のような幅が広く比較的大きな表面を持つ検査対象の場合に特に有効である。(c)は横長の蛍光管式の紫外線光源(例えば紫外線殺菌灯)16である。(b)の紫外線光源15と同様に、幅が広く比較的大きな表面を持つ検査対象の場合に特に有効である。 FIG. 3 is a schematic diagram illustrating an example (shape) of an ultraviolet light source according to an embodiment. FIG. 3A shows a lamp-type ultraviolet light source 14 that emits ultraviolet rays from a built-in light emitting element (for example, a UV lamp, a grid-shaped UV-LED, etc.) radially from the surface. Since it is possible to irradiate ultraviolet rays having a predetermined spread as a spot, the light source is particularly effective when the surface of the inspection object is relatively small. (B) is the line ultraviolet light source 15 which has arrange | positioned the several light emitting element (for example, UV-LED) in the shape of a line. Since a region of a predetermined length can be irradiated with ultraviolet rays, it is particularly effective in the case of an inspection object having a wide width and a relatively large surface, such as the structural material plate 1 in FIG. (C) is a horizontally long fluorescent tube type ultraviolet light source (for example, ultraviolet germicidal lamp) 16. Similar to the ultraviolet light source 15 in (b), this is particularly effective in the case of an inspection object having a wide width and a relatively large surface.

図1の工程S2において、検査対象の表面において、紫外線照射によりウラン特有の蛍光である、青色、緑色、あるいはこれら双方を含む(混合した)色の蛍光を発する領域を特定する。図2では、符号2〜5の領域がこの蛍光を発する領域として例示されている。この蛍光領域の特定は目視によって行うことができるが、例えば図4に例示するように、撮像デバイス20、22を用いて画像として取得し記録することもできる。図4では、図2の場合と同様に紫外線光源10を用いて紫外線12を構造材プレート1の表面に照射している間に、デジタルカメラ20、あるいはスマートフォン22のカメラ機能を用いて、蛍光領域2〜5を画像として取得し記憶する。その画像の記憶は、デジタルカメラ20、スマートフォン22が内蔵するメモリへの記憶に加えて、これらから無線信号を介してパーソナルコンピュータ(PC)等のメモリに、該当するNR廃棄物の番号等に関連付けて記憶させることができる。 In step S2 of FIG. 1, a region that emits fluorescence of a color including (mixed) blue, green, or both, which is fluorescence unique to uranium by ultraviolet irradiation, is specified on the surface to be inspected. In FIG. 2, the area | region of the code | symbol 2-5 is illustrated as an area | region which emits this fluorescence. Although this fluorescent region can be identified by visual observation, it can also be acquired and recorded as an image using the imaging devices 20 and 22, for example, as illustrated in FIG. In FIG. 4, as in the case of FIG. 2, while the ultraviolet light source 10 is used to irradiate the surface of the structural material plate 1 with the ultraviolet light 12, the digital camera 20 or the camera function of the smartphone 22 is used. 2 to 5 are acquired and stored as images. In addition to storing the image in the memory built in the digital camera 20 and the smartphone 22, the image is stored in a memory such as a personal computer (PC) via a wireless signal and associated with the corresponding NR waste number. Can be memorized.

このように、本発明では検査対象物の表面でのウラン汚染の有無を検査する際に、最初にその表面に紫外線を照射してウラン特有の蛍光を発する領域、すなわちウラン汚染がある可能性が高い領域を特定することに1つの特徴がある。これにより、後工程の放射線(α線)の測定をその特定された領域に限定することができるので、その測定を無駄なく迅速かつ効率的に行うことが可能となる。特に大量のNR廃棄物の汚染検査をする場合にその検査時間や検査工数/検査費用の低減効果が大きくなる。 Thus, in the present invention, when inspecting the presence or absence of uranium contamination on the surface of the object to be inspected, there is a possibility that there is a region where the surface is first irradiated with ultraviolet rays to emit fluorescence unique to uranium, that is, uranium contamination. There is one feature in identifying high areas. Thereby, since the measurement of the radiation (α ray) in the subsequent process can be limited to the specified region, the measurement can be performed quickly and efficiently without waste. In particular, when performing a contamination inspection of a large amount of NR waste, the effect of reducing the inspection time and the inspection man-hour / inspection cost is increased.

図1の工程S3において、検査対象物の表面の特定された蛍光領域の放射線測定を行う。図5は、本発明の一実施形態の蛍光領域の放射線測定の様子を示す模式図である。図5では、一測定例として、直接サーベイ法による表面汚染検査用サーベイメータ30を用いて、図2、図4の構造材プレート1の表面上の蛍光領域4での放射線(α線)を測定する例を示している。(a)は測定の斜め上面図であり、(b)はそのA−A´断面図である。表面汚染検査用サーベイメータ30は、例えばα線の検出可能なZnS(Ag)シンチレーション検出器、あるいはα線とβ線の検出可能なZnS(Ag)+プラスチックシンチレータを用いたシンチレーション検出器等を用いることができる。α線検出の場合はその検出限界が0.4Bq/cm以下である性能を有する検出器を用いて行う。 In step S3 of FIG. 1, radiation measurement is performed on the specified fluorescent region on the surface of the inspection object. FIG. 5 is a schematic diagram showing a state of radiation measurement in the fluorescent region according to one embodiment of the present invention. In FIG. 5, as one measurement example, radiation (α-rays) in the fluorescent region 4 on the surface of the structural material plate 1 in FIGS. 2 and 4 is measured using a survey meter 30 for surface contamination inspection by a direct survey method. An example is shown. (A) is a diagonal top view of a measurement, (b) is the AA 'sectional drawing. The surface contamination inspection survey meter 30 uses, for example, a ZnS (Ag) scintillation detector capable of detecting alpha rays, or a scintillation detector using ZnS (Ag) + plastic scintillator capable of detecting alpha rays and beta rays. Can do. In the case of α-ray detection, a detector having a performance whose detection limit is 0.4 Bq / cm 2 or less is used.

図5の測定例では、ハンディタイプの表面汚染検査用サーベイメータ30は、(b)に示すように構造材プレート1の表面上の蛍光領域に当接あるいはできるだけ近接させてα線の測定を行う。その測定結果である表面汚染密度(Bq/cm)は、表面汚染検査用サーベイメータ30の表示部31に表示される。特定された蛍光領域の測定箇所を変えながら構造材プレート1の表面上の蛍光領域2〜5の全てについての測定を行う。 In the measurement example of FIG. 5, the handy type surface contamination inspection survey meter 30 measures α rays while contacting or as close as possible to the fluorescent region on the surface of the structural material plate 1 as shown in FIG. The surface contamination density (Bq / cm 2 ), which is the measurement result, is displayed on the display unit 31 of the surface contamination inspection survey meter 30. Measurement is performed for all of the fluorescent regions 2 to 5 on the surface of the structural material plate 1 while changing the measurement location of the specified fluorescent region.

図6は、本発明の他の一実施形態の蛍光領域の放射線測定の様子を示す模式図である。図6では、図5のハンディタイプの表面汚染検査用サーベイメータ30の代わりに、検出器33と表示器34が通信ケーブル35を介して接続されている構成のサーベイメータを用いて測定を行う。検出器33としては、上述したように、α線の検出可能なZnS(Ag)シンチレーション検出器、あるいはα線とβ線の検出可能なZnS(Ag)+プラスチックシンチレータを用いたシンチレーション検出器等を用いることができる。α線検出の場合はその検出限界が0.4Bq/cm以下である性能を有する検出器を用いて行う。 FIG. 6 is a schematic diagram showing a state of radiation measurement in the fluorescent region according to another embodiment of the present invention. In FIG. 6, measurement is performed using a survey meter having a configuration in which a detector 33 and a display 34 are connected via a communication cable 35 instead of the handy type surface contamination inspection survey meter 30 of FIG. 5. As described above, the detector 33 is a ZnS (Ag) scintillation detector capable of detecting α-rays, or a scintillation detector using ZnS (Ag) + plastic scintillator capable of detecting α-rays and β-rays. Can be used. In the case of α-ray detection, a detector having a performance whose detection limit is 0.4 Bq / cm 2 or less is used.

図5の場合と同様に検査対象物のNR廃棄物(構造材プレート)1の表面の蛍光領域4に検出器33の測定面(検出面)が当接され、通信ケーブル35を介してその検出値が表示器34に送られる。表示器34では、その表示画面37にリアルタイムに測定結果が表示され、同時に測定データとして内蔵するメモリに保管される。メモリに保管された測定データ(Bq/cm)はさらに無線通信などを介してパーソナルコンピュータ(PC)等のメモリに、該当するNR廃棄物(構造材プレート)の番号、蛍光領域の画像データ等に関連付けて記憶させることができる。 As in the case of FIG. 5, the measurement surface (detection surface) of the detector 33 is brought into contact with the fluorescent region 4 on the surface of the NR waste (structural material plate) 1 to be inspected, and the detection is performed via the communication cable 35. The value is sent to the display 34. In the display device 34, the measurement result is displayed on the display screen 37 in real time, and at the same time, stored in a built-in memory as measurement data. The measurement data (Bq / cm 2 ) stored in the memory is further stored in the memory of a personal computer (PC) or the like via wireless communication or the like, the number of the corresponding NR waste (structural material plate), the image data of the fluorescent region, etc. It can be stored in association with.

図1の工程S4において、工程S3の測定結果から検査対象物(NR廃棄物)の表面のウラン汚染の有無を判定する。具体的には、例えば、図5、図6の検出器31、33による測定結果から表面汚染密度が0.4Bq/cm以上である場合にウラン汚染が有ると判断し、それ未満である場合にウラン汚染が無いと判断する。この判断基準値である0.4Bq/cmは、電離放射線障害防止規則(昭和47年9月30日労働省令第41号)の別表第3に定められているα線を放出する放射線同位元素による表面汚染の限度(4Bq/cm)の1/10に相当し、当該物を施設外に持ち出す際にその値(限度の1/10)を越えてはいけないとされているものである。 In step S4 of FIG. 1, the presence or absence of uranium contamination on the surface of the inspection object (NR waste) is determined from the measurement result of step S3. Specifically, for example, when the surface contamination density is 0.4 Bq / cm 2 or more from the measurement results by the detectors 31 and 33 in FIGS. 5 and 6, it is determined that there is uranium contamination, and if it is less than that, Is judged to be free of uranium contamination. This criterion value of 0.4 Bq / cm 2 is a radiation isotope that emits alpha rays as stipulated in Schedule 3 of the Regulation for Prevention of Ionizing Radiation Hazards (September 30, 1970, Ministry of Labor Ordinance No. 41) This is equivalent to 1/10 of the limit of surface contamination (4Bq / cm 2 ) due to the above, and when the product is taken out of the facility, the value (1/10 of the limit) must not be exceeded.

図7は、図1の工程S1の本発明の他の一実施形態の検査対象物への紫外線照射と蛍光発光の様子を示す模式図である。図7では、検査対象物のNR廃棄物として配管6の開口部を含む表面に紫外線光源10から紫外線12を照射する例を示している。配管6の開口内の空洞の壁に紫外線によってウラン特有の蛍光(青色、緑色、あるいはこれら双方を含む色の蛍光)を発する領域7、8が存在している。このような比較的狭い領域へ紫外線を照射するには、上述した図3のランプ型の紫外線光源14を用いることが有効である。配管内の蛍光領域7、8は、図5や図6で示したように直接サーベイメータ(検出器)を当接または近接させることができない。したがって、図7の配管内のような直接サーベイ法では測定が困難な表面での蛍光領域はスミヤ法を用いたα線検出により測定する必要がある。 FIG. 7 is a schematic diagram showing the state of ultraviolet irradiation and fluorescence emission on the inspection object of another embodiment of the present invention in step S1 of FIG. In FIG. 7, the example which irradiates the ultraviolet-ray 12 from the ultraviolet light source 10 to the surface containing the opening part of the piping 6 as NR waste of a test object is shown. Regions 7 and 8 that emit fluorescence characteristic of uranium (fluorescence of colors including blue, green, or both) by ultraviolet rays exist on the cavity wall in the opening of the pipe 6. In order to irradiate such a relatively narrow region with ultraviolet rays, it is effective to use the lamp-type ultraviolet light source 14 shown in FIG. As shown in FIGS. 5 and 6, the fluorescent regions 7 and 8 in the pipe cannot directly contact or approach the survey meter (detector). Therefore, it is necessary to measure the fluorescent region on the surface, which is difficult to measure by the direct survey method as in the pipe of FIG. 7, by α ray detection using the smear method.

図8は、本発明の一実施形態のスミヤ法を用いた蛍光領域の放射線測定の模式図である。検査対象物(NR廃棄物)である配管6の蛍光領域7、8の表面をふき取ったスミヤろ紙40にα線検出器41の測定面(検出面)が当接され、通信ケーブル42を介してα線の検出値がパーソナルコンピュータ(PC)43に送られる。PC43では、その表示画面44にリアルタイムに測定結果が表示され、同時に測定データとして内蔵するメモリに保管される。その際に、該当するNR廃棄物(配管)の番号、蛍光領域の画像データ等に関連付けて記憶させることができる。α線検出器41は、図5や図6の直接サーベイ法による測定と同様に、例えばZnS(Ag)シンチレーション検出器であって、検出限界が0.4Bq/cm以下である性能を有するものを用いることができる。 FIG. 8 is a schematic diagram of radiation measurement of a fluorescent region using the smear method according to one embodiment of the present invention. The measurement surface (detection surface) of the α-ray detector 41 is brought into contact with the smear filter paper 40 that wipes off the surfaces of the fluorescent regions 7 and 8 of the pipe 6 that is the inspection object (NR waste), and is connected via the communication cable 42. The detected value of α rays is sent to a personal computer (PC) 43. In the PC 43, the measurement result is displayed in real time on the display screen 44, and at the same time, stored in a built-in memory as measurement data. At that time, it can be stored in association with the number of the corresponding NR waste (piping), image data of the fluorescent region, and the like. The α-ray detector 41 is, for example, a ZnS (Ag) scintillation detector having a performance with a detection limit of 0.4 Bq / cm 2 or less, as in the measurement by the direct survey method in FIGS. Can be used.

本発明の実施形態について、図を参照しながら説明をした。しかし、本発明はこれらの実施形態に限られるものではない。本発明はその趣旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変形を加えた態様で実施できるものである。 Embodiments of the present invention have been described with reference to the drawings. However, the present invention is not limited to these embodiments. The present invention can be implemented in variously modified, modified, and modified embodiments based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

本発明の検査方法は、放射性廃棄物でない廃棄物(NR廃棄物)のみならず各施設から出るウラン汚染が疑われる廃棄物の処理/処分においてその放射能レベルに応じた仕分けを行うための検査方法として幅広く利用することができる。 The inspection method of the present invention is an inspection for sorting according to the radioactivity level in the treatment / disposal of waste that is suspected of uranium contamination from each facility as well as waste that is not radioactive waste (NR waste). It can be widely used as a method.

1 構造材プレート(検査対象物、NR廃棄物)
2、3、4、5、7、8 蛍光領域
6 配管(検査対象物、NR廃棄物)
10 紫外線光源
12 紫外線
14 ランプ型の紫外線光源
15 ライン紫外線光源
16 蛍光管式の紫外線光源(紫外線殺菌灯)
20 デジタルカメラ
22 スマートフォン
30 表面汚染検査用サーベイメータ
31、37、44 表示部
33 検出器
34 表示器
35、42 通信ケーブル
40 スミヤろ紙
41 α線検出器
43 パーソナルコンピュータ(PC)
1 Structural material plate (inspection object, NR waste)
2, 3, 4, 5, 7, 8 Fluorescent area 6 Piping (inspection object, NR waste)
10 UV light source 12 UV 14 Lamp type UV light source 15 Line UV light source 16 Fluorescent tube type UV light source (UV germicidal lamp)
20 Digital Camera 22 Smartphone 30 Survey Meter 31, 37, 44 for Surface Contamination Inspection Display 33 Detector 34 Display 35, 42 Communication Cable 40 Smear Filter Paper 41 Alpha Ray Detector 43 Personal Computer (PC)

Claims (5)

検査対象物の表面のウラン汚染の有無を検査する検査方法であって、
検査対象物の表面に紫外線を照射する工程と、
前記紫外線の照射下における前記検査対象物の表面の緑色、青色、またはこれら両方を含む蛍光を発する領域を特定する工程と、
前記蛍光を発する領域のウラン汚染の有無を直接サーベイ法によるα線検出により検査する工程と、を含む検査方法。
An inspection method for inspecting the surface of an inspection object for uranium contamination,
Irradiating the surface of the inspection object with ultraviolet rays;
Identifying a fluorescent region including green, blue, or both of the surface of the inspection object under the irradiation of the ultraviolet rays,
Inspecting the presence or absence of uranium contamination in the fluorescent region by direct detection by α-ray detection.
前記直接サーベイ法では測定が困難な前記蛍光を発する領域のウラン汚染の有無をスミヤ法を用いたα線検出により検査する工程をさらに含む、請求項1に記載の検査方法。   The inspection method according to claim 1, further comprising a step of inspecting the presence or absence of uranium contamination in the fluorescence emitting region, which is difficult to measure by the direct survey method, by α-ray detection using a smear method. 前記検査対象物の表面での蛍光を発する領域を特定する工程は、撮像装置により検査対象物の前記蛍光を発する領域を撮像し、その撮像画像を前記撮像装置が内蔵するメモリに保管することを含む、請求項1または2に記載の検査方法。   The step of identifying the fluorescence emission region on the surface of the inspection object is to capture an image of the fluorescence emission region of the inspection object with an imaging device and store the captured image in a memory built in the imaging device. The inspection method according to claim 1, comprising: 前記紫外線を照射する工程は、UV−LED、ブラックライト、または紫外線殺菌灯を用いて前記表面に紫外線を照射することを含む、請求項1〜3のいずれか1項に記載の検査方法。   The said ultraviolet irradiation process is an inspection method of any one of Claims 1-3 including irradiating an ultraviolet-ray to the said surface using UV-LED, a black light, or an ultraviolet germicidal lamp. 前記直接サーベイ法を用いたα線検出により測定する工程と、前記スミヤ法を用いたα線検出により検査する工程は、表面汚染密度が0.4Bq/cm未満である場合に汚染が無いと判断することを含む、請求項2に記載の検査方法。 The step of measuring by α ray detection using the direct survey method and the step of inspecting by α ray detection using the smear method have no contamination when the surface contamination density is less than 0.4 Bq / cm 2. The inspection method according to claim 2, comprising determining.
JP2018164087A 2018-09-01 2018-09-01 Inspection method of uranium contamination of surface of inspection object Pending JP2019148578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164087A JP2019148578A (en) 2018-09-01 2018-09-01 Inspection method of uranium contamination of surface of inspection object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164087A JP2019148578A (en) 2018-09-01 2018-09-01 Inspection method of uranium contamination of surface of inspection object

Publications (1)

Publication Number Publication Date
JP2019148578A true JP2019148578A (en) 2019-09-05

Family

ID=67850461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164087A Pending JP2019148578A (en) 2018-09-01 2018-09-01 Inspection method of uranium contamination of surface of inspection object

Country Status (1)

Country Link
JP (1) JP2019148578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112465659A (en) * 2020-11-24 2021-03-09 核工业北京地质研究院 Method for constructing granite gneiss vault uranium mineralization mode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134597A (en) * 1988-11-16 1990-05-23 Hitachi Ltd Decontamination and contamination measurement of radioactive solid waste
JPH04127263U (en) * 1991-05-13 1992-11-19 三菱重工業株式会社 Metal uranium pickling equipment
JP2001249179A (en) * 2000-03-06 2001-09-14 Nuclear Fuel Ind Ltd Radiation detection device
US6750458B1 (en) * 2002-10-22 2004-06-15 Christopher John Rourk System and method for detecting radioactive contamination
JP2007085796A (en) * 2005-09-20 2007-04-05 Able:Kk Contamination measuring method for pipe, decontamination method, contamination measuring and decontaminating method, and recycling method
JP2007248066A (en) * 2006-03-13 2007-09-27 Japan Atom Power Co Ltd:The System and method for classification-clearance disposal of radioactive waste with high efficiency and high reliability
US20150234083A1 (en) * 2014-01-07 2015-08-20 Lawrence Livermore National Security, Llc Nuclear radiation cleanup and uranium prospecting

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134597A (en) * 1988-11-16 1990-05-23 Hitachi Ltd Decontamination and contamination measurement of radioactive solid waste
JPH04127263U (en) * 1991-05-13 1992-11-19 三菱重工業株式会社 Metal uranium pickling equipment
JP2001249179A (en) * 2000-03-06 2001-09-14 Nuclear Fuel Ind Ltd Radiation detection device
US6750458B1 (en) * 2002-10-22 2004-06-15 Christopher John Rourk System and method for detecting radioactive contamination
JP2007085796A (en) * 2005-09-20 2007-04-05 Able:Kk Contamination measuring method for pipe, decontamination method, contamination measuring and decontaminating method, and recycling method
JP2007248066A (en) * 2006-03-13 2007-09-27 Japan Atom Power Co Ltd:The System and method for classification-clearance disposal of radioactive waste with high efficiency and high reliability
US20150234083A1 (en) * 2014-01-07 2015-08-20 Lawrence Livermore National Security, Llc Nuclear radiation cleanup and uranium prospecting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PHILLIPS D H , ET AL.: "Deposition of Uranium Precipitates in Dolomitic Gravel Fill", ENVIRONMENTAL SCIENCE & TECHNOLOGY, vol. 42, no. 19, JPN6019004268, 4 September 2008 (2008-09-04), pages 7104 - 7110, ISSN: 0004074648 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112465659A (en) * 2020-11-24 2021-03-09 核工业北京地质研究院 Method for constructing granite gneiss vault uranium mineralization mode
CN112465659B (en) * 2020-11-24 2022-07-26 核工业北京地质研究院 Method for constructing granite vault uranium mineralization mode

Similar Documents

Publication Publication Date Title
Pérot et al. The characterization of radioactive waste: a critical review of techniques implemented or under development at CEA, France
US10832826B2 (en) Inspection of nuclear waste
Lamadie et al. Remote alpha imaging in nuclear installations: New results and prospects
JP6519070B1 (en) Inspection apparatus for radioactive contamination and inspection method
JP2015187567A (en) radiation measuring device
JP2007093471A (en) Visualization device using gamma ray source
JP6524484B2 (en) Radiation measurement method and radiation measurement apparatus
KR102437705B1 (en) System and method for estimating the radiation activity of a radiation source located inside an object
JP2019148578A (en) Inspection method of uranium contamination of surface of inspection object
KR102041366B1 (en) Total Management System for Self-Disposal of Under Very Low Level Radioactive Waste
JP7061300B1 (en) Inspection method for contamination of powdery waste with radioactive substances
JP2019144214A (en) Method for processing waste different from radioactive waste
Zorri et al. Feasibility study on the application of solid state tracks detectors for fast surveys of residual alpha contamination in decommissioning activities
CN116057418A (en) System for correlating alpha and gamma spectrometry measurements for in situ radiological characterization of a sample
JP4184910B2 (en) Leak detection method
KR102673603B1 (en) Device for in situ analysis of radioactive waste containing chlorine-36 isotope
EP3761014B1 (en) Radiographic inspection assembly and method
Fichet et al. Characterization of beta emitters for decommissioning
JPH0545467A (en) Radioactive contamination measuring system
Sand et al. EMCCD imaging of strongly ionizing radioactive materials for safety and security
Lamadie et al. Alpha imaging: first results and prospects
JPS6370186A (en) Radioactive waste selector
Creed et al. Radiometric characterization process for locating radioactivity hold-up and measuring non-uniformly distributed sources-15342
KR20160047122A (en) Radiation monitoring system and method using thereof
Farfán et al. Locating radiation hazards and sources within contaminated areas by implementing a reverse ray tracing technique in the RadBall™ technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181202

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181202

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190711