JP7060487B2 - Manufacturing method of rotary electric stator - Google Patents

Manufacturing method of rotary electric stator Download PDF

Info

Publication number
JP7060487B2
JP7060487B2 JP2018193096A JP2018193096A JP7060487B2 JP 7060487 B2 JP7060487 B2 JP 7060487B2 JP 2018193096 A JP2018193096 A JP 2018193096A JP 2018193096 A JP2018193096 A JP 2018193096A JP 7060487 B2 JP7060487 B2 JP 7060487B2
Authority
JP
Japan
Prior art keywords
stator core
tip
adjusting
jig
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018193096A
Other languages
Japanese (ja)
Other versions
JP2020061897A (en
Inventor
泰之 平尾
大介 水島
元章 新垣
洋明 武田
翔 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2018193096A priority Critical patent/JP7060487B2/en
Publication of JP2020061897A publication Critical patent/JP2020061897A/en
Application granted granted Critical
Publication of JP7060487B2 publication Critical patent/JP7060487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、回転電機ステータの製造方法、特にステータに用いられるセグメントコイルの先端の位置調整方法に関する。 The present invention relates to a method for manufacturing a rotary electric machine stator, particularly a method for adjusting the position of the tip of a segment coil used for the stator.

回転電機のステータコアに軸方向へ貫く複数のスロットが形成され、U字状のセグメントコイルの互いに平行な2つの脚部をそれぞれ異なるスロットに下方から上方に向かって挿入すると、脚部の一部はスロットから上方に突出した突出部となる。このように脚部がスロットに挿入されたセグメントコイルの突出部の先端と、同様に脚部がスロットに挿入された他のセグメントコイルの突出部の先端とを溶接することによって、ステータを製造する方法が知られている。このようにセグメントコイルの突出部の先端同士を溶接する場合、溶接する突出部の先端の位置を合わせる必要がある。 A plurality of axially penetrating slots are formed in the stator core of the rotary electric machine, and when two parallel legs of the U-shaped segment coil are inserted into different slots from the bottom to the top, a part of the legs is inserted. It is a protrusion that protrudes upward from the slot. The stator is manufactured by welding the tip of the protrusion of the segment coil whose legs are inserted into the slot in this way to the tip of the protrusion of the other segment coil whose legs are similarly inserted into the slot. The method is known. When welding the tips of the protruding portions of the segment coil in this way, it is necessary to align the positions of the tips of the protruding portions to be welded.

ステータコアに向かって突出する爪部が下端に設けられた調整冶具が、ステータコアの軸方向に突出したセグメントコイルの突出部を上方から押圧してステータコアの周方向に倒すことによって突出部の先端の軸方向の位置を調整し、調整冶具がステータの周方向に回転することによって突出部の先端を爪部が周方向に押圧して周方向の位置を調整して、突出部の先端の位置決めを行う方法が特許文献1で開示されている。 An adjustment jig having a claw portion protruding toward the stator core at the lower end presses the protruding portion of the segment coil protruding in the axial direction of the stator core from above and tilts it in the circumferential direction of the stator core, thereby causing the shaft at the tip of the protruding portion. The position of the direction is adjusted, and the adjustment jig rotates in the circumferential direction of the stator, so that the claw part presses the tip of the protrusion in the circumferential direction to adjust the position in the circumferential direction, and the tip of the protrusion is positioned. The method is disclosed in Patent Document 1.

特開2017-085806号公報JP-A-2017-0850806

ところで、調整冶具を軸方向に下降させてステータコアに近づけつつステータコアの周方向に回転させることによって、セグメントコイルの突出部の先端の軸方向と周方向の位置を調整することができる。しかし、ステータコアの軸方向の厚さにばらつきがあり、セグメントコイルの長さに生産ロット間でばらつきがあるため、ステータコア毎に突出部の長さにばらつきが生じる。突出部の長さのばらつきが基準線長から一定の範囲内に収まっていれば、調整冶具の軌道が一定でもセグメントコイルの先端の位置を一定の位置に調整できる。しかし、突出部の長さが長すぎたり短すぎたりして、調整冶具の一定の軌道で調整できる範囲を超えると、調整冶具で調整しても突出部の先端の周方向や軸方向の位置がずれて溶接不良などの不具合が生じることがある。 By the way, by lowering the adjusting jig in the axial direction and rotating it in the circumferential direction of the stator core while approaching the stator core, the axial and circumferential positions of the tip of the protruding portion of the segment coil can be adjusted. However, since the thickness of the stator core in the axial direction varies and the length of the segment coil varies from production lot to production lot, the length of the protrusion varies from one stator core to another. If the variation in the length of the protrusion is within a certain range from the reference line length, the position of the tip of the segment coil can be adjusted to a certain position even if the trajectory of the adjusting jig is constant. However, if the length of the protrusion is too long or too short and exceeds the range that can be adjusted with a certain trajectory of the adjustment jig, the position of the tip of the protrusion in the circumferential direction or the axial direction even if adjusted with the adjustment jig. It may be misaligned and problems such as welding defects may occur.

そこで、本発明は、セグメントコイルの突出部の長さが基準線長と異なる場合でも、調整冶具による調整後の突出部の先端の位置の精度を向上することを目的とする。 Therefore, an object of the present invention is to improve the accuracy of the position of the tip of the protruding portion after adjustment by the adjusting jig even when the length of the protruding portion of the segment coil is different from the reference line length.

本発明に係る回転電機ステータの製造方法は、互いに平行な2つの脚部と、2つの脚部を連結する連結部とを有するU字状のセグメントコイルの2つの脚部をステータコアのそれぞれ異なるスロットに挿入し、脚部の一部である突出部をスロットからステータコアの軸方向に突出させる挿入工程と、ステータコアに向かって突出する爪部が設けられた調整冶具を軸方向に移動してステータコアに近づけつつステータコアの周方向に回転することによって、突出部を軸方向に突出した状態から周方向に倒して突出部の先端の軸方向の位置を調整し、爪部が先端を押圧して先端の周方向の位置を調整する先端位置決め工程と、を含む回転電機ステータの製造方法において、挿入工程の後に、ステータコア毎に突出部の長さを測定し、突出部の基準線長との差分から、調整冶具を軸方向に移動する距離を算出し、調整冶具を軸方向に移動してステータコアに近づけつつ周方向に回転させる基準軌道を補正した補正軌道を算出する補正軌道算出工程を備え、先端位置決め工程において、補正軌道で調整冶具を動作させて突出部の先端の軸方向及び周方向の位置を調整すること、を特徴とする。 In the method for manufacturing a rotary electric stator according to the present invention, two legs of a U-shaped segment coil having two legs parallel to each other and a connecting portion connecting the two legs are provided in different slots of the stator core. The insertion process of inserting the protruding part, which is a part of the leg part, from the slot in the axial direction of the stator core, and the adjusting jig provided with the claw part protruding toward the stator core are moved axially to the stator core. By rotating in the circumferential direction of the stator core while approaching, the protruding part is tilted in the circumferential direction from the state where it protrudes in the axial direction to adjust the axial position of the tip of the protruding part, and the claw part presses the tip of the tip. In the method of manufacturing a rotary electric machine stator including a tip positioning step for adjusting the position in the circumferential direction, the length of the protruding portion is measured for each stator core after the insertion step, and the difference from the reference line length of the protruding portion is used. It is equipped with a correction trajectory calculation process that calculates the distance to move the adjustment jig in the axial direction, and calculates the correction trajectory that corrects the reference trajectory that moves the adjustment jig in the axial direction and rotates it in the circumferential direction while approaching the stator core. The process is characterized in that the adjusting jig is operated in the correction trajectory to adjust the axial and circumferential positions of the tip of the protrusion.

本発明は、セグメントコイルの突出部の長さが基準線長と異なる場合でも、突出部の長さを測定し、突出部の基準線長との差分から、基準軌道を補正した補正軌道を算出し、補正軌道で調整冶具を動作させて突出部の先端の位置を調整するため、突出部の先端の位置の精度を向上させることができる。 The present invention measures the length of the protruding portion even when the length of the protruding portion of the segment coil is different from the reference line length, and calculates a corrected trajectory corrected for the reference trajectory from the difference from the reference line length of the protruding portion. However, since the adjustment jig is operated in the correction trajectory to adjust the position of the tip of the protrusion, the accuracy of the position of the tip of the protrusion can be improved.

本開示の実施形態の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the Embodiment of this disclosure. 実施形態の製造方法の挿入工程によりステータコアのスロットにセグメントコイルの脚部を挿入した状態を示す側面図である。It is a side view which shows the state which the leg part of the segment coil is inserted into the slot of a stator core by the insertion process of the manufacturing method of an Embodiment. 実施形態の先端位置決め工程によりセグメントコイルの突出部の先端の位置を合わせた状態を示す側面図である。It is a side view which shows the state which the position of the tip of the protrusion of the segment coil is aligned by the tip positioning process of an embodiment. 実施形態の先端位置決め工程に用いるセグメントコイルの突出部の曲げ加工用装置を示す側面図である。It is a side view which shows the apparatus for bending the protruding part of the segment coil used in the tip positioning process of an embodiment. 調整部を斜め下から見た状態で一部を省略して周方向一部を示す斜視図である。It is a perspective view which shows the part in the circumferential direction by omitting a part in the state which the adjustment part is seen from diagonally below. 図5のA部拡大図である。FIG. 5 is an enlarged view of part A in FIG. セグメントコイルの突出部の先端の位置を調整冶具で調整する方法を説明する側面図(a)と、爪部の下端が描く軌跡を示す図(b)である。It is a side view (a) explaining the method of adjusting the position of the tip of the protrusion of the segment coil with an adjustment jig, and the figure (b) which shows the locus drawn by the lower end of a claw part. セグメントコイルの突出部の長さが基準線長の場合の調整冶具の基準軌道を算出し、基準軌道で調整冶具を動作させる方法を示すフローチャートである。It is a flowchart which shows the method of calculating the reference trajectory of the adjustment jig when the length of the protrusion of the segment coil is a reference line length, and operating the adjustment jig in the reference trajectory. 調整冶具の補正軌道を算出し、補正軌道で調整冶具を動作させる方法を示すフローチャートである。It is a flowchart which shows the method of calculating the correction trajectory of the adjustment jig, and operating the adjustment jig in the correction jig. 調整冶具の補正軌道の一例を示す図である。It is a figure which shows an example of the correction trajectory of the adjustment jig. セグメントコイルの突出部の先端の周方向の位置のばらつきについて、基準軌道で調整した場合と、補正軌道で調整した場合とを比較して示した図である。It is the figure which showed the variation of the position in the circumferential direction of the tip of the protrusion of a segment coil in comparison with the case which adjusted in a reference trajectory, and the case which adjusted in a correction trajectory. セグメントコイルの突出部の軸方向の高さについて、基準軌道で調整した場合と、補正軌道で調整した場合とを比較して示した図である。It is a figure which compared the case where the height in the axial direction of the protrusion of a segment coil was adjusted in a reference trajectory, and the case where it was adjusted in a correction trajectory.

以下、図面を参照しながら、実施形態の回転電機ステータの製造方法について説明する。以下に記載する軸方向、周方向、径方向は、特に断りのない限り、それぞれステータコア1の軸方向、ステータコア1の周方向、ステータコア1の径方向を示すものとする。 Hereinafter, a method of manufacturing the rotary electric machine stator of the embodiment will be described with reference to the drawings. Unless otherwise specified, the axial direction, the circumferential direction, and the radial direction described below shall indicate the axial direction of the stator core 1, the circumferential direction of the stator core 1, and the radial direction of the stator core 1, respectively.

図1は、実施形態の回転電機ステータの製造方法を示すフローチャートである。まず、ステップS1の挿入工程について述べる。図2(a)に示すように、ステータコア1は、電磁鋼板11をステータコア1の軸方向に積層することによって構成されている。ステータコア1には軸方向に貫く複数のスロット12が形成されている。U字状のセグメントコイル2は、互いに平行な2つの脚部21と、2つの脚部21を連結する連結部22とを有する。セグメントコイル2の2つの脚部21は、ステータコア1のそれぞれ異なるスロット12に挿入され、脚部21の一部である突出部23がスロット12からステータコア1の軸方向に突出する。 FIG. 1 is a flowchart showing a method of manufacturing a rotary electric machine stator according to an embodiment. First, the insertion step of step S1 will be described. As shown in FIG. 2A, the stator core 1 is configured by laminating an electromagnetic steel sheet 11 in the axial direction of the stator core 1. A plurality of slots 12 penetrating in the axial direction are formed in the stator core 1. The U-shaped segment coil 2 has two legs 21 parallel to each other and a connecting portion 22 connecting the two legs 21. The two legs 21 of the segment coil 2 are inserted into different slots 12 of the stator core 1, and the protruding portions 23, which are a part of the leg portions 21, project from the slots 12 in the axial direction of the stator core 1.

図2(a)及び図2(b)に示すように、ステータコア1の軸方向の厚さのばらつきや、セグメントコイル2の線長ばらつきにより、突出部23の長さにばらつきが生じる。図2(a)は、ステータコア1の軸方向の厚さが厚く、セグメントコイル2の線長が短い場合であり、突出部23の長さが短くなる。図2(b)は、ステータコア1の軸方向の厚さが薄く、セグメントコイル2の線長が長い場合であり、突出部23の長さが長くなる。 As shown in FIGS. 2A and 2B, the length of the protrusion 23 varies due to the variation in the axial thickness of the stator core 1 and the variation in the line length of the segment coil 2. FIG. 2A shows a case where the stator core 1 is thick in the axial direction and the wire length of the segment coil 2 is short, and the length of the protruding portion 23 is short. FIG. 2B shows a case where the thickness of the stator core 1 in the axial direction is thin and the wire length of the segment coil 2 is long, and the length of the protruding portion 23 is long.

次に、図1のステップS3の先端位置決め工程を先に述べる。ステータコア1にコイルが巻かれたステータを完成するためには、セグメントコイル2の突出部23の先端24と、他のセグメントコイル2の突出部23の先端24とを溶接する必要がある。そのため、図3に示すように、ステータコア1の径方向に隣接する一対のセグメントコイル2の突出部23を、ステータコア1の周方向に相互に逆向きに倒し込んで、突出部23の先端24の軸方向及び周方向の位置を合わせる必要がある。 Next, the tip positioning step of step S3 in FIG. 1 will be described first. In order to complete the stator in which the coil is wound around the stator core 1, it is necessary to weld the tip 24 of the protruding portion 23 of the segment coil 2 and the tip 24 of the protruding portion 23 of the other segment coil 2. Therefore, as shown in FIG. 3, the protruding portions 23 of the pair of segment coils 2 adjacent to each other in the radial direction of the stator core 1 are tilted in opposite directions in the circumferential direction of the stator core 1 so that the tip 24 of the protruding portion 23 It is necessary to align the axial and circumferential positions.

そこで、図4に示す曲げ加工用装置3を用いて、突出部23の先端24の位置を調整する。曲げ加工用装置3は、ステータコア1を保持する保持部31と、調整部4と、冶具駆動部32と、制御部33とを含んで構成される。保持部31は、セグメントコイル2の脚部21がスロット12に挿入されて突出部23が軸方向に突出した状態で、ステータコア1の下端部を掴んで保持する。調整部4は、複数のセグメントコイル2の突出部23をステータコア1の周方向に曲げて突出部23の先端24の周方向及び軸方向の位置を調整する。調整部4は、保持部31により保持されたステータコア1の上方に配置され、冶具駆動部32を介して固定部材34の下側に支持される。 Therefore, the position of the tip 24 of the protrusion 23 is adjusted by using the bending device 3 shown in FIG. The bending device 3 includes a holding unit 31 for holding the stator core 1, an adjusting unit 4, a jig driving unit 32, and a control unit 33. The holding portion 31 grips and holds the lower end portion of the stator core 1 in a state where the leg portion 21 of the segment coil 2 is inserted into the slot 12 and the protruding portion 23 protrudes in the axial direction. The adjusting portion 4 bends the protruding portions 23 of the plurality of segment coils 2 in the circumferential direction of the stator core 1 to adjust the positions of the distal end 24 of the protruding portions 23 in the circumferential direction and the axial direction. The adjusting portion 4 is arranged above the stator core 1 held by the holding portion 31, and is supported below the fixing member 34 via the jig driving portion 32.

図4及び図5に示すように、調整部4は、ステータコア1の中心軸の延長線上に位置する軸O1を中心に配置されて円筒部を有する支持部41と、支持部41の内側に配置された複数の調整冶具42~47及び複数のセパレータ48とを含んで構成される。図5は、調整部4を斜め下から見た斜視図で、複数の調整冶具42~47及び複数のセパレータ48を記載し、支持部41の記載を省略している。図6は、図5の一点鎖線で囲われた部分Aを拡大して示した図である。 As shown in FIGS. 4 and 5, the adjusting portion 4 is arranged around a shaft O1 located on an extension of the central axis of the stator core 1 and has a cylindrical portion, and is arranged inside the support portion 41. It is composed of a plurality of adjusting jigs 42 to 47 and a plurality of separators 48. FIG. 5 is a perspective view of the adjusting portion 4 viewed from diagonally below, and describes the plurality of adjusting jigs 42 to 47 and the plurality of separators 48, and the description of the supporting portion 41 is omitted. FIG. 6 is an enlarged view of the portion A surrounded by the alternate long and short dash line in FIG.

図5及び図6に示すように、複数の調整冶具42~47は、互いに直径が異なる円筒状であり、中心軸を一致させて径方向に並ぶように配置される。複数のセパレータ48は、互いに直径が異なる円筒状であり、径方向に隣り合う調整冶具42~47の間に配置される。調整冶具42~47のそれぞれのステータコア1側端である下端の周方向等間隔の複数位置には、ステータコア1に向かって突出する爪部49が設けられている。セパレータ48のステータコア1側端である下端は、調整冶具42~47の爪部49の下端よりも下側に突出している。調整冶具42~47の径方向の厚さは、セパレータ48の厚さより大きい。各調整冶具42~47は、その調整冶具42~47の径方向内側に隣接するセパレータ48と一体となって、冶具駆動部32によって、軸方向に移動し周方向に回転する。 As shown in FIGS. 5 and 6, the plurality of adjusting jigs 42 to 47 have a cylindrical shape having different diameters from each other, and are arranged so as to be aligned in the radial direction with their central axes aligned. The plurality of separators 48 have a cylindrical shape having different diameters from each other, and are arranged between the adjusting jigs 42 to 47 adjacent to each other in the radial direction. Claws 49 protruding toward the stator core 1 are provided at a plurality of positions at equal intervals in the circumferential direction at the lower ends of the adjusting jigs 42 to 47, which are the side ends of the stator core 1. The lower end of the separator 48, which is the end on the stator core 1 side, protrudes below the lower end of the claw portion 49 of the adjusting jigs 42 to 47. The radial thickness of the adjusting jigs 42 to 47 is larger than the thickness of the separator 48. Each of the adjusting jigs 42 to 47 is integrated with a separator 48 adjacent to the inside of the adjusting jigs 42 to 47 in the radial direction, and is moved in the axial direction and rotated in the circumferential direction by the jig driving unit 32.

冶具駆動部32は、調整部4で突出部23を曲げて先端24の位置を調整する際に、調整冶具42~47を軸方向に移動させてステータコア1に近づけ周方向に回転させる。冶具駆動部32は、径方向に隣り合う2つの調整冶具を互いに逆方向に回転させる。つまり、調整部4で突出部23を曲げて先端24の位置を調整する際に、調整冶具42、調整冶具44及び調整冶具46は、図4の上方から見て時計回りに回転し、調整冶具43、調整冶具45及び調整冶具47は、図4の上方から見て反時計回りに回転する。このように、調整冶具42と調整冶具43を逆方向に回転することにより、図3に示すように、ステータコア1の径方向に隣接する一対のセグメントコイル2の突出部23を、ステータコア1の周方向に相互に逆向きに倒すことができる。同様に、調整冶具44と調整冶具45を逆方向に回転することにより、径方向に隣接する一対の突出部23を逆向きに倒し、調整冶具46と調整冶具47を逆方向に回転することにより、径方向に隣接する一対の突出部23を逆向きに倒すことができる。 When the jig 23 is bent by the adjusting portion 4 to adjust the position of the tip 24, the jig driving unit 32 moves the adjusting jigs 42 to 47 in the axial direction to bring them closer to the stator core 1 and rotate them in the circumferential direction. The jig drive unit 32 rotates two adjusting jigs adjacent to each other in the radial direction in opposite directions. That is, when the adjusting portion 4 bends the protruding portion 23 to adjust the position of the tip 24, the adjusting jig 42, the adjusting jig 44, and the adjusting jig 46 rotate clockwise when viewed from above in FIG. 43, the adjusting jig 45 and the adjusting jig 47 rotate counterclockwise when viewed from above in FIG. By rotating the adjusting jig 42 and the adjusting jig 43 in the opposite directions in this way, as shown in FIG. 3, the protrusions 23 of the pair of segment coils 2 adjacent to each other in the radial direction of the stator core 1 are formed around the stator core 1. It can be tilted in opposite directions. Similarly, by rotating the adjusting jig 44 and the adjusting jig 45 in the opposite directions, the pair of radially adjacent protrusions 23 are tilted in the opposite direction, and the adjusting jig 46 and the adjusting jig 47 are rotated in the opposite directions. , The pair of projecting portions 23 adjacent in the radial direction can be tilted in the opposite direction.

冶具駆動部32は軸方向移動用のモータと周方向回転用のモータを備え、これらのモータを制御部33は制御する。制御部33は、演算処理部であるCPUと、RAM、ROM等の記憶部とを有する。CPUは、記憶部に予め記憶されたプログラムを実行する機能を有する。 The jig drive unit 32 includes a motor for moving in the axial direction and a motor for rotating in the circumferential direction, and the control unit 33 controls these motors. The control unit 33 has a CPU, which is an arithmetic processing unit, and a storage unit such as RAM and ROM. The CPU has a function of executing a program stored in advance in the storage unit.

ここでは、調整冶具42~47のうち、調整冶具43の動作について以下に説明する。冶具駆動部32が調整冶具43を、ステータコア1の軸方向に移動してステータコア1に近づきつつステータコア1の周方向に回転させることによって、図7(a)に示すように、ステータコア1から上方へ突出した突出部23の先端24の軸方向及び周方向の位置を調整する。調整冶具43の軌道を説明するため、調整冶具43の動作により爪部49の下端が描く軌跡が図7(b)に記載されている。この軌跡は、図7(b)に示すように、第1軌道α1、第2軌道α2及び第3軌道α3で構成される。第1軌道α1で、調整冶具43をステータコア1に近づけつつステータコア1の周方向に回転することによって、突出部23を周方向に倒す。次に、第2軌道α2で、調整冶具43をステータコア1の周方向に回転させて、先端24を爪部49に引っ掛ける。次に、第3軌道α3で、調整冶具43をステータコア1に近づけつつステータコア1の周方向に回転することによって、突出部23の先端24を押し込んで、最終的な先端24の位置を決める。 Here, the operation of the adjusting jig 43 among the adjusting jigs 42 to 47 will be described below. As shown in FIG. 7A, the jig drive unit 32 moves the adjusting jig 43 in the axial direction of the stator core 1 and rotates in the circumferential direction of the stator core 1 while approaching the stator core 1, thereby moving upward from the stator core 1. The positions of the tip 24 of the protruding portion 23 in the axial direction and the circumferential direction are adjusted. In order to explain the trajectory of the adjusting jig 43, the trajectory drawn by the lower end of the claw portion 49 due to the operation of the adjusting jig 43 is shown in FIG. 7 (b). As shown in FIG. 7B, this trajectory is composed of a first orbit α1, a second orbit α2, and a third orbit α3. In the first trajectory α1, the protrusion 23 is tilted in the circumferential direction by rotating the adjusting jig 43 in the circumferential direction while bringing the adjusting jig 43 closer to the stator core 1. Next, in the second orbit α2, the adjusting jig 43 is rotated in the circumferential direction of the stator core 1 and the tip 24 is hooked on the claw portion 49. Next, in the third orbit α3, the adjusting jig 43 is rotated in the circumferential direction of the stator core 1 while being brought close to the stator core 1, so that the tip 24 of the protrusion 23 is pushed in to determine the final position of the tip 24.

既に述べたように、ステータコア1の軸方向の厚さのばらつきや、セグメントコイル2の線長ばらつきにより、突出部23の長さにばらつきが生じる。突出部23の長さが基準線長の場合には、図8に示すフローチャートにて算出した基準軌道で調整冶具42~47を動作させる。基準軌道を算出するには、まず、ステップS11で、長さが基準線長である突出部23の軌跡をCAD(computer-aided design)で作成する。次に、ステップS12で、基準線長である突出部23の先端24の軌跡に合わせて、CAD上で調整冶具42~47の爪部49を配置する。次に、ステップS13で、爪部49の配置に合わせた調整冶具42~47の軌跡を近似式に置き換える。以上のステップS11からステップS13までの作業により、基準軌道が算出される。そして、ステップS14で、ステップS13で算出した近似式をプログラムで使用して、制御部33に冶具駆動部32を動作させることにより、調整冶具42~47は基準軌道で動作する。 As described above, the length of the protrusion 23 varies due to the variation in the axial thickness of the stator core 1 and the variation in the line length of the segment coil 2. When the length of the protrusion 23 is the reference line length, the adjusting jigs 42 to 47 are operated on the reference trajectory calculated in the flowchart shown in FIG. To calculate the reference trajectory, first, in step S11, the trajectory of the protruding portion 23 whose length is the reference line length is created by CAD (computer-aided design). Next, in step S12, the claw portions 49 of the adjusting jigs 42 to 47 are arranged on the CAD in accordance with the locus of the tip 24 of the protruding portion 23 which is the reference line length. Next, in step S13, the loci of the adjusting jigs 42 to 47 according to the arrangement of the claw portion 49 are replaced with an approximate expression. The reference trajectory is calculated by the above operations from step S11 to step S13. Then, in step S14, the adjusting jigs 42 to 47 operate in the reference orbit by operating the jig driving unit 32 in the control unit 33 by using the approximate expression calculated in step S13 in the program.

次に、図1のステップS2の補正軌道算出工程について述べる。既に述べたように、ステータコア1毎に突出部23の長さにばらつきが生じる。突出部23の長さによって、突出部23を周方向に倒して先端24の位置を調整する際の突出部23の軌跡は異なる。突出部23の長さが基準線長よりも短すぎると、基準軌道で調整冶具42~47を動作させても、突出部23の倒し方が不足した状態で先端24を押し込もうとして周方向に十分に押し込めず、調整冶具42~47で調整後の先端24の位置が周方向にずれる場合がある。また、突出部23の長さが基準線長よりも長すぎると、基準軌道で調整冶具42~47を動作させても、突出部23の先端24付近の屈曲により、溶接する2本のセグメントコイル2の先端24の高さに段差が生じる場合がある。このように先端24の周方向の位置にずれが生じた状態や、軸方向に段差が生じた状態で、セグメントコイル2の先端24同士を溶接すると、溶接不良が生じることがある。 Next, the correction trajectory calculation step in step S2 of FIG. 1 will be described. As described above, the length of the protrusion 23 varies from one stator core to one. Depending on the length of the protruding portion 23, the locus of the protruding portion 23 when the protruding portion 23 is tilted in the circumferential direction to adjust the position of the tip 24 differs. If the length of the protrusion 23 is too short than the reference line length, even if the adjustment jigs 42 to 47 are operated in the reference trajectory, the tip 24 is pushed in in the circumferential direction with the protrusion 23 insufficiently tilted. The position of the tip 24 after adjustment by the adjustment jigs 42 to 47 may be displaced in the circumferential direction because the tip 24 may not be sufficiently pushed. Further, if the length of the protruding portion 23 is too long than the reference line length, even if the adjusting jigs 42 to 47 are operated on the reference trajectory, the two segment coils to be welded due to the bending near the tip 24 of the protruding portion 23. There may be a step in the height of the tip 24 of 2. If the tips 24 of the segment coils 2 are welded to each other in a state where the positions of the tips 24 are displaced in the circumferential direction or a step is formed in the axial direction, welding defects may occur.

そこで、図1のステップS1の挿入工程の後に、ステータコア1毎に突出部23の長さを測定し、基準線長との差分から、調整冶具42~47を軸方向に移動する距離を算出し、調整冶具42~47を軸方向に移動してステータコア1に近づけつつ周方向に回転させる基準軌道を補正した補正軌道を算出し、図1のステップS3の先端位置決め工程において補正軌道で調整冶具42~47を動作させて、先端24の軸方向及び周方向の位置を調整する。 Therefore, after the insertion step of step S1 in FIG. 1, the length of the protruding portion 23 is measured for each stator core 1, and the distance for moving the adjusting jigs 42 to 47 in the axial direction is calculated from the difference from the reference line length. , The adjustment jig 42 to 47 is moved in the axial direction and rotated in the circumferential direction while approaching the stator core 1. A correction orbit is calculated, and the adjustment jig 42 is used in the tip positioning step of step S3 of FIG. -47 is operated to adjust the axial and circumferential positions of the tip 24.

補正軌道は、図9に示すフローチャートのステップS21からS24までの作業により算出される。補正軌道を算出するには、初めにステップS21で、突出部23の線長を測定する。次に、ステップS22で、突出部23の基準線長との差分を計算する。同一のステータコア1でもスロット12毎に突出部23の長さにばらつきが生じうるため、例えば、全てのスロット12の突出部23の線長を測定し、平均値を突出部23の線長として、基準線長との差分を計算する。突出部23の線長測定については、スロット12毎に全ての突出部23の線長を測定せず、一部のスロット12について複数の突出部23の線長を測定して、平均値を突出部23の線長として基準線長との差分を計算しても良い。 The correction trajectory is calculated by the work from steps S21 to S24 in the flowchart shown in FIG. To calculate the correction trajectory, first, in step S21, the line length of the protrusion 23 is measured. Next, in step S22, the difference from the reference line length of the protruding portion 23 is calculated. Even with the same stator core 1, the length of the protrusion 23 may vary from slot to slot. Therefore, for example, the line lengths of the protrusions 23 of all the slots 12 are measured, and the average value is taken as the line length of the protrusions 23. Calculate the difference from the reference line length. Regarding the line length measurement of the protrusions 23, the line lengths of all the protrusions 23 are not measured for each slot 12, but the line lengths of the plurality of protrusions 23 are measured for some of the slots 12 and the average value is projected. The difference from the reference line length may be calculated as the line length of the unit 23.

次に、ステップS23で、補正軌道のX座標及びY座標を、基準軌道のコイル倒れ角度θ毎に三角関数を用いて計算する。X座標とは爪部49の周方向の移動距離であり、Y座標とは調整冶具42~47の軸方向の移動距離である。コイル倒れ角度θとは、セグメントコイル2の突出部23の先端部が傾いた角度である。コイル倒れ角度θは、突出部23が上方に向かって立っている状態を90度として、突出部23の先端部が完全に水平に倒れた状態を0度とする。基準線長との差分をL、補正軌道のY座標をY、基準軌道のY座標をYs、円周率をπとすると、補正軌道のY座標は、例えば、以下の式1で算出する。 Next, in step S23, the X coordinate and the Y coordinate of the correction orbit are calculated by using a trigonometric function for each coil tilt angle θ of the reference orbit. The X coordinate is the moving distance in the circumferential direction of the claw portion 49, and the Y coordinate is the moving distance in the axial direction of the adjusting jigs 42 to 47. The coil tilt angle θ is an angle at which the tip end portion of the protruding portion 23 of the segment coil 2 is tilted. The coil tilt angle θ is 90 degrees when the protrusion 23 is standing upward, and 0 degrees when the tip of the protrusion 23 is completely horizontally tilted. Assuming that the difference from the reference line length is L, the Y coordinate of the correction orbit is Y, the Y coordinate of the reference orbit is Ys, and the pi is π, the Y coordinate of the correction orbit is calculated by, for example, the following equation 1.

Y=Ys+L×sin(θ/180×π) ・・・(式1) Y = Ys + L × sin (θ / 180 × π) ・ ・ ・ (Equation 1)

同様に、補正軌道のX座標をX、基準軌道のX座標をXsとすると、補正軌道のX座標は、例えば、以下の式2で算出する。 Similarly, assuming that the X coordinate of the correction orbit is X and the X coordinate of the reference orbit is Xs, the X coordinate of the correction orbit is calculated by, for example, Equation 2 below.

X=Xs+L×cos(θ/180×π) ・・・(式2) X = Xs + L × cos (θ / 180 × π) ・ ・ ・ (Equation 2)

式1及び式2において差分Lは、基準線長よりも長い場合は正の値として、基準線長よりも短い場合は負の値として、計算する。 In Equations 1 and 2, the difference L is calculated as a positive value when it is longer than the reference line length and as a negative value when it is shorter than the reference line length.

次に、ステップS23で基準軌道のコイル倒れ角度θ毎に計算した補正軌道のX座標及びY座標に基づいて、次のステップS24で、近似式に置き換えて、補正軌道を算出する。以上のステップS21からステップS24までの作業により、補正軌道が算出される。 Next, based on the X and Y coordinates of the correction orbit calculated for each coil tilt angle θ of the reference orbit in step S23, the correction orbit is calculated by substituting with an approximate expression in the next step S24. The correction trajectory is calculated by the above operations from step S21 to step S24.

そして、ステップS25で、ステップS24で算出した近似式をプログラムで使用して、制御部33に冶具駆動部32を動作させることにより、調整冶具42~47は補正軌道で動作する。 Then, in step S25, the adjustment jigs 42 to 47 operate in the correction trajectory by operating the jig drive unit 32 in the control unit 33 by using the approximate expression calculated in step S24 in the program.

図9のステップS21からステップS24までの作業により算出した補正軌道の一例を図10に示す。図1のステップS3の先端位置決め工程において、補正軌道で調整冶具42~47を動作させて突出部23の先端24の軸方向及び周方向の位置を調整することによって、突出部23の長さが基準線長と異なる場合でも、突出部23の先端24の軸方向及び周方向の位置の精度を向上させることができる。 FIG. 10 shows an example of the correction trajectory calculated by the work from step S21 to step S24 in FIG. In the tip positioning step of step S3 of FIG. 1, the length of the protruding portion 23 is increased by operating the adjusting jigs 42 to 47 in the correction trajectory to adjust the axial and circumferential positions of the tip 24 of the protruding portion 23. Even if the length is different from the reference line length, the accuracy of the axial and circumferential positions of the tip 24 of the protrusion 23 can be improved.

図11は、突出部23の長さが基準線長よりも短い場合に、調整冶具43を動作させた後の突出部23の先端24の周方向の位置のスロット12毎のばらつきを示した図である。補正軌道で先端24の位置を調整した場合のばらつき幅W1の方が、基準軌道で調整した場合のばらつき幅W2よりも約35パーセント小さくなっている。 FIG. 11 is a diagram showing variations in the circumferential position of the tip 24 of the protrusion 23 after operating the adjusting jig 43 for each slot 12 when the length of the protrusion 23 is shorter than the reference line length. Is. The variation width W1 when the position of the tip 24 is adjusted in the correction orbit is about 35% smaller than the variation width W2 when the position of the tip 24 is adjusted in the reference orbit.

図12は、突出部23の長さが基準線長よりも長い場合に、調整冶具43を動作させた後の突出部23の軸方向の高さについて、基準軌道で調整した場合と、補正軌道で調整した場合とを比較して示した図である。補正軌道で調整した場合が実線のグラフで、基準軌道で調整した場合が破線のグラフである。基準軌道で調整した場合は、溶接範囲R1内で軸方向の高さが0.5mm未満となり溶接不良が生じうる。しかし、補正軌道で調整した場合は、溶接範囲R1内で軸方向の高さが、溶接不良が生じない0.5mm以上となる。 FIG. 12 shows a case where the height of the protrusion 23 in the axial direction after operating the adjusting jig 43 is adjusted in the reference trajectory when the length of the protrusion 23 is longer than the reference line length, and a correction trajectory. It is a figure which compared with the case which adjusted in. The solid line graph is when adjusted with the corrected orbit, and the broken line graph is when adjusted with the reference orbit. When adjusted in the reference trajectory, the height in the axial direction is less than 0.5 mm within the welding range R1, and welding defects may occur. However, when adjusted with the corrected track, the height in the axial direction within the welding range R1 is 0.5 mm or more at which welding defects do not occur.

以上に説明した図1のステップS1の挿入工程、ステップS2の補正軌道算出工程、ステップS3の先端位置決め工程により、図3に示すように、ステータコア1の径方向に隣接する一対のセグメントコイル2の突出部23を、ステータコア1の周方向に相互に逆向きに倒し込んで、突出部23の先端24の軸方向及び周方向の位置を合わせることができる。その後、図1のステップS4の溶接工程で、軸方向及び周方向の位置を合わせた径方向に隣接するセグメントコイル2の突出部23の先端24同士を溶接する。この溶接工程により、ステータコア1にコイルが巻かれたステータが完成する。 As shown in FIG. 3, a pair of segment coils 2 adjacent to each other in the radial direction of the stator core 1 by the insertion step of step S1 of FIG. 1, the correction trajectory calculation step of step S2, and the tip positioning step of step S3 described above. The protrusions 23 can be tilted in opposite directions in the circumferential direction of the stator core 1 to align the axial and circumferential positions of the tip 24 of the protrusions 23. After that, in the welding step of step S4 of FIG. 1, the tips 24 of the protruding portions 23 of the segment coils 2 adjacent in the radial direction in which the positions in the axial direction and the circumferential direction are aligned are welded to each other. This welding process completes a stator in which a coil is wound around the stator core 1.

本開示の回転電機ステータの製造方法は、上述した形態に限定されず、本開示の要旨の範囲内において種々の形態にて実施できる。例えば、上述した形態の補正軌道を算出する計算式は一例であり、式1や式2とは異なる計算式で補正軌道を算出しても良い。また、突出部23はスロット12から下方に向かって突出し、突出部23を倒す際に調整冶具42~47を下方から上方に向かってステータコア1に近づけても良い。また、調整冶具の数は6個とは異なる数であっても良い。また、爪部49がステータコア1の周方向に突出部23の先端24を押圧できれば、爪部49の形状は他の形状であっても良い。 The method for manufacturing a rotary electric stator of the present disclosure is not limited to the above-mentioned form, and can be carried out in various forms within the scope of the gist of the present disclosure. For example, the calculation formula for calculating the correction trajectory of the above-mentioned form is an example, and the correction trajectory may be calculated by a calculation formula different from the formula 1 and the formula 2. Further, the protruding portion 23 may protrude downward from the slot 12, and the adjusting jigs 42 to 47 may be brought closer to the stator core 1 from the lower side to the upper side when the protruding portion 23 is tilted. Further, the number of adjusting jigs may be different from six. Further, the shape of the claw portion 49 may be another shape as long as the claw portion 49 can press the tip 24 of the protruding portion 23 in the circumferential direction of the stator core 1.

1 ステータコア、2 セグメントコイル、3 曲げ加工用装置、4 調整部、11 電磁鋼板、12 スロット、21 脚部、22 連結部、23 突出部、24 先端、31 保持部、32 冶具駆動部、33 制御部、34 固定部材、41 支持部、42~47 調整冶具、48 セパレータ、49 爪部。
1 stator core, 2 segment coil, 3 bending equipment, 4 adjustment part, 11 electrical steel sheet, 12 slot, 21 leg part, 22 connection part, 23 protrusion part, 24 tip, 31 holding part, 32 jig drive part, 33 control Part, 34 fixing member, 41 support part, 42-47 adjustment jig, 48 separator, 49 claw part.

Claims (1)

互いに平行な2つの脚部と、前記2つの脚部を連結する連結部とを有するU字状のセグメントコイルの前記2つの脚部をステータコアのそれぞれ異なるスロットに挿入し、前記脚部の一部である突出部を前記スロットから前記ステータコアの軸方向に突出させる挿入工程と、
前記ステータコアに向かって突出する爪部が設けられた調整冶具を前記軸方向に移動して前記ステータコアに近づけつつ前記ステータコアの周方向に回転することによって、前記突出部を前記軸方向に突出した状態から前記周方向に倒して前記突出部の先端の前記軸方向の位置を調整し、前記爪部が前記先端を押圧して前記先端の前記周方向の位置を調整する先端位置決め工程と、
を含む回転電機ステータの製造方法において、
前記挿入工程の後に、前記ステータコア毎に前記突出部の長さを測定し、前記突出部の基準線長との差分から、前記調整冶具を前記軸方向に移動する距離を算出し、前記調整冶具を前記軸方向に移動して前記ステータコアに近づけつつ前記周方向に回転させる基準軌道を補正した補正軌道を算出する補正軌道算出工程を備え、
前記先端位置決め工程において、前記補正軌道で前記調整冶具を動作させて前記突出部の前記先端の前記軸方向及び前記周方向の位置を調整すること、を特徴とする回転電機ステータの製造方法。
The two legs of a U-shaped segment coil having two legs parallel to each other and a connecting portion connecting the two legs are inserted into different slots of the stator core to form a part of the legs. The insertion step of projecting the protruding portion from the slot in the axial direction of the stator core,
A state in which the protruding portion protrudes in the axial direction by moving the adjusting jig provided with the claw portion protruding toward the stator core in the axial direction and rotating in the circumferential direction of the stator core while approaching the stator core. The tip positioning step of adjusting the axial position of the tip of the protrusion by tilting the tip in the circumferential direction, and adjusting the position of the tip in the circumferential direction by pressing the tip with the claw portion.
In the method of manufacturing a rotary electric stator including
After the insertion step, the length of the protrusion is measured for each stator core, the distance for moving the adjustment jig in the axial direction is calculated from the difference from the reference line length of the protrusion, and the adjustment jig is calculated. A correction orbit calculation step for calculating a correction orbit that corrects a reference orbit that moves in the axial direction and rotates in the circumferential direction while approaching the stator core is provided.
A method for manufacturing a rotary electric machine stator, characterized in that, in the tip positioning step, the adjusting jig is operated on the correction trajectory to adjust the axial and circumferential positions of the tip of the protruding portion.
JP2018193096A 2018-10-12 2018-10-12 Manufacturing method of rotary electric stator Active JP7060487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018193096A JP7060487B2 (en) 2018-10-12 2018-10-12 Manufacturing method of rotary electric stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018193096A JP7060487B2 (en) 2018-10-12 2018-10-12 Manufacturing method of rotary electric stator

Publications (2)

Publication Number Publication Date
JP2020061897A JP2020061897A (en) 2020-04-16
JP7060487B2 true JP7060487B2 (en) 2022-04-26

Family

ID=70220415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193096A Active JP7060487B2 (en) 2018-10-12 2018-10-12 Manufacturing method of rotary electric stator

Country Status (1)

Country Link
JP (1) JP7060487B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152958A (en) 2017-03-10 2018-09-27 トヨタ自動車株式会社 Rotary electric machine stator and manufacturing device therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680159B1 (en) * 2013-08-29 2015-03-04 本田技研工業株式会社 Manufacturing method of rotating electrical machine
JP6233384B2 (en) * 2015-10-29 2017-11-22 トヨタ自動車株式会社 Coil end joining method for stator segment coil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152958A (en) 2017-03-10 2018-09-27 トヨタ自動車株式会社 Rotary electric machine stator and manufacturing device therefor

Also Published As

Publication number Publication date
JP2020061897A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
US7788791B2 (en) Method of joining a plurality of conductor segments to form stator winding
EP2849319B1 (en) Manufacturing method for rotating electric machine
JP4131478B2 (en) Winding end forming apparatus and method for rotating electrical machine
US11557931B2 (en) Stator with dual jig arrangement
US11128205B2 (en) Apparatus for aligning wire conductors extending from coil members inserted in slots of a core of a dynamo electric machine
JP4973544B2 (en) Manufacturing method of wave winding coil for stator
US8333098B2 (en) Bending method
JP7227073B2 (en) Workpiece rotating device and robot system
JP7060487B2 (en) Manufacturing method of rotary electric stator
CN112994379A (en) Device and method for bending a wire for a machine element of an electric machine
US20220069679A1 (en) Device and method for positioning ends of at least first pair of legs of hairpin conductors
CN109888993B (en) Wire forming device and method
JP6819552B2 (en) Coil winding device
US10951096B2 (en) Method and apparatus for producing rotating electric machine stator
JP7204309B2 (en) Drilling system
JP3986330B2 (en) Winding method and winding device
JP7327268B2 (en) Stator manufacturing equipment
JP2020102921A (en) Stator manufacturing method
JP7160650B2 (en) Clamping device and stator manufacturing method using the clamping device
JP2022035822A (en) Twist processing device and twist processing method
EP2922187A1 (en) Coil winding apparatus, and coil winding method
JP2007260731A (en) Device and method for electrically caulking coil terminal
JP2011182560A (en) Apparatus and method for manufacturing stator coil
JP6972250B1 (en) Welding equipment and welding method
JP2022012947A (en) Coil installation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220414

R151 Written notification of patent or utility model registration

Ref document number: 7060487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151