JP7060185B1 - 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス - Google Patents

蓄電デバイス用外装材、その製造方法、及び蓄電デバイス Download PDF

Info

Publication number
JP7060185B1
JP7060185B1 JP2022511047A JP2022511047A JP7060185B1 JP 7060185 B1 JP7060185 B1 JP 7060185B1 JP 2022511047 A JP2022511047 A JP 2022511047A JP 2022511047 A JP2022511047 A JP 2022511047A JP 7060185 B1 JP7060185 B1 JP 7060185B1
Authority
JP
Japan
Prior art keywords
layer
power storage
storage device
exterior material
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022511047A
Other languages
English (en)
Other versions
JPWO2022114024A1 (ja
JPWO2022114024A5 (ja
Inventor
真 天野
大佑 安田
雅博 立沢
一彦 横田
孝典 山下
靖明 武藤
純 景山
寛典 上所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority claimed from PCT/JP2021/043054 external-priority patent/WO2022114024A1/ja
Application granted granted Critical
Publication of JP7060185B1 publication Critical patent/JP7060185B1/ja
Publication of JPWO2022114024A1 publication Critical patent/JPWO2022114024A1/ja
Publication of JPWO2022114024A5 publication Critical patent/JPWO2022114024A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

基材層にポリエステルフィルムとポリアミドフィルムの両方を用いた場合において、優れた成形性と成形カールの抑制とが両立された、蓄電デバイス用外装材を提供する。外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、前記基材層は、ポリエステルフィルム及びポリアミドフィルムを含んでおり、前記ポリエステルフィルムの厚みは、10μm以上14μm以下であり、前記ポリアミドフィルムの厚みは、18μm以上22μm以下である、蓄電デバイス用外装材。

Description

本開示は、蓄電デバイス用外装材、その製造方法、及び蓄電デバイスに関する。
従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質などの蓄電デバイス素子を封止するために外装材が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。
一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話などの高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。
そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/バリア層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1を参照)。
このような蓄電デバイス用外装材においては、一般的に、冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層を熱融着させることにより、蓄電デバイス用外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。
特開2008-287971号公報
近年、フィルム状の外装材には、さらなる薄型化が求められている。また、蓄電デバイスのエネルギー密度をより一層高める観点などから、外装材により深い凹部を形成することも求められている。
フィルム状の外装材の成形性を高めるために、例えば、成形性に優れるポリアミドフィルムを基材層に用いることが考えられる。
ところが、ポリアミドフィルムを基材層に用いて、基材層、バリア層、及び熱融着性樹脂層を順に積層した蓄電デバイス用外装材とし、これを成形して蓄電デバイス素子を収容する凹部を形成する場合、当該凹部の周縁部が、成形によってカール(湾曲)して、蓄電デバイス素子の収容や熱融着性樹脂層の熱融着を阻害し、蓄電デバイスの生産効率を低下させる場合がある。
また、フィルム状の外装材は厚みが非常に薄いため、機械的強度を高めるために、ポリエステルフィルムを基材層に用いることが考えられる。
ところが、ポリエステルフィルムは、ポリアミドフィルムと比較して成形性に劣ることから、ポリエステルフィルムを基材層に用いたフィルム状の蓄電デバイス用外装材を成形して、蓄電デバイス素子を収容する凹部を形成する場合に、クラックやピンホールが発生しやすいという問題がある。
このような状況下、本開示の第1の態様は、基材層にポリエステルフィルムとポリアミドフィルムの両方を用いた場合において、優れた成形性と成形カールの抑制とが両立された、蓄電デバイス用外装材を提供することを主な目的とする。
また、蓄電デバイス素子には、レアメタルなどの成分が使用されており、これらの成分の需要は急増している。このため、電気機器などの各種製品において、蓄電デバイスの交換などの際に、蓄電デバイスを製品から取り外し、蓄電デバイス素子に含まれる各種成分を回収・再利用することが求められる。
電気機器などの各種製品において、蓄電デバイスは、両面テープや接着剤などによって、製品の筐体に強固に固定されている。このため、蓄電デバイスを製品の筐体から取り外す際には、大きな外力が蓄電デバイスに加わることになる。具体的には、一般に、金属ヘラなどを用いて、蓄電デバイスを筐体から取り外されており、蓄電デバイスには大きな外力が加わる。蓄電デバイスの取り外し時に、フィルム状の積層体からなる蓄電デバイス用外装材に大きな外力が加わると、蓄電デバイス用外装材が破損する虞がある。また、蓄電デバイスが衝撃を受けて形状を損ねたり筋跡やこすれ傷が付くなどの損傷を受けやすいといった問題がある。
このような状況下、本開示の第2の態様は、両面テープなどで筐体に固定された蓄電デバイスを筐体から引き剥がす際に、蓄電デバイス用外装材が破損することが抑制され、また、蓄電デバイスが衝撃を受けて形状を損ねたり筋跡やこすれ傷が付くなどの損傷が抑制された、蓄電デバイス用外装材を提供することを主な目的とする。
本開示の発明者らは、本開示の第1の態様に係る上記のような課題を解決すべく鋭意検討を行った。その結果、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、基材層がポリエステルフィルム及びポリアミドフィルムを含んでいる蓄電デバイス用外装材において、ポリエステルフィルムとポリアミドフィルムの厚みをそれぞれ特定の範囲に設定すると、意外にも、優れた成形性と成形カールの抑制とが両立されることを見出した。
本開示の第1の態様は、このような新規な知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる第1の態様の発明を提供する。
外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
前記基材層は、ポリエステルフィルム及びポリアミドフィルムを含んでおり、
前記ポリエステルフィルムの厚みは、10μm以上14μm以下であり、
前記ポリアミドフィルムの厚みは、18μm以上22μm以下である、蓄電デバイス用外装材。
また、本開示の発明者らは、本開示の第2の態様に係る上記のような課題を解決すべく鋭意検討を行った。その結果、外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、基材層はポリアミドフィルムを含んでおり、バリア層はステンレス鋼を含んでおり、フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が所定値以上である蓄電デバイス用外装材は、両面テープなどで筐体に固定された蓄電デバイスを筐体から引き剥がす際に、蓄電デバイス用外装材が破損することが抑制され、また、蓄電デバイスが衝撃を受けて形状を損ねたり筋跡やこすれ傷が付くなどの損傷が抑制されることを見出した。
本開示の第2の態様は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる第2の態様の発明を提供する。
外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
前記基材層は、ポリアミドフィルムを含んでおり、
前記バリア層は、ステンレス鋼を含んでおり、
フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である、蓄電デバイス用外装材。
本開示の第1の態様によれば、基材層にポリエステルフィルムとポリアミドフィルムの両方を用いた場合において、優れた成形性と成形カールの抑制とが両立された、蓄電デバイス用外装材を提供することができる。また、本開示の第1の態様によれば、当該蓄電デバイス用外装材の製造方法、及び当該蓄電デバイス用外装材を利用した蓄電デバイスを提供することもできる。
また、本開示の第2の態様によれば、両面テープなどで筐体に固定された蓄電デバイスを、金属ヘラなどを用いて筐体から引き剥がす際に蓄電デバイス用外装材が破損することが抑制され、また、蓄電デバイスが衝撃を受けて形状を損ねたり筋跡やこすれ傷が付くなどの損傷が抑制された、蓄電デバイス用外装材を提供することができる。また、本開示の第2の態様によれば、当該蓄電デバイス用外装材の製造方法、及び当該蓄電デバイス用外装材を利用した蓄電デバイス、及び蓄電デバイス用外装材の基材層としての利用に適したポリアミドフィルムを提供することもできる。
本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。 本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する方法を説明するための模式図である。 第1の態様の蓄電デバイス用外装材の成形によるカールの評価方法を説明するための模式図である。 第1の態様の蓄電デバイス用外装材の成形によるカールの評価方法を説明するための模式図である。 本開示の蓄電デバイス用外装材の基材層の結晶化指数の測定において、ベースラインの求め方を説明するための概略図である。 第2の態様の実施例における蓄電デバイスの引き剥がし試験に用いるサンプルの作製手順を説明するための模式図である。 第2の態様の実施例における蓄電デバイスの引き剥がし試験に用いるサンプルの側面図(a)及び平面図(b)である。 第2の態様の実施例における蓄電デバイスの引き剥がし試験に用いるサンプルに両面テープを貼り付けた際の側面図(a)及び平面図(b)である。 第2の態様の実施例における蓄電デバイスの引き剥がし試験において、金属さじを用いて蓄電デバイスをステンレス鋼板から剥離する様子を示した模式図である。
本開示の第1の態様の蓄電デバイス用外装材は、外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、前記基材層は、ポリエステルフィルム及びポリアミドフィルムを含んでおり、前記ポリエステルフィルムの厚みは、10μm以上14μm以下であり、前記ポリアミドフィルムの厚みは、18μm以上22μm以下であることを特徴とする。本開示の第1の態様の蓄電デバイス用外装材は、優れた成形性と成形カールの抑制とが両立されている。
本開示の第2の態様の蓄電デバイス用外装材は、外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、前記基材層は、ポリアミドフィルムを含んでおり、前記バリア層は、ステンレス鋼を含んでおり、フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上であることを特徴とする。本開示の第2の態様の蓄電デバイス用外装材は、両面テープなどで筐体に固定された蓄電デバイスを筐体から引き剥がす際に、蓄電デバイス用外装材が破損することが抑制され、また、蓄電デバイスが衝撃を受けて形状を損ねたり筋跡やこすれ傷が付くなどの損傷が抑制されている。
また、蓄電デバイスの製造過程において、成形された蓄電デバイス用外装材により形成された包装体中に、電解質などの蓄電デバイス素子を収容した後、蓄電デバイス素子を馴染ませることなどを目的として、高温環境(例えば80~120℃程度)でベーキング処理がなされている。
生産性(例えばベーキング処理のスペースの制約など)の観点などから、このベーキング工程は、蓄電デバイスを積み重ねて行われている。このため、高温環境において、蓄電デバイスが運搬、積層され、この際に蓄電デバイスが衝撃を受けて形状を損ねたり筋跡やこすれ傷が付くなどの損傷を受けやすいといった問題がある。
本開示の第2の態様の蓄電デバイス用外装材の好ましい態様においては、さらに、高温環境において損傷を受けにくいというさらに優れた効果をも発揮し得る。
以下、本開示の蓄電デバイス用外装材について詳述する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、別個に記載された、上限値と上限値、上限値と下限値、又は下限値と下限値を組み合わせて、それぞれ、数値範囲としてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。
また、本明細書において、本開示の第1の態様または第2の態様に関する事項については、それぞれ、第1の態様または第2の態様に関する事項であることを明示し、第1の態様及び第2の態様に共通する事項については、第1の態様及び第2の態様を区別せず、本開示に関する説明としてまとめて説明する。
1.蓄電デバイス用外装材の積層構造と物性
本開示の蓄電デバイス用外装材10は、例えば図1に示すように、基材層1、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体から構成されている。蓄電デバイス用外装材10において、基材層1が最外層側になり、熱融着性樹脂層4は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。本開示の蓄電デバイス用外装材10を構成する積層体において、バリア層3を基準とし、バリア層3よりも熱融着性樹脂層4側が内側であり、バリア層3よりも基材層1側が外側である。
本開示の蓄電デバイス用外装材10は、例えば図2から図4に示すように、基材層1とバリア層3との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層2を有していてもよい。また、例えば図3及び図4に示すように、バリア層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層5を有していてもよい。また、図4に示すように、基材層1の外側(熱融着性樹脂層4側とは反対側)には、必要に応じて表面被覆層6などが設けられていてもよい。
本開示の蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、好ましくは約190μm以下、約180μm以下、約165μm以下、約158μm以下、約157μm以下、約153μm以下、約120μm以下が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の厚みとしては、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の好ましい範囲については、例えば、35~190μm程度、35~180μm程度、35~165μm程度、35~158μm程度、35~157μm程度、35~153μm程度、35~120μm程度、45~190μm程度、45~180μm程度、45~165μm程度、45~158μm程度、45~157μm程度、45~153μm程度、45~120μm程度、60~190μm程度、60~180μm程度、60~165μm程度、60~158μm程度、60~157μm程度、60~153μm程度、60~120μm程度が挙げられ、特に60~153μm程度が好ましい。
本開示の蓄電デバイス用外装材10において、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、基材層1、必要に応じて設けられる接着剤層2、バリア層3、必要に応じて設けられる接着層5、熱融着性樹脂層4、及び必要に応じて設けられる表面被覆層6の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。具体例としては、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、接着層5、及び熱融着性樹脂層4を含む場合、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。また、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、及び熱融着性樹脂層4を含む積層体である場合にも、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上とすることができる。
本開示の第1の態様の蓄電デバイス用外装材10の基材層1に含まれるポリアミドフィルムは、フーリエ変換赤外分光法のATR法により、ポリアミドフィルムの結晶化指数が、1.50以上であることが好ましい。これにより、第1の態様の蓄電デバイス用外装材10の優れた成形と成形カールの抑制を両立した上で、蓄電デバイス用外装材10の機械的強度を高め得る。
また、本開示の第2の態様の蓄電デバイス用外装材10の基材層1は、ポリアミドフィルムを含んでおり、フーリエ変換赤外分光法のATR法により、基材層1の外側から測定されるポリアミドフィルムの結晶化指数が、1.50以上である。
本開示の蓄電デバイス用外装材10の基材層1に含まれるポリアミドフィルムについて、結晶化指数を測定する方法は以下の通りである。
<蓄電デバイス用外装材の基材層の結晶化指数の測定>
蓄電デバイス用外装材を100mm×100mmの正方形に裁断する。後述の実施例で採用されているように、ポリエステルフィルムがポリアミドフィルムよりも外側に積層されている場合には、以下の手順により、基材層のポリアミドフィルム上のポリエステルフィルムを切削して、ポリアミドフィルムの表面を露出させて、測定用サンプルを作製する。ポリアミドフィルムの表面の露出は、ウルトラミクロトーム(例えばライカ EM UC7、ライカマイクロシステムズ株式会社製)を用いて、測定用サンプルのポリエステルフィルムを水平にスライス加工し、ポリエステルフィルム、および接着剤層をおおよそ平行に削り取ることで行う。次に、得られた測定サンプルの外側に位置しているONyフィルムの表面を、FT-IRのATR測定モードを用いて、温度25℃、相対湿度50%の環境下で赤外吸収スペクトル測定を実施する。装置としては、例えば、サーモフィッシャーサイエンティフィック株式会社製:Nicolet iS10が使用できる。得られた吸収スペクトルから、ナイロンのα晶の吸収に由来する1200cm-1付近のピーク強度Pと、結晶とは無関係の吸収に由来する1370cm-1付近のピーク強度Qを測定し、ピーク強度Qに対するピーク強度Pの強度比X=P/Qを結晶化指数として算出する。なお、蓄電デバイスから蓄電デバイス用外装材を取得して、基材層の結晶化指数を測定する場合には、蓄電デバイスの熱融着部や側面ではなく、天面又は底面から蓄電デバイス用外装材を取得してサンプルを作製する。
(測定条件)
手法:マクロATR法
波数分解能:8cm-1
積算回数:32回
検出器:DTGS検出器
ATRプリズム:Ge
入射角:45°
ベースライン:吸収ピーク強度Y1200の低波数側の最初の谷と、吸収ピーク強度Y1370の高波数側の最初の谷の2点間を直線で結ぶことにより求める。図8の概略図を参照。図8において、横軸(波数)の右側が低波長側であり、左側が高波長側である。また、Mが付された位置が「吸収ピーク強度Y1200の低波数側の最初の谷」であり、Nが付された位置が「吸収ピーク強度Y1370の高波数側の最初の谷」である。
吸収ピーク強度Y1200:波数1195cm-1から1205cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
吸収ピーク強度Y1370:波数1365cm-1から1375cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
第1の態様の蓄電デバイス用外装材10の外側の表面が基材層1のポリアミドフィルムにより構成されている場合には、蓄電デバイス用外装材10をそのまま結晶化指数の測定対象とすることができる。また、ポリアミドフィルムとは異なる樹脂フィルム(例えば前述したようにポリエステルフィルム)がポリアミドフィルムよりも外側に位置している場合や、基材層1の外側に後述の表面被覆層6が積層されている場合など、蓄電デバイス用外装材10の外側の表面が基材層1のポリアミドフィルムにより構成されていない場合には、ポリアミドフィルムよりも外側に位置する層を蓄電デバイス用外装材10から取り除き、ポリアミドフィルムの表面を露出させた状態で、結晶化指数を測定することができる。
第1の態様の蓄電デバイス用外装材10において、前記の結晶化指数は、好ましくは1.50以上であるが、より好ましくは1.55以上、さらに好ましくは1.60以上、特に好ましくは1.65以上である。また、前記の結晶化指数の上限については、特に制限されないが、例えば2.50以下、1.80以下などが挙げられる。当該結晶化指数の好ましい範囲としては、例えば、1.50~2.50、1.55~2.50、1.60~2.50、1.65~2.50、1.50~1.80、1.55~1.80、1.60~1.80、1.65~1.80などが挙げられる。
また、第2の態様において、蓄電デバイス用外装材10の外側の表面が基材層1のポリアミドフィルムにより構成されている場合には、蓄電デバイス用外装材10をそのまま結晶化指数の測定対象とすることができる。また、基材層1が後述のように多層構造を有しており、ポリアミドフィルムとは異なる樹脂フィルム(例えばポリエステルフィルム)がポリアミドフィルムよりも外側に位置している場合や、基材層1の外側に後述の表面被覆層6が積層されている場合など、蓄電デバイス用外装材10の外側の表面が基材層1のポリアミドフィルムにより構成されていない場合には、ポリアミドフィルムよりも外側に位置する層を蓄電デバイス用外装材10から取り除き、ポリアミドフィルムの表面を露出させた状態で、結晶化指数を測定することができる。
第2の態様の蓄電デバイス用外装材10において、前記の結晶化指数は、1.50以上であればよいが、前述の引き剥がしの際に蓄電デバイス用外装材が破損することをより一層効果的に抑制する観点から、より好ましくは1.55以上、さらに好ましくは1.60以上、特に好ましくは1.65以上である。また、前記の結晶化指数の上限については、特に制限されないが、例えば2.50以下、1.80以下などが挙げられる。当該結晶化指数の好ましい範囲としては、例えば、1.50~2.50、1.55~2.50、1.60~2.50、1.65~2.50、1.50~1.80、1.55~1.80、1.60~1.80、1.65~1.80などが挙げられる。
本開示において、蓄電デバイス用外装材10の基材層1に含まれるポリアミドフィルムの結晶化指数を1.50以上にまで高める方法としては、ポリアミドフィルムの製造工程における延伸倍率、熱固定温度、さらには、後加熱の温度や時間などによって結晶化を促進する(α晶の生成を促進する)方法が挙げられる。
蓄電デバイス用外装材10は、黒色であることが好ましい。蓄電デバイス用外装材10の外観が黒色であることにより、例えば蓄電デバイスと他の電装品を共に黒色で統一して、製品としての高級感を付与することが可能となる。また、蓄電デバイス用外装材10の外観を黒色にすることで、傷等の損傷を受けた場合に視認しやすくなり、安全な電池かどうかが判別しやすいという利点もある。
2.蓄電デバイス用外装材を形成する各層
[基材層1]
本開示において、基材層1は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、蓄電デバイス用外装材の外層側に位置する。
第1の態様の基材層1は、それぞれ所定の厚みのポリエステルフィルム及びポリアミドフィルムを含んでいる。
第1の態様において、ポリエステルフィルムを形成するポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの中でも、好ましくはポリエチレンテレフタレート、ポリブチレンテレフタレートが好ましい。
第1の態様において、ポリエステルフィルムは、延伸ポリエステルフィルムであることが好ましく、二軸延伸ポリエステルフィルムであることがより好ましい。
第1の態様において、ポリエステルフィルムは、特に、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルムであることが好ましい。
第1の態様において、ポリエステルフィルムの厚みについては、10~14μmの範囲であればよいが、第1の態様の蓄電デバイス用外装材の効果をより一層好適に発揮する観点から、より好ましい範囲としては、11~14μm程度、11~13μm程度、11~12μm程度、12~14μm程度、12~13μm程度などが挙げられる。
また、第1の態様において、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4-アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
第1の態様において、ポリアミドフィルムを形成するポリアミドとしては、特に、α晶を有するものであることが好ましく、具体的には、ナイロン6、ナイロン66、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド等が挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。ポリアミドフィルムは、ナイロンフィルムであることが好ましい。
第1の態様において、ポリアミドフィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。基材層1が未延伸フィルムを含む場合、蓄電デバイス用外装材10の各層を積層する際に、押出して成形して未延伸フィルムとしてもよいし、予め用意した未延伸フィルムを貼り合わせてもよいし、樹脂(ポリアミド)を塗布して未延伸フィルムとしてもよい。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。また、基材層1が延伸フィルムである場合、蓄電デバイス用外装材10の各層を積層する際に、予め用意した延伸フィルムを貼り合わせる。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。
第1の態様において、ポリアミドフィルムは、特に二軸延伸ナイロンフィルムであることが好ましい。
第1の態様において、前記の通り、ポリアミドフィルムの結晶化指数が、1.50以上であることが好ましい。
本開示の第1の態様の蓄電デバイス用外装材10においては、フーリエ変換赤外分光法のATR法により測定される結晶化指数が1.50以上であるポリアミドフィルムを、基材層1に用いて製造することもできるし、蓄電デバイス用外装材10の製造過程でポリアミドフィルムに熱を加えることにより、結晶化指数を高めて、当該結晶化指数を1.50以上とすることもできる。第1の態様の蓄電デバイス用外装材10においては、フーリエ変換赤外分光法のATR法により測定される結晶化指数が、1.50以上であるポリアミドフィルムを基材層1に用いて製造されることが好ましい。すなわち、前記の結晶化指数が予め1.50以上に調整されたポリアミドフィルムを基材層1に用い、バリア層3、熱融着性樹脂層4などの各層と積層することによって、第1の態様の蓄電デバイス用外装材10を製造することが好ましい。なお、後述の実施例においても示されているように、蓄電デバイス用外装材10に適用される前のポリアミドフィルムよりも、蓄電デバイス用外装材10に積層されて基材層1に含まれるポリアミドフィルムの結晶化指数を高めることができる。
第1の態様において、ポリアミドフィルムの厚みについては、18~22μmの範囲であればよいが、第1の態様の蓄電デバイス用外装材の効果をより一層好適に発揮する観点から、より好ましい範囲としては、18~21μm程度、18~20μm程度、19~21μm程度、19~20μm程度などが挙げられる。
第1の態様において、ポリエステルフィルムの厚み1に対して、ポリアミドフィルムの厚み比は、好ましくは1.3~2.2程度、より好ましくは1.5~1.9程度、さらに好ましくは1.6~1.8程度である。
また、第1の態様において、バリア層3の厚み1に対して、ポリアミドフィルムの厚み比は、好ましくは0.45~0.61程度である。具体例としては、後述するバリア層3がアルミニウム合金箔を含む場合、アルミニウム合金箔の厚み1に対して、ポリアミドフィルムの厚み比は、好ましくは0.45~0.61程度である。
また、第1の態様において、熱融着性樹脂層4の厚み1に対して、ポリアミドフィルムの厚み比は、好ましくは0.25~0.69程度、より好ましくは0.40~0.65程度である。具体例としては、後述する熱融着性樹脂層4がポリプロピレンにより形成された層(ポリプロピレン層)を含む場合、ポリプロピレン層の厚み1に対して、ポリアミドフィルムの厚み比は、好ましくは0.25~0.69程度、より好ましくは0.40~0.65程度である。
また、第1の態様において、(ポリアミドフィルムの厚み(μm)/接着層5の厚み(μm))+熱融着性樹脂層4の厚み(μm)の合計値は、好ましくは0.20~0.34程度、より好ましくは0.22~0.31程度である。具体例としては、後述する熱融着性樹脂層4がポリプロピレンにより形成された層(ポリプロピレン層)を含み、後述する接着層5が酸変性ポリプロピレンにより形成された層(酸変性ポリプロピレン層)を含み、蓄電デバイス用外装材10を構成する積層体のバリア層よりも内側の層の総厚みを1とした場合、(ポリアミドフィルムの厚み(μm)/酸変性ポリプロピレン層の厚み(μm))+ポリプロピレン層の厚み(μm)の合計値は、好ましくは0.20~0.34程度、より好ましくは0.22~0.31程度である。
また、第1の態様において、蓄電デバイス用外装材10を構成する積層体の総厚み1に対して、ポリアミドフィルムの厚み比は、好ましくは0.11~0.15程度、より好ましくは0.12~0.14程度である。
第1の態様において、基材層1は、ポリエステルフィルムとポリアミドフィルムを接着剤などで積層させた積層体であってもよいし、ポリエステルとポリアミドを共押出しして積層させた積層体であってもよい。また、ポリエステルとポリアミドを共押出しして積層した積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。
第1の態様において、基材層1は、樹脂フィルムとして、ポリエステルフィルム及びポリアミドフィルムのみを含んでいることが好ましいが、ポリエステルフィルム及びポリアミドフィルムとは異なる樹脂フィルムをさらに含んでいてもよい。ポリアミドフィルムとは異なる樹脂フィルムを形成する樹脂としては、例えば、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。
第1の態様において、基材層1がポリエステルフィルム及びポリアミドフィルムとは異なる他の樹脂フィルムをさらに含んでいる場合にも、基材層1は、ポリエステルフィルム、ポリアミドフィルム、及び他の樹脂フィルムを、それぞれ接着剤などで積層させた積層体であってもよいし、各樹脂を共押出しして積層した積層体であってもよい。また、各樹脂を共押出しした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。
第1の態様において、基材層1の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、好ましくは、延伸ポリエステルフィルムと延伸ナイロンフィルムとの積層体が好ましい。また、ポリエステルは、例えば電解液が表面に付着した際に変色し難いことなどから、ポリエステルフィルムが基材層1の最外層に位置することが好ましい。
なお、第1の態様において、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものがあげられる。このとき、アンカーコート層の厚みとしては、例えば0.01~1.0μm程度が挙げられる。
第2の態様において、基材層1は、ポリアミドフィルムを含んでいる。前記の通り、フーリエ変換赤外分光法のATR法により、基材層1の外側から測定されるポリアミドフィルムの結晶化指数は、1.50以上である。第2の態様においては、当該結晶化指数を充足し、かつ、後述のとおり、バリア層3がステンレス鋼を含んでいることにより、両面テープなどで筐体に固定された蓄電デバイスを、金属ヘラなどを用いて筐体から引き剥がす際に蓄電デバイス用外装材が破損することが抑制され、また、蓄電デバイスが衝撃を受けて形状を損ねたり筋跡やこすれ傷が付くなどの損傷が抑制されるという特性が好適に発揮される。
第2の態様において、ポリアミドフィルムを形成するポリアミドとしては、α晶を有するものであればよく、具体的には、ナイロン6、ナイロン66、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド等が挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。ポリアミドフィルムは、ナイロンフィルムであることが好ましい。
第2の態様において、ポリアミドフィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。基材層1が未延伸フィルムを含む場合、蓄電デバイス用外装材10の各層を積層する際に、押出して成形して未延伸フィルムとしてもよいし、予め用意した未延伸フィルムを貼り合わせてもよいし、樹脂(ポリアミド)を塗布して未延伸フィルムとしてもよい。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。また、基材層1が延伸フィルムである場合、蓄電デバイス用外装材10の各層を積層する際に、予め用意した延伸フィルムを貼り合わせる。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。
第2の態様において、ポリアミドフィルムは、特に二軸延伸ナイロンフィルムであることが好ましい。
本開示の第2の態様の蓄電デバイス用外装材10においては、フーリエ変換赤外分光法のATR法により測定される結晶化指数が1.50以上であるポリアミドフィルムを、基材層1に用いて製造することもできるし、蓄電デバイス用外装材10の製造過程でポリアミドフィルムに熱を加えることにより、結晶化指数を高めて、当該結晶化指数を1.50以上とすることもできる。後述の「5.ポリアミドフィルム」の項目で説明するとおり、第2の態様の蓄電デバイス用外装材10においては、フーリエ変換赤外分光法のATR法により測定される結晶化指数が、1.50以上であるポリアミドフィルムを基材層1に用いて製造されることが好ましい。すなわち、前記の結晶化指数が予め1.50以上に調整されたポリアミドフィルムを基材層1に用い、バリア層3、熱融着性樹脂層4などの各層と積層することによって、第2の態様の蓄電デバイス用外装材10を製造することが好ましい。なお、後述の実施例においても示されているように、蓄電デバイス用外装材10に適用される前のポリアミドフィルムよりも、蓄電デバイス用外装材10に積層されて基材層1に含まれるポリアミドフィルムの結晶化指数を高めることができる。
第2の態様において、ポリアミドフィルムの厚みについては、前述の引き剥がしの際に蓄電デバイス用外装材が破損することをより一層効果的に抑制する観点から、好ましくは約50μm以下、より好ましくは約35μm以下であり、さらに好ましくは約19μm以下であり、さらに好ましくは約15μm以下であり、さらに好ましくは約14μm以下であり、さらに好ましくは約13μm以下であり、また、好ましくは約3μm以上、より好ましくは約5μm以上であり、さらに好ましくは約6μm以上であり、さらに好ましくは約7μm以上であり、さらに好ましくは約10μm以上であり、また、好ましい範囲としては、3~50μm程度、3~35μm程度、3~19μm程度、3~15μm程度、3~14μm程度、3~13μm程度、5~50μm程度、5~35μm程度、5~19μm程度、5~15μm程度、5~14μm程度、5~13μm程度、6~50μm程度、6~35μm程度、6~19μm程度、6~15μm程度、6~14μm程度、6~13μm程度、7~50μm程度、7~35μm程度、7~19μm程度、7~15μm程度、7~14μm程度、7~13μm程度、10~50μm程度、10~35μm程度、10~19μm程度、10~15μm程度、10~14μm程度、10~13μm程度が挙げられ、これらの中でも10~19μm程度が特に好ましい。また、湿熱環境における基材層1のデラミネーションの発生を抑制する観点からは、ポリアミドフィルムの厚みは薄いことが望ましく、この観点から、ポリアミドフィルムの厚みは、好ましくは約15μm以下であり、さらに好ましくは約14μm以下であり、さらに好ましくは約13μm以下である。
第2の態様において、基材層1は、ポリアミドフィルムとは異なる樹脂フィルムをさらに有していてもよい。ポリアミドフィルムとは異なる樹脂フィルムを形成する樹脂としては、例えば、ポリエステル、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。これらの中でも、好ましくはポリエステルが挙げられる。
第2の態様において、ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの中でも、好ましくはポリエチレンテレフタレート、ポリブチレンテレフタレートが好ましい。
第2の態様において、ポリエステルフィルムは、延伸ポリエステルフィルムであることが好ましく、二軸延伸ポリエステルフィルムであることがより好ましい。
第2の態様において、ポリエステルフィルムは、特に、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルムであることが好ましい。
第2の態様において、基材層1がポリアミドフィルムとは異なる樹脂フィルムをさらに有する場合、他の樹脂フィルムの厚みについては、本開示の第2の態様の効果を阻害しないことを限度として、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、好ましくは約50μm以下、より好ましくは約35μm以下であり、さらに好ましくは約19μm以下であり、好ましくは約3μm以上、より好ましくは約10μm以上であり、また、好ましい範囲としては、3~50μm程度、3~35μm程度、3~19μm程度、10~50μm程度、10~35μm程度、10~19μm程度が挙げられ、これらの中でも10~19μm程度が特に好ましい。
また、第2の態様において、バリア層3の厚み1に対して、ポリアミドフィルムの厚み比は、好ましくは0.30~1.30程度、より好ましくは0.40~0.62程度である。具体例としては、後述するバリア層3がアルミニウム合金箔を含む場合、アルミニウム合金箔の厚み1に対して、ポリアミドフィルムの厚み比は、好ましくは0.30~1.30程度、より好ましくは0.40~0.62程度である。
また、第2の態様において、熱融着性樹脂層4の厚み1に対して、ポリアミドフィルムの厚み比は、好ましくは0.25~0.69程度、より好ましくは0.40~0.65程度である。具体例としては、後述する熱融着性樹脂層4がポリプロピレンにより形成された層(ポリプロピレン層)を含む場合、ポリプロピレン層の厚み1に対して、ポリアミドフィルムの厚み比は、好ましくは0.25~0.69程度、より好ましくは0.40~0.65程度である。
また、第2の態様において、(ポリアミドフィルムの厚み(μm)/接着層5の厚み(μm))+熱融着性樹脂層4の厚み(μm)の合計値は、好ましくは0.20~0.34程度、より好ましくは0.22~0.31程度である。具体例としては、後述する熱融着性樹脂層4がポリプロピレンにより形成された層(ポリプロピレン層)を含み、後述する接着層5が酸変性ポリプロピレンにより形成された層(酸変性ポリプロピレン層)を含み、蓄電デバイス用外装材10を構成する積層体のバリア層よりも内側の層の総厚みを1とした場合、(ポリアミドフィルムの厚み(μm)/酸変性ポリプロピレン層の厚み(μm))+ポリプロピレン層の厚み(μm)の合計値は、好ましくは0.20~0.34程度、より好ましくは0.22~0.31程度である。
また、第2の態様において、蓄電デバイス用外装材10を構成する積層体の総厚み1に対して、ポリアミドフィルムの厚み比は、好ましくは0.11~0.20程度である。
第2の態様において、基材層1は、ポリアミドフィルムを含んでいれば、単層であってもよいし、2層以上により構成されていてもよく、蓄電デバイス用外装材10を薄型化する観点から、ポリアミドフィルムの単層であることが好ましい。
第2の態様において、基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。
第2の態様において、基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、基材層1が2層以上の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムが基材層1の最外層に位置することが好ましい。
第2の態様において、基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。このとき、アンカーコート層の厚みとしては、例えば0.01~1.0μm程度が挙げられる。
また、本開示において、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
本開示において、蓄電デバイス用外装材の成形性を高める観点からは、基材層1の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
本開示において、基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。
本開示において、基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。
第1の態様の基材層1の総厚みについては、ポリエステルフィルムの厚みが10~14μmであり、かつ、ポリアミドフィルムの厚みが18~22μmの範囲内となれば、特に制限されないが、好ましくは28~50μm程度、より好ましくは28~40μm程度、さらに好ましくは30~40μm程度、さらに好ましくは32~40μm程度、さらに好ましくは32~38μm程度が挙げられる。
また、第2の態様の基材層1の総厚みについては、基材としての機能を発揮すれば特に制限されないが、好ましくは約50μm以下、より好ましくは約35μm以下であり、さらに好ましくは約19μm以下であり、好ましくは約3μm以上、より好ましくは約10μm以上であり、また、好ましい範囲としては、3~50μm程度、3~35μm程度、3~19μm程度、10~50μm程度、10~35μm程度、10~19μm程度が挙げられ、これらの中でも10~19μm程度が特に好ましい。
[コート層]
本開示の蓄電デバイス用外装材は、印字性や、成形性などの向上を目的として、必要に応じて、基材層1の上(基材層1のバリア層3側とは反対側)に、コート層(図示を省略する)を備えていてもよい。コート層は、基材層1に接面するようにして設けられる。コート層の厚みとしては、コート層としての上記の機能を発揮すれば特に制限されず、例えば0.01~0.40μm程度、好ましくは0.01~0.30μm程度、さらに好ましくは0.1~0.30μm程度が挙げられる。厚みが0.01μm以上であることにより、基材層1の上に均一な膜厚の層を形成することができる。その結果、第2の態様の蓄電デバイス用外装材の印字性にムラが生じず均一な印字を可能にすることができたり、均一な成形性が得られたりする。
本開示において、コート層を形成する樹脂としては、例えば、ポリ塩化ビニリデン、塩化ビニリデン-塩化ビニル共重合体、ポリオレフィン、酸変性ポリオレフィン、ポリエステル、エポキシ樹脂、フェノール樹脂、フッ素樹脂、セルロースエステル、ポリウレタン、アクリル樹脂、ポリアミド等の各種の合成樹脂が挙げられる。これらの中でも、ポリウレタン、ポリエステル、アクリル樹脂が好ましい。
本開示において、コート層には、滑り性を向上させるために、必要に応じて滑剤や添加剤を含有させてもよい。滑剤としては、上述した滑剤と同様のものが例示される。また、添加剤としては、後述の表面被覆層6で例示する添加剤と同様のものが例示される。これらの滑剤や添加剤の含有量や粒径は、コート層の厚みにあわせて適宜調整される。
また、本開示の蓄電デバイス用外装材は、基材層に隣接する層との接着性の向上を目的として、必要に応じて、基材層1の片面(基材層1のバリア層3側や、基材層1のバリア層3とは反対側)や両面に、コート層(図示を省略する)を備えていてもよい。すなわち、基材層の上に設けるコート層は、印字性や、成形性などの向上を目的とした層であってもよいし、基材層の接着性の向上を目的とした層であってもよい。コート層が基材層の接着性の向上を目的とする場合にも、コート層を形成する樹脂や、厚みとしては、上述したコート層の樹脂や厚みと同様のものが例示される。また、上述した滑剤や添加剤を含めてもよいが、コート層の基材層と反対側に隣接する層が存在する場合は、滑剤や添加剤を含めない方が好ましい。
[接着剤層2]
本開示の蓄電デバイス用外装材において、接着剤層2は、基材層1とバリア層3との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。
本開示において、接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。
本開示において、接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。
本開示において、ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタン接着剤が挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。接着剤層2がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても基材層1が剥がれることが抑制される。
また、本開示において、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層2が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
本開示において、顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系、銅系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。
本開示において、着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。
本開示において、顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
本開示において、接着剤層2における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。
本開示において、接着剤層2の厚みは、基材層1とバリア層3とを接着できれば、特に制限されないが、例えば、約1μm以上、約2μm以上である。また、接着剤層2の厚みは、例えば、約10μm以下、約5μm以下である。また、接着剤層2の厚みの好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。
[着色層]
本開示において、着色層は、基材層1とバリア層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2とバリア層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、蓄電デバイス用外装材を着色することができる。基材層1とバリア層3との間に、着色された接着層2と着色層を設けてもよい。
本開示において、着色層は、例えば、着色剤を含むインキを基材層1の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
本開示において、着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。
[バリア層3]
本開示において、蓄電デバイス用外装材において、バリア層3は、少なくとも水分の浸入を抑止する層である。
第1の態様において、バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、バリア層3としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。バリア層3は、複数層設けてもよい。バリア層3は、金属材料により構成された層を含むことが好ましい。バリア層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。
本開示において、アルミニウム合金箔は、蓄電デバイス用外装材の成形性を向上させる観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、より成形性を向上させる観点から、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた成形性を有する蓄電デバイス用外装材を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた蓄電デバイス用外装材を得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。
第1の態様において、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに成形性に優れた蓄電デバイス用外装材を提供する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。
第1の態様において、ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。
また、第2の態様において、バリア層3は、ステンレス鋼を含んでいる。蓄電デバイス用外装材10は、バリア層3が硬く、耐損傷性が高いステンレス鋼を含むため、本開示の第2の態様の効果を好適に発揮することができる。また、ステンレス鋼は薄くしても硬く、耐損傷性が高いため、蓄電デバイス用外装材10を構成する積層体の厚みを薄くした場合にも、本開示の第2の態様の効果を好適に発揮することができる。さらに、ステンレス鋼は硬く、耐損傷性が高いため、基材層1を薄くした場合にも、本開示の第2の態様の効果を好適に発揮することができる。バリア層3がステンレス鋼を含んでおり、かつ、基材層1の外側から測定されるポリアミドフィルムの結晶化指数が1.50以上であることにより、両面テープなどで筐体に固定された蓄電デバイスを、金属ヘラなどを用いて筐体から引き剥がす際に蓄電デバイス用外装材が破損することが抑制され、また、蓄電デバイスが衝撃を受けて形状を損ねたり筋跡やこすれ傷が付くなどの損傷が抑制されるという特性が好適に発揮される。
ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。本開示の第2の態様の効果をより好適に発揮する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。
第2の態様のバリア層3は、ステンレス鋼を含む層(好ましくはステンレス鋼箔)に加えて、水分の浸入を抑止する他の層(ステンレス鋼を含まない)をさらに含んでいてもよい。他の層としては、バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、他の層としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。他の層は、複数層設けてもよい。他の層は、金属材料により構成された層を含むことが好ましい。他の層を構成する金属材料としては、具体的には、アルミニウム合金、チタン鋼、鋼などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔を含むことが好ましい。
第1の態様においてバリア層3の厚みは、金属箔の場合、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、例えば9~200μm程度が挙げられる。バリア層3の厚みは、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約45μm以下である。また、バリア層3の厚みは、好ましくは約10μm以上、より好ましくは約20μm以上、さらに好ましくは約25μm以上、さらに好ましくは約31μm以上、さらに好ましくは約35μm以上である。また、バリア層3の厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~45μm程度、20~85μm程度、20~50μm程度、20~45μm程度、25~85μm程度、25~50μm程度、25~45μm程度、31~85μm程度、31~50μm程度、31~45μm程度、35~85μm程度、35~50μm程度、35~45μm程度が挙げられる。バリア層3がアルミニウム合金箔により構成されている場合、上述した範囲が特に好ましい。また、バリア層3がアルミニウム合金箔により構成されている場合において、蓄電デバイス用外装材10に高成形性及び高剛性を付与する観点からは、バリア層3の厚みは、好ましくは約45μm以上、さらに好ましくは約50μm以上、より好ましくは約55μm以上であり、好ましくは約85μm以下、より好ましくは75μm以下、さらに好ましくは70μm以下であり、好ましい範囲としては、45~85μm程度、45~75μm程度、45~70μm程度、50~85μm程度、50~75μm程度、50~70μm程度、55~85μm程度、55~75μm程度、55~70μm程度である。蓄電デバイス用外装材10が高成形性を備えることにより、深絞り成形が容易となり、蓄電デバイスの高容量化に寄与し得る。また、蓄電デバイスが高容量化されると、蓄電デバイスの重量が増加するが、蓄電デバイス用外装材10の剛性が高められることにより、蓄電デバイスの高い密封性に寄与できる。また、特に、バリア層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みは、好ましくは約60μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下である。また、ステンレス鋼箔の厚みは、好ましくは約10μm以上、より好ましくは約15μm以上である。また、ステンレス鋼箔の厚みの好ましい範囲としては、10~60μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~25μm程度、15~60μm程度、15~50μm程度、15~40μm程度、15~30μm程度、15~25μm程度が挙げられる。
第2の態様において、バリア層3の厚みは、金属箔の場合、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、例えば9~200μm程度が挙げられる。バリア層3の厚みは、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下である。また、バリア層3の厚みは、好ましくは約10μm以上、さらに好ましくは約15μm以上である。また、バリア層3の厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~25μm程度、15~85μm程度、15~50μm程度、15~40μm程度、15~30μm程度、15~25μm程度が挙げられる。
また、本開示において、バリア層3が金属箔の場合は、溶解や腐食の防止などのために、少なくとも基材層と反対側の面に耐腐食性皮膜を備えていることが好ましい。バリア層3は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をバリア層の表面に行い、バリア層に耐腐食性(例えば耐酸性、耐アルカリ性など)を備えさせる薄膜をいう。耐腐食性皮膜は、具体的には、バリア層の耐酸性を向上させる皮膜(耐酸性皮膜)、バリア層の耐アルカリ性を向上させる皮膜(耐アルカリ性皮膜)などを意味している。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、バリア層3が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてバリア層3とする。
第1の態様において、耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、バリア層(例えば、アルミニウム合金箔)と基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、バリア層表面の溶解、腐食、特にバリア層がアルミニウム合金箔である場合にバリア層表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、バリア層表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とバリア層とのデラミネーション防止、成形時の基材層とバリア層とのデラミネーション防止の効果を示す。
また、第2の態様において、耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、バリア層(ステンレス鋼箔)と基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、バリア層表面の溶解、腐食、特にバリア層がステンレス鋼箔である場合にバリア層表面に存在する酸化物が溶解、腐食することを防止し、かつ、バリア層表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とバリア層とのデラミネーション防止、成形時の基材層とバリア層とのデラミネーション防止の効果を示す。
本開示において、化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
Figure 0007060185000001
Figure 0007060185000002
Figure 0007060185000003
Figure 0007060185000004
本開示において、一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて官能基(-CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。
本開示において、耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。
本開示において、耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。
本開示において、耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。
なお、本開示において、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。
本開示の化成処理においてバリア層3の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。
本開示において、耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。
本開示において、化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。
[熱融着性樹脂層4]
本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。
本開示において、熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
本開示において、ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
また、本開示において、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。
本開示において、酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。
本開示において、酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。
本開示において、好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。
本開示において、熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。
また、本開示において、熱融着性樹脂層4は、必要に応じて滑剤などを含んでいてもよい。熱融着性樹脂層4が滑剤を含む場合、蓄電デバイス用外装材の成形性を高め得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
本開示において、熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは10~50mg/m2程度、さらに好ましくは15~40mg/m2程度が挙げられる。
本開示において、熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。
また、本開示において、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度、さらに好ましくは30~40μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。
[接着層5]
本開示の蓄電デバイス用外装材において、接着層5は、バリア層3(又は耐腐食性皮膜)と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
第1の態様において、接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。また、接着層5と熱融着性樹脂層4とを強固に接着する観点から、接着層5の形成に使用される樹脂としてはポリオレフィン骨格を含んでいることが好ましく、前述の熱融着性樹脂層4で例示したポリオレフィン、酸変性ポリオレフィンが挙げられる。一方、バリア層3と接着層5とを強固に接着する観点から、接着層5は酸変性ポリオレフィンを含むことが好ましい。酸変性成分としては、マレイン酸、イタコン酸、コハク酸、アジピン酸などのジカルボン酸やこれらの無水物、アクリル酸、メタクリル酸などが挙げられるが、変性のし易さや汎用性などの点から無水マレイン酸が最も好ましい。また、蓄電デバイス用外装材の耐熱性の観点からは、オレフィン成分はポリプロピレン系樹脂であることが好ましく、接着層5は無水マレイン酸変性ポリプロピレンを含むことが最も好ましい。
第1の態様において、接着層5を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂が酸変性ポリオレフィンを含むことは、例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
さらに、第1の態様において、蓄電デバイス用外装材の耐熱性や耐内容物性などの耐久性や、厚みを薄くしつつ成形性を担保する観点からは、接着層5は酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。
また、第1の態様において、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層5は、ポリウレタン、ポリエステル、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリウレタン及びエポキシ樹脂を含むことがより好ましい。ポリエステルとしては、例えばエポキシ基と無水マレイン酸基の反応により生成するエステル樹脂、オキサゾリン基と無水マレイン酸基の反応で生成するアミドエステル樹脂が好ましい。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。
第2の態様において、接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。なお、接着層5の形成に使用される樹脂としては、ポリオレフィン骨格を含んでいることが好ましく、前述の熱融着性樹脂層4で例示したポリオレフィン、酸変性ポリオレフィンが挙げられる。接着層5を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
第2の態様において、バリア層3と熱融着性樹脂層4とを強固に接着する観点から、接着層5は、酸変性ポリオレフィンを含むことが好ましい。酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが特に好ましい。
さらに、第2の態様において、蓄電デバイス用外装材の厚みを薄くしつつ、成形後の形状安定性に優れた蓄電デバイス用外装材とする観点からは、接着層5は、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。
また、第2の態様において、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、第2の態様において、接着層5は、ポリウレタン、ポリエステル、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリウレタン及びエポキシ樹脂を含むことがより好ましい。ポリエステルとしては、例えばアミドエステル樹脂が好ましい。アミドエステル樹脂は、一般的にカルボキシル基とオキサゾリン基の反応で生成する。接着層5は、これらの樹脂のうち少なくとも1種と前記酸変性ポリオレフィンを含む樹脂組成物の硬化物であることがより好ましい。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。
また、本開示において、バリア層3と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。
本開示において、イソシアネート基を有する化合物としては、特に制限されないが、バリア層3と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビュレット体、イソシアヌレート体などが挙げられる。
本開示の接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
本開示において、オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。
本開示の接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
本開示において、エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、第1の開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。
本開示において、エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ビスフェノールF型グリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
本開示の接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
本開示において、ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層5は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。
本開示の接着層5における、ポリウレタンの割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、電解液などのバリア層の腐食を誘発する成分が存在する雰囲気における、バリア層3と接着層5との密着性を効果的に高めることができる。
なお、本開示において、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物は、それぞれ、硬化剤として機能する。
本開示において、接着層5には、カルボジイミド基を有する改質剤が含まれていてもよい。
第1の態様の接着層5の厚さは、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下である。また、接着層5の厚さは、好ましくは、約0.1μm以上、約0.5μm以上、約10μm以上、約30μm以上である。また、接着層5の厚さの範囲としては、好ましくは、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~20μm程度、30~50μm程度、30~40μm程度が挙げられる。より具体的には、接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤との硬化物である場合は、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度、さらに好ましくは30~40μm程度が挙げられる。なお、接着層5が接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。また、熱融着性樹脂層4で例示した樹脂を用いる場合、例えば、熱融着性樹脂層4と接着層5との押出成形により形成することができる。
第2の態様の接着層5の厚さは、上限については、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下が挙げられ、下限については、好ましくは、約0.1μm以上、約0.5μm以上が挙げられ、当該厚さの範囲としては、好ましくは、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度が挙げられる。より具体的には、接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤との硬化物である場合は、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度が挙げられる。なお、接着層5が接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。また、熱融着性樹脂層4で例示した樹脂を用いる場合、例えば、熱融着性樹脂層4と接着層5との押出成形により形成することができる。
[表面被覆層6]
第1の態様の蓄電デバイス用外装材は、意匠性、耐電解液性、耐傷性、成形性などの向上の少なくとも一つを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、表面被覆層6を備えていてもよい。表面被覆層6は、蓄電デバイス用外装材を用いて蓄電デバイスを組み立てた時に、蓄電デバイス用外装材の最外層側に位置する層である。
第1の態様の表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリウレタン、アクリル樹脂、エポキシ樹脂などの樹脂により形成することができる。
第1の態様の表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。
第1の態様において、2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタンが挙げられる。また、ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタンが挙げられる。ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタンが挙げられる。ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタンが挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。なお、脂肪族イソシアネート系化合物とは脂肪族基を有し芳香環を有さないイソシアネートを指し、脂環式イソシアネート系化合物とは脂環式炭化水素基を有するイソシアネートを指し、芳香族イソシアネート系化合物とは芳香環を有するイソシアネートを指す。表面被覆層6がポリウレタンにより形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与される。
第1の態様において、表面被覆層6は、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、前述した滑剤や、アンチブロッキング剤、艶消し剤、難燃剤、酸化防止剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤としては、例えば、平均粒子径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
第2の態様の蓄電デバイス用外装材は、意匠性、耐電解液性、耐傷性、成形性などの向上の少なくとも一つを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、表面被覆層6を備えていてもよい。表面被覆層6は、蓄電デバイス用外装材を用いて蓄電デバイスを組み立てた時に、蓄電デバイス用外装材の最外層側に位置する層である。蓄電デバイス用外装材10が表面被覆層を備えることにより、表面被覆層全体を外側から保護され、蓄電デバイス用外装材の破損や損傷をより一層好適に抑制でき、さらに、高温環境において損傷を受けにくいというさらに優れた効果をも好適に発揮し得る。
第2の態様において、表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリアミド、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。樹脂は、好ましくは硬化性樹脂である。すなわち、表面被覆層6は、硬化性樹脂を含む樹脂組成物の硬化物から構成されていることが好ましい。
第2の態様において、表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。
第2の態様において、2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタンが挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。表面被覆層6がポリウレタンにより形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与される。
第2の態様において、表面被覆層6は、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、前述した滑剤や、アンチブロッキング剤、艶消し剤、難燃剤、酸化防止剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤としては、例えば、平均粒子径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
本開示において、添加剤は、無機物及び有機物のいずれであってもよい。また、添加剤の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、鱗片状などが挙げられる。
本開示において、添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施してもよい。
本開示において、表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。
本開示において、表面被覆層6の厚みとしては、表面被覆層6としての上記の機能を発揮すれば特に制限されず、例えば0.5~10μm程度、好ましくは1~5μm程度が挙げられる。
3.蓄電デバイス用外装材の製造方法
第1の態様の蓄電デバイス用外装材の製造方法については、第1の態様の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、外側から順に、少なくとも、基材層と、バリア層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、基材層は、ポリエステルフィルム及びポリアミドフィルムを含んでおり、ポリエステルフィルムの厚みは、10μm以上14μm以下であり、ポリアミドフィルムの厚みは、18μm以上22μm以下である。
また、第2の態様の蓄電デバイス用外装材の製造方法については、第2の態様の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、外側から順に、少なくとも、基材層1、バリア層3、及び熱融着性樹脂層4がこの順となるように積層する工程を備える方法が挙げられる。具体的には、第2の態様の蓄電デバイス用外装材の製造方法は、外側から順に、少なくとも、基材層と、バリア層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、前記基材層はポリアミドフィルムを含んでおり、バリア層3はステンレス鋼を含んでおり、フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である。
本開示の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。
次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4をサーマルラミネート法、押出ラミネート法などの方法により積層すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層5を設ける場合には、例えば、(1)積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を押出しすることにより積層する方法(共押出しラミネート法、タンデムラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法や、積層体Aのバリア層3上に接着層5が積層した積層体を形成し、これを熱融着性樹脂層4とサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)、(4)積層体Aのバリア層3上に、接着層5を形成させるための接着剤を溶液コーティングし、乾燥させる方法や、さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4を積層する方法などが挙げられる。
次に、第1の態様において、基材層1のバリア層3とは反対側の表面に、必要に応じて、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂組成物を基材層1の表面に塗布し、硬化させることにより形成することができる。なお、第1の態様の基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。
第2の態様において、表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。
本開示においては、上記のようにして、外側から順に、必要に応じて設けられる表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/バリア層3/必要に応じて設けられる接着層5/熱融着性樹脂層4を備える積層体が形成されるが、必要に応じて設けられる接着剤層2及び接着層5の接着性を強固にするために、さらに、加熱処理に供してもよい。また、前記のとおり、基材層1とバリア層3との間に着色層を設けてもよい。
また、本開示の蓄電デバイス用外装材において、積層体を構成する各層には、必要に応じて、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施すことにより加工適性を向上させてもよい。例えば、基材層1のバリア層3とは反対側の表面にコロナ処理を施すことにより、基材層1表面へのインクの印刷適性を向上させることができる。
4.蓄電デバイス用外装材の用途
本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子を外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。2つの蓄電デバイス用外装材の熱融着性樹脂層同士を対向させて重ね合わせ、重ねられた蓄電デバイス用外装材の周縁部を熱融着して包装体を形成してもよく、また、図5に示す例のように、1つの蓄電デバイス用外装材を折り返して重ね合わせ、周縁部を熱融着して包装体を形成してもよい。折り返して重ね合わせる場合は、図5に示す例のように、折り返した辺以外の辺を熱融着して三方シールにより包装体を形成してもよいし、フランジ部が形成できるように折り返して四方シールしてもよい。また、蓄電デバイス用外装材には、蓄電デバイス素子を収容するための凹部が、深絞り成形または張出成形によって形成されてもよい。図5に示す例のように、一方の蓄電デバイス用外装材には凹部を設けて他方の蓄電デバイス用外装材には凹部を設けなくてもよいし、他方の蓄電デバイス用外装材にも凹部を設けてもよい。
本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池に使用される。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。
蓄電デバイスは、一般に、各種製品の筐体に両面テープや接着剤を介して固定される。すなわち、第2の態様の蓄電デバイス用外装材10は、各種製品の筐体に両面テープや接着剤を介して固定される。筐体の材質としては、製品の種類によって様々であり、例えばステンレス鋼、アルミニウム合金、ニッケル合金などの金属、ポリオレフィン、ポリアミド、ポリエステル、ポリイミド、ポリスチレンなどのプラスチック、ガラスなど多岐に亘る。
また、蓄電デバイスと筐体との接着強度は、例えば、蓄電デバイスを筐体から引き剥がすことが可能な程度に調整される。蓄電デバイスと筐体との剥離強度は、例えば、後述の(両面テープの剥離強度の測定)で測定されるステンレス鋼板に対する剥離強度が5~15N/7.5mm程度となるような両面テープを用いて固定されていることが好ましい。第2の態様の蓄電デバイス用外装材10は、筐体に対する剥離強度が5~15N/7.5mm程度となる両面テープで筐体に固定されている蓄電デバイスに対して、好適に使用することができる。
5.ポリアミドフィルム
第2の態様のポリアミドフィルムは、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成された蓄電デバイス用外装材の基材層に用いるためのポリアミドフィルムであって、バリア層はステンレス鋼を含んでおり、フーリエ変換赤外分光法のATR法により測定される結晶化指数が、1.50以上である。第2の態様の蓄電デバイス用外装材10の詳細については、前述の通りである。
第2の態様のポリアミドフィルムを蓄電デバイス用外装材の基材層1に用いることにより、蓄電デバイス用外装材10の基材層1のポリアミドフィルムについて、結晶化指数を好適に1.50以上に設定することができ、前述の引き剥がしの際に蓄電デバイス用外装材が破損することを効果的に抑制することができる。すなわち、前記の結晶化指数が予め1.50以上に調整された第2の態様のポリアミドフィルムを基材層1に用い、バリア層3、熱融着性樹脂層4などの各層と積層することによって、第2の態様の蓄電デバイス用外装材10を製造することが好ましい。前記の通り、蓄電デバイス用外装材10に適用される前のポリアミドフィルムよりも、蓄電デバイス用外装材10に積層されて基材層1に含まれるポリアミドフィルムの結晶化指数を高めることができる。具体的には、蓄電デバイス用外装材10の製造過程でポリアミドフィルムに熱を加えることにより、結晶化指数を高めることもできる。
第2の態様のポリアミドフィルムについて、結晶化指数を測定する方法は以下の通りである。
<ポリアミドフィルムの結晶化指数の測定>
ポリアミドフィルムを100mm×100mmの正方形に裁断してサンプルを作製する。得られたサンプルの表面をFT-IRのATR測定モードを用いて、温度25℃、相対湿度50%の環境下で赤外吸収スペクトル測定を実施する。装置としては、例えば、サーモフィッシャーサイエンティフィック株式会社製:Nicolet iS10が使用できる。得られた吸収スペクトルから、ナイロンのα晶の吸収に由来する1200cm-1付近のピーク強度Pと、結晶とは無関係の吸収に由来する1370cm-1付近のピーク強度Qを測定し、ピーク強度Qに対するピーク強度Pの強度比X=P/Qを結晶化指数として算出する。
(測定条件)
手法:マクロATR法
波数分解能:8cm-1
積算回数:32回
検出器:DTGS検出器
ATRプリズム:Ge
入射角:45°
ベースライン:吸収ピーク強度Y1200の低波数側の最初の谷と、吸収ピーク強度Y1370の高波数側の最初の谷の2点間を直線で結ぶことにより求める。図8の概略図を参照。図8において、横軸(波数)の右側が低波長側であり、左側が高波長側である。また、Mが付された位置が「吸収ピーク強度Y1200の低波数側の最初の谷」であり、Nが付された位置が「吸収ピーク強度Y1370の高波数側の最初の谷」である。
吸収ピーク強度Y1200:波数1195cm-1から1205cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
吸収ピーク強度Y1370:波数1365cm-1から1375cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
第2の態様のポリアミドフィルムにおいて、前記の結晶化指数は、1.50以上であればよいが、前述の引き剥がしの際に蓄電デバイス用外装材が破損することをより一層効果的に抑制する観点から、より好ましくは1.55以上、さらに好ましくは1.60以上、特に好ましくは1.65以上である。また、前記の結晶化指数の上限については、特に制限されないが、例えば2.50以下、1.80以下などが挙げられる。当該結晶化指数の好ましい範囲としては、例えば、1.50~2.50、1.55~2.50、1.60~2.50、1.65~2.50、1.50~1.80、1.55~1.80、1.60~1.80、1.65~1.80などが挙げられる。
第2の態様において、ポリアミドフィルムを形成するポリアミドの具体例としては、蓄電デバイス用外装材10の基材層1の項目で説明した通りである。ポリアミドフィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。
第2の態様において、ポリアミドフィルムは、特に二軸延伸ナイロンフィルムであることが好ましい。
第2の態様において、ポリアミドフィルムの厚みについては、前述の引き剥がしの際に蓄電デバイス用外装材が破損することをより一層効果的に抑制する観点から、好ましくは約3μm以上、より好ましくは約10μm以上であり、また、好ましくは約50μm以下、より好ましくは約35μm以下であり、好ましい範囲としては、3~50μm程度、3~35μm程度、10~50μm程度、10~35μm程度が挙げられ、これらの中でも10~35μm程度が特に好ましい。
第2の態様において、ポリアミドフィルムの表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。添加剤の詳細については、蓄電デバイス用外装材10の基材層1の項目で説明した通りである。
以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。
<第1の態様に係る蓄電デバイス用外装材の製造>
実施例1A-2A,5A-8A及び比較例1A-9A
基材層として、ポリエチレンテレフタレート(PET)フィルム(厚さ12μm)及び延伸ナイロン(ONy)フィルム(それぞれ、表1Aに記載の厚さと、結晶化指数を有するもの)を準備した。2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を用い、接着剤層の硬化後の厚みが3μmとなるようにして、PETフィルムとONyフィルムとを接着剤層を介して接着させた。また、バリア層として、アルミニウム箔(JIS H4160:1994 A8021H-O(それぞれ、表1Aに記載の厚さ(35μm又は40μm))を用意した。次に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を用い、接着剤層の硬化後の厚みが3μmとなるようにして、アルミニウム箔と基材層(ONyフィルム側)をドライラミネート法で積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。アルミニウム箔の両面には、化成処理が施してある。アルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、焼付けすることにより行った。
次に、上記で得られた各積層体のバリア層の上に、接着層及び熱融着性樹脂層を積層した。具体的には、接着層としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層としてのランダムポリプロピレンとを、それぞれ、表1Aに示される厚さとなるようにして、溶融共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層を積層させ、基材層/接着剤層/バリア層/接着層/熱融着性樹脂層が順に積層された蓄電デバイス用外装材を得た。
実施例3A,4A
実施例5A,6Aと同様にして、基材層/接着剤層/バリア層の積層体を作製した。次に、得られた各積層体のバリア層の上に、接着層及び熱融着性樹脂層を積層した。具体的には、バリア層の表面に2液硬化型接着剤(酸変性ポリプロピレンとエポキシ化合物)を塗布し、バリア層上に接着層(硬化後の厚み3μm)を形成した。さらに、接着層の上から、熱融着性樹脂層としての未延伸ポリプロピレンフィルム(CPP、表1Aに記載の厚み70μm)をドライラミネート法により積層した。次に、得られた積層体をエージングし、加熱することにより、基材層/接着剤層/バリア層/接着層/熱融着性樹脂層が順に積層された蓄電デバイス用外装材を得た。
<蓄電デバイス用外装材の基材層の結晶化指数の測定>
蓄電デバイス用外装材を100mm×100mmの正方形に裁断した。次に、以下の手順により、基材層からPETフィルムを切削(スライス加工)して、ONyフィルムの表面を露出させて、測定用サンプルを作製した。ポリアミドフィルムの表面の露出は、ウルトラミクロトーム(例えばライカ EM UC7、ライカマイクロシステムズ株式会社製)を用いて、測定用サンプルのポリエステルフィルムを水平にスライス加工し、ポリエステルフィルム、および接着剤層をおおよそ平行に削り取ることで行った。次に、得られた測定サンプルの外側に位置しているONyフィルムの表面をサーモフィッシャーサイエンティフィック株式会社製:Nicolet iS10 FT-IRのATR測定モードを用いて、温度25℃、相対湿度50%の環境下で赤外吸収スペクトル測定を実施した。得られた吸収スペクトルから、ナイロンのα晶の吸収に由来する1200cm-1付近のピーク強度Pと、結晶とは無関係の吸収に由来する1370cm-1付近のピーク強度Qを測定し、ピーク強度Qに対するピーク強度Pの強度比X=P/Qを結晶化指数として算出した。結果を表1Aに示す。
(測定条件)
手法:マクロATR法
波数分解能:8cm-1
積算回数:32回
検出器:DTGS検出器
ATRプリズム:Ge
入射角:45°
ベースライン:吸収ピーク強度Y1200の低波数側の最初の谷と、吸収ピーク強度Y1370の高波数側の最初の谷の2点間を直線で結ぶことにより求めた。図8の概略図を参照。図8において、横軸(波数)の右側が低波長側であり、左側が高波長側である。また、Mが付された位置が「吸収ピーク強度Y1200の低波数側の最初の谷」であり、Nが付された位置が「吸収ピーク強度Y1370の高波数側の最初の谷」である。
吸収ピーク強度Y1200:波数1195cm-1から1205cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
吸収ピーク強度Y1370:波数1365cm-1から1375cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
<延伸ナイロンフィルムの結晶化指数の測定>
蓄電デバイス用外装材の基材層に用いた延伸ナイロンフィルムを100mm×100mmの正方形に裁断してサンプルを作製した。得られたサンプルの延伸ナイロンフィルム表面をサーモフィッシャーサイエンティフィック株式会社製:Nicolet iS10 FT-IRのATR測定モードを用いて、温度25℃、相対湿度50%の環境下で赤外吸収スペクトル測定を実施した。得られた吸収スペクトルから、ナイロンのα晶の吸収に由来する1200cm-1付近のピーク強度Pと、結晶とは無関係の吸収に由来する1370cm-1付近のピーク強度Qを測定し、ピーク強度Qに対するピーク強度Pの強度比X=P/Qを結晶化指数として算出した。結果を表1Aに示す。
(測定条件)
手法:マクロATR法
波数分解能:8cm-1
積算回数:32回
検出器:DTGS検出器
ATRプリズム:Ge
入射角:45°
ベースライン:吸収ピーク強度Y1200の低波数側の最初の谷と、吸収ピーク強度Y1370の高波数側の最初の谷の2点間を直線で結ぶことにより求めた。図8の概略図を参照。図8において、横軸(波数)の右側が低波長側であり、左側が高波長側である。また、Mが付された位置が「吸収ピーク強度Y1200の低波数側の最初の谷」であり、Nが付された位置が「吸収ピーク強度Y1370の高波数側の最初の谷」である。
吸収ピーク強度Y1200:波数1195cm-1から1205cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
吸収ピーク強度Y1370:波数1365cm-1から1375cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
<成形によるカールの評価>
上記で得られた蓄電デバイス用外装材を裁断して、TD(Transverse Direction)150mm×MD(Machine Direction)90mmの短冊片を作製し、これを試験サンプルとした。31.6mm×54.5mmの矩形状の雄型(表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が1.6μmである。コーナーR2.0mm、稜線R1.0mm)とこの雄型とのクリアランスが0.3mmの雌型(表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである。コーナーR2.0mm、稜線R1.0mm)からなる金型を用い、雄型側に熱融着性樹脂層側が位置するように雌型上に上記試験サンプルを載置し、31.6mm(MD)×54.5mm(TD)、成形深さ5mmとなるように当該試験サンプルを0.9MPaの押え圧(面圧)で押えて、冷間成形(引き込み1段成形)した。成形を行った位置の詳細は、図6に示される通りである。図6に示されるように、矩形状の成形部Mと蓄電デバイス用外装材10の端部Pとの最短距離d=70.5mmとなる位置で成形した。成形部Mは、金型によって凹部が形成される位置を示している。次に、成形後の蓄電デバイス用外装材10を、図7に示すようにして水平面20におき、水平面20から端部Pまでの垂直方向yの距離の最大値tをカールしている部分(試験サンプルの4つの角のうちの最大高さを示した角)の最大高さとした。成形によるカールは、値が小さいほどカールが小さく、蓄電デバイス用外装材として優れている。成形カール(mm)は、最大値tの小数点第一位を四捨五入した値である。成形カールを以下の基準により評価した。結果を表1Aに示す。
A+:成形カールが0mm以上15mm未満である。成形カールが小さく、生産性をほとんど低下させない。
A:成形カールが15mm以上25mm未満である。成形カールはやや大きいが、生産性の低下は小さい。
B:成形カールが25mm以上35mm未満である。成形カールが大きく、生産性の低下が大きい。
C:成形カールが35mm以上である。成形カールが非常に大きく、生産性の低下が非常に大きい。
<成形性の評価>
蓄電デバイス用外装材を長さ(MD(Machine Direction)の方向)90mm×幅(TD(Transverse Direction)の方向)150mmの長方形に裁断して試験サンプルとした。このサンプルを31.6mm(MDの方向)×54.5mm(TDの方向)の口径を有する矩形状の成形金型(雌型、表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである。コーナーR2.0mm、稜線R1.0mm)と、これに対応した成形金型(雄型、表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が1.6μmである。コーナーR2.0mm、稜線R1.0mm)を用いて、押さえ圧(面圧)0.9MPaで5mmの成形深さから0.5mm単位で成形深さを変えて、それぞれ10個のサンプルについて冷間成形(引き込み1段成形)を行った。このとき、雄型側に熱融着性樹脂層側が位置するよう、雌型上に上記試験サンプルを載置して成形を行った。また、雄型及び雌型のクリアランスは、0.3mmとした。冷間成形後のサンプルについて、暗室の中にてペンライトで光を当てて、光の透過によって、アルミニウム合金箔にピンホールやクラックが生じているか否かを確認した。アルミニウム合金箔にピンホール、クラックが10個のサンプル全てにおいて発生しない最も深い成形深さをAmm、アルミニウム合金箔にピンホール等が発生した最も浅い成形深さにおいてピンホール等が発生したサンプルの数をB個とし、以下の式により算出される値を小数点以下2桁目で四捨五入し、蓄電デバイス用外装材の限界成形深さとした。基材層の厚みが20μmである場合と15μmである場合とに分けて、それぞれ、深さの基準を以下のように4段階で判定した。結果を表1Aに示す。
限界成形深さ=Amm+(0.5mm/10個)×(10個-B個)
A:限界成形深さが9.5mm以上
B:限界成形深さが8.0mm以上9.5mm未満
C:限界成形深さが6.5mm以上8.0mm未満
D:限界成形深さが6.5mm未満
<4つ折り試験>
上記で得られた蓄電デバイス用外装材を裁断して、TD(Transverse Direction)150mm×MD(Machine Direction)90mmの短冊片を作製し、これを試験サンプルとした。試験サンプルを4つ折りにする作業を10回行い、中心部分にピンホールが形成されるまでの回数を測定した。4つ折りする作業は、試験サンプルの短辺(MD方向の辺)同士が重なるようにTD方向の中心位置にて熱融着性樹脂層同士が重なるように2つ折りし、さらに、MD方向の中心位置にてTD方向の辺同士が重なるように2つ折りし、試験サンプルの中心位置が4つ折りになる操作を行い、4つ折りにする作業1回とした。さらに試験サンプルの4つ折りを開いて、同様の4つ折りにする作業と試験サンプルを開く作業を繰り返して試験を行った。試験サンプルの数はそれぞれ5個であり、中心部分にピンホールが形成されるまでの回数の平均値を求めた。なお、試験サンプルの数が足りず5個測定できない場合は測定可能な数を測定し、その平均値を求める。評価基準は以下の通りである。
A:中心部分にピンホールが形成されるまでの回数が7回以上である。
B:中心部分にピンホールが形成されるまでの回数が5回以上6回以下である。
C:中心部分にピンホールが形成されるまでの回数が2回以上4回以下である。
D:中心部分にピンホールが形成されるまでの回数が1回である。
Figure 0007060185000005
表1Aに示された積層構成の「/」は層の区切りを示しており、括弧内の数値は、各層の厚み(μm)を意味している。また、「PET」はポリエチレンテレフタレートフィルム、「DL」は2液型ウレタン接着剤を用いたドライラミネート法により形成された接着剤層、「ONy」は延伸ナイロンフィルム、「ALM」はアルミニウム合金箔、「PPa」は無水マレイン酸変性ポリプロピレンにより形成された接着層、「DL-PPa」は、2液硬化型接着剤(酸変性ポリプロピレンとエポキシ化合物)を用いたドライラミネート法により形成された接着層、「PP」はランダムポリプロピレンにより形成された熱融着性樹脂層、「CPP」は未延伸ポリプロピレンフィルムにより形成された熱融着性樹脂層を示している。
以上の通り、本開示は、以下に示す第1の態様の発明を提供する。
項1A. 外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
前記基材層は、ポリエステルフィルム及びポリアミドフィルムを含んでおり、
前記ポリエステルフィルムの厚みは、10μm以上14μm以下であり、
前記ポリアミドフィルムの厚みは、18μm以上22μm以下である、蓄電デバイス用外装材。
項2A. フーリエ変換赤外分光法のATR法により測定される、前記ポリアミドフィルムの結晶化指数が、1.50以上である、項1に記載の蓄電デバイス用外装材。
項3A. 前記バリア層の厚みは、31μm以上45μm以下である、項1A又は2Aに記載の蓄電デバイス用外装材。
項4A. 前記熱融着性樹脂層の厚みは、30μm以上40μm以下である、項1A~3Aのいずれか1項に記載の蓄電デバイス用外装材。
項5A. 前記バリア層と前記熱融着性樹脂層との間に、接着層を備えており、
前記接着層の厚みは、30μm以上40μm以下である、項1A~4Aのいずれか1項に記載の蓄電デバイス用外装材。
項6A. 前記積層体の厚みは、165μm以下である、項1A~5Aのいずれか1項に記載の蓄電デバイス用外装材。
項7A. 前記熱融着性樹脂層は、同一又は異なる樹脂によって2層以上で形成されている、項1A~6Aのいずれか1項に記載の蓄電デバイス用外装材。
項8A. 前記基材層の表面及び内部の少なくとも一方に、2種類以上の滑剤が存在している、項1A~7Aのいずれか1項に記載の蓄電デバイス用外装材。
項9A. 前記熱融着性樹脂層の表面及び内部の少なくとも一方に、2種類以上の滑剤が存在している、項1A~8Aのいずれか1項に記載の蓄電デバイス用外装材。
項10A. 前記バリア層の厚みが、45μm以上である、項1A~9Aのいずれか1項に記載の蓄電デバイス用外装材。
項11A. 外側から順に、少なくとも、基材層と、バリア層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、
前記基材層は、ポリエステルフィルム及びポリアミドフィルムを含んでおり、
前記ポリエステルフィルムの厚みは、10μm以上14μm以下であり、
前記ポリアミドフィルムの厚みは、18μm以上22μm以下である、
蓄電デバイス用外装材の製造方法。
項12A. 前記バリア層と前記熱融着性樹脂層との間に接着層を備えており、
前記接着層と前記熱融着性樹脂層とは、共押出により積層する、項11Aに記載の蓄電デバイス用外装材の製造方法。
項13A. 前記熱融着性樹脂層は、同一又は異なる樹脂によって2層以上で形成されている、項11A又は12Aに記載の蓄電デバイス用外装材の製造方法。
項14A. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1A~10Aのいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
<蓄電デバイス用外装材の製造>
[実施例1B]
基材層として、延伸ナイロン(ONy)フィルム(厚さ12μm)を準備した。また、バリア層として、ステンレス鋼箔(SUS304(厚さ20μm))を用意した。次に、接着剤(着色剤を含有する2液型ウレタン接着剤)を用いて、バリア層と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。ステンレス鋼箔の両面には、化成処理が施してある。ステンレス鋼箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりステンレス鋼箔の両面に塗布し、焼付けすることにより行った。
次に、上記で得られた積層体のバリア層と熱融着性樹脂層とを、接着層としての変性オレフィン系接着剤(硬化後の接着層の厚みは3μm)を用いてドライラミネート法で接着し、バリア層の上に接着層と熱融着性樹脂層とを積層した。熱融着性樹脂層としては、未延伸ポリプロピレンフィルム(厚さ23μm)を用いた。さらに、得られた積層体の基材層の表面に、下記の樹脂組成物1を厚さ3μmとなるように塗工し、温度40℃から100℃環境で3日間の形成条件で硬化させることにより、艶消し調の表面被覆層を形成して、外側から順に、表面被覆層(3μm)/基材層(厚さ12μm)/接着剤層(3μm)/バリア層(20μm)/接着層(3μm)/熱融着性樹脂層(23μm)が積層された積層体(総厚み64μm)からなる蓄電デバイス用外装材を得た。
[実施例2B]
基材層の表面に表面被覆層を設けなかったこと以外は、実施例1Bと同様にして、外側から順に、基材層(厚さ12μm)/接着剤層(3μm)/バリア層(20μm)/接着層(3μm)/熱融着性樹脂層(23μm)が積層された積層体(総厚み61μm)からなる蓄電デバイス用外装材を得た。
[実施例3B]
基材層として、実施例1B,2Bとは異なる結晶化指数の延伸ナイロン(ONy)フィルム(厚さ10μm)を用いたこと以外は、実施例1Bと同様にして、外側から順に、表面被覆層(3μm)/基材層(厚さ10μm)/接着剤層(3μm)/バリア層(20μm)/接着層(3μm)/熱融着性樹脂層(23μm)が積層された積層体(総厚み62μm)からなる蓄電デバイス用外装材を得た。
[実施例4B]
基材層として、実施例1B~3Bと異なる結晶化指数の延伸ナイロン(ONy)フィルム(厚さ25μm)を準備した。また、バリア層として、ステンレス鋼箔(SUS304(厚さ20μm))を用意した。次に、接着剤(2液型ウレタン接着剤)を用いて、バリア層と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。ステンレス鋼箔の両面には、化成処理が施してある。ステンレス鋼箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりステンレス鋼箔の両面に塗布し、焼付けすることにより行った。
次に、上記で得られた積層体のバリア層の上に、接着層(厚さ23μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ23μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層とを積層させて、エージングして、外側から順に、基材層(厚さ25μm)/接着剤層(3μm)/バリア層(20μm)/接着層(23μm)/熱融着性樹脂層(23μm)が積層された積層体(総厚94μm)を得た。
[比較例1B]
バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ40μm))を用いたこと以外は、実施例4Bと同様にして、基材層(厚さ25μm)/接着剤層(3μm)/バリア層(40μm)/接着層(23μm)/熱融着性樹脂層(23μm)が積層された積層体(総厚み114μm)を得た。なお、アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布
し、焼付けすることにより行った。
[比較例2B]
基材層として、比較例1とは異なる結晶化指数の延伸ナイロン(ONy)フィルム(厚さ25μm)を用いたこと以外は、比較例1と同様にして、基材層(厚さ25μm)/接着剤層(3μm)/バリア層(40μm)/接着層(23μm)/熱融着性樹脂層(23μm)が積層された積層体(総厚み114μm)を得た。
[比較例3B]
基材層として、比較例1,2とは異なる結晶化指数の延伸ナイロン(ONy)フィルム(厚さ25μm)を用いたこと以外は、比較例1と同様にして、基材層(厚さ25μm)/接着剤層(3μm)/バリア層(40μm)/接着層(23μm)/熱融着性樹脂層(23μm)が積層された積層体(総厚み114μm)を得た。
<蓄電デバイス用外装材の基材層の結晶化指数の測定>
蓄電デバイス用外装材を100mm×100mmの正方形に裁断してサンプルを作製した。得られたサンプルの外側に位置している延伸ナイロンフィルムの表面をサーモフィッシャーサイエンティフィック株式会社製:Nicolet iS10 FT-IRのATR測定モードを用いて、温度25℃、相対湿度50%の環境下で赤外吸収スペクトル測定を実施した。得られた吸収スペクトルから、ナイロンのα晶の吸収に由来する1200cm-1付近のピーク強度Pと、結晶とは無関係の吸収に由来する1370cm-1付近のピーク強度Qを測定し、ピーク強度Qに対するピーク強度Pの強度比X=P/Qを結晶化指数として算出した。実施例1B,3Bについては、表面被覆層を塗布する前に測定を行った。結果を表1Bに示す。
(測定条件)
手法:マクロATR法
波数分解能:8cm-1
積算回数:32回
検出器:DTGS検出器
ATRプリズム:Ge
入射角:45°
ベースライン:吸収ピーク強度Y1200の低波数側の最初の谷と、吸収ピーク強度Y1370の高波数側の最初の谷の2点間を直線で結ぶことにより求めた。図8の概略図を参照。図8において、横軸(波数)の右側が低波長側であり、左側が高波長側である。また、Mが付された位置が「吸収ピーク強度Y1200の低波数側の最初の谷」であり、Nが付された位置が「吸収ピーク強度Y1370の高波数側の最初の谷」である。
吸収ピーク強度Y1200:波数1195cm-1から1205cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
吸収ピーク強度Y1370:波数1365cm-1から1375cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
<延伸ナイロンフィルムの結晶化指数の測定>
蓄電デバイス用外装材の基材層に用いた延伸ナイロンフィルムを100mm×100mmの正方形に裁断してサンプルを作製した。得られたサンプルの表面をサーモフィッシャーサイエンティフィック株式会社製:Nicolet iS10 FT-IRのATR測定モードを用いて、温度25℃、相対湿度50%の環境下で赤外吸収スペクトル測定を実施した。得られた吸収スペクトルから、ナイロンのα晶の吸収に由来する1200cm-1付近のピーク強度Pと、結晶とは無関係の吸収に由来する1370cm-1付近のピーク強度Qを測定し、ピーク強度Qに対するピーク強度Pの強度比X=P/Qを結晶化指数として算出した。結果を表1Bに示す。
(測定条件)
手法:マクロATR法
波数分解能:8cm-1
積算回数:32回
検出器:DTGS検出器
ATRプリズム:Ge
入射角:45°
ベースライン:吸収ピーク強度Y1200の低波数側の最初の谷と、吸収ピーク強度Y1370の高波数側の最初の谷の2点間を直線で結ぶことにより求めた。図8の概略図を参照。図8において、横軸(波数)の右側が低波長側であり、左側が高波長側である。また、Mが付された位置が「吸収ピーク強度Y1200の低波数側の最初の谷」であり、Nが付された位置が「吸収ピーク強度Y1370の高波数側の最初の谷」である。
吸収ピーク強度Y1200:波数1195cm-1から1205cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
吸収ピーク強度Y1370:波数1365cm-1から1375cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
<110℃での耐損傷性の評価>
蓄電デバイス用外装材を、幅(TD:Transverse Direction)30mm×長さ(MD:Machine Direction)100mmの長方形に裁断して試験片とした。次に、実施例1B、実施例3Bにおいては表面被覆層が、実施例2B、実施例4B、比較例1B~3Bにおいては基材層が上側になるようにして、試験片を150mm四方の平らなガラス板の上に置き、熱融着性樹脂層がガラス板に密着するようにして、試験片の端部をテープで固定した。この状態で、試験片を110℃のオーブン内に10分間静置した。次に、試験片をオーブンから取り出して、以降の工程をすみやかに行った。実施例1B、実施例3Bの試験片の表面被覆層の上に、実施例2B、実施例4B、比較例1B~3Bの試験片の基材層の上に、定規を当て、先端を尖らせた鉛筆(鉛筆の芯の硬度が2Hであるものを使用)で実施例1B、実施例3Bの試験片の表面被覆層の表面を、実施例2B、実施例4B、比較例1B~3Bの試験片の基材層の表面を引っかいた。次に、試験片をガラス板から外し、熱融着性樹脂層側の表面を観察して、以下の基準により、110℃蓄電デバイス用外装材の耐損傷性を評価した。結果を表1Bに示す。
A:熱融着性樹脂層側に凸形状やくっきりした筋跡が確認されない。すなわち、熱融着性樹脂層側に凸形状及びくっきりした筋跡が共に確認されない。
B:熱融着性樹脂層側に僅かな凸形状が確認されるが、くっきりした筋跡は確認されない。
C:熱融着性樹脂層側に大きな凸形状や(及び/又は)くっきりした筋跡が確認される。
<30℃での耐損傷性の評価>
蓄電デバイス用外装材を、幅(TD:Transverse Direction)30mm×長さ(MD:Machine Direction)100mmの長方形に裁断して試験片とした。次に、実施例1B、実施例3Bにおいては表面被覆層が、実施例2B、実施例4B、比較例1B~3Bにおいては基材層が上側になるようにして、試験片を150mm四方の平らなガラス板の上に置き、熱融着性樹脂層がガラス板に密着するようにして、試験片の端部をテープで固定した。この状態で、試験片を30℃環境に置き、実施例1B、実施例3Bの試験片の表面被覆層の上に、実施例2B、実施例4B、比較例1B~3Bの試験片の基材層の上に、定規を当て、先端を尖らせた鉛筆(鉛筆の芯の硬度が2Hであるものを使用)で実施例1B、実施例3Bの試験片の表面被覆層の表面を、実施例2B、実施例4B、比較例1B~3Bの試験片の基材層の表面を引っかいた。次に、試験片をガラス板から外し、熱融着性樹脂層側の表面を観察して、以下の基準により、110℃蓄電デバイス用外装材の耐損傷性を評価した。結果を表1Bに示す。
A:熱融着性樹脂層側に凸形状やくっきりした筋跡が確認されない。すなわち、熱融着性樹脂層側に凸形状及びくっきりした筋跡が共に確認されない。
B:熱融着性樹脂層側に僅かな凸形状が確認されるが、くっきりした筋跡は確認されない。
C:熱融着性樹脂層側に大きな凸形状や(及び/又は)くっきりした筋跡が確認される。
<蓄電デバイスの引き剥がし試験>
蓄電デバイスの引き剥がし試験を以下の手順により行った。図9から図12を参照しながら、説明する。まず、蓄電デバイスの引き剥がし試験に用いるサンプルの作製手順を、図9を参照しながら説明する。図9aに示すように、蓄電デバイス用外装材を縦(MD)200mm、横(TD)90mmの矩形状に裁断する。次に、縦55mm(MD)×横32mm(TD)の口径の成型金型(雌型)とこれに対応した成型金型(雄型)を用いて、蓄電デバイス用外装材の短辺から15mm離れた位置に、熱融着性樹脂層側から5.0mmの深さに冷間成形し、凹部M(図9aの破線で囲まれた領域)を形成した。次に、長さ55mm、幅32mm、厚さ5mmのアクリル板を凹部Mに挿入した(図9b、c)。次に、凹部Mが内側になるようにして、成型後の蓄電デバイス用外装材を折り目Pの位置(凹部Mの短辺に沿った位置)でTD方向に2つ折りにした(図9d)。次に、凹部Mの周縁に沿うようにして、熱融着性樹脂層同士が重なり合っている部分をMD、TDに沿って3箇所ヒートシール(190℃、3秒、面圧1MPa)して、凹部Mを密封した(図9e)。図9eにおいて、着色された領域Sがヒートシールされている部分である。次に、図9fに示すように、凹部Mに沿うようにして、縦(MD)60mm、横(TD)37mmのサイズにトリミングして、蓄電デバイスの引き剥がし試験に用いるサンプル12を作製した。図10に、サンプル12の側面図(図10a)と平面図(図10b)を示す。
次に、図11の模式図に示すように、サンプル12の平面側の表面(凹部Mが形成されている面とは反対側の面)に、縦方向(MD)に沿って3本の両面テープ(幅7.5mm、長さ55mm)を両端と中央の位置に貼り付けた。なお、両面テープの被対象物への剥離強度については、後述の方法で測定した。
次に、両面テープを貼り付けたサンプル12を、ステンレス鋼板に貼り付けて、60℃環境で24時間養生した。なお、ステンレス鋼板は、蓄電デバイスを両面テープで固定する筐体を見立てたものである。次に、図12の模式図に示すようにして、金属ヘラを用いてサンプル12をステンレス鋼板から慎重に引き剥がし、引き剥がされたサンプル12の穴の有無を目視で確認し、それぞれ、サンプル3つずつについて、以下の基準に従って蓄電デバイスの引き剥がし試験の評価を行った。図12に示すように、蓄電デバイスの引き剥がしは、サンプル12の横方向(TD)から力を加えることで行った。結果を表1Bに示す。
A:3つ全てのサンプルに穴が開いていなかった。
B:1つ又は2つのサンプルに穴が開いていた。
C:3つ全てのサンプルに穴が開いていた。
Figure 0007060185000006
実施例1B~4Bの蓄電デバイス用外装材は、外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、基材層はポリアミドフィルムを含んでおり、バリア層はステンレス鋼を含んでおり、フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である。また、実施例1B~4Bの蓄電デバイス用外装材の基材層に用いたポリアミドフィルムは、フーリエ変換赤外分光法のATR法により測定される結晶化指数が、1.50以上である。実施例1B~4Bの蓄電デバイス用外装材は、両面テープなどで固定された蓄電デバイスを筐体から引き剥がす際に蓄電デバイス用外装材が破損することが効果的に抑制されていた。また、比較例1の蓄電デバイス用外装材についても、両面テープなどで固定された蓄電デバイスを筐体から引き剥がす際に蓄電デバイス用外装材が破損することが効果的に抑制されていた。一方、比較例2,3の蓄電デバイス用外装材は、実施例1B~4B及び比較例1と比較して、蓄電デバイス用外装材の破損が十分に抑制できなかった。
また、実施例1B~4Bの蓄電デバイス用外装材は、30℃環境において、芯の硬度が非常に硬い2Hの鉛筆を用いたにもかかわらず、熱融着性樹脂層側に凸形状やくっきりした筋跡が確認されず、損傷を受けにくいことが確認できた。一方、比較例1B~3Bの蓄電デバイス用外装材は、実施例1B~4Bと比較して、この損傷を受けやすかった。
さらに、実施例1B~4Bの蓄電デバイス用外装材は、110℃という高温環境においても、芯の硬度が非常に硬い2Hの鉛筆を用いたにもかかわらず、熱融着性樹脂層側に凸形状やくっきりした筋跡が確認されず、損傷を受けにくいことが確認できた。
蓄電デバイス用外装材の基材層について測定した結晶化指数と、延伸ナイロンフィルムについて測定した結晶化指数の値の相違は、蓄電デバイス用外装材のエージングによる影響と考えられる。比較例2B,3Bで用いた延伸ナイロンフィルムは、結晶化指数の値が実施例1B~4B及び比較例1Bよりも大幅に小さいが、蓄電デバイス用外装材の基材層とした後に測定された値は、延伸ナイロンフィルムの状態で測定された値よりもかなり大きくなっている。しかしながら、比較例2B,3Bにおいて、基材層の外側から測定されるポリアミドフィルムの結晶化指数は、蓄電デバイス用外装材のエージングでは1.50以上にまでは高められず、蓄電デバイスの引き剥がし試験評価は、実施例1B~4B及び比較例1Bよりも劣っていた。
なお、ポリアミドフィルムは吸湿性が高いことから、厚みが大きくなると湿熱環境での剥離が生じやすくなる。このため、湿熱環境での剥離を好適に抑制する観点からは、ポリアミドフィルムの厚みは薄いことが好ましく、例えば厚み25μmの延伸ナイロンフィルムを用いた実施例4Bよりも、厚み12μmの延伸ナイロンフィルムを用いた実施例1B,2B、厚み10μmの延伸ナイロンフィルムを用いた実施例3Bの方が、湿熱環境における剥離は生じにくいといえる。
(両面テープの剥離強度の測定)
実施例1B及び比較例1Bの蓄電デバイス用外装材(縦15mm×横70mm)と、<蓄電デバイスの引き剥がし試験>で用いた両面テープ(縦7.5mm×横60mm)と、アルミニウム箔(厚さ35μm×縦15mm×横150mm)と、固定用両面粘着テープ(縦5mm×横60mm)と、アクリル板(厚さ3mm×縦50mm×横70mm)とを用意した。まず、蓄電デバイス用外装材の延伸ナイロンフィルム側の表面(実施例1Bについては、延伸ナイロンフィルム上の表面被覆層の表面)と、両面テープの一方面とを貼り合わせ、さらに両面テープの他方面にアルミニウム箔を貼り合わせ、アルミニウム箔の上から、2kgのローラを一往復させて積層体Pを得た。また、アクリル板と、固定用両面粘着テープの一方面とを貼り合わせて積層体Qを得た。さらに、積層体Qの固定用両面粘着テープの他方面に、積層体Pの蓄電デバイス用外装材の熱融着性樹脂層表面を貼り合わせ、手で押さえつけることにより、アクリル板、固定用両面粘着テープ、蓄電デバイス用外装材、両面テープ、アルミニウム箔が順に積層された積層体Rを得、これを試験サンプルMとした。試験サンプルMを温度60℃環境で24時間保管した。次に、蓄電デバイス用外装材の延伸ナイロンフィルム表面と、両面テープの端部を1mm程度剥離させて、剥離強度を測定するきっかけ部分を設けた。次に、試験サンプルMのアクリル板を固定し、引張り試験機(島津製作所製、AG-Xplus(商品名))を用いて、引張角度180°、剥離速度300mm/min、剥離距離50mm以上の条件でアルミニウム箔を引張り、蓄電デバイス用外装材の延伸ナイロンフィルム表面と、両面テープの界面で(前記のきっかけ部分から)剥離させて、剥離距離10mm、20mm、30mm、40mmでの剥離強度と、10~40mm間の最大剥離強度の合計5つの剥離強度の平均を算出して剥離強度(延伸ナイロンフィルムに対する両面テープの剥離強度(N/7.5mm))とした。結果を表2Bに示す。
次に、<蓄電デバイスの引き剥がし試験>で用いた、ステンレス鋼板(厚さ3mm×縦50mm×横70mm)及び両面テープ(縦7.5mm×横60mm)、さらに前記のアルミニウム箔(厚さ35μm×縦15mm×横150mm)を用意した。ステンレス鋼板の表面と、両面テープの一方面とを貼り合わせ、さらに両面テープの他方面にアルミニウム箔を貼り合わせ、アルミニウム箔の上から、2kgのローラを一往復させて積層体を得、これを試験サンプルNとした。試験サンプルNを温度60℃環境で24時間保管した。次に、ステンレス鋼板表面と、両面テープの端部を1mm程度剥離させて、剥離強度を測定するきっかけ部分を設けた。次に、試験サンプルNのステンレス鋼板を固定し、引張り試験機(島津製作所製、AG-Xplus(商品名))を用いて、引張角度180°、剥離速度300mm/min、剥離距離50mm以上の条件でアルミニウム箔を引張り、ステンレス鋼板表面と、両面テープの界面で(前記のきっかけ部分から)剥離させて、剥離距離10mm、20mm、30mm、40mmでの剥離強度と、10~40mm間の最大剥離強度の合計5つの剥離強度の平均を算出して剥離強度(ステンレス鋼板に対する両面テープの剥離強度(N/7.5mm))とした。結果を表2Bに示す。
Figure 0007060185000007
表2Bに示される結果から明らかな通り、<蓄電デバイスの引き剥がし試験>に使用した両面テープの剥離強度は、延伸ナイロンフィルム、ステンレス鋼板に対して同程度のものであった。
以上のとおり、本開示は、以下に示す第2の態様の発明を提供する。
項1B. 外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
前記基材層は、ポリアミドフィルムを含んでおり、
前記バリア層は、ステンレス鋼を含んでおり、
フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である、蓄電デバイス用外装材。
項2B. 前記積層体の厚みが、100μm以下である、項1Bに記載の蓄電デバイス用外装材。
項3B. 前記基材層の厚みが、19μm以下である、項1B又は2Bに記載の蓄電デバイス用外装材。
項4B. 黒色である、項1B~3Bのいずれか1項に記載の蓄電デバイス用外装材。
項5B. 前記基材層と前記バリア層との間に、接着剤層を備えている、項1B~4Bのいずれか1項に記載の蓄電デバイス用外装材。
項6B. 前記接着剤層は、顔料を含んでいる、項5Bに記載の蓄電デバイス用外装材。
項7B. 前記基材層と前記熱融着性樹脂層との間に、着色層を有している、項1B~6Bのいずれか1項に記載の蓄電デバイス用外装材。
項8B. 前記バリア層と前記熱融着性樹脂層との間に、接着層を備えている、項1B~7Bのいずれか1項に記載の蓄電デバイス用外装材。
項9B. 前記熱融着性樹脂層は、同一又は異なる樹脂によって2層以上で形成されている、項1B~8Bのいずれか1項に記載の蓄電デバイス用外装材。
項10B. 前記基材層の表面及び内部の少なくとも一方に、2種類以上の滑剤が存在している、項1B~9Bのいずれか1項に記載の蓄電デバイス用外装材。
項11B. 前記熱融着性樹脂層の表面及び内部の少なくとも一方に、2種類以上の滑剤が存在している、項1B~10Bのいずれか1項に記載の蓄電デバイス用外装材。
項12B. 前記バリア層の厚みが、45μm以上である、項1B~11Bのいずれか1項に記載の蓄電デバイス用外装材。
項13B. 前記基材層の外側に、表面被覆層を備えている、項1B~12Bのいずれか1項に記載の蓄電デバイス用外装材。
項14B. 外側から順に、少なくとも、基材層と、バリア層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、
前記基材層は、ポリアミドフィルムを含んでおり、
前記バリア層は、ステンレス鋼を含んでおり、
フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である、蓄電デバイス用外装材の製造方法。
項15B. 前記バリア層と前記熱融着性樹脂層との間に接着層を備えており、
前記接着層と前記熱融着性樹脂層とは、共押出により積層する、項14Bに記載の蓄電デバイス用外装材の製造方法。
項16B. 前記熱融着性樹脂層は、同一又は異なる樹脂によって2層以上で形成されている、項14B又は項15Bに記載の蓄電デバイス用外装材の製造方法。
項17B. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1B~13Bのいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
項18B. 少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成された蓄電デバイス用外装材の前記基材層に用いるためのポリアミドフィルムであって、
前記バリア層は、ステンレス鋼を含んでおり、
前記ポリアミドフィルムは、フーリエ変換赤外分光法のATR法により測定される結晶化指数が、1.50以上である、ポリアミドフィルム。
1 基材層
2 接着剤層
3 バリア層
4 熱融着性樹脂層
5 接着層
6 表面被覆層
10 蓄電デバイス用外装材
12 サンプル
20 水平面

Claims (25)

  1. 外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
    前記基材層は、ポリエステルフィルム及びポリアミドフィルムを含んでおり、
    前記ポリエステルフィルムの厚みは、10μm以上14μm以下であり、
    前記ポリアミドフィルムの厚みは、18μm以上22μm以下である、蓄電デバイス用外装材。
  2. フーリエ変換赤外分光法のATR法により測定される、前記ポリアミドフィルムの結晶化指数が、1.50以上である、請求項1に記載の蓄電デバイス用外装材。
  3. 前記バリア層の厚みは、31μm以上45μm以下である、請求項1又は2に記載の蓄電デバイス用外装材。
  4. 前記熱融着性樹脂層の厚みは、30μm以上45μm以下である、請求項1~3のいずれか1項に記載の蓄電デバイス用外装材。
  5. 前記バリア層と前記熱融着性樹脂層との間に、接着層を備えており、
    前記接着層の厚みは、30μm以上50μm以下である、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。
  6. 前記積層体の厚みは、165μm以下である、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材。
  7. 外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
    前記基材層は、ポリアミドフィルムを含んでおり、
    前記バリア層は、ステンレス鋼を含んでおり、
    フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である、蓄電デバイス用外装材。
  8. 前記積層体の厚みが、100μm以下である、請求項7に記載の蓄電デバイス用外装材。
  9. 前記基材層の厚みが、19μm以下である、請求項7又は8に記載の蓄電デバイス用外装材。
  10. 黒色である、請求項7~9のいずれか1項に記載の蓄電デバイス用外装材。
  11. 前記基材層と前記バリア層との間に、接着剤層を備えている、請求項7~10のいずれか1項に記載の蓄電デバイス用外装材。
  12. 前記接着剤層は、顔料を含んでいる、請求項11に記載の蓄電デバイス用外装材。
  13. 前記基材層と前記熱融着性樹脂層との間に、着色層を有している、請求項7~12のいずれか1項に記載の蓄電デバイス用外装材。
  14. 前記バリア層と前記熱融着性樹脂層との間に、接着層を備えている、請求項7~13のいずれか1項に記載の蓄電デバイス用外装材。
  15. 前記基材層の外側に、表面被覆層を備えている、請求項7~14のいずれか1項に記載の蓄電デバイス用外装材。
  16. 前記熱融着性樹脂層は、同一又は異なる樹脂によって2層以上で形成されている、請求項1~15のいずれか1項に記載の蓄電デバイス用外装材。
  17. 前記基材層の表面及び内部の少なくとも一方に、2種類以上の滑剤が存在している、請求項1~16のいずれか1項に記載の蓄電デバイス用外装材。
  18. 前記熱融着性樹脂層の表面及び内部の少なくとも一方に、2種類以上の滑剤が存在している、請求項1~17のいずれか1項に記載の蓄電デバイス用外装材。
  19. 前記バリア層の厚みが、45μm以上である、請求項1~18のいずれか1項に記載の蓄電デバイス用外装材。
  20. 外側から順に、少なくとも、基材層と、バリア層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、
    前記基材層は、ポリエステルフィルム及びポリアミドフィルムを含んでおり、
    前記ポリエステルフィルムの厚みは、10μm以上14μm以下であり、
    前記ポリアミドフィルムの厚みは、18μm以上22μm以下である、
    蓄電デバイス用外装材の製造方法。
  21. 外側から順に、少なくとも、基材層と、バリア層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、
    前記基材層は、ポリアミドフィルムを含んでおり、
    前記バリア層は、ステンレス鋼を含んでおり、
    フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である、蓄電デバイス用外装材の製造方法。
  22. 前記バリア層と前記熱融着性樹脂層との間に接着層を備えており、
    前記接着層と前記熱融着性樹脂層とは、共押出により積層する、請求項20又は21に記載の蓄電デバイス用外装材の製造方法。
  23. 前記熱融着性樹脂層は、同一又は異なる樹脂によって2層以上で形成されている、請求項20~22のいずれか1項に記載の蓄電デバイス用外装材の製造方法。
  24. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、請求項1~19のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
  25. 少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成された蓄電デバイス用外装材の前記基材層に用いるためのポリアミドフィルムであって、
    前記バリア層は、ステンレス鋼を含んでおり、
    前記ポリアミドフィルムは、フーリエ変換赤外分光法のATR法により測定される結晶化指数が、1.50以上である、ポリアミドフィルム。
JP2022511047A 2020-11-25 2021-11-24 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス Active JP7060185B1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2020195305 2020-11-25
JP2020195304 2020-11-25
JP2020195304 2020-11-25
JP2020195305 2020-11-25
PCT/JP2021/043054 WO2022114024A1 (ja) 2020-11-25 2021-11-24 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス

Publications (3)

Publication Number Publication Date
JP7060185B1 true JP7060185B1 (ja) 2022-04-26
JPWO2022114024A1 JPWO2022114024A1 (ja) 2022-06-02
JPWO2022114024A5 JPWO2022114024A5 (ja) 2022-11-08

Family

ID=81387423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022511047A Active JP7060185B1 (ja) 2020-11-25 2021-11-24 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス

Country Status (2)

Country Link
US (1) US20230344041A1 (ja)
JP (1) JP7060185B1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056824A (ja) * 2000-08-10 2002-02-22 Dainippon Printing Co Ltd 電池用積層フィルムおよびそれを用いた電池用容器
JP2012033394A (ja) * 2010-07-30 2012-02-16 Fujimori Kogyo Co Ltd 電池外装用積層体
JP2012203983A (ja) * 2011-03-23 2012-10-22 Toppan Printing Co Ltd リチウムイオン電池用外装材
JP2020187976A (ja) * 2019-05-17 2020-11-19 大日本印刷株式会社 蓄電デバイス用外装材、その製造方法、蓄電デバイス、及びポリアミドフィルム
WO2020235534A1 (ja) * 2019-05-17 2020-11-26 大日本印刷株式会社 蓄電デバイス用外装材、その製造方法、蓄電デバイス、及びポリアミドフィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056824A (ja) * 2000-08-10 2002-02-22 Dainippon Printing Co Ltd 電池用積層フィルムおよびそれを用いた電池用容器
JP2012033394A (ja) * 2010-07-30 2012-02-16 Fujimori Kogyo Co Ltd 電池外装用積層体
JP2012203983A (ja) * 2011-03-23 2012-10-22 Toppan Printing Co Ltd リチウムイオン電池用外装材
JP2020187976A (ja) * 2019-05-17 2020-11-19 大日本印刷株式会社 蓄電デバイス用外装材、その製造方法、蓄電デバイス、及びポリアミドフィルム
WO2020235534A1 (ja) * 2019-05-17 2020-11-26 大日本印刷株式会社 蓄電デバイス用外装材、その製造方法、蓄電デバイス、及びポリアミドフィルム

Also Published As

Publication number Publication date
JPWO2022114024A1 (ja) 2022-06-02
US20230344041A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
JP7298765B2 (ja) 電池用包装材料、その製造方法、電池、及びポリエステルフィルム
JP6566133B2 (ja) 電池用包装材料、その製造方法、電池、及びポリエステルフィルム
JP6809657B1 (ja) 蓄電デバイス用外装材、その製造方法、蓄電デバイス、及びポリアミドフィルム
JP6996499B2 (ja) 電池用包装材料、その製造方法、電池及びその製造方法
JP6690800B1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2020085462A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2020204186A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7414004B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7234794B2 (ja) 蓄電デバイス用外装材、その製造方法、蓄電デバイス、及びポリアミドフィルム
JP6989071B1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7036290B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7060185B1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2022114024A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2021157673A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7024935B1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2021162059A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2021215538A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7055904B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7118038B2 (ja) 蓄電デバイス用外装材、蓄電デバイス、及びこれらの製造方法
WO2020204185A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2023022086A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP2021026858A (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220218

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7060185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150