JP7057655B2 - Measuring equipment, lithography equipment, manufacturing method of goods, and measuring method - Google Patents

Measuring equipment, lithography equipment, manufacturing method of goods, and measuring method Download PDF

Info

Publication number
JP7057655B2
JP7057655B2 JP2017241120A JP2017241120A JP7057655B2 JP 7057655 B2 JP7057655 B2 JP 7057655B2 JP 2017241120 A JP2017241120 A JP 2017241120A JP 2017241120 A JP2017241120 A JP 2017241120A JP 7057655 B2 JP7057655 B2 JP 7057655B2
Authority
JP
Japan
Prior art keywords
substrate
light
intensity
intensity distribution
end portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017241120A
Other languages
Japanese (ja)
Other versions
JP2019109311A (en
Inventor
浩平 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017241120A priority Critical patent/JP7057655B2/en
Priority to KR1020180155653A priority patent/KR102395738B1/en
Priority to CN201811506973.7A priority patent/CN109932876B/en
Publication of JP2019109311A publication Critical patent/JP2019109311A/en
Application granted granted Critical
Publication of JP7057655B2 publication Critical patent/JP7057655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7065Production of alignment light, e.g. light source, control of coherence, polarization, pulse length, wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7007Alignment other than original with workpiece
    • G03F9/7011Pre-exposure scan; original with original holder alignment; Prealignment, i.e. workpiece with workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection

Description

本発明は、基板のエッジ位置を計測する計測装置、それを含むリソグラフィ装置、物品の製造方法、および計測方法に関する。 The present invention relates to a measuring device for measuring the edge position of a substrate, a lithography device including the measuring device, a method for manufacturing an article, and a measuring method.

FPD(Flat Panel Display)や半導体デバイスなどの製造には、ガラスプレートやウェハなどの基板にパターンを形成するリソグラフィ装置が用いられる。このようなリソグラフィ装置では、基板に形成されたマークの位置の検出結果に基づいて基板を高精度に位置決めする前に、ステージによって保持された基板のエッジ位置を計測して基板の位置を把握する、いわゆるプリアライメントが行われる。 In the manufacture of FPDs (Flat Panel Display) and semiconductor devices, lithography equipment that forms patterns on substrates such as glass plates and wafers is used. In such a lithography device, the edge position of the substrate held by the stage is measured to grasp the position of the substrate before the substrate is positioned with high accuracy based on the detection result of the position of the mark formed on the substrate. , So-called prealignment is performed.

基板のエッジ位置を計測する計測装置としては、例えば、基板の端部に光を照射して基板のエッジ位置を計測する光学式の計測装置がある。特許文献1には、ステージによって保持された基板の側方から該基板の端部に光を照射し、該基板の端部で反射された光を検出部で検出することによって基板のエッジ位置を計測する、いわゆる反射光方式の計測装置が開示されている。 As a measuring device for measuring the edge position of the substrate, for example, there is an optical measuring device that measures the edge position of the substrate by irradiating the end portion of the substrate with light. In Patent Document 1, the edge position of the substrate is determined by irradiating the edge of the substrate with light from the side of the substrate held by the stage and detecting the light reflected by the edge of the substrate with the detection unit. A so-called reflected light type measuring device for measuring is disclosed.

特開2017-116868号公報Japanese Unexamined Patent Publication No. 2017-116868

反射光方式の計測装置では、基板の端部で反射された光に加えて、リソグラフィ装置内の構造物などで反射(散乱)された迷光も検出部で検出されることがある。このような迷光が検出部で検出されると、検出部での検出結果に基づいて基板のエッジ位置を精度よく決定することが困難になりうる。 In the reflected light type measuring device, in addition to the light reflected at the edge of the substrate, the stray light reflected (scattered) by the structure in the lithography device may be detected by the detection unit. When such stray light is detected by the detection unit, it may be difficult to accurately determine the edge position of the substrate based on the detection result by the detection unit.

そこで、本発明は、基板のエッジ位置を精度よく計測するために有利な計測装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an advantageous measuring device for accurately measuring the edge position of the substrate.

上記目的を達成するために、本発明の一側面としての計測装置は、基板のエッジ位置を計測する計測装置であって、第1光量で前記基板の端部に光を照射して前記端部で反射された光の第1強度分布と、前記第1光量とは異なる第2光量で前記端部に光を照射して前記端部で反射された光の第2強度分布とを検出する検出部と、強度分布上の位置が互いに対応する前記第1強度分布のピーク信号と前記第2強度分布のピーク信号とをそれぞれ含む複数の組のうち、前記第1強度分布のピーク信号の強度と前記第2強度分布のピーク信号の強度とが共に許容範囲内にある組を選択し、選択した組のピーク信号に基づいて前記基板のエッジ位置を決定する処理部と、を含み、前記処理部は、基板端部の面取量が規格下限値である場合に該基板端部からの反射光の強度が目標強度になるように前記第1光量を設定し、基板端部の面取量が規格上限値である場合に該基板端部からの反射光の強度が前記目標強度になるように前記第2光量を設定する、ことを特徴とする。 In order to achieve the above object, the measuring device as one aspect of the present invention is a measuring device that measures the edge position of the substrate, and irradiates the end portion of the substrate with the first amount of light to irradiate the end portion. Detection to detect the first intensity distribution of the light reflected by the above and the second intensity distribution of the light reflected by the end portion by irradiating the end portion with the second light amount different from the first light amount. Of the plurality of sets including the peak signal of the first intensity distribution and the peak signal of the second intensity distribution whose positions on the intensity distribution correspond to each other, the intensity of the peak signal of the first intensity distribution The processing includes a processing unit that selects a set in which the intensity of the peak signal of the second intensity distribution is within an allowable range and determines the edge position of the substrate based on the peak signal of the selected set. The unit sets the first light amount so that the intensity of the reflected light from the substrate end becomes the target intensity when the chamfering amount of the substrate end is the standard lower limit value, and the chamfering amount of the substrate end is set. The second light amount is set so that the intensity of the reflected light from the end portion of the substrate becomes the target intensity when is the standard upper limit value .

本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。 Further objects or other aspects of the invention will be manifested in the preferred embodiments described below with reference to the accompanying drawings.

本発明によれば、例えば、基板のエッジ位置を精度よく計測するために有利な計測装置を提供することができる。 According to the present invention, for example, it is possible to provide an advantageous measuring device for accurately measuring the edge position of a substrate.

第1実施形態の露光装置を示す概略図である。It is a schematic diagram which shows the exposure apparatus of 1st Embodiment. 複数の計測部の配置を示す図である。It is a figure which shows the arrangement of a plurality of measurement units. 計測部の構成を示す図である。It is a figure which shows the structure of the measuring part. 計測部の構成を示す図である。It is a figure which shows the structure of the measuring part. 基板のエッジ位置の計測方法を示すフローチャートである。It is a flowchart which shows the measurement method of the edge position of a substrate. 基板のエッジ位置の計測方法を示すフローチャートである。It is a flowchart which shows the measurement method of the edge position of a substrate. 基板端部の面取量と目標光量との関係を示す情報の一例を示す図である。It is a figure which shows an example of the information which shows the relationship between the chamfering amount of the substrate edge, and the target light amount. 第1光量と第2光量とで基板の端部に光を照射したときの光強度分布を示す図である。It is a figure which shows the light intensity distribution at the time of irradiating the edge portion of a substrate with a 1st light amount and a 2nd light amount. 検出部で得られた光強度分布を示す図である。It is a figure which shows the light intensity distribution obtained by the detection part.

以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材ないし要素については同一の参照番号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In each figure, the same member or element is given the same reference number, and duplicate description is omitted.

以下の実施形態では、リソグラフィ装置として、基板を露光する露光装置を例示して説明するが、それに限られるものではない。例えば、モールドを用いて基板上にインプリント材のパターンを形成するインプリント装置や、荷電粒子線(ビーム)を基板に照射して該基板にパターンを形成する描画装置などのリソグラフィ装置においても、本発明を適用することができる。ここで、リソグラフィ装置は、光またはビームを基板に照射して該基板にパターンを形成する形成部を含む。露光装置では、光を用いてマスクのパターン像を基板に投影する投影光学系が形成部に相当しうる。インプリント装置では、モールドを保持し且つモールドを介して基板上のインプリント材に光を照射するインプリントヘッドが形成部に相当しうる。また、描画装置では、基板に荷電粒子線を照射する鏡筒が形成部に相当しうる。 In the following embodiments, as the lithography apparatus, an exposure apparatus that exposes a substrate will be described as an example, but the present invention is not limited thereto. For example, in a lithography device such as an imprint device that forms a pattern of an imprint material on a substrate using a mold, or a drawing device that irradiates a substrate with a charged particle beam (beam) to form a pattern on the substrate. The present invention can be applied. Here, the lithography apparatus includes a forming portion that irradiates a substrate with light or a beam to form a pattern on the substrate. In the exposure apparatus, a projection optical system that projects a mask pattern image onto a substrate using light can correspond to a forming portion. In the imprint apparatus, the imprint head that holds the mold and irradiates the imprint material on the substrate with light through the mold can correspond to the forming portion. Further, in the drawing apparatus, a lens barrel that irradiates a substrate with a charged particle beam can correspond to a forming portion.

<第1実施形態>
本発明に係る第1実施形態の露光装置100について、図1を参照しながら説明する。図1は、第1実施形態の露光装置100を示す概略図である。露光装置100は、例えば、マスクステージ2と、照明光学系3と、投影光学系4と、基板ステージ6(ステージ)と、複数の計測部7(計測装置)と、制御部8とを含み、FPD用ガラス基板などの基板5を露光して該基板上にパターン(潜像)を形成する。制御部8は、例えばCPUやメモリを有するコンピュータによって構成され、露光装置100の各部を制御する(基板5を露光する処理を制御する)。また、露光装置100は、露光性能に関する特性を計測する各種センサなどを有する機構12を含む。機構12は、例えば、基板5の表面位置を計測するフォーカスセンサや基板上のマークを検出(観察)するオフアクシススコープなどを有し、投影光学系4に固定された支持部材13によって支持されうる。
<First Embodiment>
The exposure apparatus 100 of the first embodiment according to the present invention will be described with reference to FIG. FIG. 1 is a schematic view showing the exposure apparatus 100 of the first embodiment. The exposure device 100 includes, for example, a mask stage 2, an illumination optical system 3, a projection optical system 4, a substrate stage 6 (stage), a plurality of measurement units 7 (measurement devices), and a control unit 8. A substrate 5 such as an FPD glass substrate is exposed to form a pattern (latent image) on the substrate. The control unit 8 is composed of, for example, a computer having a CPU and a memory, and controls each unit of the exposure apparatus 100 (controls the process of exposing the substrate 5). Further, the exposure apparatus 100 includes a mechanism 12 having various sensors for measuring characteristics related to exposure performance. The mechanism 12 has, for example, a focus sensor for measuring the surface position of the substrate 5, an off-axis scope for detecting (observing) marks on the substrate, and can be supported by a support member 13 fixed to the projection optical system 4. ..

ここで、以下の説明では、投影光学系4から射出された光の光軸と平行な方向をZ方向とし、該光軸に垂直かつ互いに直交する2つの方向をX方向およびY方向とする。即ち、基板ステージにより保持された基板の上面と平行かつ互いに直交する2つの方向をX方向およびY方向とする。 Here, in the following description, the direction parallel to the optical axis of the light emitted from the projection optical system 4 is defined as the Z direction, and the two directions perpendicular to the optical axis and orthogonal to each other are defined as the X direction and the Y direction. That is, the two directions parallel to the upper surface of the substrate held by the substrate stage and orthogonal to each other are the X direction and the Y direction.

照明光学系3は、光源(不図示)から射出された光を用いて、マスクステージ2によって保持されたマスク1を照明する。投影光学系4は、所定の倍率を有し、マスク1に形成されたパターンを基板5に投影する。マスク1および基板5は、マスクステージ2および基板ステージ6によってそれぞれ保持されており、投影光学系4を介して光学的にほぼ共役な位置(投影光学系4の物体面および像面)に配置される。 The illumination optical system 3 uses light emitted from a light source (not shown) to illuminate the mask 1 held by the mask stage 2. The projection optical system 4 has a predetermined magnification and projects the pattern formed on the mask 1 onto the substrate 5. The mask 1 and the substrate 5 are held by the mask stage 2 and the substrate stage 6, respectively, and are arranged at positions (object planes and image planes of the projection optical system 4) that are optically coupled to each other via the projection optical system 4. The optics.

基板ステージ6は、基板5の端部が露出するように基板5を保持し、投影光学系4(形成部)の下方を移動可能に構成される。具体的には、基板ステージ6は、真空チャックなどにより基板5を保持するチャック6aと、チャック6a(基板5)を駆動する駆動部6bとを有する。チャック6aは、基板5の端部がチャック6aから露出するように(即ち、基板5の端部がチャック6aからはみ出す(突出する)ように)基板5の中央部を保持する。駆動部6bは、チャック6a(基板5)をXY方向に駆動するように構成されうるが、それに限られず、例えばZ方向やθ方向(Z軸周りの回転方向)などにチャック6a(基板5)を駆動するように構成されてもよい。 The substrate stage 6 holds the substrate 5 so that the end portion of the substrate 5 is exposed, and is configured to be movable below the projection optical system 4 (forming portion). Specifically, the substrate stage 6 has a chuck 6a for holding the substrate 5 by a vacuum chuck or the like, and a drive unit 6b for driving the chuck 6a (substrate 5). The chuck 6a holds the central portion of the substrate 5 so that the end portion of the substrate 5 is exposed from the chuck 6a (that is, the end portion of the substrate 5 protrudes (projects) from the chuck 6a). The drive unit 6b may be configured to drive the chuck 6a (board 5) in the XY directions, but is not limited to this, for example, in the Z direction or the θ direction (rotational direction around the Z axis), the chuck 6a (board 5). May be configured to drive.

また、基板ステージ6の位置は、位置検出部9によって検出される。位置検出部9は、例えばレーザ干渉計を含み、基板ステージ6に設けられた反射板6cにレーザ光を照射し、反射板6cで反射されたレーザ光に基づいて基板ステージ6の基準位置からの変位を求める。これにより、位置検出部9は、基板ステージ6の位置を検出することができ、制御部8は、位置検出部9による検出結果に基づいて、基板ステージ6の位置を制御することができる。 Further, the position of the substrate stage 6 is detected by the position detection unit 9. The position detection unit 9 includes, for example, a laser interferometer, irradiates the reflector 6c provided on the substrate stage 6 with laser light, and based on the laser light reflected by the reflector 6c, from the reference position of the substrate stage 6. Find the displacement. As a result, the position detection unit 9 can detect the position of the substrate stage 6, and the control unit 8 can control the position of the substrate stage 6 based on the detection result by the position detection unit 9.

複数の計測部7は、基板ステージ6にそれぞれ設けられ、基板ステージ6によって保持された基板5の位置を把握するため(例えば、基板ステージ6に対する基板5の位置を把握するため)に用いられうる。複数の計測部7はそれぞれ、基板5の端部に光を照射し、該端部5で反射された光を検出した結果に基づいて基板5のエッジ位置を計測する。 Each of the plurality of measuring units 7 is provided on the substrate stage 6 and can be used to grasp the position of the substrate 5 held by the substrate stage 6 (for example, to grasp the position of the substrate 5 with respect to the substrate stage 6). .. Each of the plurality of measuring units 7 irradiates the end portion of the substrate 5 with light, and measures the edge position of the substrate 5 based on the result of detecting the light reflected by the end portion 5.

複数の計測部7は、XY方向およびθ方向における基板5の位置(例えば、基板自体の位置)を求めることができるように、基板5の端部における互いに異なる箇所のエッジ位置を計測するように配置されることが好ましい。例えば、図2に示すように、計測部7aが、基板5のY方向側のエッジ位置を計測するように配置され、計測部7bおよび7cが、基板5のX方向側における互いに異なるエッジ位置を計測するように配置されうる。図2は、基板5を保持した状態の基板ステージ6(チャック6a)を上方(Z方向)から見た図である。このように複数(3つ)の計測部7を配置することにより、XY方向およびθ方向の基板5の位置を求めることができる。ここで、本実施形態では、各計測部7が基板ステージ6のチャック6aによって支持されているが、それに限られるものではなく、例えば各計測部7が基板ステージ6の駆動部6bによって支持されていてもよい。即ち、各計測部7は、基板ステージ6に設けられていればよい。 The plurality of measuring units 7 may measure edge positions at different points on the edge of the substrate 5 so that the positions of the substrate 5 in the XY and θ directions (for example, the positions of the substrate itself) can be obtained. It is preferable to be arranged. For example, as shown in FIG. 2, the measuring unit 7a is arranged so as to measure the edge position on the Y direction side of the substrate 5, and the measuring units 7b and 7c have different edge positions on the X direction side of the substrate 5. Can be arranged to measure. FIG. 2 is a view of the substrate stage 6 (chuck 6a) holding the substrate 5 as viewed from above (Z direction). By arranging the plurality (three) measuring units 7 in this way, the positions of the substrate 5 in the XY direction and the θ direction can be obtained. Here, in the present embodiment, each measurement unit 7 is supported by the chuck 6a of the substrate stage 6, but the present invention is not limited to this, and for example, each measurement unit 7 is supported by the drive unit 6b of the substrate stage 6. You may. That is, each measurement unit 7 may be provided on the substrate stage 6.

次に、計測部7の構成について、図3を参照しながら説明する。図3は、計測部7の構成を示す図であり、一例として、基板5のY方向側のエッジ位置を計測する計測部7aの構成を示している。計測部7は、基板5の端部5aに光10aを照射して該端部5aで反射された光の強度分布(以下では、光強度分布と言うことがある)を検出する検出部70と、該検出部70で得られた光強度分布に基づいて基板のエッジ位置を決定する処理部73とを含みうる。検出部70は、例えば、基板5の端部5aに光を照射する照射部71と、端部5aで反射された光を受光する受光部72とを含みうる。 Next, the configuration of the measuring unit 7 will be described with reference to FIG. FIG. 3 is a diagram showing the configuration of the measuring unit 7, and as an example, shows the configuration of the measuring unit 7a for measuring the edge position on the Y direction side of the substrate 5. The measuring unit 7 is a detection unit 70 that irradiates the end portion 5a of the substrate 5 with light 10a and detects the intensity distribution of the light reflected by the end portion 5a (hereinafter, may be referred to as a light intensity distribution). , The processing unit 73 that determines the edge position of the substrate based on the light intensity distribution obtained by the detection unit 70 may be included. The detection unit 70 may include, for example, an irradiation unit 71 that irradiates the end portion 5a of the substrate 5 with light, and a light receiving unit 72 that receives the light reflected by the end portion 5a.

照射部71は、基板ステージ6(チャック6a)によって保持された基板5の側方から該基板5の端部5aに光10aを照射する。照射部71は、例えば、光源71aから射出された例えば500~1200nm程度の波長の光10aを、ミラー71bで反射させて、基板5の側方から基板5の端部5aを照射する。光源71aとしては、例えば半導体レーザやLED等が用いられうるが、コストの観点からはLEDが用いられることが好ましい。 The irradiation unit 71 irradiates the end portion 5a of the substrate 5 with light 10a from the side of the substrate 5 held by the substrate stage 6 (chuck 6a). The irradiation unit 71 reflects, for example, light 10a having a wavelength of, for example, about 500 to 1200 nm emitted from the light source 71a by the mirror 71b, and irradiates the end portion 5a of the substrate 5 from the side of the substrate 5. As the light source 71a, for example, a semiconductor laser, an LED, or the like can be used, but from the viewpoint of cost, it is preferable to use an LED.

また、受光部72は、照射部71により光10aが照射される基板5の端部5aの下方に配置され、該端部5aからの反射光10bを受光して反射光10bの強度分布を検出する。具体的には、受光部72は、複数のレンズ72a、72bと、受光素子72cとを有する。受光部72は、基板5の端部5aからの反射光10bを複数のレンズ72a、72bを介して受光素子72cで受光し、該反射光10bによって受光素子72cの受光面に形成された光強度分布を検出する。検出された光強度分布のデータは、処理部73に出力される。受光素子72cは、例えば、CCDやCMOSなどの光電変換素子によって構成されたラインセンサ(またはエリアセンサ)を含みうる。 Further, the light receiving unit 72 is arranged below the end portion 5a of the substrate 5 to which the light 10a is irradiated by the irradiation unit 71, receives the reflected light 10b from the end portion 5a, and detects the intensity distribution of the reflected light 10b. do. Specifically, the light receiving unit 72 has a plurality of lenses 72a and 72b and a light receiving element 72c. The light receiving unit 72 receives the reflected light 10b from the end portion 5a of the substrate 5 by the light receiving element 72c via the plurality of lenses 72a and 72b, and the light intensity formed on the light receiving surface of the light receiving element 72c by the reflected light 10b. Detect the distribution. The detected light intensity distribution data is output to the processing unit 73. The light receiving element 72c may include, for example, a line sensor (or area sensor) configured by a photoelectric conversion element such as a CCD or CMOS.

処理部73は、検出部70(受光素子72c)から光強度分布のデータを取得し、取得した光強度分布のデータに基づいて、基板5のエッジ位置を決定する(基板5のエッジ位置情報を生成する)。例えば、処理部73は、検出部70で得られた光強度分布におけるピーク信号の位置に基づいて、基板ステージ6により保持された基板5のエッジ位置を決定することができる。ここで、処理部73は、CPUやメモリ(記憶部)などを有するコンピュータによって構成され、本実施形態では、処理部73を計測部7の構成要素としているが、それに限られるものではなく、例えば、制御部8の構成要素としてもよい。 The processing unit 73 acquires light intensity distribution data from the detection unit 70 (light receiving element 72c), and determines the edge position of the substrate 5 based on the acquired light intensity distribution data (edge position information of the substrate 5). Generate). For example, the processing unit 73 can determine the edge position of the substrate 5 held by the substrate stage 6 based on the position of the peak signal in the light intensity distribution obtained by the detection unit 70. Here, the processing unit 73 is configured by a computer having a CPU, a memory (storage unit), and the like, and in the present embodiment, the processing unit 73 is a component of the measurement unit 7, but the processing unit 73 is not limited thereto, for example. , May be a component of the control unit 8.

このように構成された計測部7では、図4に示すように、照射部71から射出された光10aが機構12など装置内の構造物で反射されて迷光10cとなり、該迷光10cが検出部70(受光素子72c)で検出されることがある。この場合、検出部70で得られた光強度分布には、基板5の端部5aからの反射光10bと迷光10cとによって複数のピーク信号が生成されてしまう。そのため、処理部73では、光強度分布における複数のピーク信号のうち、どのピーク信号が反射光10bに対応する信号なのかを判断することができず、基板5のエッジ位置を精度よく決定することが困難になりうる。 In the measurement unit 7 configured in this way, as shown in FIG. 4, the light 10a emitted from the irradiation unit 71 is reflected by the structure in the device such as the mechanism 12 to become the stray light 10c, and the stray light 10c is the detection unit. It may be detected by 70 (light receiving element 72c). In this case, in the light intensity distribution obtained by the detection unit 70, a plurality of peak signals are generated by the reflected light 10b and the stray light 10c from the end portion 5a of the substrate 5. Therefore, the processing unit 73 cannot determine which of the plurality of peak signals in the light intensity distribution is the signal corresponding to the reflected light 10b, and accurately determines the edge position of the substrate 5. Can be difficult.

そこで、本実施形態の計測部7(処理部73)では、検出部(受光部72)で得られた光強度分布における複数のピーク信号のうち、基板5の端部5aからの反射光10bに対応するピーク信号を選択する処理を行う。これにより、処理部73は、選択したピーク信号に基づいて、基板5のエッジ位置を精度よく決定することができる。以下に、本実施形態の計測部7における基板5のエッジ位置の計測方法について、図5および図6を参照しながら説明する。図5および図6は、計測部7における基板5のエッジ位置の計測方法を示すフローチャートである。以下の説明では、図5および図6に示すフローチャートの各工程は、処理部73によって行われうるが、制御部8によって行われてもよい。 Therefore, in the measurement unit 7 (processing unit 73) of the present embodiment, among the plurality of peak signals in the light intensity distribution obtained by the detection unit (light receiving unit 72), the reflected light 10b from the end portion 5a of the substrate 5 is used. Performs the process of selecting the corresponding peak signal. As a result, the processing unit 73 can accurately determine the edge position of the substrate 5 based on the selected peak signal. Hereinafter, a method of measuring the edge position of the substrate 5 in the measuring unit 7 of the present embodiment will be described with reference to FIGS. 5 and 6. 5 and 6 are flowcharts showing a method of measuring the edge position of the substrate 5 in the measuring unit 7. In the following description, each step of the flowchart shown in FIGS. 5 and 6 may be performed by the processing unit 73, but may be performed by the control unit 8.

図5におけるS11~S16は、照射部71により基板5の端部5aに照射する光の光量を変更することで、検出部70で得られた光強度分布における複数のピーク信号の中から、基板5のエッジ位置を決定するために用いるピーク信号を選択する処理である。以下の説明において、エッジ位置の計測対象の基板5の端部5aの面取量は、事前に設定された規格内(規格下限値Rと規格上限値Rとの間)にあると推定されるが未知の値である。また、本実施形態の計測部7の構成では、基板端部で反射されて検出部70(受光素子72c)で検出される反射光10bのピーク信号の強度(信号強度、ピーク値とも言う)が、該基板端部の面取量に応じて変わりうる。 In S11 to S16 in FIG. 5, the substrate is selected from a plurality of peak signals in the light intensity distribution obtained by the detection unit 70 by changing the amount of light emitted by the irradiation unit 71 to the end portion 5a of the substrate 5. This is a process of selecting a peak signal used to determine the edge position of 5. In the following description, it is estimated that the chamfered amount of the end portion 5a of the substrate 5 whose edge position is to be measured is within the preset standard (between the standard lower limit value R1 and the standard upper limit value R2 ). However, it is an unknown value. Further, in the configuration of the measurement unit 7 of the present embodiment, the intensity (also referred to as signal intensity or peak value) of the peak signal of the reflected light 10b reflected by the edge of the substrate and detected by the detection unit 70 (light receiving element 72c) is determined. It may change depending on the chamfered amount of the edge of the substrate.

S11では、処理部73は、基板端部の面取量の規格下限値Rに対応する第1光量Iと、基板端部の面取量の規格上限値Rに対応する第2光量Iとを設定する。第1光量Iは、基板端部の面取量が規格下限値Rである場合において、基板端部からの反射光の強度(即ち、基板端部からの反射光に対応するピーク信号の強度)が目標強度Eになるように該基板端部に照射すべき光の目標光量である。また、第2光量Iは、基板端部の面取量が規格上限値Rである場合において、基板端部からの反射光の強度(即ち、基板端部からの反射光に対応するピーク信号の強度)が目標強度Eになるように該基板端部に照射すべき光の目標光量である。目標強度Eは、受光素子72cのダイナミックレンジ内における任意の強度(好ましくは、中心強度)に設定されうる。 In S11, the processing unit 73 has a first light amount I1 corresponding to the standard lower limit value R1 of the chamfering amount of the substrate end portion and a second light amount corresponding to the standard upper limit value R2 of the chamfering amount of the substrate end portion. Set with I 2 . The first light intensity I 1 is the intensity of the reflected light from the substrate edge (that is, the peak signal corresponding to the reflected light from the substrate edge) when the chamfering amount of the substrate edge is the standard lower limit value R1 . Intensity) is the target amount of light to be applied to the edge of the substrate so that the target intensity ET is obtained. Further, the second light amount I 2 is the intensity of the reflected light from the substrate end portion (that is, the peak corresponding to the reflected light from the substrate end portion) when the chamfering amount of the substrate end portion is the standard upper limit value R2 . The signal intensity) is the target amount of light to be applied to the edge of the substrate so that the target intensity ET is obtained. The target intensity ET can be set to any intensity (preferably center intensity) within the dynamic range of the light receiving element 72c.

例えば、処理部73は、基板端部の面取量と、該基板端部からの反射光の強度が目標強度Eになる目標光量との関係を示す情報に基づいて、第1光量Iおよび第2光量Iを設定しうる。図7は、基板端部の面取量と目標光量との関係を示す情報の一例を示す図である。当該関係は、実験やシミュレーションなどによって事前に取得され、式やテーブルなどの形態で処理部73に記憶されうる。このような図7に示す情報を用いることにより、処理部73は、基板端部の面取量の規格下限値Rに対応する第1光量Iと、基板端部の面取量の規格上限値Rに対応する第2光量Iとを設定することができる。第1光量Iと第2光量Iとは、互いに異なる光量である。 For example, the processing unit 73 has a first light quantity I 1 based on information indicating the relationship between the chamfering amount of the edge of the substrate and the target light amount at which the intensity of the reflected light from the edge of the substrate becomes the target intensity ET . And the second light intensity I 2 can be set. FIG. 7 is a diagram showing an example of information showing the relationship between the chamfered amount of the edge of the substrate and the target light amount. The relationship can be acquired in advance by an experiment, a simulation, or the like, and stored in the processing unit 73 in the form of an equation, a table, or the like. By using such information shown in FIG. 7, the processing unit 73 has a first light quantity I 1 corresponding to the standard lower limit value R 1 of the chamfering amount of the substrate end portion and a standard of the chamfering amount of the substrate end portion. A second light quantity I 2 corresponding to the upper limit value R 2 can be set. The first light amount I 1 and the second light amount I 2 are different light amounts from each other.

S12では、処理部73は、S11で設定した第1光量Iと第2光量Iとで基板5の端部5aに光をそれぞれ照射し、該端部5aで反射された光の強度分布を検出部70に検出させる。以下では、第1光量Iで端部5aに光を照射したときの強度分布を第1強度分布と呼び、第2光量Iで端部5aに光を照射したときの強度分布を第2強度分布と呼ぶことがある。ここで、S12では、第1強度分布を検出部70に検出させるときと、第2強度分布を検出部70に検出させるときとで、基板ステージ6の位置の変更は行わない。即ち、第1強度分布の検出時と第2強度分布の検出時とにおいて、基板ステージ6の位置が同じでありうる。 In S12, the processing unit 73 irradiates the end portion 5a of the substrate 5 with the first light amount I 1 and the second light amount I 2 set in S11, respectively, and the intensity distribution of the light reflected by the end portion 5a. Is detected by the detection unit 70. In the following, the intensity distribution when the end portion 5a is irradiated with light by the first light intensity I 1 is referred to as the first intensity distribution, and the intensity distribution when the end portion 5a is irradiated with light by the second light intensity I 2 is referred to as the second intensity distribution. Sometimes called intensity distribution. Here, in S12, the position of the substrate stage 6 is not changed between when the detection unit 70 detects the first intensity distribution and when the detection unit 70 detects the second intensity distribution. That is, the position of the substrate stage 6 may be the same when the first intensity distribution is detected and when the second intensity distribution is detected.

図8は、第1光量Iと第2光量Iとで基板5の端部5aに光を照射したときに検出部70で得られた光強度分布を示す図である。図8では、横軸は検出方向(光照射方向)の位置を、縦軸は信号強度をそれぞれ示しており、破線は、光量Iを用いて得られた第1強度分布11を、実線は、光量Iを用いて得られた第2強度分布12をそれぞれ示している。図8に示す例では、強度分布上の位置が互いに対応する第1強度分布11のピーク信号と第2強度分布12のピーク信号とをそれぞれ含む複数(3つ)の組13a~13cが得られている。この複数の組13a~13cのうち、1つの組のピーク信号が反射光10bに対応する信号であり、他の組のピーク信号が迷光10cに対応する信号でありうる。 FIG. 8 is a diagram showing the light intensity distribution obtained by the detection unit 70 when the end portion 5a of the substrate 5 is irradiated with light by the first light amount I 1 and the second light amount I 2 . In FIG. 8, the horizontal axis indicates the position in the detection direction (light irradiation direction), the vertical axis indicates the signal intensity, the broken line indicates the first intensity distribution 11 obtained by using the light intensity I 1 , and the solid line indicates the first intensity distribution 11. , The second intensity distribution 12 obtained by using the light intensity I 2 is shown respectively. In the example shown in FIG. 8, a plurality of (three) sets 13a to 13c including the peak signal of the first intensity distribution 11 and the peak signal of the second intensity distribution 12 whose positions on the intensity distribution correspond to each other are obtained. ing. Of the plurality of sets 13a to 13c, one set of peak signals may be a signal corresponding to the reflected light 10b, and the other set of peak signals may be a signal corresponding to the stray light 10c.

S13では、処理部73は、検出部70で得られた光強度分布における複数の組13a~13cのうち、第1強度分布11のピーク信号の強度と第2強度分布12のピーク信号の強度とが共に許容範囲内(許容範囲AR内)にある組を選択する。図8に示す例では、第1強度分布11のピーク信号の強度と第2強度分布のピーク信号の強度とが共に許容範囲AR内にあるのは組13bである。そのため、処理部73は、組13bを、エッジ位置の決定に用いるピーク信号の組として選択する。 In S13, the processing unit 73 includes the intensity of the peak signal of the first intensity distribution 11 and the intensity of the peak signal of the second intensity distribution 12 among the plurality of sets 13a to 13c in the light intensity distribution obtained by the detection unit 70. Select a set that is within the permissible range (within the permissible range AR). In the example shown in FIG. 8, it is the set 13b that both the intensity of the peak signal of the first intensity distribution 11 and the intensity of the peak signal of the second intensity distribution are within the allowable range AR. Therefore, the processing unit 73 selects the set 13b as the set of peak signals used to determine the edge position.

ここで、許容範囲ARの下限値Vは、例えば、基板端部の面取量の規格下限値Rに対して第2光量Iを適用した場合に得られうるピーク信号の強度に設定されうる。また、許容範囲ARの上限値Vは、例えば、基板端部の面取量の規格上限値Rに対して第1光量Iを適用した場合に得られうるピーク信号の強度に設定されうる。許容範囲ARの下限値Vおよび上限値Vは、実験やシミュレーションなどの結果に基づいて、例えば処理部73によって設定されてもよい。このように許容範囲ARを設定すると、基板5の端部5aの面取量が規格内にあれば、端部5aへの照射光量を第1光量Iと第2光量Iとで変えても、それらの光量の双方において、反射光10bに対応するピーク信号の強度が許容範囲AR内に収まる。したがって、処理部73は、第1強度分布11のピーク信号と第2強度分布12のピーク信号とが共に許容範囲AR内にある組を、エッジ位置の決定に用いる信号成分として選択することができる。 Here, the lower limit value VL of the allowable range AR is set to, for example, the intensity of the peak signal that can be obtained when the second light amount I 2 is applied to the standard lower limit value R 1 of the chamfered amount at the end of the substrate. Can be done. Further, the upper limit value V U of the allowable range AR is set to, for example, the intensity of the peak signal that can be obtained when the first light quantity I 1 is applied to the standard upper limit value R 2 of the chamfered amount at the end of the substrate. sell. The lower limit value VL and the upper limit value V U of the allowable range AR may be set by, for example, the processing unit 73 based on the results of experiments and simulations. When the permissible range AR is set in this way, if the chamfering amount of the end portion 5a of the substrate 5 is within the standard, the irradiation light amount to the end portion 5a is changed between the first light amount I 1 and the second light amount I 2 . However, in both of those light amounts, the intensity of the peak signal corresponding to the reflected light 10b is within the allowable range AR. Therefore, the processing unit 73 can select a set in which the peak signal of the first intensity distribution 11 and the peak signal of the second intensity distribution 12 are both within the allowable range AR as the signal component used for determining the edge position. ..

S14では、処理部73は、S13において2以上の組が選択されたか否かを判定する。2以上の組が選択されていない場合(即ち、1つの組が選択された場合)にはS15に進む。一方、2以上の組が選択された場合には図6のS21に進む。S15では、処理部73は、S13で選択された組の位置に検出されるピーク信号の強度が目標強度Eになるように、基板5の端部5aへの照射光量を調整する。図8に示す例では、組13bの位置に検出されるピーク信号の強度が目標強度Eになるように照射光量が調整される。S16では、処理部73は、S13で選択された組13bのピーク信号の位置に基づいて、基板5のエッジ位置を決定する(エッジ位置情報を生成する)。 In S14, the processing unit 73 determines whether or not two or more pairs are selected in S13. If two or more pairs are not selected (that is, one pair is selected), the process proceeds to S15. On the other hand, when two or more pairs are selected, the process proceeds to S21 in FIG. In S15, the processing unit 73 adjusts the amount of irradiation light to the end portion 5a of the substrate 5 so that the intensity of the peak signal detected at the position of the set selected in S13 becomes the target intensity ET. In the example shown in FIG. 8, the irradiation light amount is adjusted so that the intensity of the peak signal detected at the position of the set 13b becomes the target intensity ET. In S16, the processing unit 73 determines the edge position of the substrate 5 (generates the edge position information) based on the position of the peak signal of the set 13b selected in S13.

図6におけるS21~S26は、上述したS13の工程において2以上の組が選択された場合において、該2以上の組の中から、エッジ位置の決定に用いる組を選択する処理である。具体的には、該2以上の組の中から、基板ステージ6の移動の前後において、ピーク信号の強度変化が最も小さい組を選択する処理である。ここで、本実施形態におけるS21~S26の処理は、S11~S16の処理で選択された2以上の組の中から、エッジ位置の決定に用いる組を選択するために行われるが、それに限られるものではない。例えば、S11~S16の処理を行わずに、所定の照射光量で最初に検出部70で得られた光強度分布に含まれる複数のピーク信号の中から、エッジ位置の決定に用いるピーク信号を選択するために行われてもよい。即ち、S11~S16の処理を行わずに、初めからS21~S26の処理が行われてもよい。 S21 to S26 in FIG. 6 are processes for selecting a set to be used for determining the edge position from the two or more sets when two or more sets are selected in the step of S13 described above. Specifically, it is a process of selecting the set having the smallest change in the intensity of the peak signal before and after the movement of the substrate stage 6 from the two or more sets. Here, the processing of S21 to S26 in the present embodiment is performed to select the set used for determining the edge position from the two or more sets selected in the processing of S11 to S16, but is limited to this. It's not a thing. For example, the peak signal used for determining the edge position is selected from a plurality of peak signals included in the light intensity distribution first obtained by the detection unit 70 with a predetermined irradiation light amount without performing the processing of S11 to S16. May be done to do. That is, the processes of S21 to S26 may be performed from the beginning without performing the processes of S11 to S16.

S21では、処理部73は、S13で選択された組13bのピーク信号の強度が目標強度Eになるように、基板5の端部5aへの照射光量を調整する。S22では、処理部73は、S21で調整した照射光量で基板5の端部5aを照射したときの光強度分布を検出部70に検出させる。図9(a)は、S22において検出部70で得られた光強度分布を示す図であり、図9(a)に示す例では、S13で2つの組が選択された場合に、該2つの組の位置でそれぞれ検出された2つのピーク信号14a、14bが図示されている。S23では、処理部73(制御部8)は、基板ステージ6を移動させる。S24では、処理部73は、S21で調整した照射光量で基板5の端部5aを照射したときの光強度分布を検出部70に検出させる。図9(b)は、S24において検出部70で得られた光強度分布を示す図であり、図9(b)に示す例では、図9(a)と同様に、S13で選択された2つの組の位置でそれぞれ検出された2つのピーク信号14a、14bが図示されている。ここで、S22とS24とでは、光強度分布を検出する際における基板5の端部5aへの照射光量は同じでありうる。 In S21, the processing unit 73 adjusts the amount of irradiation light to the end portion 5a of the substrate 5 so that the intensity of the peak signal of the set 13b selected in S13 becomes the target intensity ET. In S22, the processing unit 73 causes the detection unit 70 to detect the light intensity distribution when the end portion 5a of the substrate 5 is irradiated with the irradiation light amount adjusted in S21. FIG. 9A is a diagram showing the light intensity distribution obtained by the detection unit 70 in S22, and in the example shown in FIG. 9A, when two sets are selected in S13, the two sets are shown. Two peak signals 14a and 14b detected at each set of positions are shown. In S23, the processing unit 73 (control unit 8) moves the substrate stage 6. In S24, the processing unit 73 causes the detection unit 70 to detect the light intensity distribution when the end portion 5a of the substrate 5 is irradiated with the irradiation light amount adjusted in S21. FIG. 9B is a diagram showing the light intensity distribution obtained by the detection unit 70 in S24, and in the example shown in FIG. 9B, 2 selected in S13 as in FIG. 9A. Two peak signals 14a and 14b detected at each set of positions are shown. Here, in S22 and S24, the amount of irradiation light to the end portion 5a of the substrate 5 at the time of detecting the light intensity distribution may be the same.

S25では、処理部73は、S22で得られた光強度分布(図9(a))と、S24で得られた光強度分布(図9(b))とを比較する。そして、S13で選択された2以上の組(ピーク信号)のうち、基板ステージ6の移動による信号強度の変化が最も小さい組(ピーク信号)を選択する。S26では、処理部73は、S25で選択した組(ピーク信号)のピーク位置に基づいて、基板5のエッジ位置を決定する(エッジ位置情報を生成する)。 In S25, the processing unit 73 compares the light intensity distribution obtained in S22 (FIG. 9 (a)) with the light intensity distribution obtained in S24 (FIG. 9 (b)). Then, among the two or more sets (peak signals) selected in S13, the set (peak signal) having the smallest change in signal strength due to the movement of the substrate stage 6 is selected. In S26, the processing unit 73 determines the edge position of the substrate 5 (generates the edge position information) based on the peak position of the set (peak signal) selected in S25.

上述したように検出部70は基板ステージ6に設けられているため、基板5の端部5aからの反射光10bに対応するピーク信号の強度は、基板ステージ6を移動させても変化しない。一方、迷光10cに対応するピーク信号の強度は、基板ステージ6を移動させると変化する。つまり、処理部73は、光強度分布に現れた2以上のピーク信号のうち、基板ステージ6の移動によるピーク強度の変化が最も小さいピーク信号を、反射光10bに対応するピーク信号として選択することができる。図9に示す例では、基板ステージ6の移動による信号強度の変化がピーク信号14bよりピーク信号14aの方が小さいため、処理部73は、ピーク信号14aを、反射光10bに対応するピーク信号として選択することができる。ここで、基板ステージ6の移動方向は、XY方向、Z方向、θ方向のいずれでもよく、基板ステージ6の移動量も任意であるが、迷光10cに対応する信号成分の変化が閾値以上になるように設定されるとよい。 Since the detection unit 70 is provided on the substrate stage 6 as described above, the intensity of the peak signal corresponding to the reflected light 10b from the end portion 5a of the substrate 5 does not change even if the substrate stage 6 is moved. On the other hand, the intensity of the peak signal corresponding to the stray light 10c changes when the substrate stage 6 is moved. That is, the processing unit 73 selects, among the two or more peak signals appearing in the light intensity distribution, the peak signal having the smallest change in peak intensity due to the movement of the substrate stage 6 as the peak signal corresponding to the reflected light 10b. Can be done. In the example shown in FIG. 9, since the change in signal strength due to the movement of the substrate stage 6 is smaller in the peak signal 14a than in the peak signal 14b, the processing unit 73 uses the peak signal 14a as the peak signal corresponding to the reflected light 10b. You can choose. Here, the moving direction of the substrate stage 6 may be any of the XY direction, the Z direction, and the θ direction, and the amount of movement of the substrate stage 6 is arbitrary, but the change in the signal component corresponding to the stray light 10c is equal to or greater than the threshold value. It should be set as follows.

このように、本実施形態の計測部7では、検出部70で得られた光強度分布に複数のピーク信号が含まれている場合、基板5の端部5aへの照射光量の変更、または基板ステージ6の移動を行うことにより、反射光10bに対応するピーク信号を選択する。これにより、計測部7は、迷光10cに起因する計測誤差を低減し、基板5のエッジ位置を精度よく決定することができる。 As described above, in the measurement unit 7 of the present embodiment, when a plurality of peak signals are included in the light intensity distribution obtained by the detection unit 70, the amount of irradiation light to the end portion 5a of the substrate 5 is changed or the substrate is used. By moving the stage 6, the peak signal corresponding to the reflected light 10b is selected. As a result, the measuring unit 7 can reduce the measurement error caused by the stray light 10c and accurately determine the edge position of the substrate 5.

<物品の製造方法の実施形態>
本発明の実施形態にかかる物品の製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品の製造方法は、上記のリソグラフィ装置(露光装置)を用いて基板上にパターンを形成する工程と、かかる工程でパターンを形成された基板を加工する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
<Embodiment of manufacturing method of article>
The method for manufacturing an article according to an embodiment of the present invention is suitable for manufacturing an article such as a microdevice such as a semiconductor device or an element having a fine structure. The method for manufacturing an article of the present embodiment includes a step of forming a pattern on a substrate by using the above-mentioned lithography apparatus (exposure apparatus), and a step of processing the substrate on which the pattern is formed in such a step. Further, such a manufacturing method includes other well-known steps (oxidation, film formation, vapor deposition, doping, flattening, etching, resist peeling, dicing, bonding, packaging, etc.). The method for manufacturing an article of the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形および変更が可能である。 Although the preferred embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to these embodiments, and various modifications and modifications can be made within the scope of the gist thereof.

1:マスク、2:マスクステージ、3:照明光学系、4:投影光学系、5:基板、6:基板ステージ、7:計測部、70:検出部、71:照射部、72:受光部、73:処理部、8:制御部、100:露光装置 1: Mask 2: Mask stage 3: Illumination optical system 4: Projection optical system 5: Substrate, 6: Substrate stage, 7: Measurement unit, 70: Detection unit, 71: Irradiation unit, 72: Light receiving unit, 73: Processing unit, 8: Control unit, 100: Exposure device

Claims (9)

基板のエッジ位置を計測する計測装置であって、
第1光量で前記基板の端部に光を照射して前記端部で反射された光の第1強度分布と、前記第1光量とは異なる第2光量で前記端部に光を照射して前記端部で反射された光の第2強度分布とを検出する検出部と、
強度分布上の位置が互いに対応する前記第1強度分布のピーク信号と前記第2強度分布のピーク信号とをそれぞれ含む複数の組のうち、前記第1強度分布のピーク信号の強度と前記第2強度分布のピーク信号の強度とが共に許容範囲内にある組を選択し、選択した組のピーク信号に基づいて前記基板のエッジ位置を決定する処理部と、
を含み、
前記処理部は、基板端部の面取量が規格下限値である場合に該基板端部からの反射光の強度が目標強度になるように前記第1光量を設定し、基板端部の面取量が規格上限値である場合に該基板端部からの反射光の強度が前記目標強度になるように前記第2光量を設定する、ことを特徴とする計測装置。
It is a measuring device that measures the edge position of the board.
The end of the substrate is irradiated with light with the first light amount, and the first intensity distribution of the light reflected at the end and the second light amount different from the first light amount are applied to the end. A detection unit that detects the second intensity distribution of the light reflected at the end portion, and a detection unit.
Of a plurality of sets including the peak signal of the first intensity distribution and the peak signal of the second intensity distribution whose positions on the intensity distribution correspond to each other, the intensity of the peak signal of the first intensity distribution and the second intensity of the second intensity distribution. A processing unit that selects a set in which the intensity of the peak signal of the intensity distribution is within an allowable range and determines the edge position of the substrate based on the peak signal of the selected set.
Including
The processing unit sets the first light amount so that the intensity of the reflected light from the substrate end becomes the target intensity when the chamfering amount of the substrate end is the standard lower limit value, and the surface of the substrate end. A measuring device characterized in that the second light intensity is set so that the intensity of the reflected light from the edge of the substrate becomes the target intensity when the sampling amount is the upper limit value of the standard .
前記処理部は、基板端部の面取量と該基板端部からの反射光の強度が前記目標強度になる光量との関係を示す情報に基づいて、前記第1光量および前記第2光量を設定する、ことを特徴とする請求項に記載の計測装置。 The processing unit determines the first light amount and the second light amount based on the information indicating the relationship between the chamfering amount of the substrate end portion and the light amount at which the intensity of the reflected light from the substrate end portion becomes the target intensity. The measuring device according to claim 1 , wherein the measuring device is set. 前記処理部は、基板端部の面取量の規格下限値に対して前記第2光量を適用した場合に得られうるピーク信号の強度を下限値とし、基板端部の面取量の規格上限値に対して前記第1光量を適用した場合に得られうるピーク信号の強度を上限値として前記許容範囲を設定する、ことを特徴とする請求項又はに記載の計測装置。 The processing unit sets the intensity of the peak signal that can be obtained when the second light amount is applied to the standard lower limit value of the chamfering amount of the substrate end as the lower limit value, and sets the standard upper limit of the chamfering amount of the substrate end portion. The measuring device according to claim 1 or 2 , wherein the permissible range is set with the intensity of the peak signal that can be obtained when the first light amount is applied to the value as an upper limit value. 前記基板を保持して移動可能なステージを更に含み、
前記検出部は、前記ステージに設けられている、ことを特徴とする請求項1乃至のいずれか1項に記載の計測装置。
Further including a movable stage for holding the substrate,
The measuring device according to any one of claims 1 to 3 , wherein the detection unit is provided on the stage.
前記処理部は、2以上の組を選択した場合、選択した前記2以上の組のうち、前記ステージの移動によるピーク信号の強度変化が最も小さい組のピーク位置に基づいて前記基板のエッジ位置を決定する、ことを特徴とする請求項に記載の計測装置。 When two or more sets are selected, the processing unit determines the edge position of the substrate based on the peak position of the set having the smallest change in the intensity of the peak signal due to the movement of the stage among the selected two or more sets. The measuring device according to claim 4 , wherein the measuring device is determined. 前記検出部は、前記基板の側方から前記基板の端部に光を照射する照射部と、該端部の下方において、該端部で反射された光を受光する受光部とを含む、ことを特徴とする請求項1乃至のいずれか1項に記載の計測装置。 The detection unit includes an irradiation unit that irradiates an end portion of the substrate from the side of the substrate, and a light receiving portion that receives light reflected by the end portion below the end portion. The measuring apparatus according to any one of claims 1 to 5 . 基板にパターンを形成するリソグラフィ装置であって、
前記基板のエッジ位置を計測する請求項1乃至のいずれか1項に記載の計測装置を含む、ことを特徴とするリソグラフィ装置。
A lithography device that forms a pattern on a substrate.
The lithography apparatus according to any one of claims 1 to 6 , further comprising the measuring apparatus for measuring the edge position of the substrate.
請求項に記載のリソグラフィ装置を用いて基板上にパターンを形成する工程と、
前記工程でパターンが形成された前記基板を加工する工程と、を含み、
加工された前記基板から物品を製造することを特徴とする物品の製造方法。
A step of forming a pattern on a substrate by using the lithography apparatus according to claim 7 .
Including the step of processing the substrate on which the pattern is formed in the step.
A method for manufacturing an article, which comprises manufacturing the article from the processed substrate.
基板のエッジ位置を計測する計測方法であって、
第1光量で前記基板の端部に光を照射して前記端部で反射された光の第1強度分布と、前記第1光量とは異なる第2光量で前記端部に光を照射して前記端部で反射された光の第2強度分布とを検出する検出工程と、
強度分布上の位置が互いに対応する前記第1強度分布のピーク信号と前記第2強度分布のピーク信号とをそれぞれ含む複数の組のうち、前記第1強度分布のピーク信号の強度と前記第2強度分布のピーク信号の強度とが共に許容範囲内にある組を選択する選択工程と、
前記選択工程で選択した組のピーク信号に基づいて前記基板のエッジ位置を決定する決定工程と、
を含み、
前記検出工程では、基板端部の面取量が規格下限値である場合に該基板端部からの反射光の強度が目標強度になるように前記第1光量を設定し、基板端部の面取量が規格上限値である場合に該基板端部からの反射光の強度が前記目標強度になるように前記第2光量を設定する、ことを特徴とする計測方法。
It is a measurement method that measures the edge position of the board.
The end of the substrate is irradiated with light with the first light amount, and the first intensity distribution of the light reflected at the end and the second light amount different from the first light amount are applied to the end. A detection step for detecting the second intensity distribution of the light reflected at the end portion, and
Of a plurality of sets including the peak signal of the first intensity distribution and the peak signal of the second intensity distribution whose positions on the intensity distribution correspond to each other, the intensity of the peak signal of the first intensity distribution and the second intensity of the second intensity distribution. The selection process of selecting a set in which the intensity of the peak signal of the intensity distribution is both within the permissible range, and
A determination step of determining the edge position of the substrate based on the set of peak signals selected in the selection step, and a determination step.
Including
In the detection step, when the chamfering amount of the substrate end portion is the standard lower limit value, the first light amount is set so that the intensity of the reflected light from the substrate end portion becomes the target intensity, and the surface of the substrate end portion is set. A measuring method characterized in that the second light amount is set so that the intensity of the reflected light from the end portion of the substrate becomes the target intensity when the amount taken is the upper limit value of the standard .
JP2017241120A 2017-12-15 2017-12-15 Measuring equipment, lithography equipment, manufacturing method of goods, and measuring method Active JP7057655B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017241120A JP7057655B2 (en) 2017-12-15 2017-12-15 Measuring equipment, lithography equipment, manufacturing method of goods, and measuring method
KR1020180155653A KR102395738B1 (en) 2017-12-15 2018-12-06 Measuring apparatus, lithography apparatus, method of manufacturing article, and measuring method
CN201811506973.7A CN109932876B (en) 2017-12-15 2018-12-11 Measuring device, lithographic apparatus, method of manufacturing article, and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241120A JP7057655B2 (en) 2017-12-15 2017-12-15 Measuring equipment, lithography equipment, manufacturing method of goods, and measuring method

Publications (2)

Publication Number Publication Date
JP2019109311A JP2019109311A (en) 2019-07-04
JP7057655B2 true JP7057655B2 (en) 2022-04-20

Family

ID=66984747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241120A Active JP7057655B2 (en) 2017-12-15 2017-12-15 Measuring equipment, lithography equipment, manufacturing method of goods, and measuring method

Country Status (3)

Country Link
JP (1) JP7057655B2 (en)
KR (1) KR102395738B1 (en)
CN (1) CN109932876B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3779882B1 (en) * 2019-08-16 2022-07-20 Sick IVP AB Providing intensity peak position in image data from light triangulation in a three-dimensional imaging system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113796A (en) 2011-11-30 2013-06-10 Omron Corp Optical displacement sensor
JP2013153108A (en) 2012-01-26 2013-08-08 Yaskawa Electric Corp Substrate positioning device
JP2017116868A (en) 2015-12-25 2017-06-29 キヤノン株式会社 Lithography device, article manufacturing method, stage device, and measuring device
JP2017215219A (en) 2016-06-01 2017-12-07 キヤノン株式会社 Measurement device, pattern formation device, and article manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4048385B2 (en) * 1996-08-19 2008-02-20 株式会社ニコン Optical pre-alignment apparatus and exposure apparatus provided with the pre-alignment apparatus
JP2000304510A (en) 1999-04-23 2000-11-02 Fuji Photo Film Co Ltd Position detecting method of work edge and its device
JP2006038639A (en) * 2004-07-27 2006-02-09 Brother Ind Ltd End position detection device, method and program
JP2006041387A (en) 2004-07-29 2006-02-09 Nikon Corp Position measuring method, exposure method, exposure device and device manufacturing method
JP4886549B2 (en) 2007-02-26 2012-02-29 株式会社東芝 Position detection apparatus and position detection method
CN103968759A (en) 2014-05-07 2014-08-06 京东方科技集团股份有限公司 Device and method for detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113796A (en) 2011-11-30 2013-06-10 Omron Corp Optical displacement sensor
JP2013153108A (en) 2012-01-26 2013-08-08 Yaskawa Electric Corp Substrate positioning device
JP2017116868A (en) 2015-12-25 2017-06-29 キヤノン株式会社 Lithography device, article manufacturing method, stage device, and measuring device
JP2017215219A (en) 2016-06-01 2017-12-07 キヤノン株式会社 Measurement device, pattern formation device, and article manufacturing method

Also Published As

Publication number Publication date
KR102395738B1 (en) 2022-05-10
CN109932876A (en) 2019-06-25
KR20190072419A (en) 2019-06-25
JP2019109311A (en) 2019-07-04
CN109932876B (en) 2022-07-05

Similar Documents

Publication Publication Date Title
US20130321811A1 (en) Measuring method, and exposure method and apparatus
US9639008B2 (en) Lithography apparatus, and article manufacturing method
TW201337476A (en) Angularly resolved scatterometer and inspection method
TWI579661B (en) Method of obtaining a position of a second shot region neighboring a first shot region, exposure method, exposure apparatus, and method of manufacturing article
JP2020052430A (en) Measurement device and measurement method and exposure equipment
KR102180702B1 (en) Lithographic apparatus, method of manufacturing article, and measurement apparatus
JPH1022213A (en) Position detector and manufacture of device using it
TWI460559B (en) Level sensor arrangement for lithographic apparatus, lithographic apparatus and device manufacturing method
US10488764B2 (en) Lithography apparatus, lithography method, and method of manufacturing article
JP7057655B2 (en) Measuring equipment, lithography equipment, manufacturing method of goods, and measuring method
TW200941147A (en) Exposure apparatus, detection method, and method of manufacturing device
JP2006269669A (en) Measuring device and measuring method, exposure apparatus and device manufacturing method
KR102605547B1 (en) Imprint apparatus and method of manufacturing article
US9587929B2 (en) Focus metrology method and photolithography method and system
KR101679941B1 (en) Imprint device, and device manufacturing method
JP7143445B2 (en) Bandwidth calculation system and method for determining desired wavelength bandwidth of measurement beam in mark detection system
US20230030661A1 (en) Measuring device, measuring method, substrate processing apparatus, and method of manufacturing product
CN108292111A (en) Method and apparatus for handling substrate in the lithographic apparatus
JP2023072533A (en) Exposure device, exposure method, and article manufacturing method
JP2022125866A (en) Exposure apparatus and method for manufacturing article
JP2018077311A (en) Measurement device, exposure device, and article production method
JP2023124595A (en) Detection method, detection device, lithography device and manufacturing method of articles
JP2020077850A (en) Imprint device and manufacturing method of article
JP2020003617A (en) Exposure equipment, exposure method and method for production of article
JP2004247349A (en) Position measuring apparatus and method therefor, exposure device, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220408

R151 Written notification of patent or utility model registration

Ref document number: 7057655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151