JP7057563B2 - 測定装置および測定システム - Google Patents

測定装置および測定システム Download PDF

Info

Publication number
JP7057563B2
JP7057563B2 JP2018085157A JP2018085157A JP7057563B2 JP 7057563 B2 JP7057563 B2 JP 7057563B2 JP 2018085157 A JP2018085157 A JP 2018085157A JP 2018085157 A JP2018085157 A JP 2018085157A JP 7057563 B2 JP7057563 B2 JP 7057563B2
Authority
JP
Japan
Prior art keywords
covering
measuring device
measuring
covered
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018085157A
Other languages
English (en)
Other versions
JP2019191034A (ja
Inventor
耕司 原田
幸広 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Nishimatsu Construction Co Ltd
Original Assignee
NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY, Nishimatsu Construction Co Ltd filed Critical NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Priority to JP2018085157A priority Critical patent/JP7057563B2/ja
Publication of JP2019191034A publication Critical patent/JP2019191034A/ja
Application granted granted Critical
Publication of JP7057563B2 publication Critical patent/JP7057563B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、被覆物により被覆された部材の該被覆物の内部の状態を測定する装置およびシステムに関する。
被覆物により被覆された部材としては、例えば外套管の内部に鋼材が収納された斜張橋の斜材がある。この斜材は、内部の水分状態(水分量)が鋼材の腐食と関係することから、内部の水分量を測定することが斜材の維持管理上、重要な事項となっている。
従来、被測定物の水分量を測定する装置として、電極を用い、被測定物に含まれる水分量によって変化する電気容量や電気抵抗等の値を検出する装置が知られている(例えば、特許文献1、2参照)。
WO96/32634号 実開昭62-55154号公報
しかしながら、従来の測定装置は、木材やコンクリート円柱のような被測定物に被覆がないこと、均一材料であること等の測定条件があり、被覆がある場合については想定されていない。また、被測定物の径が変わると、電極の一部が被測定物に接触しない状態になったり、電極と被測定物との間隔が変化したりするため、測定精度が低下するという問題があった。
本発明は、上記課題に鑑みてなされたものであり、被覆物により被覆された部材の該被覆物の内部の状態を測定する装置であって、
内部の状態を測定するための2つの電極と、
各電極がそれぞれに取り付けられる2つの棒状または板状の支持部材と、
2つの支持部材の一端同士を連結するとともに、2つの支持部材の他端を互いに近づく方向に付勢する付勢手段とを含む、測定装置が提供される。
本発明によれば、被覆物により被覆されていても、内部の状態を測定することができ、その測定精度を向上させることができる。
斜材について説明する図。 各方式で水分量を測定している様子を示した図。 各方式で水分量を測定した結果を示した図。 電極を斜材に接触させて内部の水分量を測定している様子を示した図。 電極が浮いた状態で測定した結果を示した図。 斜材の外表面と電極との間隔を固定して測定した結果を示した図。 測定装置の第1の構成例を示した図。 開閉角度を変えたところを示した図。 2つの支持部材と付勢手段の連結方法を説明する図。 測定装置の第2の構成例を示した図。 測定装置の正面図と、測定装置を斜材に取り付けたときの電極の部分を拡大して示した側面図。 電極の角度を変えることを可能にする構成例を示した図。 測定システムの構成例を示した図。
本発明の測定装置について説明する前に、測定装置が設置される、被覆物により被覆された部材の一例である斜張橋の斜材について、図1を参照して説明する。以下、被覆物により被覆された部材を斜材として説明するが、被覆物により被覆された部材は、斜材に限定されるものではない。
斜張橋は、人や車両が通行する部分である主桁と、主桁に対して垂直な鉛直方向に延びる主塔と、主塔から斜めに延びて主桁と連結し、主桁を支える斜材とから構成される。斜張橋では、主桁に圧縮力が作用し、斜材に引張力が作用する。
斜材は、図1に示すように、複数のPC(Prestressed Concrete)鋼材10と、防錆用の保護管11と、保護管11内を充填する充填材12とから構成される。図1は、斜材の断面図である。充填材12は、PC鋼材10への空気や水等の侵入を防ぐとともに、PC鋼材10と一体化し、強度を高める。
保護管11は、内部のPC鋼材10および充填材12を被覆する被覆物とされ、腐食しない材料、例えばプラスチックにより作製されたものを用いることができる。プラスチックとしては、例えばポリエチレン(PE)を用いることができ、一定の強度が必要であることから、高密度ポリエチレンが好ましい。充填材12としては、PC鋼材10と一体化し、強度を高めるべく、モルタルやセメントペースト等が用いられる。
斜材は、外側に保護管11があり、その外表面は、平面ではなく、曲率があり、内部に複数のPC鋼材10がある特殊な断面を有している。
斜材は、PC鋼材10と、保護管11と、充填材12とから構成されるため、PC鋼材10と充填材12との間、保護管11と充填材12との間には、隙間が存在する。その隙間には、水が侵入することがある。また、充填材12として用いられるモルタルやセメントペーストにひび割れを生じた場合、ひび割れにも、水が浸透することがある。水は、保護管11の端部や保護管11に生じた破損箇所等から侵入した雨水等である。
斜材内部の水分量は、PC鋼材10の腐食に関係するため、斜材の維持管理において、内部の水分量の測定が重要である。使用中の斜材内部の水分量を測定するため、その測定は、非破壊で行う必要がある。非破壊でコンクリート等の水分を測定する手法としては、電気容量式やマイクロ波式がある。
電気容量式は、測定対象に交流電流を流し、その電気容量(どのくらい電荷を蓄えられるかを示す値)の変化を水分値に置き換えて表示する方式である。電気容量式の測定装置は、検出回路を含み、検出回路に発振回路を利用する。この測定装置は、2つの電極を有し、一方の電極から他方の電極へ向けて電流を流し、発振回路がある他方の電極の静電容量の変化により変化する発振周波数や周期から水分量を求める。
マイクロ波式は、水分によるマイクロ波の波長の減衰率(マイクロ波がどれだけ熱に置き換わったか)を測定し、減衰率を水分値に置き換えて表示する方式である。マイクロ波式の測定装置は、マイクロ波を送信する送信機と、送信されたマイクロ波を受信する受信機とを備える。マイクロ波は、水分が多いほど吸収され、水分が少ないとそのまま吸収されずに通り抜ける。このため、受信機でその電波の強さ(伝搬の多い、少ない)を測定し、電波の強さから水分量を求める。
このように水分量の測定には、上記の2つの方式があるが、いずれの方式が、斜材のように被覆物で被覆された部材の内部の状態を測定するのに適しているかを、試験を行い、検討した。試験は、図2に示すように、PC鋼材10として鉄管20を用い、保護管11としてPE管21を用い、充填材12として水を吸収させたスポンジ22を用いた。図2(a)は、マイクロ波式での試験の様子を示した図で、図2(b)は、電気容量式での試験の様子を示した図である。図2(a)に示すマイクロ波式では、送信機23と受信機24を90°の位置に配置し、測定した。図2(b)に示す電気容量式では、PE管21に向けた面に一定距離で離間した2つの電極30、31が設けられ、2つの電極30、31がPE管21の外表面に接触するように配置し、測定した。
図3は、図2に示す方法により試験を行った結果を示した図である。図3中、θ(%)は、含水率で、スポンジ22に吸収可能な水分量の最大値を100%としたときの、その最大値に対する割合を示す。マイクロ波(%)は、送信機23から送信されたマイクロ波を100%としたときの、その送信されたマイクロ波に対する受信機24で受信されたマイクロ波の割合を示す。電気容量出力値は、予め複数の種類の材料につき、水分と高周波容量との関係を求め、測定された高周波容量の値から関係式により算出される水分値で、この例では0~1999の範囲の値として算出される。
図3に示す結果から、マイクロ波式では、測定値と含水率との間に相関は見られないが、電気容量式では、測定値が、含水率が増加するにつれて増加するため、測定値と含水率との間に相関が見られた。
このことから、マイクロ波式と電気容量式とでは、電気容量式の方が適していることが分かった。
次に、電気容量式の測定装置を採用する場合の曲率の影響について検討した。測定対象に曲率があると、同じ平面上に一定間隔で離間して2つの電極が設けられた測定装置では、図4に示すように、保護管11の外表面に電極30、31の対向する面の一部のみが接触し、大部分が浮いた状態になる。これでは、電極30、31の対向する面の位置によって保護管11の外表面との間隔が変化する。
図5は、電気容量式で同じ試験を2度行った結果を示した図である。保護管11の外表面と電極30、31との間隔が変化すると、図5に示すように、出力値が大きく変化し、測定精度が低く、再現性が低いことが確認された。
一方、保護管11の外表面に電極30、31の対向する面の大部分が接触するように配置し、保護管11の外表面と電極30、31との間隔が位置によって変化しないように固定してみると、図6に示すように、同じ試験を3度行った結果は、いずれの含水率でも、ほぼ同じ出力値を示した。この結果から近似式を求めると、対数近似ではあるが、ほぼ同じ係数の近似式が得られた。また、得られた出力値と、得られた近似式との近さを示す数値である決定係数(R2)を求めると、1に近い値が得られた。これにより、近似式が正確に近似できていることが示された。ちなみに、Rは、得られた出力値と、得られた近似式との相関を示す相関係数である。
以上のことから、被覆物で被覆された部材の被覆物の内部の状態を測定するには、電気容量式が適しており、被覆物が曲率を有する場合、被覆物の外表面と電極30、31との間隔を固定できることが望ましいことが分かった。
これを実現するための測定装置の構成について、図7を参照して説明する。図7は、測定装置の第1の構成例を示した図である。測定装置40は、内部の状態、すなわち水分状態を測定するための2つの電極41、42と、各電極41、42がそれぞれに取り付けられる2つの棒状または板状の支持部材43、44と、2つの支持部材43、44の一端同士を連結するとともに、2つの支持部材43、44の他端が互いに近づく方向に付勢する付勢手段45とを含む。
支持部材43、44は、一定の長さを有する棒状または板状のものとされ、各々の所定の位置に電極41、42が取り付けられる。支持部材43、44は、被覆物である保護管11を損傷しないように、かつ各電極41、42が保護管11の外表面に密着して固定されるように、保護管11と同程度の強度を有する材料が好ましい。このため、支持部材43、44は、保護管11と同様、プラスチック材料とすることができ、例えばPE、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ABS樹脂等を用いることができる。
付勢手段45は、2つの支持部材43、44の他端を互いに近づく方向に付勢し、また、各他端に力を加えることで互いに離間する方向に各他端を移動させて、2つの支持部材43、44の一端を中心に他端を開閉可能にするものであれば、いかなる手段であってもよく、例えば弾性変形するバネやゴム等を用いることができる。バネは、コイルバネであってもよいし、板バネであってもよい。バネやゴムは、弾性変形し、元に戻ろうとする復元力により上記の他端が互いに近づく方向に付勢する。
図7に示す例では、付勢手段45の両端に、支持部材43、44の各々の一端が連結され、斜材の径(保護管11の外径)に合わせて、2つの支持部材43、44を開閉し、支持部材43、44により形成される角度αを変えることにより、2つの電極41、42を斜材(保護管11の外表面)に密着させて固定することができる。図8に、斜材の径、すなわち斜材の曲率に合わせて、角度αを変えた例を示す。いずれも、2つの電極41、42が、斜材60に密着して固定されている。
2つの電極41、42の一方は、電流を供給する電流供給手段と接続され、他方は、電気容量の変化を測定する測定手段と接続される。測定手段としては、予め水分と誘電率との関係を求めておき、誘電率を測定して関係式から水分を算出する手段を用いることができる。これは一例であるので、これに限定されるものではない。
2つの支持部材43、44は、付勢手段45を使用し、例えば図9に示すように連結することができる。図9に示す例では、2つの支持部材43、44が、断面が矩形の棒状物とされている。図9(a)に示す例では、2つの支持部材43、44の一端には、円形の穴が形成され、その穴にコイル状のバネが付勢手段45として挿着されている。付勢手段45は、各穴において回転しないように接着あるいは溶着される。
付勢手段45は、2つの支持部材43、44の一端同士を連結し、2つの支持部材43、44の他端同士が重なるとき、変形しない状態で、各他端に力を加えて離間させていくと、変形していく。付勢手段45をある程度変形させた後、斜材60を挟み込むように支持部材43、44を配置し、各他端に加えた力を解放すると、付勢手段45が元の変形しない状態に戻ろうとするので、斜材60に支持部材43、44が密着した状態で固定される。その密着する部分には、各電極41、42が設けられるため、各電極41、42が斜材60に密着し、斜材60と2つの電極41、42との間隔を固定することが可能となる。
付勢手段45は、図9(b)に示すように、2つの支持部材43、44の他端が開閉する方向に伸縮するように、2つの支持部材43、44の一端の、2つの支持部材43、44間に設けられていてもよい。この場合、2つの支持部材43、44の一端を支点として回転可能にするために、軸部材46を設けることができる。
測定装置40は、一方に長く延びる斜材全体の水分量を測定するために、図10に示すような、斜材60が通される通路を有するフレーム部材47と、フレーム部材47の両端に設けられ、通路に連続する開口の中心に向けて突出し、通路に通された斜材60の上側に当接して、フレーム部材47を斜材60に支持する支持手段48とを備えることができる。
フレーム部材47は、4枚の矩形の板を用い、それらを接合して両端に開口を有する箱状の構成とすることができる。矩形の板は、プラスチック板や鋼板を用いてもよいが、軽量で、一定以上の強度を有し、耐食性を有する点で、アルミニウム板が望ましい。このように、側面を覆うことで、何らかの原因で測定装置40等が外れた場合でも、測定装置40等の落下を防止することができる。この落下を確実に防止するためには、フレーム部材47の両端も、斜材60が通される開口以外は閉鎖されるように覆われていることが望ましい。
なお、フレーム部材47は、アルミニウム製の角管を複数本用い、角管に嵌合される突出部が三方向に延びる三方向ジョイントにより連結したものや、円管を複数本用い、突出部が円筒状の三方向ジョイントにより連結したもの等であってもよい。
支持手段48は、斜材60が延びる方向に向いた、フレーム部材47の両端に少なくとも2つずつ設けられる。図10に示す例では、フレーム部材47の両端に4つずつ支持手段48が設けられている。支持手段48は、フレーム部材47を斜材60に支持することができればいかなるものであってもよく、例えば支点ローラを用いることができる。支点ローラは、斜材60に向けて突出する2つのローラ支持部材と、2つのローラ支持部材間を架け渡すように回転可能に配置される回転軸を有するローラとから構成される。
支点ローラは、斜材の外表面上を、滑りを生じることなく回転し、測定装置40を移動させるため、その接触部分となるローラの表面が、密着性が良好で、摩擦抵抗が大きいほうが望ましい。このため、ローラの表面は、天然ゴム、イソプレンゴム、ウレタンゴム、クロロプレンゴム等の弾性部材から形成されたものとすることができる。
支点ローラの少なくとも1つは、駆動ローラとされ、駆動手段としてのモータにより回転駆動される。モータには、通信手段が設けられ、遠隔からモータの起動および停止を制御することができる。
支点ローラは、フレーム部材47の両端に、斜材60の周方向に90°毎に4つずつ設けるのではなく、斜材60の上側に接触するように2つずつ設けることで、斜材60上にフレーム部材47を支持してもよい。支持部材43、44の一端には、支持軸49が設けられ、支持軸49は、回転可能に支持する脚部材50によりフレーム部材47と連結することができる。図9(b)に示す構成では、軸部材46をそのまま、支持軸49として用いることができる。
斜材60の上側に接触するように2つずつ設けた構成では、支持部材43、44等が錘となって、フレーム部材47の斜材60の周方向への回転を抑止することができる。また、2つの支持部材43、44により斜材60を挟み込むようにして固定することによっても、周方向への回転を抑止することができる。
このように測定装置40を移動可能に構成することで、斜材60の全体の水分の分布を得て、含水率が高い箇所の位置等を検知することができる。
図11は、測定装置40の正面図と、測定装置40を斜材60に取り付けたときの電極42の部分を拡大して示した側面図である。電極42は、図8に示すように、斜材60の外表面に隣接してもよいが、斜材60と2つの電極42との間隔を固定することができれば精度良く水分量を測定することができるので、一定の間隔Cで離間していてもよい。
図11(b)に示す例では、フレーム部材47に支持手段48を設け、支持手段48のローラが斜材60に密着して固定されるので、同じくフレーム部材47に脚部材50を介して連結される支持部材44上の電極42は、一定の間隔Cで離間した状態に保持される。
なお、電極41、42を一定の間隔Cで離間させることで、金属製の電極41、42が斜材60のプラスチック製の保護管を擦りながら移動すること等による斜材60の損傷を防ぐことができる。
ところで、各電極41、42は、各支持部材43、44の所定の位置に固定して設けることができるが、斜材60の曲率を有する外表面に合わせて、斜材60に対向する各電極41、42の面の角度を変える機構を備えることができる。これにより、斜材60と電極41、42との間隔の変化をより小さくし、測定精度をさらに向上させることができる。
例えば、図12(a)に示すように、支持部材43に溝51を設け、溝51の対向する2つの側面にそれぞれ穴52を設け、電極41に穴52に挿入可能な突起53を設け、電極41が突起53を支点として回転することが可能な構造とすることができる。これにより、図12(b)に示すように、斜材60の曲率に合わせて、電極41の接触する面の向きを変えることができる。なお、突起53と、上記の電流供給手段または測定手段とを接続し、電流を供給し、または電気容量の変化を測定することができる。
図12(b)に示す構造では、溝51の側面に電極41の角部が当たり、その側面が損傷する可能性があるが、その側面にゴム板等の緩衝材を設け、損傷を防止してもよい。
なお、図12に示した構造は一例であるので、電極41の接触する面の向きを変えることができれば、電極41と支持部材43との間に導電性を有する材料から作製されたバネを有する構造等、いかなる構造にしてもよい。
測定装置40は、2つの電極41、42と、2つの支持部材43、44と、付勢手段45とから構成されるものを1組のみ、フレーム部材47内に設置してもよいが、電気容量式では表面から深い位置にある水分量を測定することができないため、複数設けることが望ましい。
図13に、測定装置40を複数設けた測定システムの構成例を示す。図13(a)は、斜材60の上下に、測定装置40a、40bを設けた例を示し、図13(b)は、斜材60の上下左右の4箇所に、測定装置40a~40dを設けた例を示す。
水は、斜材60の下側に溜まりやすいことから、1つの測定装置40で下側のみを測定してもよいが、図13(a)に示すように2つ設け、斜材60の上下を測定することで、測定結果を比較し、その差が大きければ、下側に水が溜まっている可能性が高いことを検知することができる。また、図13(b)に示すように4つ設け、斜材60の上下左右の4箇所を測定することで、斜材60内のより広い範囲を高い精度で測定することができる。
ここでは上下に2つ、上下左右に4つ設けた例を挙げたが、斜材60の断面に対して120°毎に3つ、72°毎に5つ、60°毎に6つ等、いかなる数設けてもよい。
また、測定システムは、電極41、42や支持部材43、44等をフレーム部材47内に設置して斜材60内の水分量を測定するだけではなく、振動測定装置やカメラ等の探傷装置等を搭載した同様のフレーム部材を連結し、斜材60の振動特性調査や外観調査も、同時に実施することも可能である。したがって、測定システムは、振動測定装置や探傷装置を搭載した第2のフレーム部材や第2の支持手段を含むことができる。第2の支持手段も、少なくとも1つが駆動ローラを含み、モータにより回転駆動する構成とすることができ、モータには、通信手段が設けられ、遠隔からモータの起動および停止を制御することができる。この場合、第2のフレーム部材によりフレーム部材47を牽引する構成とすることができる。なお、フレーム部材47により第2のフレーム部材を牽引してもよい。
また、測定システムは、測定装置40から離間した場所にある測定結果を評価する評価装置、例えばPC(Personal Computer)やタブレット端末等を含み、測定装置40は、評価装置に測定結果を送信するために送信機等の通信手段を備えることができる。通信手段は、無線で通信する手段であってもよいし、有線で通信する手段であってもよい。
以上のように、測定装置40は、斜材60等の被覆物で被覆された部材の内部の状態を、内部には非接触で測定することができる。測定精度が高いので、例えば斜材60の内部のPC鋼材10の腐食の可能性を判断するためのデータ等として充分に利用することができる。このため、測定装置40を用いることで、被覆物で被覆された部材を利用した構造物等、例えば斜張橋の維持管理の効率化を図ることができる。
これまで本発明の測定装置および測定システムについて図面に示した実施形態を参照しながら詳細に説明してきたが、本発明は、上述した実施形態に限定されるものではなく、他の実施形態や、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。したがって、この測定装置は、斜材内の水分量を測定するものに限られるものではなく、2つの電極を浮かずに接触させる技術にも適用することが可能である。
10…PC鋼材
11…保護管
12…充填材
20…鉄管
21…PE管
22…スポンジ
23…送信機
24…受信機
30、31…電極
40、40a~40d…測定装置
41、42…電極
43、44…支持部材
45…付勢手段
46…支持軸
47…フレーム部材
48…支持手段
49…支持軸
50…脚部材
51…溝
52…穴
53…突起
60…斜材

Claims (9)

  1. 被覆物により被覆された部材の該被覆物の内部の状態を測定する電気容量式の測定装置であって、
    前記内部の状態を測定するための2つの電極と、
    前記各電極がそれぞれに取り付けられる2つの棒状または板状の支持部材と、
    前記2つの支持部材の一端同士を連結するとともに、前記2つの支持部材の他端を互いに近づく方向に付勢する付勢手段とを含み、
    前記付勢手段により一端同士が連結された前記2つの支持部材により形成される角度が、前記被覆物の外表面の曲率に合わせて変更される、測定装置。
  2. 前記被覆物の外表面の曲率に合わせて、前記各電極の前記外表面に対向する面の向きを変える機構を含む、請求項に記載の測定装置。
  3. 前記各支持部材の一端に設けられる軸部材と、
    前記軸部材を回転可能に支持する2つの脚部材と、
    前記2つの脚部材が連結され、前記被覆物により被覆された部材が通される通路を有するフレーム部材と、
    前記フレーム部材の両端に設けられ、前記通路に連続する開口の中心に向けて突出し、前記通路に通された前記被覆物により被覆された部材に当接して、前記フレーム部材を前記被覆物により被覆された部材に支持する支持手段とを含む、請求項1または2に記載の測定装置。
  4. 前記2つの電極は、前記被覆物により被覆された部材から一定の間隔で離間して配置される、請求項に記載の測定装置。
  5. 前記付勢手段は、前記2つの支持部材の他端が互いに離間する際に弾性変形する、請求項1~のいずれか1項に記載の測定装置。
  6. 前記被覆物により被覆された部材は、鋼材と、鋼材を被覆する保護管とを含む、斜張橋に用いられる斜材であり、
    前記2つの電極は、前記内部の状態として、前記斜材の内部の水分量を測定する、請求項1~のいずれか1項に記載の測定装置。
  7. 請求項1~のいずれか1項に記載の測定装置を少なくとも1つ含み、被覆物により被覆された部材の内部の状態を測定する、測定システム。
  8. 前記被覆物により被覆された部材の周方向に2以上の測定装置を配置した、請求項に記載の測定システム。
  9. 前記測定装置は、
    各支持部材の一端に設けられる軸部材と、
    前記軸部材を回転可能に支持する2つの脚部材と、
    前記2つの脚部材が連結され、前記被覆物により被覆された部材が通される第1の通路を有する第1のフレーム部材と、
    前記第1のフレーム部材の両端に設けられ、前記第1の通路に連続する第1の開口の中心に向けて突出し、前記第1の通路に通された前記被覆物により被覆された部材に当接して、前記第1のフレーム部材を前記被覆物により被覆された部材に支持する支持手段とを含み、
    前記測定システムは、
    前記被覆物により被覆された部材の外表面の損傷を検出する探傷装置もしくは該被覆物により被覆された部材の振動を測定する振動測定装置またはその両方と、
    前記探傷装置もしくは前記振動測定装置またはその両方が取り付けられ、前記被覆物により被覆された部材が通される第2の通路を有する第2のフレーム部材と、
    前記第2のフレーム部材の両端に設けられ、前記第2の通路に連続する第2の開口の中心に向けて突出し、前記第2の通路に通された前記被覆物により被覆された部材に当接して、前記第2のフレーム部材を前記被覆物により被覆された部材に支持する第2の支持手段とを含み、
    前記第2のフレーム部材に前記測定装置が牽引される、請求項またはに記載の測定システム。
JP2018085157A 2018-04-26 2018-04-26 測定装置および測定システム Active JP7057563B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018085157A JP7057563B2 (ja) 2018-04-26 2018-04-26 測定装置および測定システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018085157A JP7057563B2 (ja) 2018-04-26 2018-04-26 測定装置および測定システム

Publications (2)

Publication Number Publication Date
JP2019191034A JP2019191034A (ja) 2019-10-31
JP7057563B2 true JP7057563B2 (ja) 2022-04-20

Family

ID=68389984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018085157A Active JP7057563B2 (ja) 2018-04-26 2018-04-26 測定装置および測定システム

Country Status (1)

Country Link
JP (1) JP7057563B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3014998U (ja) 1995-02-21 1995-08-22 株式会社堀場製作所 スティック型分析計
JP2003207474A (ja) 2002-01-16 2003-07-25 Marutenboshi Kogyo Kk 静電容量型水分計
US20120074955A1 (en) 2010-09-24 2012-03-29 Steven Kenneth Brady Methods and systems for quantifying degradation of wiring insulation
JP2012163402A (ja) 2011-02-04 2012-08-30 Nishimatsu Constr Co Ltd 点検装置および点検方法
JP2013245496A (ja) 2012-05-28 2013-12-09 Hokkaido Research Organization ケーブル検査装置
JP2016166750A (ja) 2015-03-09 2016-09-15 中日本高速道路株式会社 斜張橋の斜材点検装置及び斜材点検方法
JP2017219369A (ja) 2016-06-06 2017-12-14 西松建設株式会社 加振装置、振動測定システム、振動測定方法および張力の計測方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146031A (en) * 1979-05-01 1980-11-14 Ritsushiyoo Densan Kk Probe for water content rate measuring unit
JPS5692439A (en) * 1979-12-26 1981-07-27 Toshiba Corp Detecting device for liquid in insulating conduit
JPS60101386U (ja) * 1983-12-16 1985-07-10 株式会社フジクラ 端子クリツプ
JPS61221640A (ja) * 1985-03-06 1986-10-02 Sharp Corp 含水率測定装置
JPS61251758A (ja) * 1985-04-30 1986-11-08 Masao Yamamoto 繊維状物の水分測定用プロ−ブ
JPH03282358A (ja) * 1990-03-30 1991-12-12 Tatsuta Electric Wire & Cable Co Ltd 架空配電線の導体腐食簡易判定法及びその装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3014998U (ja) 1995-02-21 1995-08-22 株式会社堀場製作所 スティック型分析計
JP2003207474A (ja) 2002-01-16 2003-07-25 Marutenboshi Kogyo Kk 静電容量型水分計
US20120074955A1 (en) 2010-09-24 2012-03-29 Steven Kenneth Brady Methods and systems for quantifying degradation of wiring insulation
JP2012163402A (ja) 2011-02-04 2012-08-30 Nishimatsu Constr Co Ltd 点検装置および点検方法
JP2013245496A (ja) 2012-05-28 2013-12-09 Hokkaido Research Organization ケーブル検査装置
JP2016166750A (ja) 2015-03-09 2016-09-15 中日本高速道路株式会社 斜張橋の斜材点検装置及び斜材点検方法
JP2017219369A (ja) 2016-06-06 2017-12-14 西松建設株式会社 加振装置、振動測定システム、振動測定方法および張力の計測方法

Also Published As

Publication number Publication date
JP2019191034A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
Palma et al. Structural health monitoring of timber structures–Review of available methods and case studies
Han et al. Localization of acoustic emission sources in structural health monitoring of masonry bridge
Marecos et al. Evaluation of a highway pavement using non-destructive tests: Falling Weight Deflectometer and Ground Penetrating Radar
RU2673367C2 (ru) Способ и система для непрерывного дистанционного контроля деформаций в находящемся под давлением трубопроводе
Verstrynge et al. Steel corrosion damage monitoring in reinforced concrete structures with the acoustic emission technique: A review
US20120125118A1 (en) System for monitoring structural assets
US20130037420A1 (en) Method and apparatus for detecting moisture on metal and other surfaces, including surfaces under thermal insulation
US20160161436A1 (en) Electrical Capacitance Volume Tomography Sensor for Inspection of Post-Tensioned Tendons
CN103940893B (zh) 一种拉索锚固段锈蚀缺陷监测装置及方法
Priya et al. Low frequency and boundary condition effects on impedance based damage identification
Lee et al. Use of relative baseline features of guided waves for in situ structural health monitoring
JP7057563B2 (ja) 測定装置および測定システム
Rashidi et al. Assessment of the overall condition of bridge decks using the Jensen-Shannon divergence of NDE data
Martino et al. Determining ground penetrating radar amplitude thresholds for the corrosion state of reinforced concrete bridge decks
Sriskantharajah et al. Condition assessment tool for timber utility poles using stress wave propagation technique
Vancura et al. Concrete pavement thickness variation assessment with cores and nondestructive testing measurements
US6222373B1 (en) Method and apparatus for monitoring the integrity of a geomembrane liner using time domain reflectometry
Nassr et al. Improved interdigital sensors for structural health monitoring of composite retrofit systems
US11733282B2 (en) Probe for non-intrusively detecting imperfections in a test object
US10876989B2 (en) Method for non-intrusively detecting imperfections in a test object
Divsholi et al. Application of PZT sensors for detection of damage severity and location in concrete
Khanal Review of modern nondestructive testing techniques for civil infrastructure
US20050021249A1 (en) Water measurement apparatus and methods
RU2368730C1 (ru) Способ проведения эксплуатационного мониторинга технического состояния лотковых каналов оросительных систем
JP4399245B2 (ja) 白蟻の蟻道の局部的検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7057563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150