JP7057400B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP7057400B2
JP7057400B2 JP2020139148A JP2020139148A JP7057400B2 JP 7057400 B2 JP7057400 B2 JP 7057400B2 JP 2020139148 A JP2020139148 A JP 2020139148A JP 2020139148 A JP2020139148 A JP 2020139148A JP 7057400 B2 JP7057400 B2 JP 7057400B2
Authority
JP
Japan
Prior art keywords
film
transistor
layer
electrode layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020139148A
Other languages
Japanese (ja)
Other versions
JP2020194974A (en
Inventor
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2020139148A priority Critical patent/JP7057400B2/en
Publication of JP2020194974A publication Critical patent/JP2020194974A/en
Priority to JP2022063809A priority patent/JP7292466B2/en
Application granted granted Critical
Publication of JP7057400B2 publication Critical patent/JP7057400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体集積回路の微細化技術に関する。本明細書で開示する発明の中には、
半導体集積回路を構成する要素としてシリコン半導体の他に化合物半導体によって構成さ
れる素子が含まれ、その一例として酸化物半導体を適用した半導体装置及びその作製方法
に関する。
The present invention relates to a technique for miniaturizing a semiconductor integrated circuit. Some of the inventions disclosed herein include
Elements constituting a semiconductor integrated circuit include an element composed of a compound semiconductor in addition to a silicon semiconductor, and as an example thereof, the present invention relates to a semiconductor device to which an oxide semiconductor is applied and a method for manufacturing the same.

なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装
置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
In the present specification, the semiconductor device refers to all devices that can function by utilizing the semiconductor characteristics, and the electro-optical device, the semiconductor circuit, and the electronic device are all semiconductor devices.

近年、半導体装置の開発が進められ、LSIやCPUやメモリとして用いられている。
CPUは、半導体ウェハから切り離された半導体集積回路(少なくともトランジスタ及び
メモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
In recent years, the development of semiconductor devices has been promoted, and they are used as LSIs, CPUs, and memories.
A CPU is an aggregate of semiconductor elements having a semiconductor integrated circuit (at least a transistor and a memory) separated from a semiconductor wafer and having electrodes as connection terminals formed therein.

LSIやCPUやメモリなどの半導体回路(ICチップ)は、回路基板、例えばプリント
配線板に実装され、様々な電子機器の部品の一つとして用いられる。
Semiconductor circuits (IC chips) such as LSIs, CPUs, and memories are mounted on circuit boards, for example, printed wiring boards, and are used as one of various electronic device components.

半導体回路に用いられるトランジスタに適用可能な半導体材料としてシリコン系半導体材
料が広く知られている。例えば特許文献1では、高集積化を図るため、チャネル形成領域
とコンタクト部との距離を短くし、これらの間で生じる抵抗を減少する構造が提案されて
いる。
Silicon-based semiconductor materials are widely known as semiconductor materials applicable to transistors used in semiconductor circuits. For example, Patent Document 1 proposes a structure in which the distance between the channel forming region and the contact portion is shortened and the resistance generated between them is reduced in order to achieve high integration.

また、シリコンではない、その他の材料として酸化物半導体が注目されている。例えば、
酸化物半導体として、酸化亜鉛、In-Ga-Zn系酸化物を用いてトランジスタを作製
し、表示装置の画素のスイッチング素子などに用いる技術が特許文献2及び特許文献3で
開示されている。
In addition, oxide semiconductors are attracting attention as other materials other than silicon. for example,
Patent Documents 2 and 3 disclose techniques for manufacturing a transistor using zinc oxide and an In—Ga—Zn-based oxide as an oxide semiconductor and using it as a switching element for pixels of a display device.

特開2004-327617号公報Japanese Unexamined Patent Publication No. 2004-327617 特開2007-123861号公報Japanese Unexamined Patent Publication No. 2007-123861 特開2007-96055号公報Japanese Unexamined Patent Publication No. 2007-96055

LSIやCPUやメモリなどの半導体集積回路に用いるトランジスタのチャネル長Lを短
くすることによって微細なトランジスタを実現し、回路の動作速度を高速化し、さらには
消費電力の低減を図ることを課題の一とする。
One of the challenges is to realize fine transistors by shortening the channel length L of transistors used in semiconductor integrated circuits such as LSIs, CPUs, and memories, to increase the operating speed of circuits, and to reduce power consumption. And.

本発明の一態様では、酸化物半導体を含み、高速動作が可能なトランジスタ及びその作製
方法を提供することを課題の一とする。または、該トランジスタを含む信頼性の高い半導
体装置及びその作製方法を提供することを課題の一とする。
In one aspect of the present invention, it is an object of the present invention to provide a transistor including an oxide semiconductor and capable of high-speed operation and a method for manufacturing the same. Another object of the present invention is to provide a highly reliable semiconductor device including the transistor and a method for manufacturing the same.

酸化物半導体中で電子供与体(ドナー)となる不純物を除去することで、真性又は実質的
に真性な半導体であって、シリコン半導体よりもエネルギーギャップが大きい酸化物半導
体でチャネル形成領域が形成されるトランジスタを用い、LSIやCPUやメモリなどの
半導体集積回路を作製する。
By removing impurities that become electron donors in the oxide semiconductor, a channel formation region is formed in the oxide semiconductor, which is a true or substantially genuine semiconductor and has a larger energy gap than the silicon semiconductor. A semiconductor integrated circuit such as an LSI, a CPU, or a memory is manufactured by using a transistor.

酸化物半導体と導電層との間には、接触抵抗が生じる。接触抵抗を低減するためには、接
触面積を十分に確保することが必要である。
Contact resistance is generated between the oxide semiconductor and the conductive layer. In order to reduce the contact resistance, it is necessary to secure a sufficient contact area.

そこで、酸化物半導体層の上面に接する導電層と、酸化物半導体層の下面に接する導電層
を設け、接触面積を十分に確保することで接触抵抗の低減を図る。
Therefore, the contact resistance is reduced by providing a conductive layer in contact with the upper surface of the oxide semiconductor layer and a conductive layer in contact with the lower surface of the oxide semiconductor layer to secure a sufficient contact area.

本明細書で開示する本発明の一態様は、半導体基板と、半導体基板上に絶縁層と、絶縁層
上に酸化物半導体層と、酸化物半導体層上にゲート絶縁層と、ゲート絶縁層上に酸化物半
導体層と重なるゲート電極層と、ゲート電極層の側面にサイドウォールを有し、絶縁層に
深い領域と浅い領域を有する溝と、溝に導電型の領域とを有し、サイドウォールは、浅い
領域と重なることを特徴とする半導体装置である。
One aspect of the present invention disclosed herein is a semiconductor substrate, an insulating layer on the semiconductor substrate, an oxide semiconductor layer on the insulating layer, a gate insulating layer on the oxide semiconductor layer, and a gate insulating layer. The gate electrode layer overlaps with the oxide semiconductor layer, the sidewall has a sidewall on the side surface of the gate electrode layer, the insulating layer has a groove having a deep region and a shallow region, and the groove has a conductive region. Is a semiconductor device characterized by overlapping with a shallow region.

上記構成において、さらに導電層が、サイドウォール及び酸化物半導体層と接しているこ
とも特徴の一つである。
One of the features of the above configuration is that the conductive layer is in contact with the sidewall and the oxide semiconductor layer.

また、上記構成において、さらに前記ゲート電極層上に層間絶縁層と、層間絶縁層上に配
線を有し、配線は、導電型の領域と重なり、深い領域と電気的に接続することも特徴の一
つである。
Further, in the above configuration, the gate electrode layer is further provided with an interlayer insulating layer and wiring is provided on the interlayer insulating layer, and the wiring overlaps with the conductive type region and is electrically connected to a deep region. It is one.

また、上記構成において、導電型の領域は、チャネル長方向に第1の幅を有する浅い領域
と、チャネル長方向に第2の幅を有する深い領域とを有していることも特徴の一つである
Further, in the above configuration, one of the features of the conductive type region is that it has a shallow region having a first width in the channel length direction and a deep region having a second width in the channel length direction. Is.

また、複数の半導体集積回路を一つのパッケージに搭載し半導体装置の集積を高めたもの
、所謂MCP(Multi Chip Package)としてもよい。
Further, a so-called MCP (Multi Chip Package), in which a plurality of semiconductor integrated circuits are mounted in one package to enhance the integration of semiconductor devices, may be used.

また、回路基板に半導体集積回路を実装する場合には、フェイスアップ形態であってもよ
いし、フリップチップ形態(フェイスダウン形態)としてもよい。
Further, when the semiconductor integrated circuit is mounted on the circuit board, it may be in a face-up form or a flip-chip form (face-down form).

また、作製方法も本発明の一つであり、その構成は、第1の電極層上に第1の絶縁膜を形
成し、第1の電極層の上面を露出させる第1の平坦化処理を行い、第1の電極層の上面に
接して第2の電極層を形成し、第2の電極層上に第2の絶縁膜を形成し、第2の電極層の
上面を露出させる第2の平坦化処理を行い、第2の電極層の上面に接して酸化物半導体膜
を形成し、酸化物半導体膜上にゲート絶縁層を形成し、ゲート絶縁層上にゲート電極層及
び該ゲート電極層上面を覆う絶縁膜を形成し、第2の電極層と重なり、且つ、前記ゲート
電極層の側面に接するサイドウォールを形成し、ゲート電極層及びサイドウォールを覆い
、前記酸化物半導体膜上に接する導電膜を形成し、ゲート電極層と重なる前記導電膜の一
部を除去する第3の平坦化処理を行う半導体装置の作製方法である。
Further, the manufacturing method is also one of the present inventions, and the configuration thereof is a first flattening treatment in which a first insulating film is formed on the first electrode layer and the upper surface of the first electrode layer is exposed. A second electrode layer is formed in contact with the upper surface of the first electrode layer, a second insulating film is formed on the second electrode layer, and the upper surface of the second electrode layer is exposed. A flattening treatment is performed to form an oxide semiconductor film in contact with the upper surface of the second electrode layer, a gate insulating layer is formed on the oxide semiconductor film, and a gate electrode layer and the gate electrode layer are formed on the gate insulating layer. An insulating film covering the upper surface is formed, a sidewall is formed which overlaps with the second electrode layer and is in contact with the side surface of the gate electrode layer, covers the gate electrode layer and the sidewall, and is in contact with the oxide semiconductor film. This is a method for manufacturing a semiconductor device that performs a third flattening process for forming a conductive film and removing a part of the conductive film that overlaps with the gate electrode layer.

LSIやCPUやメモリなどの半導体集積回路に用いるトランジスタのチャネル長Lを短
くする場合、酸化物半導体層の接触抵抗を低減することで回路の動作速度を高速化し、さ
らには消費電力の低減を実現する。
When shortening the channel length L of transistors used in semiconductor integrated circuits such as LSIs, CPUs, and memories, the contact resistance of the oxide semiconductor layer is reduced to increase the operating speed of the circuit and further reduce power consumption. do.

本発明の一態様を示す断面図及び上面図の一例である。It is an example of a sectional view and a top view which show one aspect of this invention. 本発明の一態様を示す工程断面図である。It is a process sectional view which shows one aspect of this invention. 本発明の一態様を示す工程断面図である。It is a process sectional view which shows one aspect of this invention. 半導体装置の一態様を示す断面図、平面図及び回路図。A cross-sectional view, a plan view, and a circuit diagram showing one aspect of a semiconductor device. 半導体装置の一態様を示す回路図及び斜視図。A circuit diagram and a perspective view showing one aspect of a semiconductor device. 半導体装置の一態様を示す平面図及び断面図。A plan view and a cross-sectional view showing one aspect of a semiconductor device. 半導体装置の一態様を示す回路図。A circuit diagram showing one aspect of a semiconductor device. 半導体装置の一態様を示すブロック図。The block diagram which shows one aspect of a semiconductor device. 半導体装置の一態様を示すブロック図。The block diagram which shows one aspect of a semiconductor device. 半導体装置の一態様を示すブロック図。The block diagram which shows one aspect of a semiconductor device.

以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は
以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれ
ば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈さ
れるものではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that the form and details thereof can be changed in various ways. Further, the present invention is not limited to the description of the embodiments shown below.

(実施の形態1)
図1(A)及び図1(B)に半導体装置の例として、トランジスタ420の断面図及び上
面図を示す。図1(A)は、トランジスタ420の断面図であり、図1(A)は、図1(
B)のX-Yにおける断面図である。なお、図1(B)では、煩雑になることを避けるた
め、トランジスタ420の構成要素の一部(例えば、絶縁膜407、絶縁膜410、層間
絶縁膜415等)を省略して図示している。
(Embodiment 1)
1 (A) and 1 (B) show a cross-sectional view and a top view of the transistor 420 as an example of a semiconductor device. 1 (A) is a cross-sectional view of the transistor 420, and FIG. 1 (A) is FIG. 1 (A).
B) is a cross-sectional view taken along the line XY. In addition, in FIG. 1B, a part of the constituent elements of the transistor 420 (for example, the insulating film 407, the insulating film 410, the interlayer insulating film 415, etc.) is omitted in order to avoid complication. ..

図1(A)及び図1(B)に示すトランジスタ420は、絶縁表面を有する基板400上
に、下地絶縁層436と、下地絶縁層436中に埋め込まれ、且つ、上面の少なくとも一
部が下地絶縁層436から露出した電極層425a及び電極層425bと、一対の低抵抗
領域404a、404b、及び低抵抗領域404aと低抵抗領域404bに挟まれたチャ
ネル形成領域409を含む酸化物半導体層403と、酸化物半導体層403上に設けられ
たゲート絶縁層402と、ゲート絶縁層402を介してチャネル形成領域409上に設け
られたゲート電極層401と、ゲート電極層401の側面に設けられた側壁絶縁層412
a、412bと、ゲート電極層401上に設けられた絶縁膜413と、ソース電極層40
5a及びドレイン電極層405b上に設けられた絶縁膜410と、絶縁膜410上に設け
られた層間絶縁膜415と、層間絶縁膜415上に設けられた絶縁膜407と、絶縁膜4
07、層間絶縁膜415及び絶縁膜410に設けられた開口を介して、ソース電極層40
5a及びドレイン電極層405bとそれぞれ電気的に接続する第1の配線層465a及び
第2の配線層465bと、を含んで構成される。
The transistor 420 shown in FIGS. 1A and 1B is embedded in a base insulating layer 436 and a base insulating layer 436 on a substrate 400 having an insulating surface, and at least a part of the upper surface thereof is a base. An oxide semiconductor layer 403 including an electrode layer 425a and an electrode layer 425b exposed from the insulating layer 436, a pair of low resistance regions 404a and 404b, and a channel forming region 409 sandwiched between the low resistance region 404a and the low resistance region 404b. , The gate insulating layer 402 provided on the oxide semiconductor layer 403, the gate electrode layer 401 provided on the channel forming region 409 via the gate insulating layer 402, and the side wall provided on the side surface of the gate electrode layer 401. Insulation layer 412
a, 412b, an insulating film 413 provided on the gate electrode layer 401, and a source electrode layer 40.
The insulating film 410 provided on the 5a and the drain electrode layer 405b, the interlayer insulating film 415 provided on the insulating film 410, the insulating film 407 provided on the interlayer insulating film 415, and the insulating film 4
The source electrode layer 40 is provided through the openings provided in 07, the interlayer insulating film 415, and the insulating film 410.
It includes a first wiring layer 465a and a second wiring layer 465b that are electrically connected to the 5a and the drain electrode layer 405b, respectively.

層間絶縁膜415はトランジスタ420による凹凸を平坦化するように設けられており、
該上面の高さは側壁絶縁層412a、412b、及び絶縁膜410と概略同じである。側
壁絶縁層412a、412bはサイドウォールとも呼ぶ。また、ソース電極層405a及
びドレイン電極層405bの上面の高さは、層間絶縁膜415、側壁絶縁層412a、4
12b、及び絶縁膜413の上面の高さより低く、ゲート電極層401の上面の高さより
高い。なお、ここでいう高さとは、基板400上面からの高さである。
The interlayer insulating film 415 is provided so as to flatten the unevenness of the transistor 420.
The height of the upper surface is substantially the same as that of the side wall insulating layers 412a and 412b and the insulating film 410. The side wall insulating layers 412a and 412b are also referred to as sidewalls. Further, the heights of the upper surfaces of the source electrode layer 405a and the drain electrode layer 405b are such that the interlayer insulating film 415, the side wall insulating layer 412a, and 4
It is lower than the height of the upper surface of 12b and the insulating film 413, and higher than the height of the upper surface of the gate electrode layer 401. The height referred to here is the height from the upper surface of the substrate 400.

また、図1において、電極層425a及び電極層425bは、下地絶縁層436に深い領
域と浅い領域を有する溝を埋め込むように形成されている。側壁絶縁層412a、412
bは浅い領域と重なる。また、深い領域と重なる位置に第1の配線層465a及び第2の
配線層465bが形成される。
Further, in FIG. 1, the electrode layer 425a and the electrode layer 425b are formed so as to embed a groove having a deep region and a shallow region in the underlying insulating layer 436. Side wall insulation layers 412a, 412
b overlaps the shallow region. Further, the first wiring layer 465a and the second wiring layer 465b are formed at positions overlapping with the deep region.

また、図1において、絶縁膜407は、層間絶縁膜415、ソース電極層405a、ドレ
イン電極層405b、側壁絶縁層412a、412b、絶縁膜413、絶縁膜410と接
して設けられている。
Further, in FIG. 1, the insulating film 407 is provided in contact with the interlayer insulating film 415, the source electrode layer 405a, the drain electrode layer 405b, the side wall insulating layer 412a, 412b, the insulating film 413, and the insulating film 410.

なお、ゲート電極層401をマスクとして酸化物半導体膜403に自己整合的にドーパン
トを導入し、酸化物半導体膜403においてチャネル形成領域409を挟んでチャネル形
成領域409より抵抗が低く、ドーパントを含む低抵抗領域404a、404bを形成す
る。ドーパントは、酸化物半導体膜403の導電率を変化させる不純物である。ドーパン
トの導入方法としては、イオン注入法、イオンドーピング法、プラズマイマージョンイオ
ンインプランテーション法などを用いることができる。
The dopant is introduced into the oxide semiconductor film 403 in a self-aligned manner using the gate electrode layer 401 as a mask, and the resistance of the oxide semiconductor film 403 is lower than that of the channel forming region 409 sandwiching the channel forming region 409, and the resistance is lower than that of the channel forming region 409. The resistance regions 404a and 404b are formed. The dopant is an impurity that changes the conductivity of the oxide semiconductor film 403. As a method for introducing the dopant, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, or the like can be used.

チャネル長方向にチャネル形成領域409を挟んで低抵抗領域404a、404bを含む
酸化物半導体膜403と、酸化物半導体膜403の上面の一部と接するソース電極層40
5a及びドレイン電極層405bと、酸化物半導体膜403の下面と一部接する電極層4
25a及び電極層425bとを有することにより、該トランジスタ420はオン特性(例
えば、オン電流及び電界効果移動度)が高く、高速動作、高速応答が可能となる。
The oxide semiconductor film 403 including the low resistance regions 404a and 404b with the channel forming region 409 sandwiched in the channel length direction and the source electrode layer 40 in contact with a part of the upper surface of the oxide semiconductor film 403.
The electrode layer 4 that partially contacts the 5a and the drain electrode layer 405b and the lower surface of the oxide semiconductor film 403.
By having the 25a and the electrode layer 425b, the transistor 420 has high on-characteristics (for example, on-current and field-effect mobility), and enables high-speed operation and high-speed response.

酸化物半導体膜403に用いる酸化物半導体としては、少なくともインジウム(In)あ
るいは亜鉛(Zn)を含むことが好ましい。特にInとZnを含むことが好ましい。また
、該酸化物半導体を用い、酸化物半導体の酸素欠損を減らすためのスタビライザーとして
、それらに加えてガリウム(Ga)を有することが好ましい。また、スタビライザーとし
てスズ(Sn)を有することが好ましい。また、スタビライザーとしてハフニウム(Hf
)を有することが好ましい。また、スタビライザーとしてアルミニウム(Al)を有する
ことが好ましい。また、スタビライザーとしてジルコニウム(Zr)を有することが好ま
しい。
The oxide semiconductor used for the oxide semiconductor film 403 preferably contains at least indium (In) or zinc (Zn). In particular, it is preferable to contain In and Zn. Further, it is preferable to use the oxide semiconductor and to have gallium (Ga) in addition to them as a stabilizer for reducing oxygen deficiency of the oxide semiconductor. Further, it is preferable to have tin (Sn) as the stabilizer. Also, as a stabilizer, hafnium (Hf)
) Is preferable. Further, it is preferable to have aluminum (Al) as the stabilizer. Further, it is preferable to have zirconium (Zr) as the stabilizer.

また、他のスタビライザーとして、ランタノイドである、ランタン(La)、セリウム(
Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム
(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホル
ミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ル
テチウム(Lu)のいずれか一種あるいは複数種を有してもよい。
In addition, as other stabilizers, lanthanoids such as lanthanum (La) and cerium (
Ce), placeodim (Pr), neodym (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), formium (Ho), elbium (Er), thulium ( It may have one or more of Tm), ytterbium (Yb), and lutethium (Lu).

例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化亜鉛、二元系金属の酸化
物であるIn-Zn系酸化物、Sn-Zn系酸化物、Al-Zn系酸化物、Zn-Mg系
酸化物、Sn-Mg系酸化物、In-Mg系酸化物、In-Ga系酸化物、三元系金属の
酸化物であるIn-Ga-Zn系酸化物(IGZOとも表記する)、In-Al-Zn系
酸化物、In-Sn-Zn系酸化物、Sn-Ga-Zn系酸化物、Al-Ga-Zn系酸
化物、Sn-Al-Zn系酸化物、In-Hf-Zn系酸化物、In-La-Zn系酸化
物、In-Ce-Zn系酸化物、In-Pr-Zn系酸化物、In-Nd-Zn系酸化物
、In-Sm-Zn系酸化物、In-Eu-Zn系酸化物、In-Gd-Zn系酸化物、
In-Tb-Zn系酸化物、In-Dy-Zn系酸化物、In-Ho-Zn系酸化物、I
n-Er-Zn系酸化物、In-Tm-Zn系酸化物、In-Yb-Zn系酸化物、In
-Lu-Zn系酸化物、四元系金属の酸化物であるIn-Sn-Ga-Zn系酸化物、I
n-Hf-Ga-Zn系酸化物、In-Al-Ga-Zn系酸化物、In-Sn-Al-
Zn系酸化物、In-Sn-Hf-Zn系酸化物、In-Hf-Al-Zn系酸化物を用
いることができる。
For example, as oxide semiconductors, indium oxide, tin oxide, zinc oxide, In—Zn oxide, Sn—Zn oxide, Al—Zn oxide, Zn—Mg oxide, which are oxides of binary metals, are used. Oxides, Sn-Mg-based oxides, In-Mg-based oxides, In-Ga-based oxides, In-Ga-Zn-based oxides (also referred to as IGZO), which are ternary metal oxides, In- Al-Zn-based oxides, In-Sn-Zn-based oxides, Sn-Ga-Zn-based oxides, Al-Ga-Zn-based oxides, Sn-Al-Zn-based oxides, In-Hf-Zn-based oxides Material, In-La-Zn-based oxide, In-Ce-Zn-based oxide, In-Pr-Zn-based oxide, In-Nd-Zn-based oxide, In-Sm-Zn-based oxide, In-Eu -Zn-based oxide, In-Gd-Zn-based oxide,
In-Tb-Zn-based oxide, In-Dy-Zn-based oxide, In-Ho-Zn-based oxide, I
n-Er-Zn-based oxide, In-Tm-Zn-based oxide, In-Yb-Zn-based oxide, In
-Lu-Zn-based oxide, In-Sn-Ga-Zn-based oxide, which is a quaternary metal oxide, I
n-Hf-Ga-Zn-based oxide, In-Al-Ga-Zn-based oxide, In-Sn-Al-
Zn-based oxides, In—Sn—Hf—Zn-based oxides, and In—Hf-Al—Zn-based oxides can be used.

なお、ここで、例えば、In-Ga-Zn系酸化物とは、InとGaとZnを主成分とし
て有する酸化物という意味であり、InとGaとZnの比率は問わない。また、InとG
aとZn以外の金属元素が入っていてもよい。
Here, for example, the In—Ga—Zn-based oxide means an oxide containing In, Ga, and Zn as main components, and the ratio of In, Ga, and Zn does not matter. Also, In and G
Metal elements other than a and Zn may be contained.

また、酸化物半導体として、InMO(ZnO)(m>0、且つ、mは整数でない)
で表記される材料を用いてもよい。なお、Mは、Ga、Fe、Mn及びCoから選ばれた
一の金属元素または複数の金属元素を示す。また、酸化物半導体として、InSnO
(ZnO)(n>0、且つ、nは整数)で表記される材料を用いてもよい。
Further, as an oxide semiconductor, InMO 3 (ZnO) m (m> 0, and m is not an integer).
The material indicated by may be used. In addition, M represents one metal element selected from Ga, Fe, Mn and Co, or a plurality of metal elements. In addition, as an oxide semiconductor, In 2 SnO 5
(ZnO) A material represented by n (n> 0 and n is an integer) may be used.

例えば、In:Ga:Zn=1:1:1(=1/3:1/3:1/3)、In:Ga:Z
n=2:2:1(=2/5:2/5:1/5)、あるいはIn:Ga:Zn=3:1:2
(=1/2:1/6:1/3)の原子数比のIn-Ga-Zn系酸化物やその組成の近傍
の酸化物を用いることができる。あるいは、In:Sn:Zn=1:1:1(=1/3:
1/3:1/3)、In:Sn:Zn=2:1:3(=1/3:1/6:1/2)あるい
はIn:Sn:Zn=2:1:5(=1/4:1/8:5/8)の原子数比のIn-Sn
-Zn系酸化物やその組成の近傍の酸化物を用いるとよい。
For example, In: Ga: Zn = 1: 1: 1 (= 1/3: 1/3: 1/3), In: Ga: Z
n = 2: 2: 1 (= 2/5: 2/5: 1/5) or In: Ga: Zn = 3: 1: 2
An In—Ga—Zn-based oxide having an atomic number ratio of (= 1/2: 1/6: 1/3) or an oxide in the vicinity of its composition can be used. Alternatively, In: Sn: Zn = 1: 1: 1 (= 1/3 :)
1/3: 1/3), In: Sn: Zn = 2: 1: 3 (= 1/3: 1/6: 1/2) or In: Sn: Zn = 2: 1: 5 (= 1 /) In-Sn with an atomic number ratio of 4: 1/8: 5/8)
-It is advisable to use a Zn-based oxide or an oxide in the vicinity of its composition.

しかし、これらに限られず、必要とする半導体特性(移動度、しきい値、ばらつき等)に
応じて適切な組成のものを用いればよい。また、必要とする半導体特性を得るために、キ
ャリア濃度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間結合距離、密度
等を適切なものとすることが好ましい。
However, the present invention is not limited to these, and a semiconductor having an appropriate composition may be used according to the required semiconductor characteristics (mobility, threshold value, variation, etc.). Further, in order to obtain the required semiconductor characteristics, it is preferable that the carrier concentration, the impurity concentration, the defect density, the atomic number ratio between the metal element and oxygen, the interatomic bond distance, the density and the like are appropriate.

例えば、In-Sn-Zn系酸化物では比較的容易に高い移動度が得られる。しかしなが
ら、In-Ga-Zn系酸化物でも、バルク内欠陥密度を低くすることにより移動度を上
げることができる。
For example, high mobility can be obtained relatively easily with an In—Sn—Zn-based oxide. However, even with In—Ga—Zn-based oxides, the mobility can be increased by lowering the defect density in the bulk.

なお、例えば、In、Ga、Znの原子数比がIn:Ga:Zn=a:b:c(a+b+
c=1)である酸化物の組成が、原子数比がIn:Ga:Zn=A:B:C(A+B+C
=1)の酸化物の組成のrだけ近傍であるとは、a、b、cが、(a-A)+(b-B
+(c-C)≦rを満たすことをいう。rとしては、例えば、0.05とすれば
よい。他の酸化物でも同様である。
For example, the atomic number ratio of In, Ga, and Zn is In: Ga: Zn = a: b: c (a + b +).
The composition of the oxide having c = 1) has an atomic number ratio of In: Ga: Zn = A: B: C (A + B + C).
= 1) When a, b, and c are in the vicinity of r in the composition of the oxide, (aA) 2 + (bB)
) 2 + (c-C) 2 ≤ r 2 is satisfied. The r may be, for example, 0.05. The same applies to other oxides.

酸化物半導体膜403は、単結晶、多結晶(ポリクリスタルともいう。)または非晶質な
どの状態をとる。
The oxide semiconductor film 403 is in a state of single crystal, polycrystal (also referred to as polycrystal) or amorphous.

好ましくは、酸化物半導体膜は、CAAC-OS(C Axis Aligned Cr
ystalline Oxide Semiconductor)膜とする。
Preferably, the oxide semiconductor film is CAAC-OS (C Axis Aligned Cr).
ystalline Oxide Semiconductor) film.

ここで、CAAC(C Axis Aligned Crystal)は、c軸が酸化物
半導体膜の被形成面または表面に垂直な方向を向き、かつab面に垂直な方向から見て三
角形状または六角形状の原子配列を有し、c軸に垂直な方向から見て金属原子が層状また
は金属原子と酸素原子とが層状に配列している結晶と非晶質の混相構造をいう。なお、こ
の混相構造においてCAAC同士は、それぞれa軸およびb軸の向きが異なっていてもよ
い。
Here, CAAC (C Axis Aligned Crystal) has a triangular or hexagonal atomic arrangement in which the c-axis is oriented in a direction perpendicular to the formed surface or surface of the oxide semiconductor film and is viewed from a direction perpendicular to the ab surface. A mixed phase structure of crystals and amorphous, in which metal atoms are arranged in layers or metal atoms and oxygen atoms are arranged in layers when viewed from the direction perpendicular to the c-axis. In this mixed phase structure, the directions of the a-axis and the b-axis of the CAACs may be different from each other.

CAAC酸化物半導体(CAAC-OS:C Axis Aligned Crysta
line Oxide Semiconductor)膜は、完全な単結晶ではなく、完
全な非晶質でもない。CAAC-OS膜は、結晶-非晶質混相構造の酸化物半導体膜であ
る。結晶の大きさは数nmから数十nm程度と見積もられるが、透過型電子顕微鏡(TE
M:Transmission Electron Microscope)による観察
では、CAAC-OS膜に含まれる非晶質とCAACとの境界は必ずしも明確ではない。
また、CAAC-OS膜には結晶粒界(グレインバウンダリーともいう。)は確認されな
い。CAAC-OS膜が結晶粒界を有さないため、結晶粒界に起因する電子移動度の低下
が起こりにくい。
CAAC oxide semiconductor (CAAC-OS: C Axis Aligned Crysta)
The line Oxide Semiconductor) membrane is neither completely single crystal nor completely amorphous. The CAAC-OS film is an oxide semiconductor film having a crystal-amorphous mixed phase structure. The size of the crystal is estimated to be several nm to several tens of nm, but it is a transmission electron microscope (TE).
In the observation by M: Transmission Electron Microscope), the boundary between the amorphous substance contained in the CAAC-OS film and CAAC is not always clear.
In addition, no grain boundaries (also referred to as grain boundaries) are confirmed in the CAAC-OS film. Since the CAAC-OS film does not have grain boundaries, the electron mobility due to the grain boundaries is unlikely to decrease.

なお、CAAC-OS膜において、膜中における結晶領域の分布は均一でなくてもよい。
例えば、CAAC-OS膜の表面側から結晶成長した場合、CAAC-OS膜の表面の近
傍は結晶の占める割合が高くなり、被形成面の近傍は非晶質の占める割合が高くなること
がある。
In the CAAC-OS film, the distribution of the crystal region in the film does not have to be uniform.
For example, when crystals grow from the surface side of the CAAC-OS film, the proportion of crystals may be high in the vicinity of the surface of the CAAC-OS film, and the proportion of amorphous material may be high in the vicinity of the surface to be formed. ..

CAACにおける結晶部分のc軸は、CAAC-OS膜の被形成面または表面に垂直な方
向を向くため、CAAC-OS膜の形状(被形成面の断面形状または表面の断面形状)に
よって、c軸が向く方向が異なることがある。なお、CAACにおける結晶部分のc軸が
向く方向は、CAAC-OS膜が形成されたときの被形成面または表面に略垂直な方向と
なる。CAACは、成膜と同時または成膜後に加熱処理などの結晶化処理を行うことで形
成される。
Since the c-axis of the crystal portion in CAAC faces the direction perpendicular to the formed surface or surface of the CAAC-OS film, the c-axis depends on the shape of the CAAC-OS film (cross-sectional shape of the formed surface or the cross-sectional shape of the surface). May be facing different directions. The direction in which the c-axis of the crystal portion in CAAC faces is a direction substantially perpendicular to the surface to be formed or the surface when the CAAC-OS film is formed. CAAC is formed by performing a crystallization treatment such as a heat treatment at the same time as the film formation or after the film formation.

CAAC-OS膜を用いることで、可視光や紫外光の照射によるトランジスタの電気特性
の変動が低減されるため、信頼性の高いトランジスタを得ることができる。
By using the CAAC-OS film, fluctuations in the electrical characteristics of the transistor due to irradiation with visible light or ultraviolet light are reduced, so that a highly reliable transistor can be obtained.

なお、酸化物半導体膜を構成する酸素の一部は窒素で置換されてもよい。 A part of oxygen constituting the oxide semiconductor film may be replaced with nitrogen.

酸化物半導体膜403の膜厚は、1nm以上30nm以下(好ましくは5nm以上10n
m以下)とし、スパッタリング法、MBE(Moleculer Beam Epita
xy)法、CVD法、パルスレーザ堆積法、ALD(Atomic Layer Dep
osition)法等を適宜用いることができる。また、酸化物半導体膜403は、スパ
ッタリングターゲット表面に対し、概略垂直に複数の基板表面がセットされた状態で成膜
を行うスパッタ装置、所謂CPスパッタ装置(Columner Plasma Spu
ttering system)を用いて成膜してもよい。
The film thickness of the oxide semiconductor film 403 is 1 nm or more and 30 nm or less (preferably 5 nm or more and 10 n).
(m or less), sputtering method, MBE (Molecular Beam Epita)
xy) method, CVD method, pulsed laser deposition method, ALD (Atomic Layer Dep)
The option) method or the like can be appropriately used. Further, the oxide semiconductor film 403 is a sputtering apparatus (Columner Plasma Spu) that forms a film in a state where a plurality of substrate surfaces are set substantially perpendicular to the sputtering target surface.
A film may be formed using a ttering system).

図2(A)乃至(E)及び図3(A)乃至(D)にトランジスタ420を有する半導体装
置の作製方法の一例を示す。
2 (A) to (E) and FIGS. 3 (A) to 3 (D) show an example of a method for manufacturing a semiconductor device having a transistor 420.

まず、絶縁表面を有する基板400上に電極層422a、422bを形成する。電極層4
22a、422bとしては、例えば、Al、Cr、Cu、Ta、Ti、Mo、Wからから
選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化チタン
膜、窒化モリブデン膜、窒化タングステン膜等)を用いることができる。また、Al、C
uなどの金属膜の下側又は上側の一方または双方にTi、Mo、Wなどの高融点金属膜ま
たはそれらの金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)を
積層させた構成としても良い。
First, the electrode layers 422a and 422b are formed on the substrate 400 having an insulating surface. Electrode layer 4
Examples of 22a and 422b include a metal film containing an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, or a metal nitride film containing the above-mentioned element as a component (titanium nitride film, nitriding). A molybdenum film, a tungsten nitride film, etc.) can be used. Also, Al, C
A refractory metal film such as Ti, Mo, W or a metal nitride film thereof (titanium nitride film, molybdenum nitride film, tungsten nitride film) is laminated on one or both of the lower side or the upper side of the metal film such as u. It may be configured.

絶縁表面を有する基板400に使用することができる基板に大きな制限はないが、少なく
とも、後の熱処理に耐えうる程度の耐熱性を有していることが必要となる。例えば、バリ
ウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板、セラミック基板、
石英基板、サファイア基板などを用いることができる。また、シリコンや炭化シリコンな
どの単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウムなどの化合物半導体基
板、SOI基板などを適用することもでき、これらの基板上に半導体素子が設けられたも
のを、基板400として用いてもよい。
There is no major limitation on the substrate that can be used for the substrate 400 having an insulating surface, but it is necessary that the substrate has at least enough heat resistance to withstand the subsequent heat treatment. For example, glass substrates such as barium borosilicate glass and aluminoborosilicate glass, ceramic substrates,
A quartz substrate, a sapphire substrate, or the like can be used. Further, a single crystal semiconductor substrate such as silicon or silicon carbide, a polycrystalline semiconductor substrate, a compound semiconductor substrate such as silicon germanium, an SOI substrate, or the like can be applied, and a semiconductor element is provided on these substrates. It may be used as a substrate 400.

次いで、電極層422a、422bを覆う絶縁膜423を形成する。ここまでの状態が図
2(A)である。
Next, an insulating film 423 that covers the electrode layers 422a and 422b is formed. The state up to this point is shown in FIG. 2 (A).

絶縁膜423は、プラズマCVD法又はスパッタリング法等により、酸化シリコン、酸化
窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、酸化ガリウ
ム、又はこれらの混合材料を用いて形成する。
The insulating film 423 is formed by a plasma CVD method, a sputtering method, or the like, using silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, hafnium oxide, gallium oxide, or a mixed material thereof.

次いで、絶縁膜423及び電極層422a、422bを切削(研削、研磨)する。切削(
研削、研磨)方法としては化学的機械研磨(Chemical Mechanical
Polishing:CMP)法を好適に用いることができる。
Next, the insulating film 423 and the electrode layers 422a and 422b are cut (ground and polished). Cutting(
As a method of grinding and polishing, chemical mechanical polishing (Chemical Mechanical)
The Polishing (CMP) method can be preferably used.

次いで、電極層422a、422bと重なるように電極層424a、424bを形成する
。電極層424a、424bとしては、例えば、Al、Cr、Cu、Ta、Ti、Mo、
Wからから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(
窒化チタン膜、窒化モリブデン膜、窒化タングステン膜等)を用いることができる。また
、Al、Cuなどの金属膜の下側又は上側の一方または双方にTi、Mo、Wなどの高融
点金属膜またはそれらの金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングス
テン膜)を積層させた構成としても良い。
Next, the electrode layers 424a and 424b are formed so as to overlap the electrode layers 422a and 422b. Examples of the electrode layers 424a and 424b include Al, Cr, Cu, Ta, Ti, and Mo.
A metal film containing an element selected from W, or a metal nitride film containing the above-mentioned elements as a component (
Titanium nitride film, molybdenum nitride film, tungsten nitride film, etc.) can be used. Further, a refractory metal film such as Ti, Mo, W or a metal nitride film thereof (titanium nitride film, molybdenum nitride film, tungsten nitride film) is formed on one or both of the lower side or the upper side of the metal film such as Al and Cu. May be a laminated configuration.

次いで、電極層424a、424bを覆う絶縁膜426を形成する。ここまでの状態が図
2(B)である。なお、絶縁膜423と絶縁膜426の境界を点線で示したが、同じ材料
を用いると、明確な境界はなくなるため、以降の図では境界を示す点線を省略し、絶縁膜
423と絶縁膜426の積層を下地絶縁層436として図示する。また、電極層422a
、422bと、電極層424a、424bとを同じ材料を用いると、明確な境界はなくな
るため、以降の図では境界を示す点線を省略し、電極層422a、422bと電極層42
4a、424bの積層を電極層425a、425bとして図示する。
Next, an insulating film 426 covering the electrode layers 424a and 424b is formed. The state up to this point is shown in FIG. 2 (B). The boundary between the insulating film 423 and the insulating film 426 is shown by a dotted line, but if the same material is used, the clear boundary disappears. Therefore, the dotted line indicating the boundary is omitted in the following figures, and the insulating film 423 and the insulating film 426 are omitted. Is illustrated as the underlying insulating layer 436. In addition, the electrode layer 422a
If the same material is used for 422b and the electrode layers 424a and 424b, there is no clear boundary. Therefore, in the following figures, the dotted line indicating the boundary is omitted, and the electrode layer 422a and 422b and the electrode layer 42 are omitted.
The laminate of 4a and 424b is illustrated as an electrode layer 425a and 425b.

次いで、絶縁膜426及び電極層424a、424bを切削(研削、研磨)する。切削(
研削、研磨)方法としてはCMP法を用いる。
Next, the insulating film 426 and the electrode layers 424a and 424b are cut (ground and polished). Cutting(
The CMP method is used as the (grinding and polishing) method.

次に、下地絶縁層436及び電極層425a、425b上に酸化物半導体膜403を形成
する。
Next, the oxide semiconductor film 403 is formed on the base insulating layer 436 and the electrode layers 425a and 425b.

なお、本実施の形態において、酸化物半導体膜403を、スパッタリング法で作製するた
めのターゲットとしては、組成比として、In:Ga:Zn=3:1:2[原子数比]の
酸化物ターゲットを用い、In-Ga-Zn系酸化物膜(IGZO膜)を成膜する。
In the present embodiment, the target for producing the oxide semiconductor film 403 by the sputtering method is an oxide target having an composition ratio of In: Ga: Zn = 3: 1: 2 [atomic number ratio]. Is used to form an In—Ga—Zn-based oxide film (IGZO film).

酸化物半導体膜403を、成膜する際に用いるスパッタリングガスは水素、水、水酸基又
は水素化物などの不純物が除去された高純度ガスを用いることが好ましい。
As the sputtering gas used for forming the oxide semiconductor film 403, it is preferable to use a high-purity gas from which impurities such as hydrogen, water, hydroxyl groups or hydrides have been removed.

減圧状態に保持された成膜室内に基板を保持する。そして、成膜室内の残留水分を除去し
つつ水素及び水分が除去されたスパッタガスを導入し、上記ターゲットを用いて基板40
0上に酸化物半導体膜403を成膜する。成膜室内の残留水分を除去するためには、吸着
型の真空ポンプ、例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポン
プを用いることが好ましい。また、排気手段としては、ターボ分子ポンプにコールドトラ
ップを加えたものであってもよい。クライオポンプを用いて排気した成膜室は、例えば、
水素原子、水(HO)など水素原子を含む化合物(より好ましくは炭素原子を含む化合
物も)等が排気されるため、当該成膜室で成膜した酸化物半導体膜403に含まれる不純
物の濃度を低減できる。
The substrate is held in the film forming chamber kept under reduced pressure. Then, a sputter gas from which hydrogen and water have been removed is introduced while removing residual water in the film forming chamber, and the substrate 40 is used using the above target.
An oxide semiconductor film 403 is formed on 0. In order to remove the residual water in the film forming chamber, it is preferable to use an adsorption type vacuum pump, for example, a cryopump, an ion pump, or a titanium sublimation pump. Further, as the exhaust means, a turbo molecular pump to which a cold trap is added may be used. The film formation chamber exhausted using the cryopump is, for example,
Since hydrogen atoms, compounds containing hydrogen atoms such as water ( H2O ) (more preferably compounds containing carbon atoms) and the like are exhausted, impurities contained in the oxide semiconductor film 403 formed in the film forming chamber are contained. The concentration of hydrogen can be reduced.

酸化物半導体膜403は、膜状の酸化物半導体膜をフォトリソグラフィ工程により島状の
酸化物半導体膜に加工して形成することができる。
The oxide semiconductor film 403 can be formed by processing a film-shaped oxide semiconductor film into an island-shaped oxide semiconductor film by a photolithography step.

また、島状の酸化物半導体膜403を形成するためのレジストマスクをインクジェット法
で形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用
しないため、製造コストを低減できる。
Further, a resist mask for forming the island-shaped oxide semiconductor film 403 may be formed by an inkjet method. When the resist mask is formed by the inkjet method, the manufacturing cost can be reduced because the photomask is not used.

なお、酸化物半導体膜のエッチングは、ドライエッチングでもウェットエッチングでもよ
く、両方を用いてもよい。例えば、酸化物半導体膜のウェットエッチングに用いるエッチ
ング液としては、燐酸と酢酸と硝酸を混ぜた溶液などを用いることができる。また、IT
O-07N(関東化学社製)を用いてもよい。また、ICP(Inductively
Coupled Plasma:誘導結合型プラズマ)エッチング法によるドライエッチ
ングによってエッチング加工してもよい。例えば、IGZO膜をICPエッチング法によ
り、エッチング(エッチング条件:エッチングガス(BCl:Cl=60sccm:
20sccm)、電源電力450W、バイアス電力100W、圧力1.9Pa)し、島状
に加工することができる。
The oxide semiconductor film may be etched by dry etching or wet etching, or both may be used. For example, as the etching solution used for wet etching of the oxide semiconductor film, a solution in which phosphoric acid, acetic acid, and nitric acid are mixed can be used. Also, IT
O-07N (manufactured by Kanto Chemical Co., Inc.) may be used. In addition, ICP (Inductively)
Coupled Plasma: Inductively coupled plasma) Etching may be performed by dry etching by an etching method. For example, the IGZO film is etched by the ICP etching method (etching conditions: etching gas (BCl 3 : Cl 2 = 60 sccm:).
20 sccm), power supply power 450 W, bias power 100 W, pressure 1.9 Pa), and can be processed into an island shape.

また、酸化物半導体膜403に、過剰な水素(水や水酸基を含む)を除去(脱水化または
脱水素化)するための加熱処理を行ってもよい。加熱処理の温度は、300℃以上700
℃以下、または基板の歪み点未満とする。加熱処理は減圧下又は窒素雰囲気下などで行う
ことができる。例えば、加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体
膜403に対して窒素雰囲気下450℃において1時間の加熱処理を行う。
Further, the oxide semiconductor film 403 may be heat-treated to remove (dehydrogenate or dehydrogenate) excess hydrogen (including water and hydroxyl groups). The temperature of the heat treatment is 300 ° C or higher and 700.
The temperature should be below ° C or below the strain point of the substrate. The heat treatment can be performed under reduced pressure or in a nitrogen atmosphere. For example, a substrate is introduced into an electric furnace, which is one of the heat treatment devices, and the oxide semiconductor film 403 is heat-treated at 450 ° C. for 1 hour under a nitrogen atmosphere.

なお、加熱処理装置は電気炉に限られず、抵抗発熱体などの発熱体からの熱伝導または熱
輻射によって、被処理物を加熱する装置を用いてもよい。例えば、GRTA(Gas R
apid Thermal Anneal)装置、LRTA(Lamp Rapid T
hermal Anneal)装置等のRTA(Rapid Thermal Anne
al)装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライドラ
ンプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀
ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置であ
る。GRTA装置は、高温のガスを用いて加熱処理を行う装置である。高温のガスには、
アルゴンなどの希ガス、または窒素のような、加熱処理によって被処理物と反応しない不
活性気体が用いられる。
The heat treatment device is not limited to the electric furnace, and a device that heats the object to be treated by heat conduction or heat radiation from a heating element such as a resistance heating element may be used. For example, GRTA (Gas R)
apid Thermal Anneal) device, LRTA (Lamp Rapid T)
RTA (Rapid Thermal Anneal) such as a hermal Anneal device
al) A device can be used. The LRTA device is a device that heats an object to be processed by radiation of light (electromagnetic waves) emitted from lamps such as halogen lamps, metal halide lamps, xenon arc lamps, carbon arc lamps, high-pressure sodium lamps, and high-pressure mercury lamps. The GRTA device is a device that performs heat treatment using a high-temperature gas. For hot gas,
A rare gas such as argon or an inert gas such as nitrogen that does not react with the object to be treated by heat treatment is used.

例えば、加熱処理として、650℃~700℃の高温に加熱した不活性ガス中に基板を入
れ、数分間加熱した後、基板を不活性ガス中から出すGRTAを行ってもよい。
For example, as the heat treatment, the substrate may be placed in an inert gas heated to a high temperature of 650 ° C. to 700 ° C., heated for several minutes, and then GRTA may be performed to remove the substrate from the inert gas.

なお、加熱処理においては、窒素、またはヘリウム、ネオン、アルゴン等の希ガスに、水
、水素などが含まれないことが好ましい。または、熱処理装置に導入する窒素、またはヘ
リウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上好ましく
は7N(99.99999%)以上(即ち不純物濃度を1ppm以下、好ましくは0.1
ppm以下)とすることが好ましい。
In the heat treatment, it is preferable that nitrogen, a rare gas such as helium, neon, or argon does not contain water, hydrogen, or the like. Alternatively, the purity of nitrogen or a rare gas such as helium, neon, or argon to be introduced into the heat treatment apparatus is 6N (99.99999%) or more, preferably 7N (99.99999%) or more (that is, the impurity concentration is 1 ppm or less, preferably 1 ppm or less). Is 0.1
It is preferably ppm or less).

なお、脱水化又は脱水素化のための加熱処理を行うタイミングは、膜状の酸化物半導体膜
の形成後でも、島状の酸化物半導体膜403形成後でもよい。
The timing of the heat treatment for dehydration or dehydrogenation may be after the formation of the film-shaped oxide semiconductor film or after the formation of the island-shaped oxide semiconductor film 403.

また、脱水化又は脱水素化のための加熱処理は、複数回行ってもよく、他の加熱処理と兼
ねてもよい。
Further, the heat treatment for dehydration or dehydrogenation may be performed a plurality of times, or may be combined with other heat treatments.

また、脱水化又は脱水素化処理を行った酸化物半導体膜403に、酸素(少なくとも、酸
素ラジカル、酸素原子、酸素イオン、のいずれかを含む)を導入して膜中に酸素を供給し
てもよい。
Further, oxygen (including at least one of oxygen radicals, oxygen atoms, and oxygen ions) is introduced into the oxide semiconductor film 403 that has been dehydrated or dehydrogenated to supply oxygen into the film. May be good.

また、脱水化又は脱水素化処理によって、酸化物半導体を構成する主成分材料である酸素
が同時に脱離して減少してしまうおそれがある。酸化物半導体膜において、酸素が脱離し
た箇所では酸素欠損が存在し、該酸素欠損に起因してトランジスタの電気的特性変動を招
くドナー準位が生じてしまう。
Further, by dehydration or dehydrogenation treatment, oxygen, which is a main component material constituting an oxide semiconductor, may be simultaneously desorbed and reduced. In the oxide semiconductor film, oxygen deficiency exists at the place where oxygen is desorbed, and the oxygen deficiency causes a donor level that causes a change in the electrical characteristics of the transistor.

脱水化又は脱水素化処理を行った酸化物半導体膜403に、酸素を導入して膜中に酸素を
供給することによって、酸化物半導体膜403を高純度化、及び電気的にI型(真性)化
することができる。高純度化し、電気的にI型(真性)化した酸化物半導体膜403を有
するトランジスタは、電気特性変動が抑制されており、電気的に安定である。
By introducing oxygen into the oxide semiconductor film 403 that has been dehydrated or dehydrogenated and supplying oxygen into the film, the oxide semiconductor film 403 is highly purified and electrically type I (intrinsic). ) Can be converted. The transistor having the oxide semiconductor film 403 which has been made highly purified and electrically made type I (intrinsic) has suppressed fluctuations in electrical characteristics and is electrically stable.

酸素の導入方法としては、イオン注入法、イオンドーピング法、プラズマイマージョンイ
オンインプランテーション法、プラズマ処理などを用いることができる。
As a method for introducing oxygen, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, a plasma treatment, or the like can be used.

酸素の導入工程は、酸化物半導体膜403に酸素導入する場合、酸化物半導体膜403に
直接導入してもよいし、ゲート絶縁層402などの他の膜を通過して酸化物半導体膜40
3へ導入してもよい。酸素を他の膜を通過して導入する場合は、イオン注入法、イオンド
ーピング法、プラズマイマージョンイオンインプランテーション法などを用いればよいが
、酸素を露出された酸化物半導体膜403へ直接導入する場合は、プラズマ処理なども用
いることができる。
In the oxygen introduction step, when oxygen is introduced into the oxide semiconductor film 403, it may be introduced directly into the oxide semiconductor film 403, or it may pass through another film such as the gate insulating layer 402 to pass through the oxide semiconductor film 40.
It may be introduced to 3. When oxygen is introduced through another film, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, or the like may be used, but when oxygen is directly introduced into the exposed oxide semiconductor film 403. Can also be used for plasma processing and the like.

酸化物半導体膜403への酸素の導入は、脱水化又は脱水素化処理を行った後が好ましい
が、特に限定されない。また、上記脱水化又は脱水素化処理を行った酸化物半導体膜40
3への酸素の導入は複数回行ってもよい。
The introduction of oxygen into the oxide semiconductor film 403 is preferably after dehydration or dehydrogenation treatment, but is not particularly limited. Further, the oxide semiconductor film 40 subjected to the above dehydration or dehydrogenation treatment
Oxygen may be introduced into 3 multiple times.

次いで、酸化物半導体膜403を覆うゲート絶縁層402を形成する(図2(C)参照)
Next, the gate insulating layer 402 covering the oxide semiconductor film 403 is formed (see FIG. 2C).
..

ゲート絶縁層402の膜厚は、1nm以上20nm以下とし、スパッタリング法、MBE
法、CVD法、パルスレーザ堆積法、ALD法等を適宜用いることができる。また、ゲー
ト絶縁層402は、スパッタリングターゲット表面に対し、概略垂直に複数の基板表面が
セットされた状態で成膜を行うスパッタ装置、所謂CPスパッタ装置を用いて成膜しても
よい。
The film thickness of the gate insulating layer 402 shall be 1 nm or more and 20 nm or less, and the sputtering method may be used.
A method, a CVD method, a pulse laser deposition method, an ALD method, or the like can be appropriately used. Further, the gate insulating layer 402 may be formed by using a sputtering apparatus, a so-called CP sputtering apparatus, in which a plurality of substrate surfaces are set substantially perpendicular to the surface of the sputtering target.

ゲート絶縁層402の材料としては、酸化シリコン膜、酸化ガリウム膜、酸化アルミニウ
ム膜、窒化シリコン膜、酸化窒化シリコン膜、酸化窒化アルミニウム膜、または窒化酸化
シリコン膜を用いて形成することができる。ゲート絶縁層402は、酸化物半導体膜40
3と接する部分において酸素を含むことが好ましい。特に、ゲート絶縁層402は、膜中
(バルク中)に少なくとも化学量論比を超える量の酸素が存在することが好ましく、例え
ば、ゲート絶縁層402として、酸化シリコン膜を用いる場合には、SiO2+α(ただ
し、α>0)とする。本実施の形態では、ゲート絶縁層402として、SiO2+α(た
だし、α>0)である酸化シリコン膜を用いる。この酸化シリコン膜をゲート絶縁層40
2として用いることで、酸化物半導体膜403に酸素を供給することができ、特性を良好
にすることができる。さらに、ゲート絶縁層402は、作製するトランジスタのサイズや
ゲート絶縁層402の段差被覆性を考慮して形成することが好ましい。
As the material of the gate insulating layer 402, a silicon oxide film, a gallium oxide film, an aluminum oxide film, a silicon nitride film, a silicon nitride film, an aluminum nitride film, or a silicon nitride film can be used. The gate insulating layer 402 is an oxide semiconductor film 40.
It is preferable that oxygen is contained in the portion in contact with 3. In particular, the gate insulating layer 402 preferably contains at least an amount of oxygen in the film (in the bulk) that exceeds the stoichiometric ratio. For example, when a silicon oxide film is used as the gate insulating layer 402, SiO is used. 2 + α (where α> 0). In this embodiment, a silicon oxide film having SiO 2 + α (where α> 0) is used as the gate insulating layer 402. This silicon oxide film is used as the gate insulating layer 40.
When used as 2, oxygen can be supplied to the oxide semiconductor film 403 and the characteristics can be improved. Further, the gate insulating layer 402 is preferably formed in consideration of the size of the transistor to be manufactured and the step covering property of the gate insulating layer 402.

また、ゲート絶縁層402の材料として酸化ハフニウム、酸化イットリウム、ハフニウム
シリケート(HfSi(x>0、y>0))、窒素が添加されたハフニウムシリケ
ート(HfSiO(x>0、y>0))、ハフニウムアルミネート(HfAl
(x>0、y>0))、酸化ランタンなどのhigh-k材料を用いることでゲートリ
ーク電流を低減できる。さらに、ゲート絶縁層402は、単層構造としても良いし、積層
構造としても良い。
Further, as the material of the gate insulating layer 402, hafnium oxide, yttrium oxide, hafnium silicate (HfSi x Oy (x> 0, y > 0)) and nitrogen-added hafnium silicate (HfSiO x N y (x> 0,) y> 0)), hafnium aluminate (HfAl x O)
The gate leakage current can be reduced by using a high-k material such as y (x> 0, y> 0)) and lanthanum oxide. Further, the gate insulating layer 402 may have a single-layer structure or a laminated structure.

次にゲート絶縁層402上に導電膜及び絶縁膜の積層を形成し、該導電膜及び該絶縁膜を
エッチングして、ゲート電極層401及び絶縁膜413の積層を形成する(図2(C)参
照)。
Next, a laminate of a conductive film and an insulating film is formed on the gate insulating layer 402, and the conductive film and the insulating film are etched to form a laminate of the gate electrode layer 401 and the insulating film 413 (FIG. 2C). reference).

ゲート電極層401の材料は、モリブデン、チタン、タンタル、タングステン、アルミニ
ウム、銅、クロム、ネオジム、スカンジウム等の金属材料またはこれらを主成分とする合
金材料を用いて形成することができる。また、ゲート電極層401としてリン等の不純物
元素をドーピングした多結晶シリコン膜に代表される半導体膜、ニッケルシリサイドなど
のシリサイド膜を用いてもよい。ゲート電極層401は、単層構造としてもよいし、積層
構造としてもよい。
The material of the gate electrode layer 401 can be formed by using a metal material such as molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, scandium, or an alloy material containing these as a main component. Further, as the gate electrode layer 401, a semiconductor film typified by a polycrystalline silicon film doped with an impurity element such as phosphorus, or a silicide film such as nickel silicide may be used. The gate electrode layer 401 may have a single-layer structure or a laminated structure.

絶縁膜413は、代表的には酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜
、酸化窒化アルミニウム膜、窒化シリコン膜、窒化アルミニウム膜、窒化酸化シリコン膜
、窒化酸化アルミニウム膜などの無機絶縁膜を用いることができる。絶縁層413は、プ
ラズマCVD法又はスパッタリング法等を用いて形成することができる。
The insulating film 413 is typically an inorganic insulating film such as a silicon oxide film, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, a silicon nitride film, an aluminum nitride film, a silicon nitride film, or an aluminum nitride film. Can be used. The insulating layer 413 can be formed by using a plasma CVD method, a sputtering method, or the like.

次に、ゲート電極層401及び絶縁膜413をマスクとして酸化物半導体膜403にドー
パント421を導入し、低抵抗領域404a、404bを形成する(図2(D)参照)。
Next, the dopant 421 is introduced into the oxide semiconductor film 403 using the gate electrode layer 401 and the insulating film 413 as masks to form low resistance regions 404a and 404b (see FIG. 2D).

ドーパント421は、酸化物半導体膜403の導電率を変化させる不純物である。ドーパ
ント421としては、15族元素(代表的にはリン(P)、砒素(As)、およびアンチ
モン(Sb))、ホウ素(B)、アルミニウム(Al)、窒素(N)、アルゴン(Ar)
、ネオン(Ne)、インジウム(In)、チタン(Ti)、及び亜鉛(Zn)のいずれか
から選択される一以上を用いることができる。
The dopant 421 is an impurity that changes the conductivity of the oxide semiconductor film 403. Dopant 421 includes Group 15 elements (typically phosphorus (P), arsenic (As), and antimony (Sb)), boron (B), aluminum (Al), nitrogen (N), and argon (Ar).
, Neon (Ne), Indium (In), Titanium (Ti), and Zinc (Zn) can be used.

ドーパント421は、注入法により、他の膜(例えばゲート絶縁層402)を通過して、
酸化物半導体膜403に導入することもできる。ドーパント421の導入方法としては、
イオン注入法、イオンドーピング法、プラズマイマージョンイオンインプランテーション
法などを用いることができる。
The dopant 421 is passed through another film (for example, the gate insulating layer 402) by the injection method.
It can also be introduced into the oxide semiconductor film 403. As a method of introducing the dopant 421,
Ion implantation method, ion doping method, plasma immersion ion implantation method and the like can be used.

ドーパント421の導入工程は、加速電圧、ドーズ量などの注入条件、また通過させる膜
の膜厚を適宜設定して制御すればよい。本実施の形態では、ドーパント421としてリン
を用いて、イオン注入法でリンイオンの注入を行う。なお、ドーパント421のドーズ量
は1×1013ions/cm以上5×1016ions/cm以下とすればよい。
The introduction step of the dopant 421 may be controlled by appropriately setting the injection conditions such as the acceleration voltage and the dose amount, and the film thickness of the film to be passed. In the present embodiment, phosphorus is implanted by the ion implantation method using phosphorus as the dopant 421. The dose amount of the dopant 421 may be 1 × 10 13 ions / cm 2 or more and 5 × 10 16 ions / cm 2 or less.

低抵抗領域におけるドーパント421の濃度は、5×1018/cm以上1×1022
/cm以下であることが好ましい。
The concentration of dopant 421 in the low resistance region is 5 × 10 18 / cm 3 or more and 1 × 10 22 .
It is preferably / cm 3 or less.

ドーパント421を導入する際に、基板400を加熱しながら行ってもよい。 When introducing the dopant 421, the substrate 400 may be heated.

なお、酸化物半導体膜403にドーパント421を導入する処理は、複数回行ってもよく
、ドーパントの種類も複数種用いてもよい。
The process of introducing the dopant 421 into the oxide semiconductor film 403 may be performed a plurality of times, and a plurality of types of dopants may be used.

また、ドーパント421の導入処理後、加熱処理を行ってもよい。加熱条件としては、温
度300℃以上700℃以下、好ましくは300℃以上450℃以下で1時間、酸素雰囲
気下で行うことが好ましい。また、窒素雰囲気下、減圧下、大気(超乾燥エア)下で加熱
処理を行ってもよい。
Further, the heat treatment may be performed after the introduction treatment of the dopant 421. As the heating conditions, it is preferable to carry out the heating at a temperature of 300 ° C. or higher and 700 ° C. or lower, preferably 300 ° C. or higher and 450 ° C. or lower for 1 hour in an oxygen atmosphere. Further, the heat treatment may be performed under a nitrogen atmosphere, a reduced pressure, and an atmosphere (ultra-dry air).

本実施の形態では、イオン注入法により酸化物半導体膜403に、リン(P)イオンを注
入する。なお、リン(P)イオンの注入条件は加速電圧30kV、ドーズ量を1.0×1
15ions/cmとする。
In the present embodiment, phosphorus (P) ions are implanted into the oxide semiconductor film 403 by the ion implantation method. The conditions for injecting phosphorus (P) ions are an acceleration voltage of 30 kV and a dose amount of 1.0 × 1.
It is set to 0 15 ions / cm 2 .

酸化物半導体膜403をCAAC-OS膜とした場合、ドーパント421の導入により、
一部非晶質化する場合がある。この場合、ドーパント421の導入後に加熱処理を行うこ
とによって、酸化物半導体膜403の結晶性を回復することができる。
When the oxide semiconductor film 403 is a CAAC-OS film, the introduction of the dopant 421 results in the introduction of the dopant 421.
It may be partially amorphized. In this case, the crystallinity of the oxide semiconductor film 403 can be restored by performing a heat treatment after the introduction of the dopant 421.

上記工程により、チャネル形成領域409を挟んで低抵抗領域404a、404bが設け
られた酸化物半導体膜403が形成される。
By the above steps, the oxide semiconductor film 403 provided with the low resistance regions 404a and 404b across the channel forming region 409 is formed.

次に、ゲート電極層401及び絶縁膜413上に絶縁膜を形成し、該絶縁膜をエッチング
して側壁絶縁層412a、412bを形成する。さらに、ゲート電極層401及び側壁絶
縁層412a、412bをマスクとして、ゲート電極層401及び側壁絶縁層412a、
412bと重なる領域以外のゲート絶縁層をエッチングし、ゲート絶縁層402を形成す
る(図3(A)参照)。
Next, an insulating film is formed on the gate electrode layer 401 and the insulating film 413, and the insulating film is etched to form the side wall insulating layers 412a and 412b. Further, using the gate electrode layer 401 and the side wall insulating layer 412a and 412b as masks, the gate electrode layer 401 and the side wall insulating layer 412a,
The gate insulating layer other than the region overlapping with 412b is etched to form the gate insulating layer 402 (see FIG. 3A).

側壁絶縁層412a、412bは、絶縁膜413と同様な材料及び方法を用いて形成する
ことができる。本実施の形態では、CVD法により形成した酸化窒化シリコン膜を用いる
The side wall insulating layers 412a and 412b can be formed by using the same material and method as the insulating film 413. In this embodiment, a silicon oxynitride film formed by the CVD method is used.

次いで、酸化物半導体膜403、ゲート絶縁層402、ゲート電極層401、側壁絶縁層
412a、412b、及び絶縁膜413上に、ソース電極層及びドレイン電極層(これと
同じ層で形成される配線を含む)となる導電膜を形成する。
Next, a source electrode layer and a drain electrode layer (wiring formed of the same layer) are placed on the oxide semiconductor film 403, the gate insulating layer 402, the gate electrode layer 401, the side wall insulating layers 412a, 412b, and the insulating film 413. Includes) to form a conductive film.

導電膜は後の加熱処理に耐えられる材料を用いる。ソース電極層、及びドレイン電極層に
用いる導電膜としては、例えば、Al、Cr、Cu、Ta、Ti、Mo、Wからから選ば
れた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化チタン膜、
窒化モリブデン膜、窒化タングステン膜等)を用いることができる。また、Al、Cuな
どの金属膜の下側又は上側の一方または双方にTi、Mo、Wなどの高融点金属膜または
それらの金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)を積層
させた構成としても良い。
The conductive film uses a material that can withstand the subsequent heat treatment. The conductive film used for the source electrode layer and the drain electrode layer is, for example, a metal film containing an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, or a metal containing the above-mentioned element as a component. Nitride film (titanium nitride film,
A molybdenum nitride film, a tungsten nitride film, etc.) can be used. Further, a refractory metal film such as Ti, Mo, W or a metal nitride film thereof (titanium nitride film, molybdenum nitride film, tungsten nitride film) is formed on one or both of the lower side or the upper side of the metal film such as Al and Cu. May be a laminated configuration.

フォトリソグラフィ工程により導電膜上にレジストマスクを形成し、選択的にエッチング
を行って島状の導電膜445を形成した後、レジストマスクを除去する。なお、該エッチ
ング工程では、ゲート電極層401上の導電膜445の除去は行わない。
A resist mask is formed on the conductive film by a photolithography step, and etching is selectively performed to form an island-shaped conductive film 445, and then the resist mask is removed. In the etching step, the conductive film 445 on the gate electrode layer 401 is not removed.

導電膜として膜厚30nmのタングステン膜を用いる場合、該導電膜のエッチングは、例
えばドライエッチング法により、タングステン膜をエッチング(エッチング条件:エッチ
ングガス(CF:Cl:O=55sccm:45sccm:55sccm、電源電
力3000W、バイアス電力140W、圧力0.67Pa))して、島状のタングステン
膜を形成すればよい。
When a tungsten film having a thickness of 30 nm is used as the conductive film, the tungsten film is etched by, for example, a dry etching method (etching conditions: etching gas (CF 4 : Cl 2 : O 2 = 55 sccm: 45 sccm: 45 sccm:). 55 sccm, power supply power 3000 W, bias power 140 W, pressure 0.67 Pa)) may be applied to form an island-shaped tungsten film.

島状の導電膜445上に層間絶縁膜となる絶縁膜410及び絶縁膜446を積層する(図
3(B)参照)。
An insulating film 410 and an insulating film 446 to be an interlayer insulating film are laminated on the island-shaped conductive film 445 (see FIG. 3B).

絶縁膜410は、緻密性の高い無機絶縁膜(代表的には酸化アルミニウム膜)を用い、単
層でも積層でもよく、少なくとも酸化アルミニウム膜を含むことが好ましい。
The insulating film 410 uses a highly dense inorganic insulating film (typically an aluminum oxide film), and may be a single layer or a laminated film, and preferably contains at least an aluminum oxide film.

絶縁膜446は、絶縁膜413と同様な材料及び方法を用いて形成することができる。絶
縁膜446はトランジスタ420により生じる凹凸を平坦化できる膜厚で形成する。本実
施の形態では、CVD法により形成した酸化窒化シリコン膜を300nm形成する。
The insulating film 446 can be formed by using the same material and method as the insulating film 413. The insulating film 446 is formed with a film thickness capable of flattening the unevenness caused by the transistor 420. In the present embodiment, a silicon oxynitride film formed by the CVD method is formed at 300 nm.

次に絶縁膜446及び導電膜445に化学的機械研磨法により研磨処理を行い、絶縁膜4
13が露出するよう絶縁膜446、絶縁膜410、及び導電膜445の一部を除去する。
Next, the insulating film 446 and the conductive film 445 are polished by a chemical mechanical polishing method, and the insulating film 4 is formed.
Part of the insulating film 446, the insulating film 410, and the conductive film 445 is removed so that the 13 is exposed.

該研磨処理によって、絶縁膜446を層間絶縁膜415に加工し、ゲート電極層401上
の導電膜445を除去し、ソース電極層405a及びドレイン電極層405bを形成する
By the polishing treatment, the insulating film 446 is processed into an interlayer insulating film 415, the conductive film 445 on the gate electrode layer 401 is removed, and the source electrode layer 405a and the drain electrode layer 405b are formed.

本実施の形態では、絶縁膜446、絶縁膜410、及び導電膜445の除去に化学的機械
研磨法を用いたが、他の切削(研削、研磨)方法を用いてもよい。また、ゲート電極層4
01上の導電膜445を除去する工程において、化学的機械研磨法などの切削(研削、研
磨)法の他、エッチング(ドライエッチング、ウェットエッチング)法や、プラズマ処理
などを組み合わせてもよい。例えば、化学的機械研磨法による除去工程後、ドライエッチ
ング法やプラズマ処理(逆スパッタリングなど)を行い、処理表面の平坦性向上を図って
もよい。切削(研削、研磨)方法に、エッチング法、プラズマ処理などを組み合わせて行
う場合、工程順は特に限定されず、絶縁膜446、絶縁膜410、及び導電膜445の材
料、膜厚、及び表面の凹凸状態に合わせて適宜設定すればよい。
In the present embodiment, the chemical mechanical polishing method is used for removing the insulating film 446, the insulating film 410, and the conductive film 445, but other cutting (grinding, polishing) methods may be used. Further, the gate electrode layer 4
In the step of removing the conductive film 445 on 01, in addition to a cutting (grinding, polishing) method such as a chemical mechanical polishing method, an etching (dry etching, wet etching) method, plasma treatment, or the like may be combined. For example, after the removal step by a chemical mechanical polishing method, a dry etching method or plasma treatment (reverse sputtering or the like) may be performed to improve the flatness of the treated surface. When the cutting (grinding, polishing) method is combined with the etching method, plasma treatment, etc., the process order is not particularly limited, and the material, film thickness, and surface of the insulating film 446, the insulating film 410, and the conductive film 445 are not particularly limited. It may be set appropriately according to the uneven state.

なお、本実施の形態においては、ソース電極層405a、ドレイン電極層405bはゲー
ト電極層401側面に設けられた側壁絶縁層412a、412bの側面に接するように設
けられており、側壁絶縁層412a、412bの側面を上端部よりやや低い位置まで覆っ
ている。ソース電極層405a、ドレイン電極層405bの形状は導電膜445を除去す
る研磨処理の条件によって異なり、本実施の形態に示すように、側壁絶縁層412a、4
12b、絶縁膜413の研磨処理された表面より膜厚方向に後退した形状となる場合があ
る。しかし、研磨処理の条件によっては、ソース電極層405a、ドレイン電極層405
bの上端部と、側壁絶縁層412a、412bの上端部とは概略一致する場合もある。
In the present embodiment, the source electrode layer 405a and the drain electrode layer 405b are provided so as to be in contact with the side surface of the side wall insulating layer 412a and 412b provided on the side surface of the gate electrode layer 401, and the side wall insulating layer 412a, The side surface of 412b is covered to a position slightly lower than the upper end portion. The shapes of the source electrode layer 405a and the drain electrode layer 405b differ depending on the conditions of the polishing treatment for removing the conductive film 445, and as shown in the present embodiment, the side wall insulating layers 412a and 4
12b, the insulating film 413 may have a shape recessed in the film thickness direction from the polished surface. However, depending on the polishing treatment conditions, the source electrode layer 405a and the drain electrode layer 405
In some cases, the upper end portion of b and the upper end portion of the side wall insulating layers 412a and 412b substantially coincide with each other.

以上の工程で、本実施の形態のトランジスタ420が作製される(図3(C)参照)。 Through the above steps, the transistor 420 of the present embodiment is manufactured (see FIG. 3C).

このような作製方法により、ソース電極層405a又はドレイン電極層405bと酸化物
半導体膜403とが接する領域(第1のコンタクト領域)と、ゲート電極層401との距
離を短くすることができる。また、電極層425a、425bと酸化物半導体膜403と
が接する領域(第2のコンタクト領域)とゲート電極層401との距離を短くすることも
できる。そのため、ソース電極層405a又はドレイン電極層405bと酸化物半導体膜
403とが接する領域(第1のコンタクト領域)、及びゲート電極層401間の抵抗が減
少し、トランジスタ420のオン特性を向上させることが可能となる。
By such a manufacturing method, the distance between the region where the source electrode layer 405a or the drain electrode layer 405b and the oxide semiconductor film 403 are in contact (first contact region) and the gate electrode layer 401 can be shortened. Further, the distance between the region where the electrode layers 425a and 425b and the oxide semiconductor film 403 are in contact (second contact region) and the gate electrode layer 401 can be shortened. Therefore, the resistance between the region where the source electrode layer 405a or the drain electrode layer 405b and the oxide semiconductor film 403 are in contact (first contact region) and the gate electrode layer 401 is reduced, and the on-characteristics of the transistor 420 are improved. Is possible.

また、ソース電極層405a及びドレイン電極層405bの形成工程におけるゲート電極
層401上の導電膜445を除去する工程において、絶縁膜413の一部、又は絶縁膜4
13全部を除去してもよい。また、ゲート電極層401も上方の一部が除去されてもよい
。ゲート電極層401を露出するトランジスタ構造は、トランジスタの上方に他の配線や
半導体素子を積層する集積回路において有用である。
Further, in the step of removing the conductive film 445 on the gate electrode layer 401 in the step of forming the source electrode layer 405a and the drain electrode layer 405b, a part of the insulating film 413 or the insulating film 4
13 All may be removed. Further, a part of the upper part of the gate electrode layer 401 may be removed. The transistor structure that exposes the gate electrode layer 401 is useful in an integrated circuit in which other wiring or semiconductor elements are laminated above the transistor.

トランジスタ420上に保護絶縁膜となる緻密性の高い無機絶縁膜(代表的には酸化アル
ミニウム膜)を設けてもよい。
A highly dense inorganic insulating film (typically, an aluminum oxide film) as a protective insulating film may be provided on the transistor 420.

本実施の形態では、絶縁膜413、ソース電極層405a、ドレイン電極層405b、側
壁絶縁層412a、412b、絶縁膜410、及び層間絶縁膜415上に接して絶縁膜4
07を形成する(図3(D)参照)。
In the present embodiment, the insulating film 4 is in contact with the insulating film 413, the source electrode layer 405a, the drain electrode layer 405b, the side wall insulating layer 412a, 412b, the insulating film 410, and the interlayer insulating film 415.
Form 07 (see FIG. 3D).

絶縁膜407は、単層でも積層でもよく、少なくとも酸化アルミニウム膜を含むことが好
ましい。
The insulating film 407 may be a single layer or a laminated layer, and preferably contains at least an aluminum oxide film.

絶縁膜407は、プラズマCVD法、スパッタリング法、又は蒸着法等により成膜するこ
とができる。
The insulating film 407 can be formed by a plasma CVD method, a sputtering method, a vapor deposition method, or the like.

酸化アルミニウム膜以外に、絶縁膜407、410としては、代表的には酸化シリコン膜
、酸化窒化シリコン膜、酸化窒化アルミニウム膜、又は酸化ガリウム膜などの無機絶縁膜
などを用いることができる。また、酸化ハフニウム膜、酸化マグネシウム膜、酸化ジルコ
ニウム膜、酸化ランタン膜、酸化バリウム膜、又は金属窒化物膜(例えば、窒化アルミニ
ウム膜)も用いることができる。
In addition to the aluminum oxide film, as the insulating films 407 and 410, an inorganic insulating film such as a silicon oxide film, a silicon nitride film, an aluminum nitride film, or a gallium oxide film can be typically used. Further, a hafnium oxide film, a magnesium oxide film, a zirconium oxide film, a lanthanum oxide film, a barium oxide film, or a metal nitride film (for example, an aluminum nitride film) can also be used.

本実施の形態では、絶縁膜407、410としてスパッタリング法により酸化アルミニウ
ム膜を形成する。酸化アルミニウム膜を高密度(膜密度3.2g/cm以上、好ましく
は3.6g/cm以上)とすることによって、トランジスタ420に安定な電気特性を
付与することができる。膜密度はラザフォード後方散乱法(RBS:Rutherfor
d Backscattering Spectrometry)や、X線反射率測定法
(XRR:X-Ray Reflection)によって測定することができる。
In the present embodiment, an aluminum oxide film is formed as the insulating films 407 and 410 by a sputtering method. By making the aluminum oxide film high density (film density 3.2 g / cm 3 or more, preferably 3.6 g / cm 3 or more), stable electrical characteristics can be imparted to the transistor 420. The film density is Rutherford backscattering method (RBS: Rutherford).
It can be measured by d Backscattering Spectrum) or an X-ray reflectivity measurement method (XRR: X-Ray Reflectivity).

酸化物半導体膜403上に設けられる絶縁膜407、410として用いることのできる酸
化アルミニウム膜は、水素、水分などの不純物、及び酸素の両方に対して膜を通過させな
い遮断効果(ブロック効果)が高い。
The aluminum oxide film that can be used as the insulating films 407 and 410 provided on the oxide semiconductor film 403 has a high blocking effect (blocking effect) that prevents the film from passing through both impurities such as hydrogen and water and oxygen. ..

また、図1(A)に、絶縁膜410、層間絶縁膜415、及び絶縁膜407にソース電極
層405a、及びドレイン電極層405bに達する開口を形成し、開口に配線層435a
、435bを形成する例を示す。配線層435a、435bを用いて他のトランジスタや
素子と接続させ、様々な回路を構成することができる。
Further, in FIG. 1A, an opening reaching the source electrode layer 405a and the drain electrode layer 405b is formed in the insulating film 410, the interlayer insulating film 415, and the insulating film 407, and the wiring layer 435a is formed in the opening.
An example of forming 435b is shown. The wiring layers 435a and 435b can be connected to other transistors and elements to form various circuits.

配線層435a、配線層435bはゲート電極層401、ソース電極層405a、又はド
レイン電極層405bと同様の材料及び方法を用いて形成することができ、例えば、Al
、Cr、Cu、Ta、Ti、Mo、Wからから選ばれた元素を含む金属膜、または上述し
た元素を成分とする金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン
膜等)等を用いることができる。また、Al、Cuなどの金属膜の下側又は上側の一方ま
たは双方にTi、Mo、Wなどの高融点金属膜またはそれらの金属窒化物膜(窒化チタン
膜、窒化モリブデン膜、窒化タングステン膜)を積層させた構成としても良い。
The wiring layer 435a and the wiring layer 435b can be formed by using the same materials and methods as the gate electrode layer 401, the source electrode layer 405a, or the drain electrode layer 405b, for example, Al.
, Cr, Cu, Ta, Ti, Mo, W, a metal film containing an element selected from, or a metal nitride film containing the above-mentioned elements as a component (titanium nitride film, molybdenum nitride film, tungsten nitride film, etc.), etc. Can be used. Further, a refractory metal film such as Ti, Mo, W or a metal nitride film thereof (titanium nitride film, molybdenum nitride film, tungsten nitride film) is formed on one or both of the lower side or the upper side of the metal film such as Al and Cu. May be a laminated configuration.

(実施の形態2)
本実施の形態では、実施の形態1に示すトランジスタを使用し、電力が供給されない状況
でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い半導体装置の一例を、
図面を用いて説明する。なお、本実施の形態の半導体装置は、トランジスタ162として
実施の形態1に記載のトランジスタ420を適用して構成される。
(Embodiment 2)
In the present embodiment, an example of a semiconductor device using the transistor shown in the first embodiment, which can retain the stored contents even when power is not supplied and has no limit on the number of writes.
This will be described with reference to the drawings. The semiconductor device of the present embodiment is configured by applying the transistor 420 according to the first embodiment as the transistor 162.

図4は、半導体装置の構成の一例である。図4(A)に半導体装置の断面図を、図4(B
)に半導体装置の平面図を、図4(C)に半導体装置の回路図をそれぞれ示す。ここで、
図4(A)は、図4(B)のC1-C2、及びD1-D2における断面に相当する。
FIG. 4 is an example of the configuration of a semiconductor device. FIG. 4 (A) shows a cross-sectional view of the semiconductor device, and FIG. 4 (B).
) Shows a plan view of the semiconductor device, and FIG. 4C shows a circuit diagram of the semiconductor device. here,
FIG. 4A corresponds to the cross section in C1-C2 and D1-D2 of FIG. 4B.

図4(A)及び図4(B)に示す半導体装置は、下部に第1の半導体材料を用いたトラン
ジスタ160を有し、上部に第2の半導体材料を用いたトランジスタ162を有するもの
である。トランジスタ162は、実施の形態1で示したトランジスタ420と同一の構成
とすることができる。
The semiconductor device shown in FIGS. 4 (A) and 4 (B) has a transistor 160 using the first semiconductor material at the lower part and a transistor 162 using the second semiconductor material at the upper part. .. The transistor 162 can have the same configuration as the transistor 420 shown in the first embodiment.

ここで、第1の半導体材料と第2の半導体材料は異なる禁制帯幅を持つ材料とすることが
望ましい。例えば、第1の半導体材料を酸化物半導体以外の半導体材料(シリコンなど)
とし、第2の半導体材料を酸化物半導体とすることができる。酸化物半導体以外の材料を
用いたトランジスタは、高速動作が容易である。一方で、酸化物半導体を用いたトランジ
スタは、その特性により長時間の電荷保持を可能とする。
Here, it is desirable that the first semiconductor material and the second semiconductor material have different forbidden band widths. For example, the first semiconductor material is a semiconductor material other than an oxide semiconductor (such as silicon).
The second semiconductor material can be an oxide semiconductor. Transistors using materials other than oxide semiconductors are easy to operate at high speed. On the other hand, a transistor using an oxide semiconductor can hold a charge for a long time due to its characteristics.

トランジスタ162は、酸化物半導体を含むトランジスタであり、オフ電流が小さいため
、このトランジスタを用いることにより長期にわたり記憶内容を保持することが可能であ
る。つまり、リフレッシュ動作を必要としない、或いは、リフレッシュ動作の頻度が極め
て少ない半導体記憶装置とすることが可能となるため、消費電力を十分に低減することが
できる。
Since the transistor 162 is a transistor containing an oxide semiconductor and has a small off-current, it is possible to retain the stored contents for a long period of time by using this transistor. That is, it is possible to use a semiconductor storage device that does not require a refresh operation or has an extremely low frequency of refresh operations, so that power consumption can be sufficiently reduced.

なお、上記トランジスタは、いずれもnチャネル型トランジスタであるものとして説明す
るが、pチャネル型トランジスタを用いることができるのはいうまでもない。また、開示
する発明の技術的な本質は、情報を保持するために酸化物半導体をトランジスタ162に
用いる点にあるから、半導体装置に用いられる材料や半導体装置の構造など、半導体装置
の具体的な構成をここで示すものに限定する必要はない。
Although all of the above transistors are described as n-channel transistors, it goes without saying that p-channel transistors can be used. Further, since the technical essence of the disclosed invention is that an oxide semiconductor is used for the transistor 162 to hold information, the specific material of the semiconductor device such as the material used for the semiconductor device and the structure of the semiconductor device is specified. The configuration need not be limited to that shown here.

図4(A)におけるトランジスタ160は、半導体材料(例えば、シリコンなど)を含む
基板100に設けられたチャネル形成領域116と、チャネル形成領域116を挟むよう
に設けられた不純物領域120と、不純物領域120に接する金属化合物領域124と、
チャネル形成領域116上に設けられたゲート絶縁層108と、ゲート絶縁層108上に
設けられたゲート電極層110と、を有する。なお、図において、明示的にはソース電極
やドレイン電極を有しない場合があるが、便宜上、このような状態を含めてトランジスタ
と呼ぶ場合がある。また、この場合、トランジスタの接続関係を説明するために、ソース
領域やドレイン領域を含めてソース電極やドレイン電極と表現することがある。つまり、
本明細書において、ソース電極との記載には、ソース領域が含まれうる。
The transistor 160 in FIG. 4A has a channel forming region 116 provided on the substrate 100 containing a semiconductor material (for example, silicon, etc.), an impurity region 120 provided so as to sandwich the channel forming region 116, and an impurity region. The metal compound region 124 in contact with 120 and
It has a gate insulating layer 108 provided on the channel forming region 116 and a gate electrode layer 110 provided on the gate insulating layer 108. In the figure, the source electrode and the drain electrode may not be explicitly provided, but for convenience, such a state may be included and referred to as a transistor. Further, in this case, in order to explain the connection relationship of the transistors, the source electrode and the drain electrode may be expressed including the source region and the drain region. in short,
In the present specification, the description of the source electrode may include a source region.

基板100上にはトランジスタ160を囲むように素子分離絶縁層106が設けられてお
り、トランジスタ160を覆うように絶縁層130が設けられている。なお、高集積化を
実現するためには、図4(A)に示すようにトランジスタ160がサイドウォール絶縁層
を有しない構成とすることが望ましい。一方で、トランジスタ160の特性を重視する場
合には、ゲート電極層110の側面にサイドウォール絶縁層を設け、不純物濃度が異なる
領域を含む不純物領域120としてもよい。
An element separation insulating layer 106 is provided on the substrate 100 so as to surround the transistor 160, and an insulating layer 130 is provided so as to cover the transistor 160. In order to realize high integration, it is desirable that the transistor 160 does not have a sidewall insulating layer as shown in FIG. 4A. On the other hand, when the characteristics of the transistor 160 are emphasized, a sidewall insulating layer may be provided on the side surface of the gate electrode layer 110 to provide an impurity region 120 including regions having different impurity concentrations.

図4(A)に示すトランジスタ162は、酸化物半導体をチャネル形成領域に用いたトラ
ンジスタである。また、酸化物半導体層144は、低抵抗領域144a、低抵抗領域14
4b及びチャネル形成領域144cを含む。低抵抗領域144aは、導電層143a上に
接して形成され、低抵抗領域144bは、導電層143b上に接して形成され、チャネル
形成領域144cは、導電層143aと導電層143bで挟まれた絶縁層154上に接し
て形成される。
The transistor 162 shown in FIG. 4A is a transistor using an oxide semiconductor in the channel forming region. Further, the oxide semiconductor layer 144 has a low resistance region 144a and a low resistance region 14.
Includes 4b and channel formation region 144c. The low resistance region 144a is formed in contact with the conductive layer 143a, the low resistance region 144b is formed in contact with the conductive layer 143b, and the channel forming region 144c is an insulation sandwiched between the conductive layer 143a and the conductive layer 143b. It is formed in contact with the layer 154.

トランジスタ162は作製工程において、ゲート電極148、絶縁膜137、及び側壁絶
縁層136a、136b上に設けられた導電膜を化学機械研磨処理により除去する工程を
用いて、ソース電極層及びドレイン電極層として機能する電極層142a、142bを形
成する。
The transistor 162 is used as a source electrode layer and a drain electrode layer by using a step of removing the conductive film provided on the gate electrode 148, the insulating film 137, and the side wall insulating layers 136a and 136b by a chemical mechanical polishing process in the manufacturing process. It forms functional electrode layers 142a, 142b.

よって、トランジスタ162は、ソース電極層又はドレイン電極層として機能する電極層
142a、142bと酸化物半導体層144が接する領域(コンタクト領域)と、ゲート
電極148との距離を短くすることができるため、電極層142a、142bと酸化物半
導体層144とが接する領域(コンタクト領域)、及びゲート電極148間の抵抗が減少
し、トランジスタ162のオン特性を向上させることが可能となる。
Therefore, the transistor 162 can shorten the distance between the region (contact region) in which the electrode layers 142a and 142b functioning as the source electrode layer or the drain electrode layer and the oxide semiconductor layer 144 are in contact with each other and the gate electrode 148. The region where the electrode layers 142a and 142b and the oxide semiconductor layer 144 are in contact (contact region) and the resistance between the gate electrodes 148 are reduced, and the on-characteristics of the transistor 162 can be improved.

トランジスタ162上には、絶縁膜149、層間絶縁膜135、絶縁膜150が単層また
は積層で設けられている。本実施の形態では、絶縁膜149及び絶縁膜150として、酸
化アルミニウム膜を用いる。酸化アルミニウム膜を高密度(膜密度3.2g/cm以上
、好ましくは3.6g/cm以上)とすることによって、トランジスタ162に安定な
電気特性を付与することができる。
An insulating film 149, an interlayer insulating film 135, and an insulating film 150 are provided on the transistor 162 in a single layer or in a laminated manner. In this embodiment, an aluminum oxide film is used as the insulating film 149 and the insulating film 150. By making the aluminum oxide film high density (film density 3.2 g / cm 3 or more, preferably 3.6 g / cm 3 or more), stable electrical characteristics can be imparted to the transistor 162.

また、絶縁膜149、層間絶縁膜135、及び絶縁膜150を介して、導電層143aと
重畳する領域には、導電層153が設けられており、導電層143aと、絶縁膜149と
、層間絶縁膜135と、絶縁膜150と、導電層153とによって、容量素子164が構
成される。すなわち、導電層143aは、容量素子164の一方の電極として機能し、導
電層153は、容量素子164の他方の電極として機能する。なお、容量が不要の場合に
は、容量素子164を設けない構成とすることもできる。また、容量素子164は、別途
、トランジスタ162の上方に設けてもよい。
Further, a conductive layer 153 is provided in a region overlapping the conductive layer 143a via the insulating film 149, the interlayer insulating film 135, and the insulating film 150, and the conductive layer 143a, the insulating film 149, and the interlayer insulation are provided. The capacitive element 164 is composed of the film 135, the insulating film 150, and the conductive layer 153. That is, the conductive layer 143a functions as one electrode of the capacitive element 164, and the conductive layer 153 functions as the other electrode of the capacitive element 164. If the capacitance is not required, the capacitance element 164 may not be provided. Further, the capacitive element 164 may be separately provided above the transistor 162.

トランジスタ162および容量素子164の上には絶縁膜152が設けられている。そし
て、絶縁膜152上にはトランジスタ162と、他のトランジスタを接続するための配線
156a、156bが設けられている。配線156aは、絶縁膜149、層間絶縁膜13
5、絶縁膜150、及び絶縁膜152などに形成された開口に形成された電極を介して導
電層143aと電気的に接続される。配線156bは、絶縁膜149、層間絶縁膜135
、絶縁膜150、及び絶縁膜152などに形成された開口に形成された電極を介して導電
層143bと電気的に接続される。
An insulating film 152 is provided on the transistor 162 and the capacitive element 164. The transistor 162 and the wirings 156a and 156b for connecting the other transistors are provided on the insulating film 152. The wiring 156a includes an insulating film 149 and an interlayer insulating film 13.
5. It is electrically connected to the conductive layer 143a via an electrode formed in an opening formed in the insulating film 150, the insulating film 152, or the like. The wiring 156b includes an insulating film 149 and an interlayer insulating film 135.
, The insulating film 150, and the conductive layer 143b are electrically connected to the conductive layer 143b via electrodes formed in the openings formed in the insulating film 152 and the like.

図4(A)及び図4(B)において、トランジスタ160と、トランジスタ162とは、
少なくとも一部が重畳するように設けられており、トランジスタ160のソース領域また
はドレイン領域と酸化物半導体層144の一部が重畳するように設けられているのが好ま
しい。また、トランジスタ162及び容量素子164が、トランジスタ160の少なくと
も一部と重畳するように設けられている。例えば、容量素子164の導電層153は、ト
ランジスタ160のゲート電極層110と少なくとも一部が重畳して設けられている。こ
のような平面レイアウトを採用することにより、半導体装置の占有面積の低減を図ること
ができるため、高集積化を図ることができる。
In FIGS. 4A and 4B, the transistor 160 and the transistor 162 are
It is preferably provided so that at least a part thereof overlaps with each other, and it is preferable that at least a part thereof overlaps with the source region or drain region of the transistor 160 and a part of the oxide semiconductor layer 144. Further, the transistor 162 and the capacitive element 164 are provided so as to overlap with at least a part of the transistor 160. For example, the conductive layer 153 of the capacitive element 164 is provided so that at least a part thereof overlaps with the gate electrode layer 110 of the transistor 160. By adopting such a planar layout, it is possible to reduce the occupied area of the semiconductor device, so that high integration can be achieved.

次に、図4(A)及び図4(B)に対応する回路構成の一例を図4(C)に示す。 Next, an example of the circuit configuration corresponding to FIGS. 4 (A) and 4 (B) is shown in FIG. 4 (C).

図4(C)において、第1の配線(1st Line)とトランジスタ160のソース電
極とは、電気的に接続され、第2の配線(2nd Line)とトランジスタ160のド
レイン電極とは、電気的に接続されている。また、第3の配線(3rd Line)とト
ランジスタ162のソース電極またはドレイン電極の一方とは、電気的に接続され、第4
の配線(4th Line)と、トランジスタ162のゲート電極層とは、電気的に接続
されている。そして、トランジスタ160のゲート電極層と、トランジスタ162のソー
ス電極またはドレイン電極の一方は、容量素子164の電極の他方と電気的に接続され、
第5の配線(5th Line)と、容量素子164の電極の他方は電気的に接続されて
いる。
In FIG. 4C, the first wiring (1st Line) and the source electrode of the transistor 160 are electrically connected, and the second wiring (2nd Line) and the drain electrode of the transistor 160 are electrically connected. It is connected. Further, the third wiring (3rd Line) and one of the source electrode or the drain electrode of the transistor 162 are electrically connected to each other, and the fourth wiring is electrically connected.
The wiring (4th Line) and the gate electrode layer of the transistor 162 are electrically connected. Then, one of the gate electrode layer of the transistor 160 and the source electrode or the drain electrode of the transistor 162 is electrically connected to the other of the electrodes of the capacitive element 164.
The fifth wiring (5th Line) and the other of the electrodes of the capacitive element 164 are electrically connected.

図4(C)に示す半導体装置では、トランジスタ160のゲート電極層の電位が保持可能
という特徴を生かすことで、次のように、情報の書き込み、保持、読み出しが可能である
In the semiconductor device shown in FIG. 4C, information can be written, held, and read as follows by taking advantage of the feature that the potential of the gate electrode layer of the transistor 160 can be held.

情報の書き込み及び保持について説明する。まず、第4の配線の電位を、トランジスタ1
62がオン状態となる電位にして、トランジスタ162をオン状態とする。これにより、
第3の配線の電位が、トランジスタ160のゲート電極層、及び容量素子164が接続さ
れたノード(ノードFG)に与えられる。すなわち、ノードFGには、所定の電荷が与え
られる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(以下Lowレベ
ル電荷、Highレベル電荷という)のいずれかが与えられるものとする。その後、第4
の配線の電位を、トランジスタ162がオフ状態となる電位にして、トランジスタ162
をオフ状態とすることにより、ノードFGに与えられた電荷が保持される(保持)。
Writing and retaining information will be described. First, the potential of the fourth wiring is set to the transistor 1
The potential at which 62 is turned on is set, and the transistor 162 is turned on. This will result in
The potential of the third wiring is given to the gate electrode layer of the transistor 160 and the node (node FG) to which the capacitive element 164 is connected. That is, a predetermined charge is given to the node FG (writing). Here, it is assumed that one of the charges giving two different potential levels (hereinafter referred to as Low level charge and High level charge) is given. After that, the 4th
The potential of the wiring of the transistor 162 is set to the potential at which the transistor 162 is turned off.
By turning off the state, the electric charge given to the node FG is retained (retained).

トランジスタ162のオフ電流は極めて小さいため、トランジスタ160のゲート電極層
の電荷は長時間にわたって保持される。
Since the off-current of the transistor 162 is extremely small, the charge of the gate electrode layer of the transistor 160 is retained for a long time.

次に情報の読み出しについて説明する。第1の配線に所定の電位(定電位)を与えた状態
で、第5の配線に適切な電位(読み出し電位)を与えると、ノードFGに保持された電荷
量に応じて、第2の配線は異なる電位をとる。一般に、トランジスタ160をnチャネル
型とすると、ノードFG(トランジスタ160のゲート電極と言い換えることもできる)
にHighレベル電荷が与えられている場合の見かけのしきい値Vth_Hは、ノードF
GにLowレベル電荷が与えられている場合の見かけのしきい値Vth_Lより低くなる
ためである。ここで、見かけのしきい値電圧とは、トランジスタ160を「オン状態」と
するために必要な第5の配線の電位をいうものとする。したがって、第5の配線の電位を
th_HとVth_Lの中間の電位Vとすることにより、ノードFGに与えられた電
荷を判別できる。例えば、書き込みにおいて、Highレベル電荷が与えられていた場合
には、第5の配線の電位がV(>Vth_H)となれば、トランジスタ160は「オン
状態」となる。Lowレベル電荷が与えられていた場合には、第5の配線の電位がV
<Vth_L)となっても、トランジスタ160は「オフ状態」のままである。このため
、第2の配線の電位を見ることで、保持されている情報を読み出すことができる。
Next, reading information will be described. When a predetermined potential (constant potential) is applied to the first wiring and an appropriate potential (reading potential) is applied to the fifth wiring, the second wiring is applied according to the amount of electric charge held in the node FG. Takes different potentials. Generally, when the transistor 160 is an n-channel type, the node FG (which can be rephrased as the gate electrode of the transistor 160).
The apparent threshold V th_H when a High level charge is given to the node F
This is because it is lower than the apparent threshold value Vth_L when a Low level charge is given to G. Here, the apparent threshold voltage means the potential of the fifth wiring required to put the transistor 160 in the “on state”. Therefore, by setting the potential of the fifth wiring to the potential V 0 between V th_H and V th_L , the electric charge given to the node FG can be discriminated. For example, in writing, when a high level charge is given, the transistor 160 is in the “on state” when the potential of the fifth wiring becomes V 0 (> V th_H ). When a Low level charge is given, the potential of the fifth wire is V 0 (
Even when <V th_L ) is set, the transistor 160 remains in the “off state”. Therefore, the retained information can be read out by looking at the potential of the second wiring.

なお、メモリセルをアレイ状に配置して用いる場合、所望のメモリセルの情報のみを読み
出せることが必要になる。このように情報を読み出さない場合には、ゲート電極層の状態
にかかわらずトランジスタ160が「オフ状態」となるような電位、つまり、Vth_H
より小さい電位を第5の配線に与えればよい。または、ゲート電極層の状態にかかわらず
トランジスタ160が「オン状態」となるような電位、つまり、Vth_Lより大きい電
位を第5の配線に与えればよい。
When the memory cells are arranged in an array and used, it is necessary to be able to read only the information of the desired memory cells. When the information is not read out in this way, the potential at which the transistor 160 is in the “off state” regardless of the state of the gate electrode layer, that is, V th_H
A smaller potential may be applied to the fifth wire. Alternatively, a potential that causes the transistor 160 to be “on” regardless of the state of the gate electrode layer, that is, a potential larger than Vth_L may be applied to the fifth wiring.

本実施の形態に示す半導体装置では、チャネル形成領域に酸化物半導体を用いたオフ電流
の極めて小さいトランジスタを適用することで、極めて長期にわたり記憶内容を保持する
ことが可能である。つまり、リフレッシュ動作が不要となるか、または、リフレッシュ動
作の頻度を極めて低くすることが可能となるため、消費電力を十分に低減することができ
る。また、電力の供給がない場合(ただし、電位は固定されていることが望ましい)であ
っても、長期にわたって記憶内容を保持することが可能である。
In the semiconductor device shown in the present embodiment, it is possible to retain the stored contents for an extremely long period of time by applying a transistor using an oxide semiconductor and having an extremely small off-current to the channel forming region. That is, the refresh operation becomes unnecessary, or the frequency of the refresh operation can be made extremely low, so that the power consumption can be sufficiently reduced. Further, even when there is no power supply (however, it is desirable that the potential is fixed), it is possible to retain the stored contents for a long period of time.

また、本実施の形態に示す半導体装置では、情報の書き込みに高い電圧を必要とせず、素
子の劣化の問題もない。例えば、従来の不揮発性メモリのように、フローティングゲート
への電子の注入や、フローティングゲートからの電子の引き抜きを行う必要がないため、
ゲート絶縁層の劣化といった問題が全く生じない。すなわち、開示する発明に係る半導体
装置では、従来の不揮発性メモリで問題となっている書き換え可能回数に制限はなく、信
頼性が飛躍的に向上する。さらに、トランジスタのオン状態、オフ状態によって、情報の
書き込みが行われるため、高速な動作も容易に実現しうる。
Further, the semiconductor device shown in the present embodiment does not require a high voltage for writing information, and there is no problem of deterioration of the element. For example, unlike conventional non-volatile memory, there is no need to inject electrons into the floating gate or withdraw electrons from the floating gate.
There is no problem such as deterioration of the gate insulating layer. That is, in the semiconductor device according to the disclosed invention, there is no limit to the number of rewritable times, which is a problem in the conventional non-volatile memory, and the reliability is dramatically improved. Further, since information is written depending on whether the transistor is on or off, high-speed operation can be easily realized.

また、トランジスタ162において、酸化物半導体層の低抵抗領域144aは、下地絶縁
層に埋め込まれた導電層143a、及び電極層142aと接して電気的に接続するため、
コンタクト抵抗を低減することができ、電気的特性の優れた(例えば、高いオン電流特性
を有する)トランジスタとすることができる。したがって、トランジスタ162を適用す
ることで、半導体装置の高性能化を達成することができる。さらに、トランジスタ162
は信頼性の高いトランジスタであるため、半導体装置の高信頼性化を図ることができる。
Further, in the transistor 162, the low resistance region 144a of the oxide semiconductor layer is in contact with the conductive layer 143a embedded in the underlying insulating layer and the electrode layer 142a to be electrically connected to each other.
The contact resistance can be reduced, and a transistor having excellent electrical characteristics (for example, having high on-current characteristics) can be obtained. Therefore, by applying the transistor 162, it is possible to achieve high performance of the semiconductor device. In addition, the transistor 162
Since is a highly reliable transistor, it is possible to improve the reliability of the semiconductor device.

以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適
宜組み合わせて用いることができる。
As described above, the configurations and methods shown in the present embodiment can be appropriately combined with the configurations and methods shown in other embodiments.

(実施の形態3)
本実施の形態においては、実施の形態1に示すトランジスタを使用し、電力が供給されな
い状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い半導体装置につ
いて、実施の形態2に示した構成と異なる構成について、図5及び図6を用いて説明を行
う。なお、本実施の形態の半導体装置は、トランジスタ162として実施の形態1に記載
のトランジスタを適用して構成される。トランジスタ162としては、実施の形態1で示
すトランジスタのいずれの構造も適用することができる。
(Embodiment 3)
In the second embodiment, the semiconductor device using the transistor shown in the first embodiment, which can retain the stored contents even when power is not supplied and has no limit on the number of writes, is described in the second embodiment. A configuration different from the shown configuration will be described with reference to FIGS. 5 and 6. The semiconductor device of the present embodiment is configured by applying the transistor according to the first embodiment as the transistor 162. As the transistor 162, any structure of the transistor shown in the first embodiment can be applied.

図5(A)は、半導体装置の回路構成の一例を示し、図5(B)は半導体装置の一例を示
す概念図である。まず、図5(A)に示す半導体装置について説明を行い、続けて図5(
B)に示す半導体装置について、以下説明を行う。
FIG. 5A is a conceptual diagram showing an example of a circuit configuration of a semiconductor device, and FIG. 5B is a conceptual diagram showing an example of a semiconductor device. First, the semiconductor device shown in FIG. 5A will be described, and then FIG. 5 (A) will be described.
The semiconductor device shown in B) will be described below.

図5(A)に示す半導体装置において、ビット線BLとトランジスタ162のソース電極
またはドレイン電極とは電気的に接続され、ワード線WLとトランジスタ162のゲート
電極層とは電気的に接続され、トランジスタ162のソース電極またはドレイン電極と容
量素子254の第1の端子とは電気的に接続されている。
In the semiconductor device shown in FIG. 5A, the bit wire BL and the source electrode or drain electrode of the transistor 162 are electrically connected, and the word wire WL and the gate electrode layer of the transistor 162 are electrically connected to each other. The source electrode or drain electrode of 162 and the first terminal of the capacitive element 254 are electrically connected.

酸化物半導体を用いたトランジスタ162は、オフ電流が極めて小さいという特徴を有し
ている。このため、トランジスタ162をオフ状態とすることで、容量素子254の第1
の端子の電位(あるいは、容量素子254に蓄積された電荷)を極めて長時間にわたって
保持することが可能である。
The transistor 162 using an oxide semiconductor has a feature that the off-current is extremely small. Therefore, by turning off the transistor 162, the first capacitive element 254 is set.
It is possible to hold the potential of the terminal (or the electric charge stored in the capacitive element 254) for an extremely long time.

次に、図5(A)に示す半導体装置(メモリセル250)に、情報の書き込み及び保持を
行う場合について説明する。
Next, a case where information is written and held in the semiconductor device (memory cell 250) shown in FIG. 5A will be described.

まず、ワード線WLの電位を、トランジスタ162がオン状態となる電位として、トラン
ジスタ162をオン状態とする。これにより、ビット線BLの電位が、容量素子254の
第1の端子に与えられる(書き込み)。その後、ワード線WLの電位を、トランジスタ1
62がオフ状態となる電位として、トランジスタ162をオフ状態とすることにより、容
量素子254の第1の端子の電位が保持される(保持)。
First, the potential of the word line WL is set to the potential at which the transistor 162 is turned on, and the transistor 162 is turned on. As a result, the potential of the bit line BL is applied to the first terminal of the capacitive element 254 (writing). After that, the potential of the word line WL is applied to the transistor 1.
By turning off the transistor 162 as the potential for turning off 62, the potential of the first terminal of the capacitive element 254 is held (held).

トランジスタ162のオフ電流は極めて小さいから、容量素子254の第1の端子の電位
(あるいは容量素子に蓄積された電荷)は長時間にわたって保持することができる。
Since the off-current of the transistor 162 is extremely small, the potential (or the electric charge stored in the capacitive element) of the first terminal of the capacitive element 254 can be held for a long time.

次に、情報の読み出しについて説明する。トランジスタ162がオン状態となると、浮遊
状態であるビット線BLと容量素子254とが導通し、ビット線BLと容量素子254の
間で電荷が再分配される。その結果、ビット線BLの電位が変化する。ビット線BLの電
位の変化量は、容量素子254の第1の端子の電位(あるいは容量素子254に蓄積され
た電荷)によって、異なる値をとる。
Next, reading information will be described. When the transistor 162 is turned on, the floating bit wire BL and the capacitive element 254 are conducted, and the charge is redistributed between the bit wire BL and the capacitive element 254. As a result, the potential of the bit line BL changes. The amount of change in the potential of the bit line BL takes a different value depending on the potential of the first terminal of the capacitive element 254 (or the electric charge accumulated in the capacitive element 254).

例えば、容量素子254の第1の端子の電位をV、容量素子254の容量をC、ビット線
BLが有する容量成分(以下、ビット線容量とも呼ぶ)をCB、電荷が再分配される前の
ビット線BLの電位をVB0とすると、電荷が再分配された後のビット線BLの電位は、
(CB×VB0+C×V)/(CB+C)となる。従って、メモリセル250の状態とし
て、容量素子254の第1の端子の電位がV1とV0(V1>V0)の2状態をとるとす
ると、電位V1を保持している場合のビット線BLの電位(=CB×VB0+C×V1)
/(CB+C)は、電位V0を保持している場合のビット線BLの電位(=CB×VB0
+C×V0)/(CB+C))よりも高くなることがわかる。
For example, the potential of the first terminal of the capacitive element 254 is V, the capacitance of the capacitive element 254 is C, the capacitive component of the bit line BL (hereinafter, also referred to as bit wire capacitance) is CB, and before the charge is redistributed. Assuming that the potential of the bit line BL is VB0, the potential of the bit line BL after the charge is redistributed is
It becomes (CB × VB0 + C × V) / (CB + C). Therefore, assuming that the potential of the first terminal of the capacitive element 254 takes two states of V1 and V0 (V1> V0) as the state of the memory cell 250, the potential of the bit line BL when the potential V1 is held. (= CB x VB0 + C x V1)
/ (CB + C) is the potential of the bit line BL when the potential V0 is held (= CB × VB0).
It can be seen that it is higher than + C × V0) / (CB + C)).

そして、ビット線BLの電位を所定の電位と比較することで、情報を読み出すことができ
る。
Then, the information can be read out by comparing the potential of the bit line BL with a predetermined potential.

このように、図5(A)に示す半導体装置は、トランジスタ162のオフ電流が極めて小
さいという特徴から、容量素子254に蓄積された電荷は長時間にわたって保持すること
ができる。つまり、リフレッシュ動作が不要となるか、または、リフレッシュ動作の頻度
を極めて低くすることが可能となるため、消費電力を十分に低減することができる。また
、電力の供給がない場合であっても、長期にわたって記憶内容を保持することが可能であ
る。
As described above, the semiconductor device shown in FIG. 5A has a feature that the off-current of the transistor 162 is extremely small, so that the electric charge accumulated in the capacitive element 254 can be retained for a long time. That is, the refresh operation becomes unnecessary, or the frequency of the refresh operation can be made extremely low, so that the power consumption can be sufficiently reduced. Moreover, even when there is no power supply, it is possible to retain the stored contents for a long period of time.

次に、図5(B)に示す半導体装置について、説明を行う。 Next, the semiconductor device shown in FIG. 5B will be described.

図5(B)に示す半導体装置は、上部に記憶回路として図5(A)に示したメモリセル2
50を複数有するメモリセルアレイ251a及びメモリセルアレイ251bを有し、下部
に、メモリセルアレイ251a及びメモリセルアレイ251bを動作させるために必要な
周辺回路253を有する。なお、周辺回路253は、メモリセルアレイ251a及びメモ
リセルアレイ251bと電気的に接続されている。
The semiconductor device shown in FIG. 5 (B) has a memory cell 2 shown in FIG. 5 (A) as a storage circuit at the top.
It has a memory cell array 251a and a memory cell array 251b having a plurality of 50, and has a peripheral circuit 253 necessary for operating the memory cell array 251a and the memory cell array 251b at the lower part. The peripheral circuit 253 is electrically connected to the memory cell array 251a and the memory cell array 251b.

図5(B)に示した構成とすることにより、周辺回路253をメモリセルアレイ251a
及びメモリセルアレイ251bの直下に設けることができるため半導体装置の小型化を図
ることができる。
By adopting the configuration shown in FIG. 5 (B), the peripheral circuit 253 is connected to the memory cell array 251a.
And since it can be provided directly under the memory cell array 251b, the semiconductor device can be miniaturized.

周辺回路253に設けられるトランジスタは、トランジスタ162とは異なる半導体材料
を用いるのがより好ましい。例えば、シリコン、ゲルマニウム、シリコンゲルマニウム、
炭化シリコン、またはガリウムヒ素等を用いることができ、単結晶半導体を用いることが
好ましい。他に、有機半導体材料などを用いてもよい。このような半導体材料を用いたト
ランジスタは、十分な高速動作が可能である。したがって、前記トランジスタにより、高
速動作が要求される各種回路(論理回路、駆動回路など)を好適に実現することが可能で
ある。
It is more preferable that the transistor provided in the peripheral circuit 253 uses a semiconductor material different from that of the transistor 162. For example, silicon, germanium, silicon germanium,
Silicon carbide, gallium arsenide, or the like can be used, and it is preferable to use a single crystal semiconductor. Alternatively, an organic semiconductor material or the like may be used. Transistors using such semiconductor materials are capable of sufficiently high-speed operation. Therefore, it is possible to suitably realize various circuits (logic circuit, drive circuit, etc.) that require high-speed operation by the transistor.

なお、図5(B)に示した半導体装置では、メモリセルアレイ251aとメモリセルアレ
イ251bの2つのメモリセルアレイが積層された構成を例示したが、積層するメモリセ
ルアレイの数はこれに限定されない。3つ以上のメモリセルアレイを積層する構成として
も良い。
In the semiconductor device shown in FIG. 5B, a configuration in which two memory cell arrays, a memory cell array 251a and a memory cell array 251b, are stacked is exemplified, but the number of stacked memory cell array is not limited to this. A configuration in which three or more memory cell arrays are stacked may be used.

次に、図5(A)に示したメモリセル250の具体的な構成について図6を用いて説明を
行う。
Next, a specific configuration of the memory cell 250 shown in FIG. 5A will be described with reference to FIG.

図6は、メモリセル250の構成の一例である。図6(A)に、メモリセル250の平面
図を、図6(B)に図6(A)の線分A-Bにおける断面図をそれぞれ示す。
FIG. 6 is an example of the configuration of the memory cell 250. 6 (A) shows a plan view of the memory cell 250, and FIG. 6 (B) shows a cross-sectional view of the line segment AB of FIG. 6 (A).

図6(A)及び図6(B)に示すトランジスタ162は、実施の形態1で示した構成と同
一の構成とすることができる。
The transistor 162 shown in FIGS. 6A and 6B can have the same configuration as that shown in the first embodiment.

図6(B)に示すように、電極502及び電極504上にトランジスタ162が設けられ
ている。電極502は、図6(A)におけるビット線BLとして機能する配線であり、ト
ランジスタ162の低抵抗領域と接して設けられている。また、電極504は、図6(A
)における容量素子254の一方の電極として機能し、トランジスタ162の低抵抗領域
と接して設けられている。トランジスタ162上において、電極504と重畳する領域に
設けられた電極506は、容量素子254の他方の電極として機能する。
As shown in FIG. 6B, a transistor 162 is provided on the electrode 502 and the electrode 504. The electrode 502 is a wiring that functions as the bit line BL in FIG. 6A, and is provided in contact with the low resistance region of the transistor 162. Further, the electrode 504 is shown in FIG. 6 (A).
), It functions as one electrode of the capacitive element 254 and is provided in contact with the low resistance region of the transistor 162. On the transistor 162, the electrode 506 provided in the region overlapping with the electrode 504 functions as the other electrode of the capacitive element 254.

また、図6(A)に示すように、容量素子254の他方の電極506は、容量線508と
電気的に接続する。ゲート絶縁層146を介して酸化物半導体層144上に設けられたゲ
ート電極148は、ワード線509と電気的に接続する。
Further, as shown in FIG. 6A, the other electrode 506 of the capacitance element 254 is electrically connected to the capacitance line 508. The gate electrode 148 provided on the oxide semiconductor layer 144 via the gate insulating layer 146 is electrically connected to the word wire 509.

また、図6(C)に、メモリセルアレイと、周辺回路との接続部における断面図を示す。
周辺回路は、例えばnチャネル型トランジスタ510及びpチャネル型トランジスタ51
2を含む構成とすることができる。nチャネル型トランジスタ510及びpチャネル型ト
ランジスタ512に用いる半導体材料としては、酸化物半導体以外の半導体材料(シリコ
ンなど)を用いるのが好ましい。このような材料を用いることで、周辺回路に含まれるト
ランジスタの高速動作を図ることができる。
Further, FIG. 6C shows a cross-sectional view of the connection portion between the memory cell array and the peripheral circuit.
Peripheral circuits include, for example, an n-channel transistor 510 and a p-channel transistor 51.
It can be configured to include 2. As the semiconductor material used for the n-channel transistor 510 and the p-channel transistor 512, it is preferable to use a semiconductor material (silicon or the like) other than the oxide semiconductor. By using such a material, high-speed operation of the transistor included in the peripheral circuit can be achieved.

図6(A)に示す平面レイアウトを採用することにより、半導体装置の占有面積の低減を
図ることができるため、高集積化を図ることができる。
By adopting the planar layout shown in FIG. 6A, the occupied area of the semiconductor device can be reduced, so that high integration can be achieved.

以上のように、上部に多層に形成された複数のメモリセルは、酸化物半導体を用いたトラ
ンジスタにより形成されている。高純度化され、真性化された酸化物半導体を用いたトラ
ンジスタは、オフ電流が小さいため、これを用いることにより長期にわたり記憶内容を保
持することが可能である。つまり、リフレッシュ動作の頻度を極めて低くすることが可能
となるため、消費電力を十分に低減することができる。また、容量素子254は、図6(
B)で示すように電極504、酸化物半導体層144、ゲート絶縁層146、電極506
が積層されることによって形成される。
As described above, the plurality of memory cells formed in multiple layers on the upper surface are formed by transistors using oxide semiconductors. Since a transistor using a highly purified and purified oxide semiconductor has a small off-current, it is possible to retain the stored contents for a long period of time by using the transistor. That is, since the frequency of the refresh operation can be extremely reduced, the power consumption can be sufficiently reduced. Further, the capacitive element 254 is shown in FIG. 6 (
As shown in B), the electrode 504, the oxide semiconductor layer 144, the gate insulating layer 146, and the electrode 506.
Are formed by stacking.

このように、酸化物半導体以外の材料を用いたトランジスタ(換言すると、十分な高速動
作が可能なトランジスタ)を用いた周辺回路と、酸化物半導体を用いたトランジスタ(よ
り広義には、十分にオフ電流が小さいトランジスタ)を用いた記憶回路とを一体に備える
ことで、これまでにない特徴を有する半導体装置を実現することができる。また、周辺回
路と記憶回路を積層構造とすることにより、半導体装置の集積化を図ることができる。
In this way, peripheral circuits using transistors using materials other than oxide semiconductors (in other words, transistors capable of sufficiently high-speed operation) and transistors using oxide semiconductors (in a broader sense, sufficiently off). By integrally providing a storage circuit using a transistor (transistor with a small current), it is possible to realize a semiconductor device having unprecedented characteristics. Further, by forming the peripheral circuit and the storage circuit in a laminated structure, it is possible to integrate the semiconductor device.

本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
This embodiment can be implemented in combination with the configurations described in other embodiments as appropriate.

(実施の形態4)
本実施の形態では、先の実施の形態で示した半導体装置を携帯電話、スマートフォン、電
子書籍などの携帯機器に応用した場合の例を図7乃至図10を用いて説明する。
(Embodiment 4)
In this embodiment, an example in which the semiconductor device shown in the previous embodiment is applied to a mobile device such as a mobile phone, a smartphone, or an electronic book will be described with reference to FIGS. 7 to 10.

携帯電話、スマートフォン、電子書籍などの携帯機器においては、画像データの一時記憶
などにSRAMまたはDRAMが使用されている。SRAMまたはDRAMが使用される
理由としてはフラッシュメモリでは応答が遅く、画像処理では不向きであるためである。
一方で、SRAMまたはDRAMを画像データの一時記憶に用いた場合、以下の特徴があ
る。
In mobile devices such as mobile phones, smartphones, and electronic books, SRAM or DRAM is used for temporary storage of image data. The reason why SRAM or DRAM is used is that flash memory has a slow response and is not suitable for image processing.
On the other hand, when SRAM or DRAM is used for temporary storage of image data, it has the following features.

通常のSRAMは、図7(A)に示すように1つのメモリセルがトランジスタ801~8
06の6個のトランジスタで構成されており、それをXデコーダー807、Yデコーダー
808にて駆動している。トランジスタ803とトランジスタ805、トランジスタ80
4とトランジスタ806はインバータを構成し、高速駆動を可能としている。しかし1つ
のメモリセルが6トランジスタで構成されているため、セル面積が大きいという欠点があ
る。デザインルールの最小寸法をFとしたときにSRAMのメモリセル面積は通常100
~150Fである。このためSRAMはビットあたりの単価が各種メモリの中で最も高
い。
In a normal SRAM, as shown in FIG. 7A, one memory cell is a transistor 801 to 8
It is composed of six transistors of 06, which are driven by an X decoder 807 and a Y decoder 808. Transistor 803, transistor 805, transistor 80
4 and the transistor 806 form an inverter and enable high-speed driving. However, since one memory cell is composed of 6 transistors, there is a drawback that the cell area is large. When the minimum dimension of the design rule is F, the memory cell area of SRAM is usually 100.
~ 150F 2 . Therefore, SRAM has the highest unit price per bit among various types of memory.

それに対して、DRAMはメモリセルが図7(B)に示すようにトランジスタ811、保
持容量812によって構成され、それをXデコーダー813、Yデコーダー814にて駆
動している。1つのセルが1トランジスタ1容量の構成になっており、面積が小さい。D
RAMのメモリセル面積は通常10F以下である。ただし、DRAMは常にリフレッシ
ュが必要であり、書き換えをおこなわない場合でも電力を消費する。
On the other hand, in the DRAM, the memory cell is composed of the transistor 811 and the holding capacity 812 as shown in FIG. 7B, and the memory cell is driven by the X decoder 813 and the Y decoder 814. One cell has one transistor and one capacitance, and the area is small. D
The memory cell area of the RAM is usually 10F 2 or less. However, DRAM always needs to be refreshed and consumes power even if it is not rewritten.

しかし、先の実施の形態で説明した半導体装置のメモリセル面積は、10F前後であり
、且つ頻繁なリフレッシュは不要である。したがって、メモリセル面積が縮小され、且つ
消費電力が低減することができる。
However, the memory cell area of the semiconductor device described in the previous embodiment is around 10F 2 , and frequent refreshing is unnecessary. Therefore, the memory cell area can be reduced and the power consumption can be reduced.

図8に携帯機器のブロック図を示す。図8に示す携帯機器はRF回路901、アナログベ
ースバンド回路902、デジタルベースバンド回路903、バッテリー904、電源回路
905、アプリケーションプロセッサ906、フラッシュメモリ910、ディスプレイコ
ントローラ911、メモリ回路912、ディスプレイ913、タッチセンサ919、音声
回路917、キーボード918などより構成されている。ディスプレイ913は表示部9
14、ソースドライバ915、ゲートドライバ916によって構成されている。アプリケ
ーションプロセッサ906はCPU907、DSP908、インターフェイス(IF)9
09を有している。一般にメモリ回路912はSRAMまたはDRAMで構成されており
、この部分に先の実施の形態で説明した半導体装置を採用することによって、情報の書き
込み及び読み出しが高速で、長期間の記憶保持が可能で、且つ消費電力が十分に低減する
ことができる。
FIG. 8 shows a block diagram of a mobile device. The portable device shown in FIG. 8 is an RF circuit 901, an analog baseband circuit 902, a digital baseband circuit 903, a battery 904, a power supply circuit 905, an application processor 906, a flash memory 910, a display controller 911, a memory circuit 912, a display 913, and a touch. It is composed of a sensor 919, a voice circuit 917, a keyboard 918, and the like. Display 913 is a display unit 9
It is composed of 14, a source driver 915, and a gate driver 916. The application processor 906 has a CPU 907, a DSP 908, and an interface (IF) 9.
Has 09. Generally, the memory circuit 912 is composed of SRAM or DRAM, and by adopting the semiconductor device described in the previous embodiment for this portion, information can be written and read at high speed and can be stored for a long period of time. Moreover, the power consumption can be sufficiently reduced.

図9に、ディスプレイのメモリ回路950に先の実施の形態で説明した半導体装置を使用
した例を示す。図9に示すメモリ回路950は、メモリ952、メモリ953、スイッチ
954、スイッチ955及びメモリコントローラ951により構成されている。また、メ
モリ回路は、画像データ(入力画像データ)からの信号線、メモリ952、及びメモリ9
53に記憶されたデータ(記憶画像データ)を読み出し、及び制御を行うディスプレイコ
ントローラ956と、ディスプレイコントローラ956からの信号により表示するディス
プレイ957が接続されている。
FIG. 9 shows an example in which the semiconductor device described in the previous embodiment is used for the memory circuit 950 of the display. The memory circuit 950 shown in FIG. 9 includes a memory 952, a memory 953, a switch 954, a switch 955, and a memory controller 951. Further, the memory circuit includes a signal line from image data (input image data), a memory 952, and a memory 9.
A display controller 956 that reads and controls data (stored image data) stored in 53 and a display 957 that displays by a signal from the display controller 956 are connected.

まず、ある画像データがアプリケーションプロセッサ(図示しない)によって、形成され
る(入力画像データA)。入力画像データAは、スイッチ954を介してメモリ952に
記憶される。そしてメモリ952に記憶された画像データ(記憶画像データA)は、スイ
ッチ955、及びディスプレイコントローラ956を介してディスプレイ957に送られ
、表示される。
First, certain image data is formed by an application processor (not shown) (input image data A). The input image data A is stored in the memory 952 via the switch 954. Then, the image data (stored image data A) stored in the memory 952 is sent to the display 957 via the switch 955 and the display controller 956 and displayed.

入力画像データAに変更が無い場合、記憶画像データAは、通常30~60Hz程度の周
期でメモリ952からスイッチ955を介して、ディスプレイコントローラ956から読
み出される。
When there is no change in the input image data A, the stored image data A is usually read from the memory 952 via the switch 955 from the display controller 956 at a cycle of about 30 to 60 Hz.

次に、例えばユーザーが画面を書き換える操作をしたとき(すなわち、入力画像データA
に変更が有る場合)、アプリケーションプロセッサは新たな画像データ(入力画像データ
B)を形成する。入力画像データBはスイッチ954を介してメモリ953に記憶される
。この間も定期的にメモリ952からスイッチ955を介して記憶画像データAは読み出
されている。メモリ953に新たな画像データ(記憶画像データB)が記憶し終わると、
ディスプレイ957の次のフレームより、記憶画像データBは読み出され、スイッチ95
5、及びディスプレイコントローラ956を介して、ディスプレイ957に記憶画像デー
タBが送られ、表示がおこなわれる。この読み出しはさらに次に新たな画像データがメモ
リ952に記憶されるまで継続される。
Next, for example, when the user rewrites the screen (that is, the input image data A).
If there is a change in), the application processor forms new image data (input image data B). The input image data B is stored in the memory 953 via the switch 954. During this period, the stored image data A is periodically read from the memory 952 via the switch 955. When new image data (stored image data B) is stored in the memory 953,
The stored image data B is read from the next frame of the display 957, and the switch 95 is read.
The stored image data B is sent to the display 957 via the display controller 956 and the display controller 956 to display the stored image data B. This reading is further continued until the next new image data is stored in the memory 952.

このようにメモリ952及びメモリ953は交互に画像データの書き込みと、画像データ
の読み出しを行うことによって、ディスプレイ957の表示をおこなう。なお、メモリ9
52及びメモリ953はそれぞれ別のメモリには限定されず、1つのメモリを分割して使
用してもよい。先の実施の形態で説明した半導体装置をメモリ952及びメモリ953に
採用することによって、情報の書き込み及び読み出しが高速で、長期間の記憶保持が可能
で、且つ消費電力が十分に低減することができる。
In this way, the memory 952 and the memory 953 display the display 957 by alternately writing the image data and reading the image data. Memory 9
The 52 and the memory 953 are not limited to different memories, and one memory may be divided and used. By adopting the semiconductor device described in the previous embodiment for the memory 952 and the memory 953, it is possible to write and read information at high speed, to hold the memory for a long period of time, and to sufficiently reduce the power consumption. can.

図10に電子書籍のブロック図を示す。図10はバッテリー1001、電源回路1002
、マイクロプロセッサ1003、フラッシュメモリ1004、音声回路1005、キーボ
ード1006、メモリ回路1007、タッチパネル1008、ディスプレイ1009、デ
ィスプレイコントローラ1010によって構成される。
FIG. 10 shows a block diagram of an electronic book. FIG. 10 shows the battery 1001 and the power supply circuit 1002.
, Microprocessor 1003, flash memory 1004, audio circuit 1005, keyboard 1006, memory circuit 1007, touch panel 1008, display 1009, display controller 1010.

ここでは、図10のメモリ回路1007に先の実施の形態で説明した半導体装置を使用す
ることができる。メモリ回路1007は書籍の内容を一時的に保持する機能を持つ。例え
ば、ユーザーが電子書籍を読んでいるときに、特定の箇所にマーキング(表示の色を変え
る、アンダーラインを引く、文字を太くする、文字の書体を変えるなど)をしたい場合に
、ユーザーが指定した箇所の情報を一時的に記憶し、保持する機能を有する。この情報を
長期に保存する場合にはフラッシュメモリ1004にコピーしても良い。このような場合
においても、先の実施の形態で説明した半導体装置を採用することによって、情報の書き
込み及び読み出しが高速で、長期間の記憶保持が可能で、且つ消費電力が十分に低減する
ことができる。
Here, the semiconductor device described in the previous embodiment can be used for the memory circuit 1007 of FIG. The memory circuit 1007 has a function of temporarily holding the contents of a book. For example, when a user is reading an e-book and wants to mark a specific part (change the color of the display, underline, thicken the text, change the typeface of the text, etc.), the user specifies it. It has a function to temporarily store and retain the information of the location. If this information is to be stored for a long period of time, it may be copied to the flash memory 1004. Even in such a case, by adopting the semiconductor device described in the previous embodiment, information can be written and read at high speed, storage can be retained for a long period of time, and power consumption can be sufficiently reduced. Can be done.

以上のように、本実施の形態に示す携帯機器には、先の実施の形態に係る半導体装置が搭
載されている。このため、読み出しが高速で、長期間の記憶保持が可能で、且つ消費電力
を低減した携帯機器が実現される。
As described above, the mobile device shown in the present embodiment is equipped with the semiconductor device according to the previous embodiment. Therefore, a portable device that can be read at high speed, can be stored for a long period of time, and has reduced power consumption is realized.

本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み
合わせて用いることができる。
The configuration, method, etc. shown in this embodiment can be used in appropriate combination with the configuration, method, etc. shown in other embodiments.

100 基板
106 素子分離絶縁層
108 ゲート絶縁層
110 ゲート電極層
116 チャネル形成領域
120 不純物領域
124 金属化合物領域
130 絶縁層
135 層間絶縁膜
136a 側壁絶縁層
136b 側壁絶縁層
137 絶縁膜
142a 電極層
142b 電極層
143a 導電層
143b 導電層
144 酸化物半導体層
144a 低抵抗領域
144b 低抵抗領域
144c チャネル形成領域
146 ゲート絶縁層
148ゲート電極
149 絶縁膜
150 絶縁膜
152 絶縁膜
153 導電層
154 絶縁層
156a 配線
156b 配線
160 トランジスタ
162 トランジスタ
164 容量素子
250 メモリセル
251a メモリセルアレイ
251b メモリセルアレイ
253 周辺回路
254 容量素子
400 基板
401 ゲート電極層
402 ゲート絶縁層
403 酸化物半導体膜
404a 低抵抗領域
404b 低抵抗領域
405 電極層
405a 電極層
405b 電極層
407 絶縁膜
409 チャネル形成領域
410 絶縁膜
412a 側壁絶縁層
412b 側壁絶縁層
413 絶縁膜
415 層間絶縁膜
420 トランジスタ
421 ドーパント
422a 電極層
422b 電極層
423 絶縁膜
424a 電極層
424b 電極層
425a 電極層
425b 電極層
426 絶縁膜
436 下地絶縁層
445 導電膜
446 絶縁膜
502 電極
504 電極
506 電極
508 容量線
509 ワード線
510 nチャネル型トランジスタ
512 pチャネル型トランジスタ
801 トランジスタ
803 トランジスタ
804 トランジスタ
805 トランジスタ
806 トランジスタ
807 Xデコーダー
808 Yデコーダー
811 トランジスタ
812 保持容量
813 Xデコーダー
814 Yデコーダー
901 RF回路
902 アナログベースバンド回路
903 デジタルベースバンド回路
904 バッテリー
905 電源回路
906 アプリケーションプロセッサ
907 CPU
908 DSP
910 フラッシュメモリ
911 ディスプレイコントローラ
912 メモリ回路
913 ディスプレイ
914 表示部
915 ソースドライバ
916 ゲートドライバ
917 音声回路
918 キーボード
919 タッチセンサ
950 メモリ回路
951 メモリコントローラ
952 メモリ
953 メモリ
954 スイッチ
955 スイッチ
956 ディスプレイコントローラ
957 ディスプレイ
1001 バッテリー
1002 電源回路
1003 マイクロプロセッサ
1004 フラッシュメモリ
1005 音声回路
1006 キーボード
1007 メモリ回路
1008 タッチパネル
1009 ディスプレイ
1010 ディスプレイコントローラ
100 Substrate 106 Element separation insulating layer 108 Gate insulating layer 110 Gate electrode layer 116 Channel forming region 120 Impure region 124 Metal compound region 130 Insulating layer 135 Interlayer insulating film 136a Side wall insulating layer 136b Side wall insulating layer 137 Insulating film 142a Electrode layer 142b Electrode layer 143a Conductive layer 143b Conductive layer 144 Oxide semiconductor layer 144a Low resistance region 144b Low resistance region 144c Channel formation region 146 Gate insulating layer 148 Gate electrode 149 Insulating film 150 Insulating film 152 Insulating film 153 Conductive layer 154 Insulating layer 156a Wiring 156b Wiring 160 Transistor 162 Transistor 164 Capacitive element 250 Memory cell 251a Memory cell array 251b Memory cell array 253 Peripheral circuit 254 Capacitive element 400 Substrate 401 Gate electrode layer 402 Gate insulating layer 403 Oxide semiconductor film 404a Low resistance region 404b Low resistance region 405 Electrode layer 405a Electrode layer 405b Electrode layer 407 Insulation film 409 Channel formation region 410 Insulation film 412a Side wall insulating layer 412b Side wall insulating layer 413 Insulating film 415 Interlayer insulating film 420 Transistor 421 Dopant 422a Electrode layer 422b Electrode layer 423 Insulation film 424a Electrode layer 424b Electrode layer 425a Electrode layer 425b Electrode layer 426 Insulation film 436 Underlayer insulating layer 445 Conductive 446 Insulation film 502 Electrode 504 Electrode 506 Electrode 508 Capacitance line 509 Word line 510 n-channel transistor 512 p-channel transistor 801 Trans-803 Transistor 804 Transistor 805 Transistor 807 Transistor 807 X Decoder 808 Y Decoder 811 Transistor 812 Retention Capacity 813 X Decoder 814 Y Decoder 901 RF Circuit 902 Analog Baseband Circuit 903 Digital Baseband Circuit 904 Battery 905 Power Circuit 906 Application Processor 907 CPU
908 DSP
910 Flash memory 911 Display controller 912 Memory circuit 913 Display 914 Display unit 915 Source driver 916 Gate driver 917 Voice circuit 918 Keyboard 919 Touch sensor 950 Memory circuit 951 Memory controller 952 Memory 953 Memory 954 Switch 955 Switch 956 Display controller 957 Display 1001 Battery 1002 Power circuit 1003 Microprocessor 1004 Flash memory 1005 Voice circuit 1006 Keyboard 1007 Memory circuit 1008 Touch panel 1009 Display 1010 Display controller

Claims (3)

シリコンをチャネル形成領域に有する第1のトランジスタと、
酸化物半導体をチャネル形成領域に有し、かつ、前記第1のトランジスタの上層に配置される第2のトランジスタと、を有する半導体装置であって、
前記第2のトランジスタが有する半導体層の下方に第1の導電層が配置され、
前記第1の導電層は、前記第1のトランジスタのチャネル形成領域の上方に配置されおり、
前記半導体層の上方に、前記第2のトランジスタのゲートとしての機能を有する第2の導電層が配置され、
前記半導体層の上方に、前記第2のトランジスタのソースまたはドレインとしての機能を有する第3の導電層及び第4の導電層が配置され、
平面視において、前記第1の導電層は前記第3の導電層よりも前記第2の導電層との間のチャネル長方向における間隔が短く、
平面視において、前記第3の導電層及び前記第4の導電層は、前記第2の導電層と重なりを有さない半導体装置。
The first transistor having silicon in the channel formation region,
A semiconductor device having an oxide semiconductor in a channel forming region and having a second transistor arranged on an upper layer of the first transistor.
The first conductive layer is arranged below the semiconductor layer of the second transistor.
The first conductive layer is arranged above the channel forming region of the first transistor.
A second conductive layer having a function as a gate of the second transistor is arranged above the semiconductor layer.
Above the semiconductor layer, a third conductive layer and a fourth conductive layer having a function as a source or drain of the second transistor are arranged.
In a plan view, the first conductive layer has a shorter distance in the channel length direction from the second conductive layer than the third conductive layer.
In a plan view, the third conductive layer and the fourth conductive layer are semiconductor devices that do not overlap with the second conductive layer.
シリコンをチャネル形成領域に有する第1のトランジスタと、
酸化物半導体をチャネル形成領域に有し、かつ、前記第1のトランジスタの上層に配置される第2のトランジスタと、を有する半導体装置であって、
前記第2のトランジスタが有する半導体層の下方に第1の導電層が配置され、
前記第1の導電層は、前記第1のトランジスタのチャネル形成領域の上方に配置されおり、
前記半導体層の上方に、前記第2のトランジスタのゲートとしての機能を有する第2の導電層が配置され、
前記半導体層の上方に、前記第2のトランジスタのソースまたはドレインとしての機能を有する第3の導電層及び第4の導電層が配置され、
平面視において、前記第1の導電層は前記第3の導電層よりも前記第2の導電層との間のチャネル長方向における間隔が短く、
平面視において、前記第3の導電層及び前記第4の導電層は、前記第2の導電層と重なりを有さず、
平面視において、前記第1のトランジスタのチャネル形成領域は、前記半導体層と重なりを有さない半導体装置。
The first transistor having silicon in the channel formation region,
A semiconductor device having an oxide semiconductor in a channel forming region and having a second transistor arranged on an upper layer of the first transistor.
The first conductive layer is arranged below the semiconductor layer of the second transistor.
The first conductive layer is arranged above the channel forming region of the first transistor.
A second conductive layer having a function as a gate of the second transistor is arranged above the semiconductor layer.
Above the semiconductor layer, a third conductive layer and a fourth conductive layer having a function as a source or drain of the second transistor are arranged.
In a plan view, the first conductive layer has a shorter distance in the channel length direction from the second conductive layer than the third conductive layer.
In a plan view, the third conductive layer and the fourth conductive layer do not overlap with the second conductive layer.
In a plan view, the channel forming region of the first transistor is a semiconductor device that does not overlap with the semiconductor layer.
請求項1または請求項2において、
前記酸化物半導体は、In、Ga、及びZnを含む半導体装置。
In claim 1 or 2,
The oxide semiconductor is a semiconductor device containing In, Ga, and Zn.
JP2020139148A 2020-08-20 2020-08-20 Semiconductor device Active JP7057400B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020139148A JP7057400B2 (en) 2020-08-20 2020-08-20 Semiconductor device
JP2022063809A JP7292466B2 (en) 2020-08-20 2022-04-07 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020139148A JP7057400B2 (en) 2020-08-20 2020-08-20 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019125195A Division JP6753986B2 (en) 2019-07-04 2019-07-04 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022063809A Division JP7292466B2 (en) 2020-08-20 2022-04-07 semiconductor equipment

Publications (2)

Publication Number Publication Date
JP2020194974A JP2020194974A (en) 2020-12-03
JP7057400B2 true JP7057400B2 (en) 2022-04-19

Family

ID=73547648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020139148A Active JP7057400B2 (en) 2020-08-20 2020-08-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JP7057400B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318112A (en) 2006-04-28 2007-12-06 Semiconductor Energy Lab Co Ltd Semiconductor device, and method of fabricating semiconductor device
JP2008112909A (en) 2006-10-31 2008-05-15 Kochi Prefecture Sangyo Shinko Center Thin film semiconductor device, and manufacturing method therefor
JP2010157702A (en) 2008-12-01 2010-07-15 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP2010166030A (en) 2008-12-19 2010-07-29 Semiconductor Energy Lab Co Ltd Method for manufacturing transistor
US20110194331A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
JP2011097033A5 (en) 2010-09-21 2013-10-10

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641840B2 (en) 2009-10-01 2014-12-17 株式会社半導体エネルギー研究所 Semiconductor device
KR101811204B1 (en) 2010-02-12 2017-12-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and driving method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318112A (en) 2006-04-28 2007-12-06 Semiconductor Energy Lab Co Ltd Semiconductor device, and method of fabricating semiconductor device
JP2008112909A (en) 2006-10-31 2008-05-15 Kochi Prefecture Sangyo Shinko Center Thin film semiconductor device, and manufacturing method therefor
JP2010157702A (en) 2008-12-01 2010-07-15 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP2010166030A (en) 2008-12-19 2010-07-29 Semiconductor Energy Lab Co Ltd Method for manufacturing transistor
US20110194331A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
JP2011181167A (en) 2010-02-05 2011-09-15 Semiconductor Energy Lab Co Ltd Semiconductor device and method of driving semiconductor device
JP2011097033A5 (en) 2010-09-21 2013-10-10
JP2011187940A5 (en) 2011-02-02 2014-03-13

Also Published As

Publication number Publication date
JP2020194974A (en) 2020-12-03

Similar Documents

Publication Publication Date Title
KR102333560B1 (en) Semiconductor device and manufacturing method thereof
JP6993397B2 (en) Semiconductor device
JP6542335B2 (en) Semiconductor device
US9997545B2 (en) Semiconductor device and method for manufacturing thereof
JP2023118820A (en) Semiconductor device
US9082663B2 (en) Semiconductor device and manufacturing method thereof
JP6381730B2 (en) Method for manufacturing semiconductor device
JP6227079B2 (en) Semiconductor device
JP6427211B2 (en) Semiconductor device
KR20130062237A (en) Semiconductor device and manufacturing method thereof
JP6049479B2 (en) Semiconductor device
US8604472B2 (en) Semiconductor device
JP6553693B2 (en) Semiconductor device
JP7057400B2 (en) Semiconductor device
JP6753986B2 (en) Semiconductor device
JP7474369B2 (en) Semiconductor Device
JP7292466B2 (en) semiconductor equipment
JP6212153B2 (en) Semiconductor device
JP2023107852A (en) Semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220407

R150 Certificate of patent or registration of utility model

Ref document number: 7057400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150