JP7054516B2 - Method for determining the origin of konjac flour and processed konjac products - Google Patents
Method for determining the origin of konjac flour and processed konjac products Download PDFInfo
- Publication number
- JP7054516B2 JP7054516B2 JP2018043061A JP2018043061A JP7054516B2 JP 7054516 B2 JP7054516 B2 JP 7054516B2 JP 2018043061 A JP2018043061 A JP 2018043061A JP 2018043061 A JP2018043061 A JP 2018043061A JP 7054516 B2 JP7054516 B2 JP 7054516B2
- Authority
- JP
- Japan
- Prior art keywords
- konjac
- processed
- nitrogen
- konjac flour
- stable isotope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Description
本発明は、こんにゃく粉及びこんにゃく加工品の産地を判別する方法に関する。具体的には、こんにゃく粉及びこんにゃく加工品の産地が日本であるか否かを判別する方法に関する。 The present invention relates to a method for determining the production area of konjac flour and processed konjac products. Specifically, the present invention relates to a method for determining whether or not the production area of konjac flour and processed konjac products is Japan.
こんにゃく等のこんにゃく加工品は従来から我が国において和食の材料として用いられて食されており、近頃は、低カロリーで食物繊維が豊富であり、かつ、満腹感が得られることからダイエット食品としても注目を集め、こんにゃくだけでなく、様々な種類のこんにゃく加工品が製造販売されている。
こんにゃくやしらたき等のこんにゃく加工品の原料となるこんにゃく粉は、蒟蒻芋から作られる。
上記したこんにゃく加工品の原料となるこんにゃく粉は、日本国内で生産されたものだけでなく、海外からも輸入されている。具体的には、例えば、中国、ミャンマー、ラオス等から輸入されており、各国から輸入したこんにゃく粉を単独で使用することもあれば、輸入したこんにゃく粉に日本国産のこんにゃく粉を混ぜて使用することもある。
このように日本国内において、様々なこんにゃく加工品の材料として利用され、かつ、その原料の産地が日本国内に限られず、輸入したものもあるこんにゃく粉及びこんにゃく加工品には、食品表示法の食品表示基準第3条により、農産加工品の一つとして原料原産地名を表示することが義務付けられている。
しかし、原産地が表示されていても、それを裏付ける根拠がなければ、原産地偽装の心配があるため、消費者及び取引者は安心することができない。
このため、表示された原産地を科学的に裏付けることが必要であるが、こんにゃく粉及びこんにゃく加工品の産地を科学的に特定して判別する方法は未だ開発されていない。
Processed konnyaku products such as konnyaku have traditionally been used as ingredients for Japanese food in Japan, and these days, they are also attracting attention as diet foods because they are low in calories, rich in dietary fiber, and give a feeling of fullness. Not only konnyaku but also various kinds of processed konnyaku products are manufactured and sold.
Konjac flour, which is the raw material for processed konjac products such as konjac and shirataki noodles, is made from konjac potatoes.
The konjac flour, which is the raw material for the above-mentioned processed konjac products, is imported not only from Japan but also from overseas. Specifically, for example, konjac flour imported from China, Myanmar, Laos, etc. may be used alone, or konjac flour imported from Japan may be mixed with konjac flour produced in Japan. Sometimes.
In this way, konjac flour and processed konjac products that are used as materials for various processed konjac products in Japan, and the production areas of the raw materials are not limited to Japan, and some of them are imported, are foods under the Food Labeling Law. According to
However, even if the place of origin is displayed, if there is no basis to support it, consumers and traders cannot be relieved because there is a concern that the place of origin is disguised.
For this reason, it is necessary to scientifically support the indicated place of origin, but a method for scientifically identifying and distinguishing the place of origin of konjac flour and processed konjac products has not yet been developed.
こんにゃく粉のような食品の産地を判別する方法として、安定同位体比を測定して、その測定結果からワカメの産地を特定する方法が既に提案されている(特許文献1)。
安定同位体は、同じ性質でありながら中性子の数が異なるために重さ(質量)が異なる原子の中で、不安定な放射性同位体と異なり、安定して存在する同位体であり、窒素、炭素、酸素の各原子には、それぞれ質量の異なる安定同位体が存在し、自然界における、同一の原子についての質量の異なる安定同位体の存在比率は、地理的要因によって変動することが知られており、世界中の各地域において、窒素、炭素、酸素の安定同位体の比率は僅かづつ異なる。
特許文献1に開示された方法は、この安定同位体比を利用して、ワカメの産地を特定するものである。
しかし、全ての食品が、必ずしもワカメのように安定同位体の比率だけで産地を特定することができるわけではない。
発明者等の研究によれば、こんにゃく及びこんにゃく加工品については、安定同位体比だけでは産地を十分な確率で特定することができなかった。
本発明は、上記した従来の問題点を解決し、100%又はそれに近い割合で、産地を特定することができるこんにゃく粉及びこんにゃく加工品の産地判別方法を提供することを目的としている。
As a method for determining the production area of foods such as konjac flour, a method of measuring a stable isotope ratio and specifying the production area of wakame seaweed from the measurement result has already been proposed (Patent Document 1).
Stable isotopes are isotopes that exist stably, unlike unstable radioactive isotopes, among atoms with the same properties but different weights (mass) due to different numbers of neutrons. It is known that stable isotopes with different masses exist in each atom of carbon and oxygen, and the abundance ratio of stable isotopes with different masses for the same atom in nature varies depending on geographical factors. In each region of the world, the proportions of stable isotopes of nitrogen, carbon and oxygen are slightly different.
The method disclosed in
However, not all foods can be identified by the ratio of stable isotopes like wakame seaweed.
According to the research by the inventors, it was not possible to identify the production area of konjac and processed konjac products with sufficient probability only by the stable isotope ratio.
An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for determining the production area of konjac flour and processed konjac products, which can specify the production area at 100% or a ratio close to the above.
上記した目的を達成するために、本発明に係るこんにゃく粉の産地判別方法は、判別対象のこんにゃく粉における窒素及び炭素の安定同位体比を測定すると共に、同こんにゃく粉における窒素含有量を測定し、
測定した窒素及び炭素の安定同位対比並びに窒素含有量に基づいて、該判別対象のこんにゃく粉の産地が日本国であるか否かを判別することを特徴とする。
前記判別には、こんにゃく粉における窒素及び炭素の安定同位体比並びに窒素含有量を説明変数とする線形1次判別関数が使用され得、その場合、該関数が、日本国産のこんにゃく粉から成る群と、判別対象の国産のこんにゃく粉から成る群の中心座標を通り、最も良く前記2群を分けるように、各説明変数の係数が決定され得る。
判別対象のこんにゃく粉は、限定するものではないが、例えば、中国産又はミャンマー産であり得る。
In order to achieve the above-mentioned object, the method for determining the origin of konjac flour according to the present invention measures the stable isotope ratios of nitrogen and carbon in the konjac flour to be discriminated, and also measures the nitrogen content in the konjac flour. ,
Based on the measured stable isotope ratio of nitrogen and carbon and the nitrogen content, it is characterized in that it is determined whether or not the production area of the konjac flour to be discriminated is Japan.
For the discrimination, a linear linear discriminant function using the stable isotope ratio of nitrogen and carbon in konjac flour and the nitrogen content as explanatory variables can be used, in which case the function is a group consisting of konjac flour produced in Japan. The coefficient of each explanatory variable can be determined so as to pass through the center coordinates of the group consisting of domestically produced konjac flour to be discriminated and to divide the two groups best.
The konjac flour to be discriminated may be, for example, from China or Myanmar, for example, without limitation.
また、本発明に係るこんにゃく加工品の産地判別方法は、
こんにゃく粉を用いて製造した判別対象のこんにゃく加工品を凍結乾燥した後に粉砕し、該粉砕したこんにゃく加工品を用いて、こんにゃく加工品における窒素及び炭素の安定同位体比を測定すると共に、同こんにゃく加工品における窒素含有量を測定し、
測定した窒素及び炭素の安定同位対比並びに窒素含有量に基づいて、該判別対象のこんにゃく加工品に用いられているこんにゃく粉の産地が日本国であるか否かを判別することを特徴とする。
前記判別には、こんにゃく加工品における窒素及び炭素の安定同位体比並びに窒素含有量を説明変数とする線形1次判別関数が使用され得、その場合、該関数が、日本国産のこんにゃく粉を用いたこんにゃく加工品から成る群と、判別対象の国産のこんにゃく粉を用いたこんにゃく加工品から成る群の中心座標を通り、最も良く前記2群を分けるように、各説明変数の係数が決定され得る。
判別対象のこんにゃく加工品の原料となるこんにゃく粉は、限定するものではないが、例えば、中国産又はミャンマー産であり得る。
前記こんにゃく加工品には、例えば、こんにゃく、白滝、こんにゃくゼリー及びこんにゃくペースト等が含まれる。
Further, the method for determining the origin of the processed konjac product according to the present invention is as follows.
The processed konjac product to be discriminated produced using konjac flour is freeze-dried and then crushed, and the crushed processed konjac product is used to measure the stable isotope ratios of nitrogen and carbon in the processed konjac product, and the same konjac. Measure the nitrogen content in the processed product and
Based on the measured stable isotope ratio of nitrogen and carbon and the nitrogen content, it is characterized in that it is determined whether or not the production area of the konjac flour used in the processed konjac product to be discriminated is Japan.
For the discrimination, a linear linear discriminant function using the stable isotope ratio of nitrogen and carbon in the processed konjac product and the nitrogen content as explanatory variables can be used, in which case, the function uses konjac flour produced in Japan. The coefficient of each explanatory variable can be determined so as to best separate the two groups through the center coordinates of the group consisting of processed konjac products and the group consisting of processed konjac products using domestic konjac flour to be discriminated. ..
The konjac flour used as a raw material for the processed konjac product to be discriminated may be, for example, from China or Myanmar, for example, without limitation.
The processed konjac product includes, for example, konjac, Shirataki noodles, konjac jelly, konjac paste and the like.
本発明に係るこんにゃく粉の産地判別方法は、判別対象のこんにゃく粉における窒素及び炭素の安定同位体比を測定すると共に、同こんにゃく粉における窒素含有量を測定し、測定した窒素及び炭素の安定同位対比並びに窒素含有量に基づいて、該判別対象のこんにゃく粉の産地が日本国であるか否かを判別するものであるところ、安定同位体比が地理的要因により変動することは知られており、特に、窒素の安定同位体比は食物連鎖が要因となって濃縮され、炭素の安定同位体比はその食物が生産された植物の固有値を示すことが知られている。
しかしながら、発明者等の研究によればこんにゃく粉の場合には、窒素及び炭素の安定同位体比だけでは、十分な産地判別を行うことができないことが分かっており、さらに窒素含有量を判別材料に加えることにより実用に耐え得る十分な判別を行うことができることが分かった。
これにより、判別対象のこんにゃく粉の産地が日本国であるか否かを正確に判別することが可能になる。
具体的には、こんにゃく粉における窒素及び炭素の安定同位体比並びに窒素含有量を説明変数とする線形1次判別関数を前記判別に使用し、該関数が、日本国産のこんにゃく粉から成る群と、判別対象の国産のこんにゃく粉から成る群の中心座標を通り、最も良く前記2群を分けるように、各説明変数の係数を決定することで、判別対象のこんにゃく粉における窒素及び炭素の安定同位体比並びに窒素含有量に基づいて、該判別対象のこんにゃく粉の産地が日本国であるか否かを判別することが可能になる。
権利範囲を限定するものではないが、判別対象のこんにゃく粉は、例えば、中国産又はミャンマー産であり得る。
In the method for determining the origin of konjac flour according to the present invention, the stable isotope ratio of nitrogen and carbon in the konjac flour to be discriminated is measured, and the nitrogen content in the konjac flour is measured, and the measured stable isotope ratio of nitrogen and carbon is measured. It is known that the stable isotope ratio fluctuates due to geographical factors when it is determined whether or not the production area of the konjac flour to be discriminated is Japan based on the comparison and the nitrogen content. In particular, it is known that the stable isotope ratio of nitrogen is enriched due to the food chain, and the stable isotope ratio of carbon shows the intrinsic value of the plant from which the food is produced.
However, according to the research by the inventors, it is known that in the case of konjac flour, it is not possible to sufficiently determine the production area only by the stable isotope ratios of nitrogen and carbon, and further, the nitrogen content can be determined. It was found that by adding to, it is possible to make a sufficient discrimination that can withstand practical use.
This makes it possible to accurately determine whether or not the production area of the konjac flour to be discriminated is Japan.
Specifically, a linear linear discriminant function using the stable isotope ratio of nitrogen and carbon in konjac flour and the nitrogen content as explanatory variables is used for the discrimination, and the function is a group consisting of konjac flour produced in Japan. By determining the coefficient of each explanatory variable so as to pass through the center coordinates of the group consisting of domestically produced konjac flour to be discriminated and to divide the two groups best, stable isotopes of nitrogen and carbon in the konjac flour to be discriminated. Based on the body ratio and the nitrogen content, it becomes possible to determine whether or not the production area of the konjac flour to be discriminated is Japan.
Although not limiting the scope of rights, the konjac flour to be discriminated may be produced in China or Myanmar, for example.
また、本発明に係るこんにゃく加工品の産地判別方法は、こんにゃく粉を用いて製造した判別対象のこんにゃく加工品を凍結乾燥した後に粉砕し、該粉砕したこんにゃく加工品を用いて、こんにゃく加工品における窒素及び炭素の安定同位体比を測定すると共に、同こんにゃく加工品における窒素含有量を測定し、
測定した窒素及び炭素の安定同位対比並びに窒素含有量に基づいて、該判別対象のこんにゃく加工品に用いられているこんにゃく粉の産地が日本国であるか否かを判別する。
上記したようにこんにゃく加工品を一度凍結乾燥させてから粉砕したものを使用して、安定同位対比及び窒素含有量の測定を行っているため、加熱乾燥に比べてこんにゃく加工品の成分変化が著しく少なく、信頼性のある安定同位対比及び窒素含有量の測定を行うことが可能になり、結果として、正確な産地判別を行うことが可能になる。
こんにゃく加工品としては、限定をするわけではないが、前記こんにゃく加工品には、例えば、こんにゃく、白滝及びこんにゃくゼリー並びにこんにゃくペースト等が含まれる。
Further, in the method for determining the production area of the processed konjac product according to the present invention, the processed konjac product to be discriminated produced using konjac flour is freeze-dried and then crushed, and the crushed processed konjac product is used in the processed konjac product. The stable isotope ratios of nitrogen and carbon were measured, and the nitrogen content in the processed konjac product was measured.
Based on the measured stable isotope ratio of nitrogen and carbon and the nitrogen content, it is determined whether or not the production area of the konjac flour used in the processed konjac product to be discriminated is Japan.
As described above, the stable isotope ratio and nitrogen content are measured using the processed konjac product that has been freeze-dried and then crushed, so the composition of the processed konjac product changes significantly compared to heat-drying. It is possible to measure stable isotope ratio and nitrogen content with less and reliability, and as a result, it is possible to accurately determine the place of origin.
The processed konjac product is not limited, but the processed konjac product includes, for example, konjac, Shirataki noodles, konjac jelly, and konjac paste.
以下、添付図面を参照して、本発明に係るこんにゃく粉及びこんにゃく加工品の産地判別方法を説明する。
本発明に係るこんにゃく粉及びこんにゃく加工品の産地判別方法は、
こんにゃく粉及びこんにゃく加工品における窒素及び炭素の安定同位体比並びに窒素含有量を用いて、こんにゃく粉及びこんにゃく加工品の産地判別を行うものである。
Hereinafter, a method for determining the origin of konjac flour and processed konjac product according to the present invention will be described with reference to the accompanying drawings.
The method for determining the origin of konjac flour and processed konjac products according to the present invention is as follows.
The production areas of konjac flour and processed konjac products are determined by using the stable isotope ratios of nitrogen and carbon in the konjac flour and processed konjac products and the nitrogen content.
ここで「安定同位体」とは、同一の原子から成るため同じ性質をもちながら、中性子の数が異なるために質量が異なる原子が存在する同位体における安定した同位体を意味し、「安定同位体比」は、判別対象の物質における安定同位体の構成割合を意味する。具体的には、判別対象の物質における、窒素及び炭素の重い原子と軽い原子の構成比であり、この判別対処の物質における安定同位体組成と、国際原子力委員会により値が決定された標準物質の安定同位体組成との比を千分率で表した値(窒素:δ15N/炭素:δ13C)を用いて評価を行う。 Here, "stable isotope" means a stable isotope in an isotope in which atoms having different masses due to different numbers of neutrons have the same properties because they are composed of the same atom, and are "stable isotopes". "Body ratio" means the composition ratio of stable isotopes in the substance to be discriminated. Specifically, it is the composition ratio of heavy and light atoms of nitrogen and carbon in the substance to be discriminated, the stable isotope composition in the substance to deal with this discrimination, and the standard substance whose value has been determined by the International Atomic Energy Commission. The evaluation is performed using a value (nitrogen: δ15N / carbon: δ13C) expressed as a fraction of the ratio to the stable isotope composition of.
図1は、日本国産、ミャンマー産及び中国産のこんにゃく粉の窒素及び炭素の安定同位体比をIsoprime社の同位体比分析システムBioVisIONを用いて測定し、その測定結果をプロットした表である。縦軸が窒素安定同位体比であり、横軸が炭素安定同位体比である。サンプル数は以下の通りであり、図中、●は日本国産の測定結果であり、■はミャンマー産の測定結果であり、▲は中国産の測定結果である。また、図中直線は、日本国産と中国産との判別直線を表し、点線は、日本国産とミャンマー産との判別直線を表す。
日本国産こんにゃく粉:58
ミャンマー産こんにゃく粉:5
中国産こんにゃく粉:13
図1に示すように、産地毎にδ13C及びδ15Nに有意な差が見て取れる。
FIG. 1 is a table in which the stable isotope ratios of nitrogen and carbon of konjac flour produced in Japan, Myanmar and China were measured using Isoprime's isotope ratio analysis system BioVisION, and the measurement results were plotted. The vertical axis is the stable nitrogen isotope ratio, and the horizontal axis is the stable carbon isotope ratio. The number of samples is as follows. In the figure, ● is the measurement result from Japan, ■ is the measurement result from Myanmar, and ▲ is the measurement result from China. In addition, the straight line in the figure represents the discriminating straight line between Japanese and Chinese products, and the dotted line represents the discriminating straight line between Japanese domestic products and Myanmar products.
Japanese domestic konjac flour: 58
Myanmar konjac flour: 5
Konjac flour from China: 13
As shown in FIG. 1, a significant difference can be seen in δ13C and δ15N for each production area.
図2は、日本国産、ミャンマー産及び中国産のこんにゃく粉を用いて製造したこんにゃく加工品としての「こんにゃく」を、凍結乾燥した後、1mmφ以下の粒度で粉砕し、粉砕後のこんにゃく加工品粉を用いて、その窒素及び炭素の安定同位体比をIsoprime社の同位体比分析システムBioVisIONを用いて測定し、その測定結果をプロットした表である。縦軸が窒素安定同位体比であり、横軸が炭素安定同位体比である。サンプル数は以下の通りであり、図中、●は日本国産の測定結果であり、■はミャンマー産の測定結果であり、▲は中国産の測定結果である。また、図中直線は、日本国産と中国産との判別直線を表し、点線は、日本国産とミャンマー産との判別直線を表す。
日本国産こんにゃく粉を用いたこんにゃく:16
ミャンマー産こんにゃく粉を用いたこんにゃく:2
中国産こんにゃく粉を用いたこんにゃく:20
図2に示すように、原料の産地毎にδ13C及びδ15Nに有意な差が見て取れる。
Figure 2 shows "Konjac" as a processed konjac product manufactured using Japanese, Myanmar and Chinese konjac flour, crushed to a particle size of 1 mmφ or less after freeze-drying, and then crushed konjac processed product powder. It is a table which measured the stable isotope ratio of nitrogen and carbon using the isotope ratio analysis system BioVisION of Isoprime, and plotted the measurement result. The vertical axis is the stable nitrogen isotope ratio, and the horizontal axis is the stable carbon isotope ratio. The number of samples is as follows. In the figure, ● is the measurement result from Japan, ■ is the measurement result from Myanmar, and ▲ is the measurement result from China. In addition, the straight line in the figure represents the discriminating straight line between Japanese and Chinese products, and the dotted line represents the discriminating straight line between Japanese domestic products and Myanmar products.
Konjac using Japanese domestic konjac flour: 16
Konjac using Myanmar konjac flour: 2
Konjac using Chinese konjac flour: 20
As shown in FIG. 2, a significant difference can be seen in δ13C and δ15N depending on the production area of the raw material.
図3は、上記図1及び図2に示したこんにゃく粉及びこんにゃく粉を用いて製造したこんにゃく加工品(こんにゃく)(凍結乾燥後粉砕)の窒素及び炭素含有量を測定した結果を表すグラフである。縦軸が窒素含有量であり、横軸が炭素含有量である。
図3に示すように、原料の産地毎に窒素含有量に有意な差が見て取れる。
FIG. 3 is a graph showing the results of measuring the nitrogen and carbon contents of the konjac flour and the processed konjac product (konjac) (crushed after freeze-drying) produced using the konjac flour and konjac flour shown in FIGS. 1 and 2. .. The vertical axis is the nitrogen content and the horizontal axis is the carbon content.
As shown in FIG. 3, a significant difference in nitrogen content can be seen depending on the production area of the raw material.
図1~図3の測定結果から、原料の産地毎に窒素及び炭素の安定同位体比並びに窒素含有量に有意な差が見て取れる。
そこで、窒素及び炭素の安定同位体比並びに窒素含有量を説明変数として、日本国産のこんにゃく粉又はこんにゃく加工品と、他の特定の国産のこんにゃく粉又はこんにゃく加工品とを判別するために、線形1次判別にて判別関数を構築し、複数のサンプルに基づいて、各説明変数の係数を獲得した。
判別は、以下の方法で行う。
1.2群(日本国産のこんにゃく粉又はこんにゃく加工品群及び他の特定の国産のこんにゃく粉又はこんにゃく加工品群)の中心座標を算出する。
2.中心座標を通り、最も良く2群を分ける関数(判別式)を決める。
3.関数(判別式)に判別したいサンプルの座標を代入し、正なら日本国産、負なら他の特定の国産と判別する。
From the measurement results of FIGS. 1 to 3, it can be seen that there are significant differences in the stable isotope ratios of nitrogen and carbon and the nitrogen content in each production area of the raw material.
Therefore, in order to distinguish between Japanese domestic konjac flour or konjac processed products and other specific domestic konjac flour or konjac processed products using the stable isotope ratios of nitrogen and carbon and the nitrogen content as explanatory variables, a linear process is used. A discriminant function was constructed by linear discrimination, and the coefficient of each explanatory variable was obtained based on a plurality of samples.
The discrimination is performed by the following method.
1. Calculate the center coordinates of the group (Japanese konjac flour or konjac processed product group and other specific domestic konjac flour or konjac processed product group).
2. 2. Determine the function (discriminant) that best divides the two groups through the center coordinates.
3. 3. Substitute the coordinates of the sample you want to discriminate into the function (discriminant), and if it is positive, it is discriminated from Japan, and if it is negative, it is discriminated from another specific domestic product.
判別関数の係数は、比較のために
2変数(こんにゃく粉又はこんにゃく加工品における窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C))、
3変数(こんにゃく粉又はこんにゃく加工品における窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%))、
4変数(こんにゃく粉又はこんにゃく加工品における窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%)及び炭素含有量(C%))とし、
複数のサンプルを用いて日本国産及び中国産のこんにゃく粉又はこんにゃく加工品を判別するための各係数及び日本国産及びミャンマー産のこんにゃく粉又はこんにゃく加工品を判別するための各係数を夫々取得した結果を表1及び2に示す。
Three variables (stable isotope ratio of nitrogen (σ15N) and stable isotope ratio of carbon (σ13C) and nitrogen content (N%) in konjac flour or processed konjac product),
Four variables (stable isotope ratio of nitrogen (σ15N) and stable isotope ratio of carbon (σ13C) and nitrogen content (N%) and carbon content (C%) in konjac flour or processed konjac product) are used.
Results of obtaining each coefficient for discriminating konjac flour or processed konjac products from Japan and China using multiple samples and each coefficient for discriminating konjac flour or processed konjac products from Japan and Myanmar. Are shown in Tables 1 and 2.
判別関数の一般式は以下の式1で表される。
指揮中、aは判別関数の係数であり、各変数に対して表1に示す係数が用いられる。xは説明変数であり、判別すべきこんにゃく粉又はこんにゃく加工品をの各変数(窒素の安定同位体比(σ15N)、炭素の安定同位体比(σ13C)、窒素含有量(N%)及び/又は炭素含有量(C%))が代入される。Cは、判別関数が判別対象の2群の中心を通るという条件を満足するための切片であり、変数の数及び判別対象の国に応じて表1に示す値が用いられる。
The general formula of the discriminant function is expressed by the following
During command, a is the coefficient of the discriminant function, and the coefficient shown in Table 1 is used for each variable. x is an explanatory variable, and each variable of konjac flour or processed konjac product to be discriminated (stable isotope ratio of nitrogen (σ15N), stable isotope ratio of carbon (σ13C), nitrogen content (N%) and / Alternatively, the carbon content (C%)) is substituted. C is an intercept for satisfying the condition that the discriminant function passes through the center of the two groups to be discriminated, and the values shown in Table 1 are used according to the number of variables and the country to be discriminated.
(日本国産と中国産のこんにゃく粉)
日本国産のこんにゃく粉と中国産のこんにゃく粉とを判別する判別関数は、
2変数(窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C))の場合には、次式(式2)で表される。
サンプルの窒素及び炭素の安定同位体比を代入した結果が、0より大きければ日本国産、0より小さければ中国産と判別する。
同様に、3変数(窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%))の場合は、次式(式3)で表される。
サンプルの窒素及び炭素の安定同位体比並びに窒素含有量を代入した結果が、0より大きければ日本国産、0より小さければ中国産と判別する。
4変数(こんにゃく粉における窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%)及び炭素含有量(C%))の場合は、次式(式4)で表される。
サンプルの窒素及び炭素の安定同位体比並びに窒素及び炭素含有量を代入した結果が、0より大きければ日本国産、0より小さければ中国産と判別する。
(Konjac flour from Japan and China)
The discriminant function that distinguishes between Japanese konjac flour and Chinese konjac flour is
In the case of two variables (stable isotope ratio of nitrogen (σ15N) and stable isotope ratio of carbon (σ13C)), it is expressed by the following equation (Equation 2).
If the result of substituting the stable isotope ratios of nitrogen and carbon of the sample is larger than 0, it is determined to be domestically produced in Japan, and if it is smaller than 0, it is determined to be produced in China.
Similarly, in the case of three variables (stable isotope ratio of nitrogen (σ15N), stable isotope ratio of carbon (σ13C) and nitrogen content (N%)), it is expressed by the following equation (Equation 3).
If the result of substituting the stable isotope ratio of nitrogen and carbon and the nitrogen content of the sample is larger than 0, it is determined to be domestically produced in Japan, and if it is smaller than 0, it is determined to be produced in China.
In the case of four variables (stable isotope ratio of nitrogen (σ15N) and stable isotope ratio of carbon (σ13C) and nitrogen content (N%) and carbon content (C%) in konjac flour), the following formula (formula) It is represented by 4).
If the result of substituting the stable isotope ratio of nitrogen and carbon and the nitrogen and carbon content of the sample is larger than 0, it is determined to be domestically produced in Japan, and if it is smaller than 0, it is determined to be produced in China.
(日本国産とミャンマー産のこんにゃく粉)
日本国産のこんにゃく粉とミャンマー産のこんにゃく粉とを判別する判別関数は、
2変数(窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C))の場合には、次式(式5)で表される。
サンプルの窒素及び炭素の安定同位体比を代入した結果が、0より大きければ日本国産、0より小さければミャンマー産と判別する。
同様に、3変数(窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%))の場合は、次式(式6)で表される。
サンプルの窒素及び炭素の安定同位体比並びに窒素含有量を代入した結果が、0より大きければ日本国産、0より小さければミャンマー産と判別する。
4変数(こんにゃく粉における窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%)及び炭素含有量(C%))の場合は、次式(式7)で表される。
サンプルの窒素及び炭素の安定同位体比並びに窒素及び炭素含有量を代入した結果が、0より大きければ日本国産、0より小さければミャンマー産と判別する。
(Konjac flour from Japan and Myanmar)
The discriminant function that distinguishes between Japanese konjac flour and Myanmar konjac flour is
In the case of two variables (stable isotope ratio of nitrogen (σ15N) and stable isotope ratio of carbon (σ13C)), it is expressed by the following equation (Equation 5).
If the result of substituting the stable isotope ratios of nitrogen and carbon of the sample is larger than 0, it is determined to be domestically produced in Japan, and if it is smaller than 0, it is determined to be produced in Myanmar.
Similarly, in the case of three variables (stable isotope ratio of nitrogen (σ15N), stable isotope ratio of carbon (σ13C) and nitrogen content (N%)), it is expressed by the following equation (Equation 6).
If the result of substituting the stable isotope ratio of nitrogen and carbon and the nitrogen content of the sample is larger than 0, it is determined to be domestically produced in Japan, and if it is smaller than 0, it is determined to be produced in Myanmar.
In the case of four variables (stable isotope ratio of nitrogen (σ15N) and stable isotope ratio of carbon (σ13C) and nitrogen content (N%) and carbon content (C%) in konjac flour), the following formula (formula) It is represented by 7).
If the result of substituting the stable isotope ratio of nitrogen and carbon and the nitrogen and carbon content of the sample is larger than 0, it is determined to be domestically produced in Japan, and if it is smaller than 0, it is determined to be produced in Myanmar.
(日本国産と中国産のこんにゃく加工品)
日本国産のこんにゃく加工品と中国産のこんにゃく加工品とを判別する判別関数は、
2変数(窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C))の場合には、次式(式8)で表される。
サンプルの窒素及び炭素の安定同位体比を代入した結果が、0より大きければ日本国産、0より小さければ中国産と判別する。
同様に、3変数(窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%))の場合は、次式(式9)で表される。
サンプルの窒素及び炭素の安定同位体比並びに窒素含有量を代入した結果が、0より大きければ日本国産、0より小さければ中国産と判別する。
4変数(こんにゃく粉における窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%)及び炭素含有量(C%))の場合は、次式(式10)で表される。
サンプルの窒素及び炭素の安定同位体比並びに窒素及び炭素含有量を代入した結果が、0より大きければ日本国産、0より小さければ中国産と判別する。
(Processed konjac products from Japan and China)
The discriminant function that distinguishes between processed konjac products made in Japan and processed konjac products made in China is
In the case of two variables (stable isotope ratio of nitrogen (σ15N) and stable isotope ratio of carbon (σ13C)), it is expressed by the following equation (Equation 8).
If the result of substituting the stable isotope ratios of nitrogen and carbon of the sample is larger than 0, it is determined to be domestically produced in Japan, and if it is smaller than 0, it is determined to be produced in China.
Similarly, in the case of three variables (stable isotope ratio of nitrogen (σ15N), stable isotope ratio of carbon (σ13C) and nitrogen content (N%)), it is expressed by the following equation (Equation 9).
If the result of substituting the stable isotope ratio of nitrogen and carbon and the nitrogen content of the sample is larger than 0, it is determined to be domestically produced in Japan, and if it is smaller than 0, it is determined to be produced in China.
In the case of four variables (stable isotope ratio of nitrogen (σ15N) and stable isotope ratio of carbon (σ13C) and nitrogen content (N%) and carbon content (C%) in konjac flour), the following formula (formula) It is represented by 10).
If the result of substituting the stable isotope ratio of nitrogen and carbon and the nitrogen and carbon content of the sample is larger than 0, it is determined to be domestically produced in Japan, and if it is smaller than 0, it is determined to be produced in China.
(日本国産とミャンマー産のこんにゃく加工品)
日本国産のこんにゃく加工品とミャンマー産のこんにゃく加工品とを判別する判別関数は、
2変数(窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C))の場合には、次式(式11)で表される。
サンプルの窒素及び炭素の安定同位体比を代入した結果が、0より大きければ日本国産、0より小さければミャンマー産と判別する。
同様に、3変数(窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%))の場合は、次式(式12)で表される。
サンプルの窒素及び炭素の安定同位体比並びに窒素含有量を代入した結果が、0より大きければ日本国産、0より小さければミャンマー産と判別する。
4変数(こんにゃく粉における窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%)及び炭素含有量(C%))の場合は、次式(式13)で表される。
サンプルの窒素及び炭素の安定同位体比並びに窒素及び炭素含有量を代入した結果が、0より大きければ日本国産、0より小さければミャンマー産と判別する。
(Processed konjac products from Japan and Myanmar)
The discriminant function that distinguishes between processed konjac products produced in Japan and processed konjac products produced in Myanmar is
In the case of two variables (stable isotope ratio of nitrogen (σ15N) and stable isotope ratio of carbon (σ13C)), it is expressed by the following equation (Equation 11).
If the result of substituting the stable isotope ratios of nitrogen and carbon of the sample is larger than 0, it is determined to be domestically produced in Japan, and if it is smaller than 0, it is determined to be produced in Myanmar.
Similarly, in the case of three variables (stable isotope ratio of nitrogen (σ15N), stable isotope ratio of carbon (σ13C) and nitrogen content (N%)), it is expressed by the following equation (Equation 12).
If the result of substituting the stable isotope ratio of nitrogen and carbon and the nitrogen content of the sample is larger than 0, it is determined to be domestically produced in Japan, and if it is smaller than 0, it is determined to be produced in Myanmar.
In the case of four variables (stable isotope ratio of nitrogen (σ15N) and stable isotope ratio of carbon (σ13C) and nitrogen content (N%) and carbon content (C%) in konjac flour), the following formula (formula) It is represented by 13).
If the result of substituting the stable isotope ratio of nitrogen and carbon and the nitrogen and carbon content of the sample is larger than 0, it is determined to be domestically produced in Japan, and if it is smaller than 0, it is determined to be produced in Myanmar.
上記判別式(2)~(13)を使用して、135個のこんにゃく粉サンプル及び51個のこんにゃく加工品サンプルを用いてこんにゃく粉の産地判別を行った結果を表3に示す。
実際に産地判別を行った結果、表2に示すように、
こんにゃく粉では2変量においてミャンマー産のこんにゃく粉を日本国産と誤判別したサンプルが一つ、
4変量において中国産のこんにゃく粉を日本国産と誤判別したサンプルが一つ、
こんにゃく加工品では2変量において中国産のこんにゃく加工品を日本国産と誤判別したサンプルが一つあった。
上記した結果から、窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%)の3変量を用いて判別を行うことが、こんにゃく粉及びこんにゃく加工品については適切であることが確認できた。
また、判別への寄与の度合いは係数の絶対値の大きさと相関があり、各係数を見るとこんにゃく粉では国産:中国産ではδ13Cの寄与が大きく、国産:ミャンマー産ではN%の寄与が大きい。こんにゃく加工品では国産:中国産ではN%の寄与が大きく、国産:ミャンマー産ではδ13Cの寄与が大きい。また、δ15Nもこんにゃく粉の国産:ミャンマー産の判別において大きく寄与している。
この点から見ても、窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%)の3変量を用いて判別を行うことが、こんにゃく粉及びこんにゃく加工品については適切であることが分かる。
Table 3 shows the results of determining the origin of konjac flour using 135 konjac flour samples and 51 processed konjac sample samples using the above discriminants (2) to (13).
As a result of actually determining the production area, as shown in Table 2,
For konjac flour, there is one sample that misidentified Myanmar konjac flour as Japanese domestic konjac flour in two variables.
One sample that misidentified Chinese konjac flour as Japanese domestic in quadrature
In the processed konjac product, there was one sample in which the processed konjac product produced in China was misidentified as domestically produced in Japan in a bivariate manner.
From the above results, it is possible to make a discrimination using the trivariates of the stable isotope ratio of nitrogen (σ15N), the stable isotope ratio of carbon (σ13C), and the nitrogen content (N%). Was confirmed to be appropriate.
In addition, the degree of contribution to discrimination correlates with the magnitude of the absolute value of the coefficient, and looking at each coefficient, the contribution of δ13C is large for konjac flour domestically produced: Chinese, and N% is large for domestically produced: Myanmar. .. For processed konjac products, the contribution of N% is large for domestic: Chinese products, and the contribution of δ13C is large for domestic: Myanmar products. In addition, δ15N also contributes greatly to the discrimination of domestically produced konjac flour: produced in Myanmar.
From this point as well, it is possible to make a discrimination using the trivariates of the stable isotope ratio of nitrogen (σ15N), the stable isotope ratio of carbon (σ13C), and the nitrogen content (N%). It turns out that it is appropriate for processed products.
本発明に係るこんにゃく粉判別方法によれば、
窒素の安定同位体比(σ15N)及び炭素の安定同位体比(σ13C)並びに窒素含有量(N%)の3変量を用いて、各変量毎に、判別すべき国毎に線形1次判別にて構築した判別関数の係数を予め決め、該判別関数を用いて、日本国産と他の特定の国産との判別を行うので、判別精度が高い。
具体的には、日本国産と中国産のこんにゃく粉を判別する場合には、式(3)が用いられ、
日本国産とミャンマー産のこんにゃく粉を判別する場合には式6が用いられ得る。
同様に、日本国産と中国産のこんにゃく加工品を判別する場合には、式(9)が用いられ、
日本国産とミャンマー産のこんにゃく加工品を判別する場合には式12が用いられ得る。
According to the konjac flour discrimination method according to the present invention,
Using the trivariates of nitrogen stable isotope ratio (σ15N), carbon stable isotope ratio (σ13C), and nitrogen content (N%), for each variate, for linear primary discrimination for each country to be discriminated. Since the coefficient of the discriminant function constructed in the above-mentioned method is determined in advance and the discriminant function is used to discriminate between Japanese domestic products and other specific domestic products, the discriminant accuracy is high.
Specifically, when distinguishing between Japanese and Chinese konjac flour, formula (3) is used.
Equation 6 can be used to discriminate between Japanese and Myanmar konjac flour.
Similarly, formula (9) is used to distinguish between Japanese and Chinese processed konjac products.
Equation 12 can be used to discriminate between Japanese and Myanmar konjac processed products.
次に、上記安定同位体比を測定するために使用した安定同位体比測定システムの構成について簡単に説明をする。
図4は、安定同位体比測定システムの構成を示す概略図である。
図面に示すように、この安定同位体比測定システムは、燃焼管1、還元管2、脱水管3、分離カラム4、熱伝導度検出器5、ガスボックス6、イオンビーム源7、マグネット8及び検出器9を有し、サンプルとしてのこんにゃく粉を燃焼管1に供給すると、燃焼管1においてサンプルを熱分解して酸化させ、CO2ガス及びNOxガスを得る。
次いで、還元管2においてNOxガスを還元してN2ガスを得た後に、脱水管3において水分を除去する。
脱水管3を通過して水分が除去されたサンプルは、分離カラム4においてCO2ガスとN2ガスとに分離された後、さらに下流に送られる。
熱伝導度検出器5は、CO2ガスとN2ガスとに分離されたサンプルガスの流量を検出し、ガスボックス6において、サンプルガスが希釈され、モニタリングガスが導入される。
サンプルガス及びモニタリングガスは、イオンビーム源7によってイオン化され、さらに、マグネット8がイオン化したガスに磁場をかけて安定同位体の核種を分離する。
検出器9は、質量数28の検出器(図示せず)及び質量数29の検出器(図示せず)を有し、これらの検出器でN2を分子レベルで検出し、各検出器のクロマトグラムの面積比からσ15Nを計算により算出する。
また、検出器9は、質量数44の検出器(図示せず)、質量数45の検出器(図示せず)及び質量数46の検出器(図示せず)を有し、これらの検出器でCO2を分子レベルで検出し、各検出器のクロマトグラムの面積比からσ13Cを計算により算出する。
天然に存在する物質の安定同位体の質量比は非常に小さく、実用上不便であるため、炭素であればVPDB(矢石という化石)、窒素であれば大気を標準物質として、標準物質に対するサンプルの安定同位体組成の比を千分率として表したものをδ13C及びδ15Nとする。
Next, the configuration of the stable isotope ratio measurement system used for measuring the stable isotope ratio will be briefly described.
FIG. 4 is a schematic diagram showing the configuration of a stable isotope ratio measurement system.
As shown in the drawing, this stable isotope ratio measuring system includes a
Next, NOx gas is reduced in the
The sample from which water has been removed through the
The thermal conductivity detector 5 detects the flow rate of the sample gas separated into the CO 2 gas and the N 2 gas, and in the gas box 6, the sample gas is diluted and the monitoring gas is introduced.
The sample gas and the monitoring gas are ionized by the
The
Further, the
Since the mass ratio of stable isotopes of naturally occurring substances is very small and inconvenient for practical use, VPDB (fossil called Yaishi) is used for carbon, and the atmosphere is used as the standard substance for nitrogen. The ratio of stable isotope composition expressed as a fraction is δ13C and δ15N.
上記した実施例では、日本国産及び中国産のこんにゃく粉又はこんにゃく加工品の判別と、日本国産及びミャンマー国産のこんにゃく粉又はこんにゃく加工品の判別とを行っているが、判別対象の国は、中国及びミャンマーに限定されることなく、他の国産のこんにゃく粉又はこんにゃく加工品についても、窒素及び炭素の安定同位体比並びに窒素含有量を用いて判別関数により判別を行うことができることは勿論のことである。他の国産のこんにゃく粉又はこんにゃく加工品の判別を行う場合には、判別すべき国毎に説明変数の係数が求められる。 In the above-mentioned embodiment, the konjac flour or processed konjac product produced in Japan and China is discriminated from the konjac flour or processed konjac product produced in Japan and Myanmar, but the country to be discriminated is China. And not limited to Myanmar, it goes without saying that other domestic konjac flour or processed konjac products can also be discriminated by the discriminant function using the stable isotope ratio of nitrogen and carbon and the nitrogen content. Is. When discriminating other domestically produced konjac flour or processed konjac products, the coefficient of the explanatory variable is obtained for each country to be discriminated.
1 燃焼管
2 還元管
3 脱水管
4 分離カラム
5 熱伝導度検出器
6 ガスボックス
7 イオンビーム源
8 マグネット
9 検出器
1
Claims (7)
測定した窒素及び炭素の安定同位体比並びに窒素含有量に基づいて、該判別対象のこんにゃく粉の産地が日本国であるか否かを判別する
ことを特徴とするこんにゃく粉の産地判別方法。 The stable isotope ratios of nitrogen and carbon in the konjac flour to be discriminated were measured, and the nitrogen content in the konjac flour was measured.
A method for determining the origin of konjac flour, which comprises determining whether or not the origin of the konjac flour to be discriminated is Japan based on the measured stable isotope ratios of nitrogen and carbon and the nitrogen content.
該関数が、日本国産のこんにゃく粉から成る群と、判別対象の国産のこんにゃく粉から成る群の中心座標を通り、最も良く前記2群を分けるように、各説明変数の係数を決定する
ことを特徴とする請求項1に記載のこんにゃく粉の産地判別方法。 A linear linear discriminant function using the stable isotope ratios of nitrogen and carbon in konjac flour and the nitrogen content as explanatory variables was used for the discriminant.
The function passes through the center coordinates of the group consisting of Japanese konjac flour and the group consisting of domestic konjac flour to be discriminated, and determines the coefficient of each explanatory variable so as to best separate the two groups. The method for determining the origin of konjac flour according to claim 1, which is characteristic.
ことを特徴とする請求項1又は2に記載のこんにゃく粉の産地判別方法。 The method for determining the origin of konjac flour according to claim 1 or 2, wherein the konjac flour to be discriminated is produced in China or Myanmar.
測定した窒素及び炭素の安定同位体比並びに窒素含有量に基づいて、該判別対象のこんにゃく加工品に用いられているこんにゃく粉の産地が日本国であるか否かを判別する
こんにゃく加工品の産地判別方法。 The processed konjac product to be discriminated produced using konjac flour is freeze-dried and then crushed, and the crushed processed konjac product is used to measure the stable isotope ratios of nitrogen and carbon in the processed konjac product, and the same konjac. Measure the nitrogen content in the processed product and
Based on the measured stable isotope ratios of nitrogen and carbon and the nitrogen content, it is determined whether or not the konjac flour used in the konjac processed product to be discriminated is produced in Japan. Discrimination method.
該関数が、日本国産のこんにゃく粉で製造されたこんにゃく加工品から成る群と、判別対象の国産のこんにゃく粉で製造されたこんにゃく加工品から成る群の中心座標を通り、最も良く前記2群を分けるように、各説明変数の係数を決定する
ことを特徴とする請求項4に記載のこんにゃく粉の産地判別方法。 A linear linear discriminant function using the stable isotope ratios of nitrogen and carbon and the nitrogen content as explanatory variables in the processed konjac product was used for the discriminant.
The function passes through the center coordinates of the group consisting of processed konjac products made from Japanese konjac flour and the group consisting of processed konjac products made from domestic konjac flour to be discriminated, and the above two groups are best selected. The method for determining the origin of konjac flour according to claim 4, wherein the coefficient of each explanatory variable is determined so as to be separated.
ことを特徴とする請求項4又は5に記載のこんにゃく粉の産地判別方法。 The method for determining the origin of konjac flour according to claim 4 or 5, wherein the konjac flour used in the processed konjac product to be discriminated is produced in China or Myanmar.
ことを特徴とする請求項4~6の何れか一項に記載の方法。
The method according to any one of claims 4 to 6, wherein the processed konjac product contains konjac, shirataki noodles, konjac jelly and konjac paste.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018043061A JP7054516B2 (en) | 2018-03-09 | 2018-03-09 | Method for determining the origin of konjac flour and processed konjac products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018043061A JP7054516B2 (en) | 2018-03-09 | 2018-03-09 | Method for determining the origin of konjac flour and processed konjac products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019158462A JP2019158462A (en) | 2019-09-19 |
JP7054516B2 true JP7054516B2 (en) | 2022-04-14 |
Family
ID=67996060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018043061A Active JP7054516B2 (en) | 2018-03-09 | 2018-03-09 | Method for determining the origin of konjac flour and processed konjac products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7054516B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114846327A (en) * | 2019-12-20 | 2022-08-02 | 日本电信电话株式会社 | Determination system, verification device, and determination method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050158871A1 (en) | 2002-04-12 | 2005-07-21 | Hee Myong Ro | Method for discriminating organic agricultural products from conventional agricultural products by using nitrogen isotope index |
US20090042304A1 (en) | 2006-04-21 | 2009-02-12 | Anderson Kim A | Method for analyzing foods |
JP2010239960A (en) | 2009-03-19 | 2010-10-28 | National Institute Of Agrobiological Sciences | Variety identification marker of vegetative propagation crop |
JP2010256302A (en) | 2009-04-28 | 2010-11-11 | Suntory Holdings Ltd | Method for determining cultivation country or area of agricultural product |
JP2012251899A (en) | 2011-06-03 | 2012-12-20 | Protein Chemical Kk | Method of identifying glucosamine derived from crustacea and derived from microbial cell |
JP5558991B2 (en) | 2010-09-22 | 2014-07-23 | 株式会社同位体研究所 | Wakame growing area identification method |
CN107424003A (en) | 2017-05-05 | 2017-12-01 | 浙江省农业科学院 | A kind of red bayberry place of production source tracing method based on isotope ratio rate and multielement |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170125300A (en) * | 2017-09-27 | 2017-11-14 | 건국대학교 산학협력단 | Method for identifying cultivation region of potato using isotope ratio and multivariate statistical analysis |
-
2018
- 2018-03-09 JP JP2018043061A patent/JP7054516B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050158871A1 (en) | 2002-04-12 | 2005-07-21 | Hee Myong Ro | Method for discriminating organic agricultural products from conventional agricultural products by using nitrogen isotope index |
JP2005523432A (en) | 2002-04-12 | 2005-08-04 | フェー−ミョン ロ | A method for distinguishing between conventional and organic agricultural products using nitrogen isotope index |
US20090042304A1 (en) | 2006-04-21 | 2009-02-12 | Anderson Kim A | Method for analyzing foods |
JP2010239960A (en) | 2009-03-19 | 2010-10-28 | National Institute Of Agrobiological Sciences | Variety identification marker of vegetative propagation crop |
JP2010256302A (en) | 2009-04-28 | 2010-11-11 | Suntory Holdings Ltd | Method for determining cultivation country or area of agricultural product |
JP5558991B2 (en) | 2010-09-22 | 2014-07-23 | 株式会社同位体研究所 | Wakame growing area identification method |
JP2012251899A (en) | 2011-06-03 | 2012-12-20 | Protein Chemical Kk | Method of identifying glucosamine derived from crustacea and derived from microbial cell |
CN107424003A (en) | 2017-05-05 | 2017-12-01 | 浙江省农业科学院 | A kind of red bayberry place of production source tracing method based on isotope ratio rate and multielement |
Non-Patent Citations (2)
Title |
---|
SUGIYAMA, N. et al.,Classification of Elephant Foot Yam (Amorphophallus paeoniifolius) Cultivars in Java using AFLP Markers,Japanese Journal of Tropical Agriculture,2006年,Vol.50, No.4,pp.215-218 |
伊永隆史,安定同位体比質量分析法を用いた食品産地判別研究の現状と課題,RADIOISOTOPES,2013年,Vol.62, No.4,pp.219-233 |
Also Published As
Publication number | Publication date |
---|---|
JP2019158462A (en) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101936895B (en) | Near infrared spectrum analysis rapid detection method for rice storage time | |
Wakefield et al. | Chemical profiling of saffron for authentication of origin | |
CN107607598B (en) | Method for identifying authenticity of lycium ruthenicum based on nonlinear chemical fingerprint technology | |
Tian et al. | Aroma features of honey measured by sensory evaluation, gas chromatography-mass spectrometry, and electronic nose | |
JP7054516B2 (en) | Method for determining the origin of konjac flour and processed konjac products | |
CN102749410A (en) | Method for determining sulfur dioxide residual quantity in Chinese herbal medicine | |
Tian et al. | Identification of geographical origins of raw American ginseng and tablets based on stable isotope ratios | |
Opatić et al. | Geographical Origin Characterization of Slovenian Organic Garlic Using Stable Isotope and Elemental Composition Analyses. | |
Zheng et al. | Multicomposition analysis and pattern recognition of Chinese geographical indication product: vinegar | |
Hiraoka et al. | Tracing the geographical origin of onions by strontium isotope ratio and strontium content | |
Huang et al. | Detection of corn oil in adulterated olive and soybean oil by carbon stable isotope analysis | |
Zhang et al. | Rapid and direct identification of the origin of white tea with proton transfer reaction time‐of‐flight mass spectrometry | |
CN111257452B (en) | Method for detecting addition of synthetic acetic acid into Zhenjiang aromatic vinegar | |
JP2010256302A (en) | Method for determining cultivation country or area of agricultural product | |
Li et al. | Geographical origin traceability and identification of refined sugar using UPLC-QTof-MS analysis | |
KR102232840B1 (en) | Method for Discriminating Cultivation Region of Lentinula Edodes Using Stable Isotope Ratio | |
CN115541770A (en) | Method for quickly evaluating suitability of storage conditions of instant cubilose based on flavor substance difference analysis | |
Larner et al. | An inter-laboratory comparison of high precision stable isotope ratio measurements for nanoparticle tracing in biological samples | |
Damasceno et al. | CompVis: a novel method for drinking water alkalinity and total hardness analyses | |
Noakes et al. | A comparison of analytical methods for the certification of biobased products | |
Santamaria‐Fernandez et al. | Application of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes | |
Su et al. | Analysis of soils, grapes, and wines for Sr isotope characterisation in Diqing Tibetan Autonomous Prefecture (China) and combining multiple elements for wine geographical traceability purposes | |
WO2021068718A1 (en) | Method for analyzing profile of flavor compound of meat product | |
Zhang et al. | A new strategy for rapid classification of honeys by simple cluster analysis method based on combination of various physicochemical parameters | |
Shan et al. | Discrimination of Chinese patent medicines using near-infrared spectroscopy and principal component accumulation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210308 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220302 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220328 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7054516 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |