JP2010256302A - Method for determining cultivation country or area of agricultural product - Google Patents

Method for determining cultivation country or area of agricultural product Download PDF

Info

Publication number
JP2010256302A
JP2010256302A JP2009109834A JP2009109834A JP2010256302A JP 2010256302 A JP2010256302 A JP 2010256302A JP 2009109834 A JP2009109834 A JP 2009109834A JP 2009109834 A JP2009109834 A JP 2009109834A JP 2010256302 A JP2010256302 A JP 2010256302A
Authority
JP
Japan
Prior art keywords
stable isotope
isotope ratio
sulfur
tea leaves
country
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009109834A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
賢治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Holdings Ltd
Original Assignee
Suntory Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Holdings Ltd filed Critical Suntory Holdings Ltd
Priority to JP2009109834A priority Critical patent/JP2010256302A/en
Publication of JP2010256302A publication Critical patent/JP2010256302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for conveniently and correctly determining a cultivation country or an area of an agricultural product, for example, tea leaves cultivated in Japan or a foreign country such as China. <P>SOLUTION: The cultivation country or the area is identified by measuring a sulfur stable isotope ratio δ<SP>34</SP>S of the agricultural product. The sulfur stable isotope ratio δ<SP>34</SP>S of the agricultural product whose cultivation country or area is clear is analyzed. The cultivation country or the area of the agricultural product whose cultivation country or area is unclear is determined by a means for establishing a database. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、農作物の栽培国または地域を判定する方法に関する。具体的には、農作物に含有される硫黄の安定同位体比δ34Sを測定し、その同位対比に基づいて農産物の栽培国または地域を判定する方法に関する。 The present invention relates to a method for determining a farming country or region of an agricultural product. Specifically, the present invention relates to a method for measuring a stable isotope ratio δ 34 S of sulfur contained in agricultural crops and determining a farming country or region of agricultural products based on the isotope ratio.

近年、野菜や加工食品の原料となる農作物の輸入量が急増している。それに伴い、食品原料の原産地が偽装された事件が多発しているが、食品原料の原産地を簡便かつ高精度で判定する技術は確立されていない。又、残留農薬や危害物質による食品事故の影響などにより、農作物の産地を的確に判別可能な技術の開発が、特に望まれている。   In recent years, imports of crops that are raw materials for vegetables and processed foods have increased rapidly. Along with this, there have been many cases in which the origin of the food material is camouflaged, but no technology has been established to determine the origin of the food material simply and with high accuracy. In addition, the development of a technology that can accurately determine the production area of agricultural products due to the effects of food accidents caused by residual agricultural chemicals and hazardous substances is particularly desirable.

日本において植物や食品原料となる農作物の栽培地を判別する技術が、本格的に研究されはじめたのは、1990年代の後半からである。分析方法としては、無機元素組成分析を利用した判別法の開発研究が、先行して進められてきた。例えば、茶葉については、試料を一番茶に統一すれば、無機元素組成分析により外国産(中国産)と日本産の判別が可能であることが報告されている(非特許文献1および2)。   It was not until the second half of the 1990s that technology for discriminating cultivation areas for crops used as plants and food ingredients in Japan began to be fully studied. As an analysis method, development research on a discrimination method using inorganic element composition analysis has been advanced in advance. For example, it has been reported that tea leaves can be distinguished from foreign (Chinese) and Japanese by inorganic element composition analysis if the sample is unified to the most tea (Non-patent Documents 1 and 2).

また、植物や食品原料となる農作物中の安定同位体比を利用した産地判別技術が、多く報告されている。そして、近年連続フロー型の安定同位体比質量分析装置が開発されたことから、多種類の元素の安定同位体比を、比較的容易に分析することが可能となった。   In addition, many techniques for discriminating localities using stable isotope ratios in plants and food crops have been reported. Since a continuous flow type stable isotope ratio mass spectrometer has been developed in recent years, it has become possible to analyze the stable isotope ratios of many kinds of elements relatively easily.

これらの技術を利用して、δ13C、δH、δ18Oより選ばれる複数の安定同位体比を組み合わせることにより、植物や食品、特に発酵アルコールの原料種および栽培地の特定を可能にする方法が提案された(特許文献1)。また、コメから抽出した水の安定同位体比、具体的にはδHおよびδ18Oの分析により、コメの生産地を特定する方法が提案された(特許文献2)。これらの先行技術においては、酸素または水素安定同位体比の分析が、発酵アルコールまたはコメの栽培地の特定に有効であることが示されている。 Utilizing these technologies, by combining multiple stable isotope ratios selected from δ 13 C, δ 2 H, and δ 18 O, it is possible to identify plant species and foods, especially fermented alcohol raw material species and cultivation areas Has been proposed (Patent Document 1). In addition, a method for identifying a rice production site by analyzing stable isotope ratios of water extracted from rice, specifically, δ 2 H and δ 18 O has been proposed (Patent Document 2). In these prior arts, analysis of oxygen or hydrogen stable isotope ratios has been shown to be effective for identifying fermented alcohol or rice growing areas.

一方、他の軽元素と比較すると、硫黄安定同位体比分析の有用性については、知見が少なく、学術論文や特許出願された技術も多くないが、農作物に関連した硫黄安定同位体比に関するものとして以下の報告が挙げられる。   On the other hand, compared to other light elements, the usefulness of sulfur stable isotope ratio analysis is less known and there are not many scientific papers or patent-pending technologies, but it is related to sulfur stable isotope ratios related to agricultural products. The following reports can be cited.

環境中の二酸化硫黄の影響を調べる目的で、苔類、地衣類や松の木の葉の硫黄安定同位体比が調べられており、地域により硫黄安定同位体比が異なることが知られている(非特許文献3、4および5)。   In order to investigate the effects of sulfur dioxide in the environment, sulfur stable isotope ratios of mosses, lichens and pine tree leaves have been investigated, and it is known that the sulfur stable isotope ratio varies from region to region (non- Patent Documents 3, 4 and 5).

硫黄安定同位体比を利用して農作物の原産地を判別しようという試みは少ないが、バターやチーズなどで検討された事例が報告されている。ただし、試料を直接分析した例はなく、試料中に含まれるカゼインなどの硫黄含有量が多い画分を分離して分析する方法が採用されている(非特許文献6、7、8、9)。   Although there are few attempts to distinguish the origin of crops using the stable isotope ratio of sulfur, there have been reports of cases examined with butter and cheese. However, there is no example in which a sample is directly analyzed, and a method of separating and analyzing a fraction having a high sulfur content such as casein contained in the sample is employed (Non-Patent Documents 6, 7, 8, 9). .

特開2005-130755号公報JP 2005-130755 A 特開2006-189351号公報JP 2006-189351 A

木幡勝則(2005):茶の原産地判別の現状と今後の展望、TechnoInnovation, 15(2), 32-37.Katsunori Kiso (2005): Present status and future prospects of tea origin, TechnoInnovation, 15 (2), 32-37. 木幡勝則(2008):緑茶の無機元素組成比および品種識別による産地判別、農林水産技術研究ジャーナル, 31(4), 28-31.Katsunori Kiso (2008): Identification of locality based on inorganic element composition ratio and variety identification of green tea, Agriculture, Forestry and Fisheries Research Journal, 31 (4), 28-31. Trust B. A. and Fry B. (1992) Stable sulphur isotpopes in plants: a review. Plant, Cell and Environment, 15, 1105-1110.Trust B. A. and Fry B. (1992) Stable sulfur isotpopes in plants: a review.Plant, Cell and Environment, 15, 1105-1110. 中井信之(1984):硫黄の循環と人間生活, 現代科学, 165, 39-44.Nakai Nobuyuki (1984): Sulfur Circulation and Human Life, Modern Science, 165, 39-44. Krouse H. (1977):Sulphur isotope abundance elucidate uptake of atmospheric sulphur emissions by vegetation. Nature, 265, 45-46.Krouse H. (1977): Sulfur isotope abundance elucidate uptake of atmospheric sulphur emissions by vegetation. Nature, 265, 45-46. Simon K., Karl H. and Jurian H. (2005) Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends in Food Science & Technology, 16, 555-567.Simon K., Karl H. and Jurian H. (2005) Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis.Trends in Food Science & Technology, 16, 555-567. Rossmann A., Haberhauer G., Holzl S., Horn P., Pichlmayer F., Voerkelius S. (2000) The potential of multielement stable isotope analysis for regional origin assignment of butter. Eur. Food Res. Technol., 211, 32-40.Rossmann A., Haberhauer G., Holzl S., Horn P., Pichlmayer F., Voerkelius S. (2000) The potential of multielement stable isotope analysis for regional origin assignment of butter.Eur. Food Res. Technol., 211, 32-40. Camin F., Wietzerbin K., Cortes A. B., Haberhauer G., Lees M., Versini G. (2004) Application of multielement stable isotope ratio analysis to the characterization of French, Italian and Spanish cheeses. J. Agric Food Chem., 52, 6592-6601.Camin F., Wietzerbin K., Cortes AB, Haberhauer G., Lees M., Versini G. (2004) Application of multielement stable isotope ratio analysis to the characterization of French, Italian and Spanish cheeses. J. Agric Food Chem., 52, 6592-6601. Manca G., Franco M., Versini G., Camin F., Rossmann A., Tola A. (2006) Correlation between multielement stable isotope ratio and geographical origin in peretta cows’ milk cheese. J. Dairy Sci., 89, 831-839.Manca G., Franco M., Versini G., Camin F., Rossmann A., Tola A. (2006) Correlation between multielement stable isotope ratio and geographical origin in peretta cows' milk cheese.J. Dairy Sci., 89, 831-839.

本発明は、農作物、例えば茶葉の栽培国または地域を、簡便かつ高い精度で判別することを目的とする。特に、日本産と中国などの外国で栽培された農作物を、簡便かつ的確に判別する技術を提供することである。   An object of this invention is to discriminate | determine the cultivation country or area of agricultural products, for example, a tea leaf simply and with high precision. In particular, it is to provide a technique for easily and accurately discriminating crops grown in Japan and foreign countries such as China.

本発明者等は、上記課題を解決すべく、栽培国または地域が明らかな農作物を収集し、燃焼および熱分解型安定同位体比質量分析装置を用いて、炭素安定同位体比δ13C、窒素安定同位体比δ15N、硫黄安定同位体比δ34S、酸素安定同位体比δ18Oの測定を実施した。農作物が茶葉の場合、δ13C値を分析することによりC3植物であることが確認できるが、δ15Nまたはδ18O値と組み合わせても、中国産と日本産茶葉の原産地を完全に判別することは困難であった。ところが、硫黄安定同位体比δ34Sを測定し、統計解析により判別分析を行ったところ、驚くべきことに、茶葉の栽培国または地域の違いが明確に判別できることが判明し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors collect crops whose cultivation country or region is clear, and use a combustion and pyrolysis-type stable isotope ratio mass spectrometer, and use a stable carbon isotope ratio δ 13 C, Nitrogen stable isotope ratio δ 15 N, sulfur stable isotope ratio δ 34 S, and oxygen stable isotope ratio δ 18 O were measured. When the crop is a tea leaf, it can be confirmed that it is a C3 plant by analyzing the δ 13 C value, but even when combined with the δ 15 N or δ 18 O value, the origin of the Chinese and Japanese tea leaves is completely discriminated. It was difficult to do. However, when the sulfur stable isotope ratio δ 34 S was measured and subjected to discriminant analysis by statistical analysis, it was surprisingly found that the difference in tea leaf cultivation country or region could be clearly discriminated, and the present invention was completed. It came to do.

すなわち、本発明は次の[1]〜[8]である。
[1]農作物の栽培国または地域の判定方法であって、栽培国または地域が既知の農作物に含有される硫黄の安定同位体比δ34Sを測定する工程;同一種の農作物の試験サンプルに含有される硫黄の安定同位体比を測定する工程;およびそれらのデータを比較し、試験サンプルの硫黄安定同位体比と近似の硫黄安定同位体比を示す栽培国または地域を特定する工程;を含む、前記判定方法。
[2]農作物が茶葉である、[1]の判定方法。
[3]茶葉が日本産または中国産である、[2]の判定方法。
[4]茶葉の栽培国または地域の判定方法であって、以下の工程:
中国産および日本産の茶葉に含有される硫黄の安定同位体比δ34Sを測定する工程;
測定した硫黄安定同位体比の平均値と標準偏差を用いて中国産および日本産各々の前記平均値からのマハラノビスの汎距離が等しくなる境界値(Xとする)を
(X−日本産茶葉に含有される硫黄の安定同位体比の平均値)/日本産茶葉に含有される硫黄の安定同位体比の標準偏差
=(中国産茶葉に含有される硫黄の安定同位体比の平均値−X)/中国産茶葉に含有される硫黄の安定同位体比の標準偏差
で表す計算式により算出する工程;
中国産または日本産の茶葉の試験サンプルに含有される硫黄の安定同位体比を測定する工程;および
試験サンプルの硫黄安定同位体比がX ‰以上であった場合はその栽培国は中国であると判定し、
試験サンプルの硫黄安定同位体比がX ‰未満であった場合はその栽培国は日本であると判定する工程;
を含む、前記方法。
[5]農作物の栽培国または地域の判定方法であって、栽培国または地域が既知の農作物に含有される硫黄の安定同位体比δ34Sを測定する工程;得られたデータにより栽培国または地域と硫黄安定同位体比δ34Sのデータベースを構築する工程;同一種の農作物の試験サンプルに含有される硫黄の安定同位体比を測定する工程;および該データベースを用いて試験サンプルの硫黄安定同位体比から栽培国または地域を判定する工程;を含む、前記判定方法。
[6]農作物が茶葉である、[5]の判定方法。
[7]茶葉が日本産または中国産である、[6]の判定方法。
[8]さらに炭素安定同位体比δ13Cの測定値を組み合わせて判定する、[1]〜[7]のいずれかの判定方法。
That is, the present invention includes the following [1] to [8].
[1] A method for determining a crop-cultivating country or region, the step of measuring a stable isotope ratio δ 34 S of sulfur contained in a crop known to the growing country or region; Measuring the stable isotope ratio of the contained sulfur; and comparing the data to identify a cultivated country or region that exhibits a sulfur stable isotope ratio similar to the sulfur stable isotope ratio of the test sample; Including the determination method.
[2] The determination method according to [1], wherein the crop is tea leaves.
[3] The determination method according to [2], wherein the tea leaves are made in Japan or China.
[4] A method for determining a tea leaf cultivation country or region, the following steps:
Measuring a stable isotope ratio δ 34 S of sulfur contained in Chinese and Japanese tea leaves;
Using the average value and standard deviation of the measured sulfur stable isotope ratio, the boundary value (assuming X) that the Mahalanobis's general distance from the average value in China and Japan is equal to each other is (X-Japanese tea leaves Average value of stable isotope ratio of sulfur contained) / Standard deviation of stable isotope ratio of sulfur contained in Japanese tea leaves = (Average value of stable isotope ratio of sulfur contained in Chinese tea leaves−X ) / Step of calculating by a calculation formula represented by the standard deviation of the stable isotope ratio of sulfur contained in Chinese tea leaves;
A step of measuring the stable isotope ratio of sulfur contained in a test sample of Chinese or Japanese tea leaves; and if the sulfur stable isotope ratio of the test sample is X ‰ or higher, the country of cultivation is China And
Determining that the country of cultivation is Japan if the sulfur stable isotope ratio of the test sample is less than X ‰;
Said method.
[5] A method for determining a farming country or region of a crop, the step of measuring a stable isotope ratio δ 34 S of sulfur contained in a crop known to the growing country or region; Establishing a database of local and sulfur stable isotope ratio δ 34 S; measuring a stable isotope ratio of sulfur contained in a test sample of the same type of crop; and using the database to stabilize sulfur of the test sample Determining the cultivated country or region from the isotope ratio.
[6] The determination method according to [5], wherein the crop is tea leaves.
[7] The determination method according to [6], wherein the tea leaves are made in Japan or China.
[8] The determination method according to any one of [1] to [7], wherein the determination is further made by combining the measured values of the carbon stable isotope ratio δ 13 C.

本発明は、農作物の硫黄安定同位体比δ34Sのみの値により、または、硫黄安定同位体比δ34Sと他の元素の安定同位体比を組み合わせることにより、農作物の栽培国または地域を判定する方法を提供できるものであり、本発明により外国産と国内産(日本産)の農作物を的確に判別することが可能となる。 The present invention, by the value of only crop sulfur isotopic [delta] 34 S, or by combining isotopic sulfur isotopic [delta] 34 S and other elements, the cultivated country or region crops A determination method can be provided, and according to the present invention, it is possible to accurately discriminate between foreign and domestic (Japanese) crops.

図1は、原産国が明確な緑茶葉の窒素安定同位体比δ15N値(単位:‰)および炭素安定同位体比δ13C値(単位:‰)をプロットした図である。FIG. 1 is a graph plotting nitrogen stable isotope ratio δ 15 N value (unit: ‰) and carbon stable isotope ratio δ 13 C value (unit: ‰) of green tea leaves whose country of origin is clear. 図2は、原産国が明確な緑茶葉の酸素安定同位体比δ18O値(単位:‰)および炭素安定同位体比δ13C値(単位:‰)をプロットした図である。FIG. 2 is a graph in which the oxygen stable isotope ratio δ 18 O value (unit: ‰) and the carbon stable isotope ratio δ 13 C value (unit: ‰) of green tea leaves with a clear country of origin are plotted. 図3は、原産国が明確な緑茶葉の硫黄安定同位体比δ34S値(単位:‰)および炭素安定同位体比δ13C値(単位:‰)をプロットした図である。FIG. 3 is a graph plotting the sulfur stable isotope ratio δ 34 S value (unit: ‰) and the carbon stable isotope ratio δ 13 C value (unit: ‰) of green tea leaves whose country of origin is clear. 図4は、原産国が明確な緑茶葉の硫黄安定同位体比δ34S値(単位:‰)および窒素安定同位体比δ15N値(単位:‰)をプロットした図である。FIG. 4 is a graph plotting the sulfur stable isotope ratio δ 34 S value (unit: ‰) and nitrogen stable isotope ratio δ 15 N value (unit: ‰) of green tea leaves whose country of origin is clear. 図5は、原産国が明確な緑茶葉の硫黄安定同位体比δ34S値(単位:‰)および酸素安定同位体比δ18O値(単位:‰)をプロットした図である。FIG. 5 is a graph plotting the sulfur stable isotope ratio δ 34 S value (unit: ‰) and oxygen stable isotope ratio δ 18 O value (unit: ‰) of green tea leaves whose country of origin is clear.

以下、本発明の実施の形態について、詳細に説明する。
農作物
本明細書でいう農作物とは、植物や食品原料となるものであって、種々の農作物そのものの全体、植物が種子や果実として蓄積する生産物、または植物体や農作物の葉、根および茎などの部分をいう。好適には、農作物の種子、果実、葉、根および茎を指す。好ましくは緑茶、半発酵茶または発酵茶を含む茶葉が用いられる。また、本発明では、これらを乾燥し、細かい粉末状にした試料が好適に用いられる。
栽培国または地域
農作物の栽培国または地域には、特に制限はない。農作物は、その栽培国または地域に特有な硫黄安定同位体比δ34Sを示すことから、いかなる地域の農産物であってもよい。
Hereinafter, embodiments of the present invention will be described in detail.
Agricultural crops As used herein, crops are raw materials for plants and foods, and are the whole of various crops themselves, the products that plants accumulate as seeds and fruits, or the leaves, roots and stems of plants and crops. And so on. Preferably, it refers to crop seeds, fruits, leaves, roots and stems. Preferably, tea leaves containing green tea, semi-fermented tea or fermented tea are used. Further, in the present invention, a sample obtained by drying these into a fine powder is preferably used.
There are no particular restrictions on the country or region where the crop is grown or the local crop is grown. The agricultural product may be an agricultural product of any region because it exhibits a sulfur stable isotope ratio δ 34 S specific to the country or region of cultivation.

具体例を挙げれば、茶葉の場合、茶葉を生産する国または地域であればどこの由来のものであってもよい。例えば、本発明によれば中国産または日本産の茶葉の栽培国または地域を特定することができる。
安定同位体比の測定
本発明では、農産物の硫黄安定同位体比δ34Sに基づいて栽培国または地域を特定する。
If a specific example is given, in the case of tea leaves, it may originate from any country or region that produces tea leaves. For example, according to the present invention, the cultivation country or region of Chinese or Japanese tea leaves can be specified.
Measurement of stable isotope ratio In the present invention, the cultivated country or region is specified based on the sulfur stable isotope ratio δ 34 S of agricultural products.

安定同位体比の測定は、たとえば燃焼型または熱分解型安定同位体比質量分析装置を用いて行うことができる。本発明者らは、農作物、例えば茶葉などについて、硫黄安定同位体比を分析する場合は、元素分析計に導入する試料の重量を、一般に炭素安定同位体比を分析する条件の好ましくは4から6倍程度に増量することにより、試料を分画・精製することなく試料中に含まれる硫黄安定同位体比を分析することが可能となることを見出した。   The stable isotope ratio can be measured using, for example, a combustion type or pyrolysis type stable isotope ratio mass spectrometer. When analyzing the stable sulfur isotope ratio of agricultural products such as tea leaves, the present inventors generally set the weight of the sample to be introduced into the elemental analyzer, preferably from 4 of the conditions for analyzing the stable carbon isotope ratio. It has been found that by increasing the amount to about 6 times, it is possible to analyze the sulfur stable isotope ratio contained in the sample without fractionating and purifying the sample.

安定同位体比は、標準物質に対する偏差であらわされ、(式1)のδ値で示される。
δX(‰) = ( R試料 / R標準 - 1)×1000 (式1)
ここで、Xは炭素、窒素、酸素、硫黄に対して、それぞれ13C、15N、18O、34Sを表し、R試料、R標準はそれぞれサンプルと標準物質の安定同位体比、すなわち、13C/12C、15N/14N、18O/16O、34S/32Sを表す。パーミル(‰)は千分偏差である。標準物質としては、国際的にデータを比較できるように国際標準物質(international standard)を使用する。代表的な国際標準試料を表1に示す。酸素の標準物質としてはウイーン標準平均海水(Vienna Standard Mean Ocean Water:VSMOW)、炭素の標準物質としては南カロリナ州のPeeDee層から出土したヤシイ類の化石(Pee Dee Belemnite:PDB)、窒素では大気の窒素ガス、硫黄の標準物質としては、CDT(Canion Diablo Troilite)またはCDM(Canyon Diablo Meteorite)と表記されるDiablo峡谷隕石中のトロイライト(硫化鉄)が用いられている。しかし、国際標準物質は希少であるため、本願発明においては国際標準物質に対する安定同位体比が既知であるワーキングスタンダードを利用することができる。ワーキングスタンダードとしては、L-α-アラニン、安息香酸、スルファアニリドなどを使用することができ、これらワーキングスタンダードの分析値から試料の分析値を求める。
The stable isotope ratio is expressed as a deviation from a standard substance, and is represented by a δ value in (Equation 1).
δX (‰) = (R sample / R standard -1) x 1000 (Equation 1)
Here, X represents 13 C, 15 N, 18 O, and 34 S with respect to carbon, nitrogen, oxygen, and sulfur, respectively, and the R sample and the R standard are stable isotope ratios of the sample and the standard substance, that is, 13 C / 12 C, 15 N / 14 N, 18 O / 16 O, 34 S / 32 S. Permill (‰) is a thousandths deviation. As a standard substance, an international standard substance (international standard) is used so that data can be compared internationally. A typical international standard sample is shown in Table 1. Vienna Standard Mean Ocean Water (VSMOW) as the oxygen reference material, Palmy fossil (Pee Dee Belemnite: PDB) excavated from the PeeDee Formation in South Carolina as the carbon reference material, and the atmosphere in nitrogen As a nitrogen gas and sulfur standard substance, trolite (iron sulfide) in Diablo gorge meteorite represented as CDT (Canion Diablo Troilite) or CDM (Canyon Diablo Meteorite) is used. However, since international standard substances are rare, a working standard having a known stable isotope ratio relative to the international standard substance can be used in the present invention. As the working standard, L-α-alanine, benzoic acid, sulfanilide and the like can be used, and the analytical value of the sample is obtained from the analytical value of these working standards.

本発明では、農産物の硫黄安定同位体比δ34Sに基づいて栽培国または地域を特定することができる。また、炭素、酸素、窒素から選択される安定同位体比と組み合わせて、さらに精度良く栽培国または地域を特定することができる。
農作物の栽培国または地域の判定方法
栽培国または地域の明らかな農作物の安定同位体比を測定し、未知の試料の安定同位体比の測定結果を比較することにより、当該未知試料の栽培国または地域を判定することができる。
In the present invention, the cultivated country or region can be identified based on the sulfur stable isotope ratio δ 34 S of agricultural products. In addition, in combination with a stable isotope ratio selected from carbon, oxygen, and nitrogen, the cultivated country or region can be specified with higher accuracy.
Judgment Method of Crop Country or Region of Crop Cultivate the country or region of the unknown sample by measuring the stable isotope ratio of the obvious crop in the country or region and comparing the measurement results of the stable isotope ratio of the unknown sample. The area can be determined.

具体的な方法の例としては、栽培国または地域の明らかな農作物の安定同位体比を分析し、その分析値の統計解析をおこない、その試料の栽培国または地域を判定できる判別式を求める。その式に、未知の試料の分析値を導入すれば、その試料の栽培国または地域の判定が可能となる。判別分析には、「線形判別分析」または「マハラノビスの汎距離を比較する方法」を用いるのが一般的である。   As an example of a specific method, a stable isotope ratio of an apparent crop in a cultivated country or region is analyzed, a statistical analysis of the analysis value is performed, and a discriminant that can determine the cultivated country or region of the sample is obtained. If an analytical value of an unknown sample is introduced into the equation, it is possible to determine the cultivating country or region of the sample. For the discriminant analysis, “linear discriminant analysis” or “method of comparing Mahalanobis generalized distances” is generally used.

硫黄安定同位体比の分析値δ34Sのみを変数として、例えば「マハラノビスの汎距離」の比較により、農作物の栽培地を判定することができる。マハラノビスの汎距離は、統計解析用ソフトを用いれば、容易に計算が可能である(菅民郎:「多変量解析の実践」(現代数学社))。 Using only the analysis value δ 34 S of the sulfur stable isotope ratio as a variable, for example, by comparing “Mahalanobis general distance”, it is possible to determine the crop cultivation area. Mahalanobis's generalized distance can be easily calculated using statistical analysis software (Tomoro Tsuji: “Practice of Multivariate Analysis” (Contemporary Mathematics)).

具体的には、中国産茶葉と日本産茶葉を判別する場合、予め中国産および日本産の茶葉に含有される硫黄の安定同位体比δ34Sを測定し、測定した硫黄安定同位体比の平均値と標準偏差を用いて中国産および日本産各々の前記平均値からのマハラノビスの汎距離が等しくなる境界値(Xとする)を算出し、中国産または日本産の茶葉の試験サンプルに含有される硫黄の安定同位体比を測定し、硫黄安定同位体比がX ‰以上であれば中国産、X ‰未満であった場合は日本産と判定することができる。 Specifically, when discriminating between Chinese tea leaves and Japanese tea leaves, the sulfur stable isotope ratio δ 34 S contained in Chinese and Japanese tea leaves was measured in advance, and the measured sulfur stable isotope ratio Using the average value and standard deviation, calculate the boundary value (X) that equals the Mahalanobis's general distance from the above average values for Chinese and Japanese products, and include them in Chinese or Japanese tea leaf test samples. The stable isotope ratio of sulfur is measured, and if the sulfur stable isotope ratio is X ‰ or higher, it can be judged that it is made in China, and if it is less than X ‰, it is judged that it is made in Japan.

また、硫黄安定同位体比δ34Sと、炭素、酸素、窒素から選択される安定同位体比とを組み合わせて用いる場合には、たとえば、各試料について測定されたδ34S値を、δ13C値、δ18O値、またはδ15Nと組み合わせた散布図を作成して、散布図上における相対的な位置関係から判断することができる。 When a sulfur stable isotope ratio δ 34 S is used in combination with a stable isotope ratio selected from carbon, oxygen, and nitrogen, for example, the δ 34 S value measured for each sample is expressed as δ 13 A scatter diagram combined with a C value, a δ 18 O value, or δ 15 N can be created and determined from a relative positional relationship on the scatter diagram.

本発明を以下の実施例により、さらに具体的に説明するが、本発明はこれらに限定されるものではない。   The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.

以下に、本発明を実施する上で必要な項目、例えば試料の調製方法、分析装置の設定条件などについて詳しく説明する。しかし、本発明はこれらの条件に限定されるものではない。
試料の調製
原産国が明確な中国産および日本産緑茶葉を、粉砕機などの機械を用いて粉砕し、乾燥したものを分析用試料として用いた。硫黄安定同位体比を分析する場合は6から9mg、炭素および窒素安定同位体比を分析する場合は0.5から4mgの試料を秤量し、各々の試料をすず箔(Universal Tin container light、Thermo Fisher Scientific(株)製)に包んだものを分析用試料とした。また、酸素安定同位体比を分析する場合は0.1から0.4mgの試料を秤量し、銀箔(Silver capsules for solids、Thermo Fisher Scientific(株)製)に包んだものを分析用試料とした。
分析装置の設定条件
炭素、窒素および硫黄安定同位体比の分析には、ガス制御装置(ConFloIII、Thermo Fisher Scientific(株)製)を介して接続した元素分析計(FlashEA、Thermo Fisher Scientific(株)製)と安定同位体比質量分析計(Delta V advantage, Thermo Fisher Scientific(株)製)を使用した。本発明における元素分析計を用いた測定条件を表2に示す。なお、硫黄安定同位体比分析では、硫黄安定同位体比分析用のテフロン(登録商標)製分離カラムを使用した。
In the following, items necessary for carrying out the present invention, such as sample preparation methods and analyzer setting conditions, will be described in detail. However, the present invention is not limited to these conditions.
Sample preparation Chinese and Japanese green tea leaves with a clear country of origin were pulverized using a machine such as a pulverizer and dried, and used as a sample for analysis. When analyzing sulfur stable isotope ratios, weigh 6 to 9 mg, and when analyzing carbon and nitrogen stable isotope ratios, weigh 0.5 to 4 mg and each sample is tin foil (Universal Tin container light, Thermo Fisher Scientific Samples for analysis were used. Further, when analyzing the oxygen stable isotope ratio, a sample of 0.1 to 0.4 mg was weighed and wrapped in silver foil (Silver capsules for solids, manufactured by Thermo Fisher Scientific Co., Ltd.) as an analysis sample.
Analytical instrument setting conditions For analysis of stable isotope ratios of carbon, nitrogen and sulfur, an element analyzer (FlashEA, Thermo Fisher Scientific Co., Ltd.) connected via a gas control device (ConFloIII, manufactured by Thermo Fisher Scientific Co., Ltd.) And a stable isotope ratio mass spectrometer (Delta V advantage, manufactured by Thermo Fisher Scientific Co., Ltd.). Table 2 shows the measurement conditions using the element analyzer in the present invention. In the sulfur stable isotope ratio analysis, a Teflon (registered trademark) separation column for sulfur stable isotope ratio analysis was used.

また、酸素安定同位体比の分析には、ガス制御装置(ConFloIII、Thermo Fisher Scientific(株)製)を介して接続した熱分解元素分析計(TC/EA、Thermo Fisher Scientific(株)製)と安定同位体比質量分析計(Delta V advantage, Thermo Fisher Scientific(株)製)を使用した。本発明における熱分解元素分析計を用いた測定条件を表3に示す。   For analysis of oxygen stable isotope ratio, pyrolysis element analyzer (TC / EA, Thermo Fisher Scientific Co., Ltd.) connected via a gas control device (ConFlo III, Thermo Fisher Scientific Co., Ltd.) and A stable isotope ratio mass spectrometer (Delta V advantage, manufactured by Thermo Fisher Scientific Co., Ltd.) was used. Table 3 shows the measurement conditions using the pyrolysis element analyzer in the present invention.

分析条件
何れの元素の安定同位体比分析も一回の分析の中で標準ガスと試料由来のガスの測定を行い、標準ガスとの比較により試料中の安定同位体比を決定した。
Analytical conditions Stable isotope ratio analysis of any element Measures standard gas and sample-derived gas in one analysis and determines stable isotope ratio in sample by comparing with standard gas did.

炭素および窒素安定同位体比は同時に分析を行った。標準ガスは窒素および二酸化炭素である。
硫黄安定同位体比の分析は、硫黄安定同位体比のみを測定する条件で行った。標準ガスは二酸化硫黄である。二酸化炭素の影響を抑制するため、試料由来の二酸化硫黄ガスを検出し始める直前まで、ヘリウムによる希釈を行った。
Carbon and nitrogen stable isotope ratios were analyzed simultaneously. Standard gases are nitrogen and carbon dioxide.
The analysis of the sulfur stable isotope ratio was performed under the condition of measuring only the sulfur stable isotope ratio. The standard gas is sulfur dioxide. In order to suppress the influence of carbon dioxide, dilution with helium was performed until just before the detection of the sample-derived sulfur dioxide gas.

酸素安定同位体比の分析も、酸素安定同位体比のみを測定する条件で行った。標準ガスは一酸化炭素である。
分析値の補正
安定同位体比の分析値は、毎回分析する標準ガスとの比較により決定した。標準ガスの安定同位体比は国際標準試料を用いて決定できるが、入手困難な試料も多いため、本発明では入手が容易な標準物質でワーキングスタンダードの値を決定し、このワーキングスタンダードを用いて分析を行った。ワーキングスタンダードとして、L-α-アラニン(昭光通商(株):δ13C−PDB(‰)=−19.9、δ15N-Air(‰) = −1.21)、安息香酸(インディアナ大学:δ18O(‰)=23.2)、スルファアニリド(和光(株):δ34S(‰)=2.6)、スルファアニリド(Thermo Fisher Scientific(株):δ34S(‰)=17.0)などを使用し、これらの分析値から間接的に試料の分析値を求めた。
The oxygen stable isotope ratio was also analyzed under the condition that only the oxygen stable isotope ratio was measured. The standard gas is carbon monoxide.
Analytical value correction The analytical value of the stable isotope ratio was determined by comparison with a standard gas to be analyzed each time. Although the stable isotope ratio of the standard gas can be determined using an international standard sample, there are many samples that are difficult to obtain. Therefore, in the present invention, the working standard value is determined using a standard material that is easily available, and this working standard is used. Analysis was carried out. As working standards, L-α-alanine (Shokko Tsusho Co., Ltd .: δ 13 C-PDB (‰) = -19.9, δ 15 N-Air (‰) = -1.21), benzoic acid (Indiana University) : Δ 18 O (‰) = 23.2), sulfaanilide (Wako Co., Ltd .: δ 34 S (‰) = 2.6), sulfaanilide (Thermo Fisher Scientific Inc.): δ 34 S (‰) ) = 17.0) and the like, and the analytical value of the sample was obtained indirectly from these analytical values.

表4の原産国の明らかな緑茶葉(日本産:15点、中国産:24点)を乾燥し、細かく粉砕した試料を用いて安定同位体比を測定した。得られた値を表4に示す。表4のδ13C値を、δ15N、δ18O値またはδ34S値と組み合わせた散布図を、図1、図2、図3に示す。また、表4のδ34S値を、δ15Nまたはδ18O値と組み合わせた散布図を図4、図5に示す。図1より、窒素および炭素安定同位体比の組み合わせでは、散布図上で日本産緑茶葉と中国産緑茶葉が混在しており、原産国の判別は困難であることがわかる。また、図2より、酸素および炭素安定同位体比の組み合わせでは、散布図上で日本産緑茶葉と中国産緑茶葉が混在しており、原産国の判別は困難であることがわかる。ところが、図3より、硫黄および炭素安定同位体比の組み合わせでは、散布図上で日本産緑茶葉と中国産緑茶葉が分離し、明確に判別できることがわかる。同様に、図4より硫黄および窒素安定同位体比の組み合わせでも、図5より硫黄および酸素安定同位体比の組み合わせでも、日本産緑茶葉と中国産緑茶葉の判別が可能であることがわかる。上記組み合わせの内では、日本産緑茶葉の分析値のばらつきが小さい硫黄および炭素安定同位体比の組み合わせが、原産地の判別には好適であることが確認できた。さらに、図3〜5より、硫黄安定同位体比単独であっても、日本産緑茶葉と中国産緑茶葉の判別が可能であることがわかる。 Stable isotope ratios were measured using dried and finely pulverized samples of green tea leaves (from Japan: 15 points, from China: 24 points) apparent in the country of origin in Table 4. The obtained values are shown in Table 4. Scatter plots in which the δ 13 C values in Table 4 are combined with δ 15 N, δ 18 O values, or δ 34 S values are shown in FIGS. Also shows a scatter plot of the [delta] 34 S values in Table 4, in combination with [delta] 15 N or [delta] 18 O value 4, Figure 5. From FIG. 1, it can be seen that in the combination of nitrogen and carbon stable isotope ratios, Japanese green tea leaves and Chinese green tea leaves are mixed on the scatter diagram, and it is difficult to distinguish the country of origin. In addition, FIG. 2 shows that in the combination of oxygen and carbon stable isotope ratios, Japanese green tea leaves and Chinese green tea leaves are mixed on the scatter diagram, and it is difficult to distinguish the country of origin. However, it can be seen from FIG. 3 that the combination of sulfur and carbon stable isotope ratios allows Japanese green tea leaves and Chinese green tea leaves to be separated and clearly distinguished on the scatter diagram. Similarly, it can be seen from FIG. 4 that it is possible to discriminate between Japanese green tea leaves and Chinese green tea leaves using either a combination of sulfur and nitrogen stable isotope ratios or a combination of sulfur and oxygen stable isotope ratios. Among the above combinations, it was confirmed that a combination of sulfur and carbon stable isotope ratios with small variations in analysis values of Japanese green tea leaves is suitable for discrimination of the origin. Furthermore, it can be seen from FIGS. 3 to 5 that even with a stable sulfur isotope ratio alone, it is possible to discriminate between Japanese green tea leaves and Chinese green tea leaves.

実施例1で用いた試料では、硫黄安定同位体比単独であっても緑茶葉の産地の判別が可能であることが確認されたので、硫黄安定同位体比の分析値δ34S (単位:‰)のみを変数として、「マハラノビスの汎距離」の比較による、日本産および中国産の緑茶葉の栽培地の判定を試みた。 In the sample used in Example 1, since it was confirmed that the production area of green tea leaves can be determined even with the sulfur stable isotope ratio alone, the analysis value δ 34 S of the sulfur stable isotope ratio (unit: Using only ‰) as a variable, an attempt was made to determine the cultivation area of green tea leaves from Japan and China by comparison of the “distance of Mahalanobis”.

手順1:判別モデル構築用試料29点(日本産緑茶葉:10点、中国産緑茶葉:19点)について、中国産緑茶葉および日本産緑茶葉の硫黄安定同位体比δ34S(単位:‰)の平均値および標準偏差を求めた。表5に示すように、日本産緑茶葉の硫黄安定同位体比の平均値(B)は0.94‰、標準偏差は0.68‰であった。また、中国産緑茶葉の硫黄安定同位体比の平均値(D)は5.76‰、標準偏差は1.67‰であった。 Procedure 1: With respect to 29 samples for constructing a discriminant model (Japanese green tea leaves: 10 points, Chinese green tea leaves: 19 points), the sulfur stable isotope ratio δ 34 S (unit: Chinese green tea leaves and Japanese green tea leaves) The average value and standard deviation of ‰) were determined. As shown in Table 5, the average value (B) of sulfur stable isotope ratio of Japanese green tea leaves was 0.94 ‰, and the standard deviation was 0.68 ‰. The average value (D) of sulfur stable isotope ratio of Chinese green tea leaves was 5.76 ‰, and the standard deviation was 1.67 ‰.

手順2:日本産緑茶葉と中国産緑茶葉の境界となる硫黄安定同位体比の値を仮にXとすれば、日本産緑茶葉の硫黄安定同位体比の平均値との差(偏差)は、X−0.94となる。また、中国産緑茶葉の硫黄安定同位体比の平均値との差(偏差)は、5.76−Xとなる。マハラノビスの汎距離は、平均値と境界値との差を標準偏差で割ることにより求めた。境界値Xは、
(X-0.94)/0.68 = (5.67-X)/1.67
の式から、2.31‰であることが確認できた。
Procedure 2: If the value of the sulfur stable isotope ratio at the boundary between Japanese green tea leaves and Chinese green tea leaves is X, the difference (deviation) from the average sulfur stable isotope ratio of Japanese green tea leaves is , X-0.94. Moreover, the difference (deviation) from the average value of the sulfur stable isotope ratio of Chinese green tea leaves is 5.76-X. Mahalanobis' general distance was obtained by dividing the difference between the mean value and the boundary value by the standard deviation. The boundary value X is
(X-0.94) /0.68 = (5.67-X) /1.67
From the above formula, it was confirmed that it was 2.31 ‰.

手順3:硫黄安定同位体比が2.31‰以上であれば中国産、2.31‰未満であれば日本産茶葉と判定した。実施例で用いた試料については、判別モデル構築用試料29点(日本産緑茶葉:10点、中国産緑茶葉:19点)について、日本産緑茶葉は全て日本産、中国産緑茶葉は全て中国産と判定可能であった。また、試験試料10点(日本産緑茶葉:5点(サンプル番号:J1〜J5)、中国産緑茶葉:5点(サンプル番号:C1〜C5))についても、日本産緑茶葉は全て日本産、中国産緑茶葉は全て中国産と正しく判定できた。   Procedure 3: If the sulfur stable isotope ratio was 2.31 ‰ or more, it was judged as Chinese tea leaf if it was made in China and less than 2.31 ‰. Regarding the samples used in the examples, 29 models for discriminant model construction (Japanese green tea leaves: 10 points, Chinese green tea leaves: 19 points), all Japanese green tea leaves are from Japan, all Chinese green tea leaves are from It could be judged that it was made in China. In addition, with regard to 10 test samples (Japanese green tea leaves: 5 points (sample numbers: J1 to J5), Chinese green tea leaves: 5 points (sample numbers: C1 to C5)), all Japanese green tea leaves are from Japan. All the green tea leaves from China were correctly judged to be from China.

実施例1の緑茶葉全39点(日本産:15点、中国産:24点)の内、10点(日本産:5点、中国産:5点)を試験試料、残り29点を判別モデル構築用試料とした。判別モデル構築用試料29点のマハラノビスの汎距離を比較すると、日本産緑茶葉は全て日本産、中国産緑茶葉は全て中国産と判定することが可能であった。更に、モデル構築用試料から計算した判別式を用いて、試験試料の原産国を判定した結果、日本産緑茶葉は全て日本産、中国産緑茶葉は全て中国産と判定することが可能であった。   Of the 39 green tea leaves of Example 1 (Japan: 15 points, China: 24 points), 10 points (Japan: 5 points, China: 5 points) are test samples, and the remaining 29 points are discriminating models. A sample for construction was used. Comparing the general distance of Mahalanobis of 29 samples for constructing the discrimination model, it was possible to determine that all Japanese green tea leaves were from Japan and all Chinese green tea leaves were from China. Furthermore, as a result of determining the country of origin of the test sample using the discriminant calculated from the model building sample, it was possible to determine that all Japanese green tea leaves were from Japan and all Chinese green tea leaves were from China. It was.

以下、硫黄および炭素安定同位体比の分析値δ34Sおよびδ13C(単位:‰)を変数として、「マハラノビスの汎距離」の比較により、緑茶葉の栽培地の判定を試みた。具体的な手順は、石村貞夫:「SPSSによる多変量データ解析の手順」(東京図書)などを参考にした。また、統計解析用ソフトには、市販品であるエクセル2003 (マイクロソフト株式会社製)およびSPSS Statics17.0 (SPSS株式会社製)などを使用した。 Hereinafter, by using the analytical values δ 34 S and δ 13 C (unit: ‰) of sulfur and carbon stable isotope ratios as variables, determination of the cultivation area of green tea leaves was made by comparison of “general distance of Mahalanobis”. The specific procedure was based on Sadao Ishimura: “Procedure for Multivariate Data Analysis Using SPSS” (Tokyo Book). As statistical analysis software, commercially available products such as Excel 2003 (manufactured by Microsoft Corporation) and SPSS Statics 17.0 (manufactured by SPSS Corporation) were used.

手順1:判別モデル構築用試料29点(日本産緑茶葉:10点、中国産緑茶葉:19点)について、中国産緑茶葉および日本産緑茶葉の硫黄安定同位体比δ34S(単位:‰)および炭素安定同位体比δ13C(単位:‰)の平均値を求めた。表5に示すように、日本産緑茶葉の炭素安定同位体比の平均値(A)は−27.16‰、硫黄安定同位体比の平均値(B)は0.94‰であった。また、中国産緑茶葉の炭素安定同位体比の平均値(C)は−25.95‰、硫黄安定同位体比の平均値(D)は5.76‰であった。 Procedure 1: With respect to 29 samples for constructing a discriminant model (Japanese green tea leaves: 10 points, Chinese green tea leaves: 19 points), the sulfur stable isotope ratio δ 34 S (unit: Chinese green tea leaves and Japanese green tea leaves) The average value of ‰) and stable carbon isotope ratio δ 13 C (unit: ‰) was determined. As shown in Table 5, the average value (A) of carbon stable isotope ratio of Japanese green tea leaves was -27.16 ‰, and the average value (B) of sulfur stable isotope ratio was 0.94 ‰. In addition, the average value (C) of carbon stable isotope ratio of Chinese green tea leaves was -25.95 ‰, and the average value (D) of sulfur stable isotope ratio was 5.76 ‰.

手順2:各データの平均値との差(偏差)を計算し、それらの値から各群の分散および共分散の値を計算した。分散および共分散の値は、エクセルやSPSS Statics17.0などの統計解析用ソフトに分析値を入力し計算した。表6に、統計解析用ソフトSPSS Statics17.0で計算した結果を示す。日本産緑茶葉の炭素安定同位体比の分散は0.142、硫黄安定同位体比の分散は0.466、炭素安定同位体比と硫黄安定同位体比の共分散は0.024と算出された。また、中国産緑茶葉の炭素安定同位体比の分散は1.846、硫黄安定同位体比の分散は2.799、炭素安定同位体比と硫黄安定同位体比の共分散は1.663であった。   Procedure 2: The difference (deviation) from the average value of each data was calculated, and the variance and covariance values of each group were calculated from those values. The variance and covariance values were calculated by inputting the analysis values into statistical analysis software such as Excel and SPSS Statics 17.0. Table 6 shows the results calculated with the statistical analysis software SPSS Statics 17.0. The dispersion of carbon stable isotope ratio of Japanese green tea leaves was calculated as 0.142, the dispersion of sulfur stable isotope ratio was 0.466, and the covariance of carbon stable isotope ratio and sulfur stable isotope ratio was calculated as 0.024. In addition, the dispersion of carbon stable isotope ratio of Chinese green tea leaves was 1.846, the dispersion of sulfur stable isotope ratio was 2.799, and the covariance of carbon stable isotope ratio and sulfur stable isotope ratio was 1.663.

手順3:手順2で日本産および中国産緑茶葉の分析値から計算した分散および共分散の値を行列式にして、その逆行列を計算した。行列式の計算には、エクセルおよびその機能を利用した統計解析用ソフトを利用した。表7に、日本産緑茶葉と中国産緑茶葉の分散共分散行列S1およびS2から、逆行列S1-1およびS2-1を計算した結果を示した。 Step 3: The inverse matrix was calculated by using the variance and covariance values calculated from the analysis values of Japanese and Chinese green tea leaves in Step 2 as determinants. For the calculation of the determinant, Excel and statistical analysis software using its function were used. Table 7 shows the results of calculating inverse matrices S1 -1 and S2 -1 from the dispersion covariance matrices S1 and S2 of Japanese green tea leaves and Chinese green tea leaves.

手順4:手順1で算出した、日本産緑茶葉の炭素安定同位体比の平均値Aと硫黄安定同位体比の平均値B、中国産緑茶葉の炭素安定同位体比の平均値Cと硫黄安定同位体比の平均値D、手順3で算出した、日本産緑茶葉の炭素安定同位体比と硫黄安定同位体比の分散共分散行列の逆行列S1-1、および中国産緑茶葉の炭素安定同位体比と硫黄安定同位体比の分散共分散行列の逆行列S2-1を用いてマハラノビスの汎距離を算出した。
日本産か中国産かを判定したい緑茶葉の炭素安定同位体比(単位:‰)をX、硫黄安定同位体比(単位:‰)をYとして、マハラノビスの汎距離は、下記の(式2)および(式3)により求めた。
すなわち、日本産緑茶葉の分析値の重心までのマハラノビスの汎距離M1は、
M1 = (X−A, Y−B) × S1-1 × (X−A, Y−B) (式2)
中国産緑茶葉の分析値の重心までのマハラノビスの汎距離M2は、
M2 = (X−C, Y−D) × S2-1 × (X−C, Y−D) (式3)
により、求めた。行列式の計算はエクセルおよびその機能を利用した統計解析用ソフトを利用して行った。判別モデル構築用試料29点(日本産緑茶葉:10点、中国産緑茶葉:19点)の計算結果を表8に示した。
手順5:手順4で算出した、日本産緑茶葉の分析値の重心までのマハラノビスの汎距離M1と中国産緑茶葉の分析値の重心までのマハラノビスの汎距離M2を比較し、
M1 < M2
の場合、日本産緑茶葉であると判定した。
また、日本産緑茶葉の分析値の重心までのマハラノビスの汎距離M1と中国産緑茶葉の分析値の重心までのマハラノビスの汎距離M2を比較し、
M1 > M2
の場合、中国産緑茶葉であると判定した。表8に示すように、判別モデル構築用試料29点(日本産緑茶葉:10点、中国産緑茶葉:19点)については、日本産緑茶葉はすべて「日本産」、中国産緑茶葉はすべて「中国産」と正しく判定できることが確認できた(正答率:100%)。
Step 4: The average carbon stable isotope ratio A and sulfur stable isotope ratio B of Japanese green tea leaves, the average carbon stable isotope ratio C and sulfur of Chinese green tea leaves calculated in step 1 Mean value D of stable isotope ratio, inverse matrix S1 -1 of the covariance matrix of carbon stable isotope ratio and sulfur stable isotope ratio of Japanese green tea leaves calculated in step 3, and carbon of Chinese green tea leaves The Mahalanobis generalized distance was calculated using the inverse matrix S2 -1 of the dispersion covariance matrix of stable isotope ratio and sulfur stable isotope ratio.
The X-ray stable isotope ratio (unit: ‰) of the green tea leaf to be judged from Japan or China is X, and the stable sulfur isotope ratio (unit: ‰) is Y. ) And (Equation 3).
In other words, the Mahalanobis generalized distance M1 to the center of gravity of the analysis value of Japanese green tea leaves is
M1 = (X−A, Y−B) × S1 −1 × (X−A, Y−B) (Formula 2)
The Mahalanobis pan-distance M2 to the center of gravity of the analysis value of Chinese green tea leaves,
M2 = (X−C, Y−D) × S2 −1 × (X−C, Y−D) (Formula 3)
Sought by. The determinant was calculated using Excel and statistical analysis software using its function. Table 8 shows the calculation results of 29 samples for discriminant model construction (Japanese green tea leaves: 10 points, Chinese green tea leaves: 19 points).
Step 5: Comparing the Mahalanobis's general distance M1 to the center of gravity of the analysis value of Japanese green tea leaf calculated in Step 4 with the Mahalanobis's general distance M2 to the center of gravity of the analysis value of Chinese green tea leaf,
M1 <M2
In the case of, it was determined that it was a Japanese green tea leaf.
In addition, we compared the Mahalanobis pan distance M1 to the center of gravity of the analysis value of Japanese green tea leaves and the Mahalanobis pan distance M2 to the center of gravity of the analysis value of Chinese green tea leaves,
M1> M2
In the case of Chinese green tea leaves. As shown in Table 8, with regard to 29 samples for constructing discriminant models (Japanese green tea leaves: 10 points, Chinese green tea leaves: 19 points), all Japanese green tea leaves are "Japan" and Chinese green tea leaves are All were confirmed to be correctly judged as “Chinese” (correct answer rate: 100%).

手順6:試験試料10点(日本産緑茶:5点、中国産緑茶:5点)について、判別モデル構築用試料の分析値から計算した判別式により、原産国の判定が可能かどうかを確認した。試験試料の分析値から、手順4および手順5の方法に従い、日本産緑茶葉の分析値の重心までのマハラノビスの汎距離と中国産緑茶葉の分析値の重心までのマハラノビスの汎距離を計算し、原産国の判定を行った。その結果、表9に示すように、日本産緑茶葉はすべて「日本産」、中国産緑茶葉はすべて「中国産」と正しく判定できることが確認できた。   Step 6: About 10 test samples (Japanese green tea: 5 points, Chinese green tea: 5 points), it was confirmed whether the country of origin could be judged by the discriminant calculated from the analysis value of the sample for constructing the discriminant model . From the analysis value of the test sample, according to the procedure 4 and procedure 5, calculate the Mahalanobis general distance to the center of gravity of the analysis value of Japanese green tea leaves and the Mahalanobis distance to the center of gravity of the analysis value of Chinese green tea leaves. The country of origin was determined. As a result, as shown in Table 9, it was confirmed that all Japanese green tea leaves could be correctly judged as “Japanese” and all Chinese green tea leaves could be correctly judged as “Chinese”.

本発明は農作物、特に茶葉の栽培国または地域を、簡便かつ高い精度で判別する方法を提供するものであり、農芸化学や食品化学の分野で広く応用することができる。   The present invention provides a simple and highly accurate method for discriminating the cultivated country or region of agricultural crops, particularly tea leaves, and can be widely applied in the fields of agricultural chemistry and food chemistry.

Claims (8)

農作物の栽培国または地域の判定方法であって、以下の工程:
栽培国または地域が既知の農作物に含有される硫黄の安定同位体比δ34Sを測定する工程;
同一種の農作物の試験サンプルに含有される硫黄の安定同位体比を測定する工程;および
それらのデータを比較し、試験サンプルの硫黄安定同位体比と近似の硫黄安定同位体比を示す栽培国または地域を特定する工程;
を含む、前記判定方法。
A method for determining a farming country or region of a crop, which includes the following steps:
Measuring the stable isotope ratio δ 34 S of sulfur contained in crops known to the country or region of cultivation;
Measuring the stable isotope ratio of sulfur in the test sample of the same type of crop; and comparing the data and showing the sulfur stable isotope ratio of the test sample and the approximate sulfur stable isotope ratio Or identifying the region;
Including the determination method.
農作物が茶葉である、請求項1記載の判定方法。   The determination method according to claim 1, wherein the crop is a tea leaf. 茶葉が日本産または中国産である、請求項2記載の判定方法。   The determination method according to claim 2, wherein the tea leaves are from Japan or China. 茶葉の栽培国または地域の判定方法であって、以下の工程:
中国および日本産の茶葉に含有される硫黄の安定同位体比δ34Sを測定する工程;
測定した硫黄安定同位体比の平均値と標準偏差を用いて中国産および日本産各々の前記平均値からのマハラノビスの汎距離が等しくなる境界値(Xとする)を
(X−日本産茶葉に含有される硫黄の安定同位体比の平均値)/日本産茶葉に含有される硫黄の安定同位体比の標準偏差
=(中国産茶葉に含有される硫黄の安定同位体比の平均値−X)/中国産茶葉に含有される硫黄の安定同位体比の標準偏差
で表す計算式により算出する工程;
中国または日本産の茶葉の試験サンプルに含有される硫黄の安定同位体比を測定する工程;および
試験サンプルの硫黄安定同位体比がX ‰以上であった場合はその栽培国は中国であると判定し、
試験サンプルの硫黄安定同位体比がX ‰未満であった場合はその栽培国は日本であると判定する工程;
を含む、前記方法。
A method for determining a tea leaf cultivation country or region, comprising the following steps:
Measuring a stable isotope ratio δ 34 S of sulfur contained in tea leaves produced in China and Japan;
Using the average value and standard deviation of the measured sulfur stable isotope ratio, the boundary value (assuming X) that the Mahalanobis's general distance from the average value in China and Japan is equal to each other is (X-Japanese tea leaves Average value of stable isotope ratio of sulfur contained) / Standard deviation of stable isotope ratio of sulfur contained in Japanese tea leaves = (Average value of stable isotope ratio of sulfur contained in Chinese tea leaves−X ) / Step of calculating by a calculation formula represented by the standard deviation of the stable isotope ratio of sulfur contained in Chinese tea leaves;
A step of measuring a stable isotope ratio of sulfur contained in a test sample of Chinese or Japanese tea leaves; and if the sulfur stable isotope ratio of the test sample is X ‰ or more, the growing country is China Judgment,
Determining that the country of cultivation is Japan if the sulfur stable isotope ratio of the test sample is less than X ‰;
Said method.
農作物の栽培国または地域の判定方法であって、以下の工程:
栽培国または地域が既知の農作物に含有される硫黄の安定同位体比δ34Sを測定する工程;
得られたデータにより栽培国または地域と硫黄安定同位体比δ34Sのデータベースを構築する工程;
同一種の農作物の試験サンプルに含有される硫黄の安定同位体比を測定する工程;および
該データベースを用いて試験サンプルの硫黄安定同位体比から栽培国または地域を判定する工程;
を含む、前記判定方法。
A method for determining a farming country or region of a crop, which includes the following steps:
Measuring the stable isotope ratio δ 34 S of sulfur contained in crops known to the country or region of cultivation;
Constructing a database of the sulfur stable isotope ratio δ 34 S with the cultivated country or region from the obtained data;
Measuring a stable isotope ratio of sulfur contained in a test sample of the same type of agricultural product; and determining a cultivated country or region from the sulfur stable isotope ratio of the test sample using the database;
Including the determination method.
農作物が茶葉である、請求項5記載の判定方法。   The determination method according to claim 5, wherein the crop is tea leaves. 茶葉が日本産または中国産である、請求項6記載の判定方法。   The determination method according to claim 6, wherein the tea leaves are from Japan or China. さらに炭素安定同位体比δ13Cの測定値を組合わせて判定する、請求項1〜7のいずれか一項記載の判定方法。 Furthermore, the determination method as described in any one of Claims 1-7 which determines combining the measured value of carbon stable isotope ratio (delta) 13C .
JP2009109834A 2009-04-28 2009-04-28 Method for determining cultivation country or area of agricultural product Pending JP2010256302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109834A JP2010256302A (en) 2009-04-28 2009-04-28 Method for determining cultivation country or area of agricultural product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109834A JP2010256302A (en) 2009-04-28 2009-04-28 Method for determining cultivation country or area of agricultural product

Publications (1)

Publication Number Publication Date
JP2010256302A true JP2010256302A (en) 2010-11-11

Family

ID=43317367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109834A Pending JP2010256302A (en) 2009-04-28 2009-04-28 Method for determining cultivation country or area of agricultural product

Country Status (1)

Country Link
JP (1) JP2010256302A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061183A (en) * 2011-09-12 2013-04-04 Nisshin Flour Milling Inc Origin discrimination method for australian wheat using trace element and isotopic ratio
CN103645239A (en) * 2013-12-20 2014-03-19 中国科学院地质与地球物理研究所 Method and device for analyzing sulfur isotopes in sulfate radical
CN104458891A (en) * 2014-12-19 2015-03-25 北京中防昊通科技中心 Method for tracing tea leaf production area by using inductive coupling plasma mass spectrum
CN105699472A (en) * 2016-01-21 2016-06-22 中国农业科学院茶叶研究所 Method for distinguishing production places of flat tea based on stable isotope proportion difference
CN106324106A (en) * 2015-06-15 2017-01-11 财团法人食品工业发展研究所 Method for distinguishing same tea product from different producing areas
JP2019158462A (en) * 2018-03-09 2019-09-19 株式会社関越物産 Determination method of place of origin for konjak powder and konjak processed product
JP2021501884A (en) * 2017-11-02 2021-01-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Use of stable isotopes to prove manufacturing site certification
JP2021089260A (en) * 2019-12-04 2021-06-10 中国計量大学 Reliable authenticity identification method for west lake longjing tea

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061183A (en) * 2011-09-12 2013-04-04 Nisshin Flour Milling Inc Origin discrimination method for australian wheat using trace element and isotopic ratio
CN103645239A (en) * 2013-12-20 2014-03-19 中国科学院地质与地球物理研究所 Method and device for analyzing sulfur isotopes in sulfate radical
CN104458891A (en) * 2014-12-19 2015-03-25 北京中防昊通科技中心 Method for tracing tea leaf production area by using inductive coupling plasma mass spectrum
CN106324106A (en) * 2015-06-15 2017-01-11 财团法人食品工业发展研究所 Method for distinguishing same tea product from different producing areas
CN106324106B (en) * 2015-06-15 2020-04-24 财团法人食品工业发展研究所 Method for distinguishing same tea product in two different producing areas
CN105699472A (en) * 2016-01-21 2016-06-22 中国农业科学院茶叶研究所 Method for distinguishing production places of flat tea based on stable isotope proportion difference
CN105699472B (en) * 2016-01-21 2019-02-05 中国农业科学院茶叶研究所 Flat tea place of production method of discrimination based on stable isotope proportional difference
JP2021501884A (en) * 2017-11-02 2021-01-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Use of stable isotopes to prove manufacturing site certification
JP2019158462A (en) * 2018-03-09 2019-09-19 株式会社関越物産 Determination method of place of origin for konjak powder and konjak processed product
JP7054516B2 (en) 2018-03-09 2022-04-14 株式会社関越物産 Method for determining the origin of konjac flour and processed konjac products
JP2021089260A (en) * 2019-12-04 2021-06-10 中国計量大学 Reliable authenticity identification method for west lake longjing tea

Similar Documents

Publication Publication Date Title
JP2010256302A (en) Method for determining cultivation country or area of agricultural product
CN108982692B (en) Method for distinguishing milk powder producing area by element analysis-stable isotope mass spectrum
Chung et al. Potential geo-discriminative tools to trace the origins of the dried slices of shiitake (Lentinula edodes) using stable isotope ratios and OPLS-DA
Portarena et al. Authentication and traceability of Italian extra-virgin olive oils by means of stable isotopes techniques
Luo et al. Multi-element (C, N, H, O) stable isotope ratio analysis for determining the geographical origin of pure milk from different regions
Bontempo et al. Isotopic and elemental profiles of Mediterranean buffalo milk and cheese and authentication of Mozzarella di Bufala Campana PDO: An initial exploratory study
JP2021081407A (en) Method and system for tracking mixture of production areas of imported beef
Laursen et al. Advances in isotopic analysis for food authenticity testing
Mottese et al. Traceability of Opuntia ficus‐indica L. Miller by ICP‐MS multi‐element profile and chemometric approach
Chung et al. Regional discrimination of Agaricus bisporus mushroom using the natural stable isotope ratios
Magdas et al. Discrimination markers for the geographical and species origin of raw milk within Romania
Del Coco et al. Protected Designation of Origin extra virgin olive oils assessment by nuclear magnetic resonance and multivariate statistical analysis:“Terra di Bari”, an Apulian (Southeast Italy) case study
Hamzić Gregorčič et al. Can we discover truffle’s true identity?
CN108195895A (en) A kind of tea leaf nitrogen content rapid detection method based on electronic nose and spectrophotometric color measurement instrument
Perini et al. Stable isotope ratio analysis combined with inductively coupled plasma‐mass spectrometry for geographical discrimination between Italian and foreign saffron
Prabhakar et al. Pecan color change during storage: Kinetics and Modeling of the Processes
Opatić et al. Geographical Origin Characterization of Slovenian Organic Garlic Using Stable Isotope and Elemental Composition Analyses.
Valenti et al. Changes in stable isotope ratios in PDO cheese related to the area of production and green forage availability. The case study of Pecorino Siciliano
Zhou et al. Origin verification of imported infant formula and fresh milk into China using stable isotope and elemental chemometrics
Jiang et al. Potential use of stable isotope and multi-element analyses for regional geographical traceability of bone raw materials for gelatin production
Mai et al. Food adulteration and traceability tests using stable carbon isotope technologies
Chen et al. A method for determining organophosphorus pesticide concentration based on near-infrared spectroscopy
Iacumin et al. Climatic factors influencing the isotope composition of Italian olive oils and geographic characterisation
Xu et al. Determining the geographical origin of milk by multivariate analysis based on stable isotope ratios, elements and fatty acids
Faberi et al. Italian Cheeses Discrimination by Means of δ 13 C and δ 15 N Isotopic Ratio Mass Spectrometry