JP5558991B2 - Wakame growing area identification method - Google Patents
Wakame growing area identification method Download PDFInfo
- Publication number
- JP5558991B2 JP5558991B2 JP2010212029A JP2010212029A JP5558991B2 JP 5558991 B2 JP5558991 B2 JP 5558991B2 JP 2010212029 A JP2010212029 A JP 2010212029A JP 2010212029 A JP2010212029 A JP 2010212029A JP 5558991 B2 JP5558991 B2 JP 5558991B2
- Authority
- JP
- Japan
- Prior art keywords
- wakame
- stable isotope
- sea
- isotope ratio
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241001261506 Undaria pinnatifida Species 0.000 title claims description 92
- 238000000034 method Methods 0.000 title claims description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 92
- 229910052757 nitrogen Inorganic materials 0.000 claims description 46
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 31
- 239000001301 oxygen Substances 0.000 claims description 31
- 229910052760 oxygen Inorganic materials 0.000 claims description 31
- 241001474374 Blennius Species 0.000 claims description 30
- 229910052799 carbon Inorganic materials 0.000 claims description 26
- 238000012850 discrimination method Methods 0.000 claims description 8
- 235000013305 food Nutrition 0.000 claims description 5
- 230000012010 growth Effects 0.000 claims description 5
- 239000003643 water by type Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 24
- 125000004429 atom Chemical group 0.000 description 13
- 239000013535 sea water Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 238000009360 aquaculture Methods 0.000 description 6
- 244000144974 aquaculture Species 0.000 description 6
- 235000013619 trace mineral Nutrition 0.000 description 6
- 239000011573 trace mineral Substances 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 5
- 238000009938 salting Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 241000195493 Cryptophyta Species 0.000 description 3
- 206010033546 Pallor Diseases 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000009313 farming Methods 0.000 description 3
- 230000029553 photosynthesis Effects 0.000 description 3
- 238000010672 photosynthesis Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011033 desalting Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 238000002307 isotope ratio mass spectrometry Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000010421 standard material Substances 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000199919 Phaeophyceae Species 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000004204 optical analysis method Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Description
本発明は、安定同位体比に基づいてワカメの生育海域を判別する方法に関する。 The present invention relates to a method for discriminating the sea area of seaweed based on stable isotope ratios.
日本国内に流通するワカメの市場への供給の内訳は、中国産が50%、韓国産が30%、国産が20%程度で、輸入ワカメが全体の80%を占める。この中でも養殖ワカメが大半であり、輸入ワカメは、ほぼ100%、国産ワカメでも全体の95%程度が養殖である。国産ワカメの主たる生産地域は、岩手・宮城(三陸)が全体の約70%、鳴門(徳島・兵庫)が約30%である。一方、輸入ワカメについては、中国産が中国・大連一帯、韓国産は韓国南部にて生産される。中国、韓国のワカメ生産は、日本の技術による養殖が原点である。 The breakdown of the supply of wakame that circulates in Japan is 50% from China, 30% from South Korea and 20% from domestic, and 80% of imported wakame. Most of these are farmed wakame, and almost 100% of imported wakame is farmed and about 95% of all domestic wakame is farmed. The main production areas for domestic wakame are Iwate / Miyagi (Sanriku), about 70%, and Naruto (Tokushima / Hyogo), about 30%. On the other hand, imported wakame is produced in China and Dalian, while in Korea, it is produced in southern Korea. The origin of wakame production in China and Korea originates from aquaculture using Japanese technology.
鳴門ワカメは、鳴門海域で生産されるもので、鳴門ワカメと表示される約70%は、徳島県阿南市から鳴門市にかけての海域で生産され、残りの約30%は、兵庫県(淡路島・南鳴門町の播磨灘側が養殖場)産となる。三陸(岩手、宮城)においては、宮城県北部三陸海岸、岩手全域の三陸海岸で養殖されている。ワカメの収穫は、中国、韓国、日本ともに冬場が中心で1−4月に収穫される。 Naruto Wakame is produced in the Naruto Sea area. About 70% of the name Naruto Wakame is produced in the sea area from Anan City to Naruto City in Tokushima Prefecture, and the remaining 30% is in Hyogo Prefecture (Awaji Island The Harima Pass side of Minaminaruto is from the farm. In Sanriku (Iwate, Miyagi), it is cultivated on the Sanriku Coast in the northern part of Miyagi Prefecture and on the Sanriku Coast throughout Iwate. Wakame is harvested from January to April, mainly in winter, in China, Korea and Japan.
国内で流通するワカメは、その大半が輸入ワカメであり、国産ワカメは全市場の20%程度の供給量しかない。一方、その価格においては、国産ワカメは、輸入ワカメの2−3倍の価格であり、輸入・国産の価格差が大きな食品とも言える。国産においても、ワカメの販売においては、三陸産、鳴門産という2大産地を表示して販売されるものが大半であり、その他としては、三陸・鳴門産、その他地域産を混合し国内産として販売するものがある。いずれにせよ、ワカメの場合、その産地(生育海域)は、商品販売において重要な価値を持つものである。 Most of the wakame circulated in the country is imported wakame, and domestic wakame has only about 20% supply of the whole market. On the other hand, domestic wakame is 2-3 times the price of imported wakame in terms of its price, and it can be said that the price difference between imported and domestic food is large. Also in Japan, most of the wakame is sold with Sanriku and Naruto from the two major localities. In addition, Sanriku / Naruto and other local products are mixed to produce domestic products. There is something to sell. In any case, in the case of wakame, the production area (growing sea area) has an important value in the sale of goods.
農産物や海産物等の食品の産地(生育海域)判別方法としては種々の方法が存在する。例えば、特許文献1には「アサリの産地判別方法」として、生産地によってアサリの塩基配列が異なることを利用して、日本産か否かを判別する方法が記載されている。この他にも、生産地域により食品に含まれる微量元素の割合が異なることを利用した微量元素分析法、成育環境の違いにより色や透明度等の光学的特性が異なることを利用した光学分析法等が多く用いられる。 There are various methods for discriminating food production areas (growing sea areas) such as agricultural products and marine products. For example, Patent Document 1 describes a method for determining whether or not a product is made in Japan by using the fact that the base sequence of a clam differs depending on the production location, as a “clam production region discrimination method”. In addition to this, trace element analysis methods that use different proportions of trace elements in food depending on the production area, optical analysis methods that use optical properties such as color and transparency that differ depending on the growth environment, etc. Is often used.
しかし、上記特許文献1に記載の生産地判別方法は、ワカメに対して用いることは事実上困難である。ワカメの場合、北方系のナンブワカメと南方系のワカメが遺伝的に相違がある事は判明している。しかし、現在流通する養殖ワカメの場合、その種苗の流通等天然ワカメとは異なり、輸入ワカメについては、もともと日本より種苗が持ち込まれているためである。 However, it is practically difficult to use the production location determination method described in Patent Document 1 for seaweed. In the case of wakame, it has been found that there is a genetic difference between northern Nambu wakame and southern wakame. However, in the case of aquaculture wakame that is currently distributed, unlike natural wakame such as the distribution of seedlings, imported wakame is originally brought from Japan.
また、微量元素分析法は、分析対象が生の状態か、未加工の状態である必要がある。つまり、例えば原藻ワカメを例にとると中国で生産された原藻ワカメと鳴門や三陸産の原藻ワカメを識別する事は可能であるが、もし中国で生産された原藻ワカメが、国内で再度洗浄、塩蔵処理等を施された場合には、ワカメが保持している周辺環境よりの微量元素が、洗浄、再度塩蔵により変動してしまう為、検査が困難になる。特に塩蔵ワカメの場合、塩が含有する微量成分の影響が大きく、この点からも、産地判別技術としては制約がある。 In addition, the trace element analysis method needs to be in a raw state or an unprocessed state. In other words, for example, the original algae wakame can be distinguished from the original algae wakame produced in China and the original algae wakame produced in Naruto and Sanriku. When cleaning and salting are performed again, trace elements from the surrounding environment held by the seaweed fluctuate due to cleaning and salting again, making inspection difficult. In particular, in the case of salted seaweed, the influence of trace components contained in the salt is large, and from this point as well, there are limitations as a technique for discriminating the production area.
光学分析法もワカメの生産地判別法としては不十分である。鳴門や三陸、中国、韓国という主要ワカメ生産地域では、養殖技術や、生育環境の差異から、生産されるワカメの色合いや、肉質等に差があると言われる。塩蔵ワカメにおいて、鳴門産等特定産地のワカメを70%程度の精度で判別する事が可能な水準にあるが、ワカメの生産からの時間経過による変色等により識別が困難となる等、現時点では用途が限定される。特に加工品には利用することができない。このように、ワカメの生育海域を判別するのに十分な方法は存在していなかった。 Optical analysis is also inadequate as a method for discriminating wakame production. In the main wakame production areas such as Naruto, Sanriku, China, and South Korea, it is said that there are differences in the color and quality of the seaweed produced due to differences in aquaculture technology and growth environment. In the salted seaweed, the wakame from a specific production area such as Naruto is at a level that can be distinguished with an accuracy of about 70%, but it is difficult to distinguish due to discoloration due to the passage of time since the production of seaweed. Is limited. In particular, it cannot be used for processed products. Thus, there was no sufficient method for discriminating the sea area where wakame grows.
以上のような事情に鑑み、本発明の目的は、ワカメの生育海域判別方法を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a method for determining a growing sea area of seaweed.
上記目的を達成するため、本発明の一形態に係るワカメ生育海域判別方法は、判別対象のワカメの安定同位体比を測定する。前記判別対象のワカメの安定同位体比と、第1の海域で生育したワカメの安定同位体比及び第2の海域で生育したワカメの安定同位体比とは比較される。前記判別対象のワカメが生育した海域が前記第1の海域であるか前記第2の海域であるかは判別される。 In order to achieve the above object, a wakame growing sea area discrimination method according to an embodiment of the present invention measures a stable isotope ratio of a wakame to be discriminated. The stable isotope ratio of the wakame to be discriminated is compared with the stable isotope ratio of the wakame grown in the first sea area and the stable isotope ratio of the wakame grown in the second sea area. It is determined whether the sea area where the wakame to be identified is grown is the first sea area or the second sea area.
本発明の一実施形態に係るワカメ生育海域判別方法は、判別対象のワカメの安定同位体比を測定する。前記判別対象のワカメの安定同位体比と、第1の海域で生育したワカメの安定同位体比及び第2の海域で生育したワカメの安定同位体比とは比較される。前記判別対象のワカメが生育した海域が前記第1の海域であるか前記第2の海域であるかは判別される。 The wakame growing area discrimination method according to an embodiment of the present invention measures the stable isotope ratio of the wakame to be discriminated. The stable isotope ratio of the wakame to be discriminated is compared with the stable isotope ratio of the wakame grown in the first sea area and the stable isotope ratio of the wakame grown in the second sea area. It is determined whether the sea area where the wakame to be identified is grown is the first sea area or the second sea area.
ワカメに含まれる幾つかの元素の安定同位体比は、そのワカメが生育した海域の地理的、環境的要因によって異なる。このため、地理的、環境的要因が異なる第1の海域及び第2の海域のそれぞれで生育したワカメの安定同位体比を予め取得し、判別対象のワカメの安定同位体比と比較することにより、判別対象のワカメが第1の海域で生育したか第2の海域で生育したかを判別することが可能となる。安定同位体比はワカメの構成元素から得られるので、湯通し、塩蔵、洗浄、脱塩、乾燥等のワカメの加工工程によって失われるものではなく、加工されたワカメであっても生育海域を判別することが可能である。 The stable isotope ratio of some elements contained in wakame varies depending on the geographical and environmental factors of the sea area where the wakame grew. For this reason, by obtaining in advance the stable isotope ratio of wakame grown in each of the first sea area and the second sea area having different geographical and environmental factors, and comparing it with the stable isotope ratio of the wakame to be discriminated It becomes possible to determine whether the wakame to be determined has grown in the first sea area or in the second sea area. Stable isotope ratios are obtained from wakame constituent elements, so they are not lost by processing processes such as blanching, salting, washing, desalination, drying, etc. It is possible.
前記第1の海域は瀬戸内海であり、前記第2の海域は瀬戸内海以外の海域である
ワカメ生育海域判別方法。
The first sea area is the Seto Inland Sea, and the second sea area is a sea area other than the Seto Inland Sea.
瀬戸内海は、地理的に外洋に対する閉鎖性が高く、海水の循環は制限されている。また、瀬戸内海は、沿岸に位置する、都市、農業、工業地域により陸上からの有機物流入量が多い。このような特徴から、瀬戸内海の海水に含まれる幾つかの元素の安定同位体比は外洋のそれと明確に異なる。したがって、第1の海域を瀬戸内海とし、第2の海域を瀬戸内海以外の海域とすることにより、第1の海域で生育したワカメと第2の海域で生育したワカメとを高精度に判別することが可能である。 The Seto Inland Sea is geographically highly closed to the open ocean, and the circulation of seawater is restricted. In addition, the Seto Inland Sea has a large amount of organic matter inflow from land due to cities, agriculture and industrial areas located on the coast. Because of these characteristics, the stable isotope ratios of some elements contained in seawater in the Seto Inland Sea are clearly different from those in the open ocean. Therefore, by setting the first sea area as the Seto Inland Sea and the second sea area as the sea area other than the Seto Inland Sea, the wakame grown in the first sea area and the wakame grown in the second sea area can be distinguished with high accuracy. It is possible.
前記安定同位体比は、少なくとも窒素の安定同位体比であってもよい。 The stable isotope ratio may be a stable isotope ratio of at least nitrogen.
上述のように、瀬戸内海と外洋の海水に含まれる幾つかの元素の安定同位体比は異なるとしたが、特に窒素は環境的要因による瀬戸内海と外洋での差が大きい。これにより、窒素の安定同位体比を判別に用いることにより、瀬戸内海で生育したワカメと外洋で生育したワカメとを高精度に判別することが可能である。 As described above, the stable isotope ratios of some elements contained in the Seto Inland Sea and the open ocean are different, but nitrogen is particularly different between the Seto Inland Sea and the open ocean due to environmental factors. Thus, by using the stable isotope ratio of nitrogen for discrimination, it is possible to discriminate between wakame grown in the Seto Inland Sea and wakame grown in the open ocean with high accuracy.
前記安定同位体比は、さらに酸素及び炭素を含む複数の元素の安定同位体比であってもよい。 The stable isotope ratio may be a stable isotope ratio of a plurality of elements further including oxygen and carbon.
ワカメを構成する炭素の安定同位体比は、光合成、海域の温度、炭酸塩濃度等、植物の生育環境に由来する。ワカメを構成する酸素の安定同位体比は、海域の場合、温度や陸上からの淡水の流入等により変動する。このように、炭素及び酸素の安定同位体比もワカメが生育する海域により影響を受ける。したがって、ワカメの生育海域の判別に、窒素の安定同位体比に加えて炭素及び酸素の安定同位体比を利用することにより、より高精度な判別が可能となる。 The stable isotope ratio of carbon constituting wakame is derived from the plant growth environment such as photosynthesis, sea temperature, and carbonate concentration. In the sea area, the stable isotope ratio of oxygen that constitutes the seaweed fluctuates depending on the temperature and the inflow of fresh water from the land. Thus, the stable isotope ratio of carbon and oxygen is also affected by the sea area where the seaweed grows. Therefore, by using the stable isotope ratio of carbon and oxygen in addition to the stable isotope ratio of nitrogen for the discrimination of the sea area where the seaweed grows, the discrimination can be made with higher accuracy.
前記判別対象のワカメは、食品としての加工済みワカメであってもよい。 The wakame to be discriminated may be processed wakame as food.
湯通し、塩蔵、洗浄、脱塩、乾燥等の加工による加工済みワカメは、未加工ワカメであれば保持している生育海域の情報の多く、例えば微量元素含有量や光学的特性等の情報を失ってしまう。このため、微量元素分析や光学分析等の分析方法により生育環境の情報を得ることは困難である。これに対し、本実施形態に係る判別方法はワカメを構成する元素の安定同位体比を利用するので、加工済みワカメであっても有効に生育海域を判別することが可能である。 Processed seaweed by processing such as blanching, salting, washing, desalting, drying, etc., loses much of the information on the growing sea area that is retained if it is unprocessed seaweed, such as trace element content and optical characteristics. End up. For this reason, it is difficult to obtain information on the growth environment by analysis methods such as trace element analysis and optical analysis. On the other hand, since the determination method according to the present embodiment uses the stable isotope ratio of the elements constituting the seaweed, it is possible to effectively determine the growing sea area even for processed seaweed.
以下、本発明の実施形態を説明する。 Embodiments of the present invention will be described below.
[安定同位体について]
物質を構成する原子の科学的性質は、原子を構成する陽子及び電子の数により決定される。そして原子番号として水素を筆頭に、各原子は、周期律表に基づきその原子の化学的性質が示されている。しかし、例えば窒素、炭素、酸素等の各原子は、電子・陽子数が同じでありながら、電気的には中性である中性子を異なる数もつ原子が存在する。このように化学的には「窒素」「炭素」「酸素」として同じ性質を持ちながら、中性子の数が異なる為に「質量」が異なる原子が存在し、これを「同位体」と言う。そして同位体には、自然界において放射能を放出しながら分解する「放射性同位体」と安定して存在する「安定同位体」が存在する。
[About stable isotopes]
The scientific nature of the atoms that make up a material is determined by the number of protons and electrons that make up the atoms. Then, with hydrogen as the atomic number, the chemical properties of each atom are shown based on the periodic table. However, for example, each atom such as nitrogen, carbon, and oxygen has the same number of electrons and protons, but there are atoms having different numbers of electrically neutral neutrons. In this way, there are atoms that have the same properties as “nitrogen”, “carbon”, and “oxygen”, but have different “mass” due to the different number of neutrons, which are called “isotopes”. The isotopes include “radioisotopes” that decompose while releasing radioactivity in nature and “stable isotopes” that exist stably.
窒素、炭素、酸素の各原子には、それぞれ質量の異なる安定同位体が存在する。窒素の場合、自然界の99.6%は、14N(中性子数14)であるが、0.4%程度中性子数が1多い(つまりより質量の重い)15Nが存在する。同様に、炭素では、12Cが98.9%、13Cが1.1%存在する。酸素の場合は、16Oが99.8%、18Oが0.2%存在する。このいわば「重い窒素、炭素、酸素」と「軽い窒素、炭素、酸素」の存在割合は、さまざまな要因により地理的要因により変動する。つまり、世界中の各地域においては、窒素、炭素、酸素の安定同位体の構成割合がわずかずつ異なり、この結果安定同位体は、地理的な特徴を示すマーカーとなる。 Each nitrogen, carbon, and oxygen atom has stable isotopes having different masses. In the case of nitrogen, 99.6% of the natural world is 14N (neutron number 14), but there is 15N with one more neutron number (that is, heavier mass) by about 0.4%. Similarly, in carbon, there are 98.9% 12C and 1.1% 13C. In the case of oxygen, there are 99.8% 16O and 0.2% 18O. In other words, the existence ratio of “heavy nitrogen, carbon, oxygen” and “light nitrogen, carbon, oxygen” varies depending on geographical factors due to various factors. In other words, the composition ratios of stable isotopes of nitrogen, carbon, and oxygen are slightly different in each region in the world, and as a result, the stable isotopes serve as markers indicating geographical features.
安定同位体の構成割合が地理的マーカーとなると記述したが、この比較には、重い原子と軽い原子の構成比を用いて表す。これを「安定同位体比」といい、2地点での安定同位体の構成割合を比較する場合、それぞれの地域での窒素、炭素、酸素の15N/14N、13C/12C、18O/16Oを対比する事で比較する。この比較においては、それぞれの構成割合の違いがわずかである事、また世界各地・物質間での比較評価を統一する為、国際原子力委員会(IAEA)により窒素、炭素、酸素安定同位体比の基準(ゼロ)となる物質が設定されている。各研究機関は、個々にIAEAにより値が決定された標準物質をもとに測定装置の基準を設置し、この標準物質の安定同位体比と、測定対象の物質の安定同位体比を対比した数値をもって評価を行う。 Although it has been described that the composition ratio of stable isotopes is a geographical marker, the composition ratio of heavy atoms and light atoms is used for this comparison. This is called “stable isotope ratio”. When comparing the composition ratios of stable isotopes at two locations, 15N / 14N, 13C / 12C, and 18O / 16O of nitrogen, carbon, and oxygen in each region are compared. Compare by doing. In this comparison, in order to unify the difference in the composition ratio of each, and to unify the comparative evaluation between various parts of the world and between materials, the International Atomic Energy Commission (IAEA) has established stable nitrogen, carbon and oxygen stable isotope ratios. The standard (zero) substance is set. Each research institution established the standard of the measuring device based on the standard material individually determined by IAEA, and compared the stable isotope ratio of this standard material with the stable isotope ratio of the substance to be measured. Evaluate with numerical values.
具体的には、窒素の場合、空気中の窒素の安定同位体比をゼロとし、それぞれの物質の安定同位体比の大小を標準物質の値への比率として決定する。同様に、炭素の場合は、米国産出の「矢石」という貝の化石を標準とし、その標準物質の安定同位体比と比較した割合を安定同位体比とする。酸素の場合は、特定海域の水を標準物質として用いる。 Specifically, in the case of nitrogen, the stable isotope ratio of nitrogen in the air is set to zero, and the magnitude of the stable isotope ratio of each substance is determined as the ratio to the value of the standard substance. Similarly, in the case of carbon, the fossil shell of “Yaishi” from the United States is used as the standard, and the ratio compared to the stable isotope ratio of the reference material is used as the stable isotope ratio. In the case of oxygen, water from a specific sea area is used as a standard substance.
[各元素の安定同位体比の決定要因]
物質を構成する原子の安定同位体比は、いくつかの要因により決定される。
窒素、炭素、酸素安定同位体比の決定要因の概略は以下の[表1]に示す通りである。
[Determinants of stable isotope ratio of each element]
The stable isotope ratio of atoms constituting the substance is determined by several factors.
The outline of the determinants of nitrogen, carbon and oxygen stable isotope ratios is as shown in [Table 1] below.
[ワカメ産地判別への安定同位体比の利用]
窒素、炭素、酸素安定同位体比は、上記のように地域の環境により変動する。従って、ワカメの場合、ワカメ生息地域において、生息するワカメの安定同位体比値を測定し、ワカメの産地別の安定同位体比値データを集積すれば、特定産地別のワカメの安定同位体比標準を作成する事ができる。
[Use of stable isotope ratio for discrimination of wakame production area]
Nitrogen, carbon, and oxygen stable isotope ratios vary depending on the local environment as described above. Therefore, in the case of wakame, stable isotope ratios of wakame by specific production area can be obtained by measuring stable isotope ratio values of wakame inhabiting and collecting stable isotope ratio data by wakame production area. You can create a standard.
例えば鳴門の場合、鳴門は地理的に瀬戸内海という閉鎖された海域という特徴がある。この海域は、内海の海水と外洋(太平洋)の海水の循環が閉鎖海域という特徴のため制約されている。一方、瀬戸内海は隣接する大都市、農業地域、工業地域により、常時陸上より有機物が流入している。 For example, in the case of Naruto, Naruto is geographically characterized as a closed sea area called the Seto Inland Sea. This area is constrained by the feature of closed seas and the circulation of inland sea water and open sea (Pacific) sea water. On the other hand, in the Seto Inland Sea, organic matter always flows from the land due to neighboring large cities, agricultural areas, and industrial areas.
従来より、瀬戸内海における過剰な窒素塩は、赤潮の原因となる等、瀬戸内海の各地方自治体は、瀬戸内海の浄化・環境保全に取り組んできた。窒素安定同位体比は、上記のように生物中で濃縮(分別)され、生物中にはより重い窒素が残ることが知られている。例えば大洋中の海水の窒素安定同位体比は、概ね0〜−1‰程度であり、これは大気中の窒素とほとんど変わらない。 Traditionally, each local government in the Seto Inland Sea has been working on purification and environmental preservation of the Seto Inland Sea, such as excessive nitrogen salts in the Seto Inland Sea causing red tides. The nitrogen stable isotope ratio is known to be concentrated (fractionated) in the organism as described above, and heavier nitrogen remains in the organism. For example, the stable nitrogen isotope ratio of seawater in the ocean is about 0 to -1 ‰, which is almost the same as nitrogen in the atmosphere.
一方、河川により陸上の有機物(生物由来)が流入する河口域や、陸上との境界である海岸付近では、陸上生物または生物由来の窒素が存在する為、この地域の窒素安定同位体比は、外洋よりも高く、例えば3−5‰という高い値を示す。瀬戸内海の場合、海域には近郊の都市圏、農業圏より常時生物由来の窒素が流入し、一方海域の水の循環は閉鎖海域の為、滞留期間が長い。このため瀬戸内海は、他の水の循環が良好な海域と異なり、特徴的に高い窒素安定同位体比を示す。 On the other hand, there are terrestrial or biological nitrogen in the estuary where inland organic matter (biological origin) flows in by rivers and in the vicinity of the coast that is the boundary with land, so the nitrogen stable isotope ratio of this region is It is higher than the open ocean and shows a high value of 3-5 ‰, for example. In the case of the Seto Inland Sea, nitrogen derived from living organisms always flows into the sea area from nearby urban and agricultural areas, while the circulation of water in the sea area is a closed sea area, so the residence period is long. For this reason, the Seto Inland Sea has a characteristic high nitrogen stable isotope ratio, unlike other sea areas with good water circulation.
この値は、従来より広島、兵庫等多くの自治体の環境調査により実証されてきた。これらの研究では、瀬戸内海の褐色海藻が、海域の窒素安定同位体比の目安の一つとして利用され、その窒素安定同位体比は、9‰程度と他の海域と比較して特異的に高い値を示す。このような事例は、九州有明海等、他の閉鎖海域でも見られるが、瀬戸内海という広大な海域の全域にわたり高い窒素安定同位体比を示す事は特筆されるものである。 This value has been proven by environmental surveys of many local governments such as Hiroshima and Hyogo. In these studies, brown seaweed in the Seto Inland Sea is used as one of the criteria for stable nitrogen isotope ratio in the sea area, and its nitrogen stable isotope ratio is about 9 ‰, which is specific compared to other sea areas. High value. Such cases can be seen in other closed waters such as Kyushu Ariake Sea, but it is noteworthy that it shows a high nitrogen stable isotope ratio over the vast sea area of the Seto Inland Sea.
従って、鳴門海域で生産されるワカメは、当然高い窒素安定同位体比を示す海域にて生産されるものであり、瀬戸内海の窒素安定同位体比の特徴を示す事になる。一方、三陸(岩手・宮城)においては、ワカメ養殖場は、太平洋(外洋)に養殖筏を設置した外洋性養殖法と、リアス式海外内に養殖筏を設置した内湾性養殖法がある。まず外洋性養殖においては、三陸沖の太平洋の窒素安定同位体比は、外洋の窒素安定同位体比の値である0〜−2‰程度を示し、リアス式海外内湾における窒素安定同位体比は、海域の水循環及び都市圏由来の陸上生物由来窒素の影響にもよるが3〜7‰程度である。 Therefore, the seaweed produced in the Naruto Sea area is naturally produced in the sea area showing a high nitrogen stable isotope ratio, and will show the characteristics of the nitrogen stable isotope ratio in the Seto Inland Sea. On the other hand, in Sanriku (Iwate / Miyagi), there are two types of wakame farms: an open-sea farming method with farming troughs installed in the Pacific Ocean (open ocean) and an inner-bay aquaculture method with farming troughs installed in Rias overseas. First, in open-sea aquaculture, the nitrogen stable isotope ratio in the Pacific Ocean off Sanriku shows a value of 0 to -2 ‰, which is the value of the nitrogen stable isotope ratio in the open ocean. Although it depends on the water circulation in the sea area and the influence of nitrogen derived from terrestrial organisms derived from urban areas, it is about 3 to 7 ‰.
つまり、国内の主たるワカメ生産のほぼ全量を占める三陸と鳴門地域においては、ワカメ養殖の海域の窒素安定同位体比が大きく異なる。同様に、中国の主たる生産地である大連一帯は、黄海に面した海域であり、鳴門のような閉鎖海域ではない。近年の中国の重工業者、地域開発を受けて海域に陸上由来の有機物の流入が拡大しているが、海域としては、黄海に面しており流入物質の拡散は、瀬戸内海のような閉鎖性はない。韓国については、韓国南部・済州島一帯が生産地であるが、同様に黄海に面しており、海域の閉鎖性はない。従って、鳴門産と鳴門産以外(中国、韓国、三陸)のワカメは、生育地域の海域の閉鎖性において大きな差異があり、窒素安定同位体比に差異が生ずる。 In other words, in the Sanriku and Naruto areas, which account for almost all of the main domestic wakame production in Japan, the stable nitrogen isotope ratios of wakame-cultured sea areas differ greatly. Similarly, Dalian, China's main production area, faces the Yellow Sea and is not closed like Naruto. In recent years, China's heavy industry and regional development have led to an increase in the inflow of organic matter derived from land to the sea. However, the sea is facing the Yellow Sea, and the diffusion of the inflowing substance is closed like the Seto Inland Sea. There is no. As for South Korea, the southern part of South Korea and Jeju Island is the production area, but it faces the Yellow Sea as well, and there is no closure of the sea area. Therefore, wakame from Naruto and non-Naruto (China, South Korea, Sanriku) have a great difference in the closure of the sea area of the growing area, and the stable nitrogen isotope ratio is different.
次に、炭素及び酸素安定同位体比であるが、ワカメの場合、ワカメの構成組織中の炭素安定同位体比は、光合成、海域の温度、炭酸塩濃度等、植物の生育環境に由来する。酸素安定同位体比は、海域の場合、温度や陸上からの淡水の流入等により変動する。海水温度が低いほど植物組織中の酸素安定同位体比は高くなる。例えば貝の貝殻の酸素安定同位体比は、生育海域の水温と相関しており、貝殻の酸素安定同位体比の測定により海域の温度変動の研究等に用いられている。ワカメの場合、鳴門海域の表層海水温度は、3月が最も低く9℃程度である。一方、三陸では、3℃程度、中国大連では1℃程度となる。このような生育環境の温度差、海水中の栄養塩の由来等の相違から、炭素、酸素安定同位体比も産地による変動が生じる。 Next, regarding the stable isotope ratio of carbon and oxygen, in the case of seaweed, the carbon stable isotope ratio in the constituent structure of seaweed is derived from the plant growth environment such as photosynthesis, sea temperature, carbonate concentration and the like. In the case of the sea area, the stable oxygen isotope ratio varies depending on the temperature, the inflow of fresh water from the land, and the like. The lower the seawater temperature, the higher the oxygen stable isotope ratio in the plant tissue. For example, the oxygen stable isotope ratio of shells of shellfish correlates with the water temperature of the growing sea area, and is used for the study of temperature fluctuations in the sea area by measuring the oxygen stable isotope ratio of shells. In the case of wakame, the surface seawater temperature in the Naruto area is the lowest in March, around 9 ° C. On the other hand, in Sanriku, it is about 3 ° C, and in Dalian, China it is about 1 ° C. Due to such differences in the temperature of the growth environment and the origin of nutrient salts in seawater, the carbon and oxygen stable isotope ratios also vary depending on the production area.
以上のように養殖環境における窒素源の相違、生育環境での海水、栄養塩、日照による光合成の差異等、ワカメ生育環境が反映されるワカメ組織構成の窒素、炭素、酸素安定同位体比は、ワカメ産地の地理的特徴を示す。さらに、こられの原子は、ワカメ組織を構成する原子であり、含まれる物質ではない。つまり、ワカメの加工工程である、湯通し、塩蔵、洗浄、脱塩、乾燥等の各工程においても、植物組織を構成する原子が、周辺の原子と置換する事はない。このため、生ワカメから、乾燥ワカメ等の加工製品に至るまで、産地由来情報を組織中の窒素、炭素、酸素安定同位体比が保持する事から、原料段階のみならず、製品段階においても由来産地の検証に利用する事が可能となる。 As described above, the nitrogen, carbon, and oxygen stable isotope ratios of the wakame tissue structure that reflects the wakame growing environment, such as differences in nitrogen source in the aquaculture environment, seawater in the growing environment, differences in photosynthesis by sunlight, etc. Shows the geographical characteristics of the wakame locality. Furthermore, these atoms are atoms constituting a wakame structure and are not contained substances. In other words, in each process such as blanching, salting, washing, desalting, drying, etc., which are processing processes for seaweed, atoms constituting the plant tissue are not replaced with surrounding atoms. Therefore, from raw wakame to processed products such as dried wakame, the nitrogen, carbon, and oxygen stable isotope ratios in the organization retain the information on the origin of the origin, so it originates not only in the raw material stage but also in the product stage. It can be used to verify the production area.
[ワカメの安定同位体比測定方法]
測定対象のワカメ(以下、サンプルワカメ)について、窒素、炭素及び酸素それぞれの安定同位体比を測定する。この測定は、安定同位体質量分析計(IR−MS:isotope ratio mass spectrometry)によって行うことができる。IR−MSはサンプルガスを熱電子の照射によりイオン化し、真空中で電圧をかけて加速した粒子線を強磁場で曲げ、質量及び電荷の違いによる曲がり具合の差によって同位体を分離し定量するものである。より具体的には、炭素及び窒素の安定同位体比の測定には燃焼型安定同位体比質量分析計(DELTA V(Thermofisher Scientific社製)等)を使用することができ、酸素の安定同位体比の測定には、熱分解型安定同位体比質量分析計(Flash EA 2000(Thermofisher Scientific社製)等)を使用することができる。
[Method for measuring stable isotope ratio of seaweed]
The stable isotope ratios of nitrogen, carbon, and oxygen are measured for the wakame to be measured (hereinafter, sample wakame). This measurement can be performed by a stable isotope mass spectrometer (IR-MS). In IR-MS, sample gas is ionized by thermionic irradiation, and a particle beam accelerated by applying a voltage in a vacuum is bent in a strong magnetic field, and isotopes are separated and quantified by differences in bending due to differences in mass and charge. Is. More specifically, a stable isotope ratio mass spectrometer such as DELTA V (manufactured by Thermofisher Scientific) can be used to measure stable isotope ratios of carbon and nitrogen, and stable isotopes of oxygen. For the measurement of the ratio, a pyrolysis-type stable isotope ratio mass spectrometer (Flash EA 2000 (manufactured by Thermofisher Scientific) or the like) can be used.
[ワカメの産地判別方法]
上述のようにして測定したサンプルワカメの安定同位体比から、当該ワカメの生育海域(産地)を判別する方法について説明する。
[Wakame production method]
A method of discriminating the sea area (production area) of the seaweed from the stable isotope ratio of the sample seaweed measured as described above will be described.
本実施形態では、サンプルワカメが鳴門産であるか、鳴門産以外(三陸産及び輸入)であるかを判別するものとする。判別には、由来の明確な各産地産のワカメの安定同位体データベースを用いる。この安定同位体データベースは、由来の明確な各産地産のワカメについて上述のような安定同位体比測定により得られるものである。図1に、安定同位体ベースから抽出した、窒素「d15N」及び酸素「d18O」についての安定同位体比(‰)の散布図を示す。同図には、207検体の鳴門産ワカメと、501検体の鳴門産以外(三陸産及び輸入)のワカメの安定同位体比が示されている。 In the present embodiment, it is determined whether the sample wakame is from Naruto or other than Naruto (Sanriku and Import). For identification, a stable isotope database of wakame from each locality with clear origin is used. This stable isotope database is obtained by measuring the stable isotope ratios of wakame produced in each production area. FIG. 1 shows a scatter diagram of stable isotope ratios (‰) for nitrogen “d15N” and oxygen “d18O” extracted from a stable isotope base. The figure shows the stable isotope ratios of 207 Naruto wakame and 501 non-Naruto (Sanriku and imported) wakame.
なお、図1には、窒素及び酸素についての安定同位体比が示されているが、安定同位体データベースには炭素の安定同位体比も含まれており、判別に用いることができる。図1に示すように、鳴門産ワカメと鳴門産以外のワカメの窒素及び酸素の安定同位対比はほぼ明確にグループ分けできるため、安定同位体比に基づいて、サンプルワカメがいずれのグループに属するか、即ち、いずれを産地とするかを判別することが可能である。 FIG. 1 shows the stable isotope ratios for nitrogen and oxygen, but the stable isotope database also includes the stable isotope ratio of carbon and can be used for discrimination. As shown in Figure 1, the nitrogen and oxygen stable isotopes of Naruto and non-Naruto wakame can be grouped almost clearly, so based on the stable isotope ratio, which group the sample wakame belongs to That is, it is possible to determine which is the production area.
具体的には、サンプルワカメの安定同位体比が、何れのグループに属するかを判別関数を用いた統計解析的手法により判別することができる。判別関数には、超平面・直線による線形判別関数 (linear discriminant function)と、非線形の場合には超曲面・曲線によるマハラノビス汎距離(Mahalanobis' generalized distance)による非線形判別関数とがある。3つ以上のグループの判別も可能である。これは重判別分析(multiple discriminant analysis)や正準判別分析と呼ばれる。判別式の妥当性は、誤判別率等で評価できる。適した変数選択と判別方法にもとづいて分析することが必要であり、判別式(のみならず変数選択)の妥当性を検証する手法として、元のデータから1つだけ外して判別(モデル)式を得、外したデータを新たなデータとして適用した際に妥当な結果が得られるかを検証する、1つとって置き法(leave-1-out)等が一般に用いられる。 Specifically, it is possible to determine which group the stable isotope ratio of the sample seaweed belongs to by a statistical analysis method using a discriminant function. The discriminant functions include a linear discriminant function based on a hyperplane / straight line and a nonlinear discriminant function based on a Mahalanobis' generalized distance based on a hypersurface / curve in the case of non-linearity. Three or more groups can be distinguished. This is called multiple discriminant analysis or canonical discriminant analysis. The validity of the discriminant can be evaluated by the misclassification rate or the like. It is necessary to analyze based on suitable variable selection and discrimination method, and as a method to verify the validity of discriminant formula (not only variable selection), discriminating (model) formula by removing only one from the original data In general, a leave method (leave-1-out) or the like is generally used to verify whether a valid result is obtained when the removed data is applied as new data.
以上のように、本実施形態では、サンプルワカメの安定同位体比を測定して、安定同位体比データベースと比較することにより、サンプルワカメの産地を判別することが可能である。 As described above, in this embodiment, it is possible to determine the production area of the sample seaweed by measuring the stable isotope ratio of the sample seaweed and comparing it with the stable isotope ratio database.
本発明はこの実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において変更することが可能である。 The present invention is not limited to this embodiment, and can be modified within the scope not departing from the gist of the present invention.
サンプルワカメの窒素安定同位体比d15Nと酸素安定同位体比d18Oが、以下の判別式(式1)を用いて鳴門産であるか、鳴門産以外であるかを判別した。 It was determined whether the nitrogen stable isotope ratio d15N and oxygen stable isotope ratio d18O of the sample seaweed were from Naruto or from other than Naruto using the following discriminant (Formula 1).
Z=d15N×0.501+d18O×(−0.068)−1.364 (式1) Z = d15N × 0.501 + d18O × (−0.068) −1.364 (Formula 1)
各係数は図1に示した由来の明確な各産地産のワカメの安定同位体比から、統計解析的手法により算出したものである。この式により算出されたZが、0.7937より大きければ鳴門産と判別し、小さければ鳴門以外産と判別した。0.7973は、グループ重心の関数の鳴門群平均(2.705)と鳴門外群平均(−1.118)の平均値である。 Each coefficient is calculated by a statistical analysis method from the stable isotope ratios of wakame of each local production origin clearly shown in FIG. If Z calculated by this formula is larger than 0.7937, it is determined that the product is Naruto, and if it is smaller, it is determined that the product is other than Naruto. 0.7973 is the average value of the naruto group average (2.705) and naruto group average (−1.118) of the function of the group centroid.
[表2]に、判別結果を示す。同表に示すように、708個のサンプルについて判別したところ703個が正しく判別された。即ち、サンプルワカメが鳴門産か鳴門以外産かを正しく判別した割合は99.3%であった。なお、各サンプルの値を除いて、判別を実施する事で(交差妥当化)妥当性検証を実施している。 Table 2 shows the discrimination results. As shown in the table, when 708 samples were determined, 703 were correctly determined. That is, the rate of correctly discriminating whether the sample wakame was produced from Naruto or other than Naruto was 99.3%. In addition, validity verification is performed by performing discrimination (cross validation) except for the value of each sample.
Claims (5)
前記判別対象のワカメの安定同位体比と、瀬戸内海で生育したワカメの安定同位体比及び瀬戸内海以外の海域で生育したワカメの安定同位体比とを比較し、
前記判別対象のワカメが生育した海域が瀬戸内海であるか瀬戸内海以外の海域であるかを判別する
ワカメ生育海域判別方法。 Measure the stable isotope ratio of the wakame
Compare the stable isotope ratio of the wakame to be discriminated with the stable isotope ratio of wakame grown in the Seto Inland Sea and the stable isotope ratio of wakame grown in the sea area other than the Seto Inland Sea ,
A wakame growing sea area discrimination method for discriminating whether the sea area where the wakame to be discriminated has grown is the Seto Inland Sea or an area other than the Seto Inland Sea .
前記安定同位体比は、少なくとも窒素の安定同位体比である
ワカメ生育海域判別方法。 A wakame growing area determination method according to claim 1 ,
The stable isotope ratio is a stable isotope ratio of at least nitrogen.
前記安定同位体比は、さらに酸素を含む複数の元素の安定同位体比である
ワカメ生育海域判別方法。 It is the seaweed growing sea area discrimination method according to claim 2 ,
The stable isotope ratio is a stable isotope ratio of a plurality of elements including oxygen.
Wakame growth area identification method.
前記安定同位体比は、さらに炭素を含む複数の元素の安定同位体比である
ワカメ生育海域判別方法。 It is the seaweed growing sea area discrimination method according to claim 3,
The stable isotope ratios, seaweed growing waters discriminating method is stable isotope ratios of a plurality of elements including a-carbon to further.
前記判別対象のワカメは、食品としての加工済みワカメである
ワカメ生育海域判別方法。 It is the seaweed growing sea area discrimination method according to claim 4,
The wakame to be identified is a processed wakame as food.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010212029A JP5558991B2 (en) | 2010-09-22 | 2010-09-22 | Wakame growing area identification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010212029A JP5558991B2 (en) | 2010-09-22 | 2010-09-22 | Wakame growing area identification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012068089A JP2012068089A (en) | 2012-04-05 |
JP5558991B2 true JP5558991B2 (en) | 2014-07-23 |
Family
ID=46165545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010212029A Active JP5558991B2 (en) | 2010-09-22 | 2010-09-22 | Wakame growing area identification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5558991B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019158462A (en) * | 2018-03-09 | 2019-09-19 | 株式会社関越物産 | Determination method of place of origin for konjak powder and konjak processed product |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6455834B2 (en) * | 2014-12-24 | 2019-01-23 | 理研ビタミン株式会社 | How to determine the sea area of wakame |
JP6459495B2 (en) * | 2014-12-24 | 2019-01-30 | 理研ビタミン株式会社 | How to determine the sea area of wakame |
CN114846327A (en) * | 2019-12-20 | 2022-08-02 | 日本电信电话株式会社 | Determination system, verification device, and determination method |
CN112772304B (en) * | 2021-01-14 | 2022-11-15 | 中国科学院地理科学与资源研究所 | Method for identifying vegetation water utilization in desert area |
CN118362628A (en) * | 2024-04-11 | 2024-07-19 | 广东海洋大学 | Method for testing flux of nutrient salt delivered by seawater water mass based on oxyhydrogen isotope analysis |
-
2010
- 2010-09-22 JP JP2010212029A patent/JP5558991B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019158462A (en) * | 2018-03-09 | 2019-09-19 | 株式会社関越物産 | Determination method of place of origin for konjak powder and konjak processed product |
JP7054516B2 (en) | 2018-03-09 | 2022-04-14 | 株式会社関越物産 | Method for determining the origin of konjac flour and processed konjac products |
Also Published As
Publication number | Publication date |
---|---|
JP2012068089A (en) | 2012-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5558991B2 (en) | Wakame growing area identification method | |
Chang et al. | Taxonomic and geographic influences on fish otolith microchemistry | |
Zonneveld et al. | Selective preservation of organic-walled dinoflagellate cysts as a tool to quantify past net primary production and bottom water oxygen concentrations | |
Wanamaker et al. | Very long-lived mollusks confirm 17th century AD tephra-based radiocarbon reservoir ages for North Icelandic shelf waters | |
Clarke et al. | High connectivity among locally adapted populations of a marine fish (Menidia menidia) | |
Hong et al. | Carbon stock evaluation of selected mangrove forests in peninsular Malaysia and its potential market value | |
Correia et al. | Population structure and connectivity of the European conger eel (Conger conger) across the north-eastern Atlantic and western Mediterranean: integrating molecular and otolith elemental approaches | |
Cuveliers et al. | Microchemical variation in juvenile Solea solea otoliths as a powerful tool for studying connectivity in the North Sea | |
Correia et al. | Insights into population structure of Diplodus vulgaris along the SW Portuguese coast from otolith elemental signatures | |
Kaggwa et al. | Ecomorphological variability of A rthrospira fusiformis (C yanoprokaryota) in A frican soda lakes | |
Josué et al. | Zooplankton functional diversity as an indicator of a long‐term aquatic restoration in an Amazonian lake | |
Correia et al. | Population structure of the black seabream Spondyliosoma cantharus along the south‐west Portuguese coast inferred from otolith chemistry | |
Jin et al. | Accurate mapping of seaweed farms with high-resolution imagery in China | |
Sluis et al. | Discrimination of juvenile red snapper otolith chemical signatures from Gulf of Mexico nursery regions | |
Rahim et al. | Assessment of mangrove biodiversity and community structure as a basis for sustainable conservation and management plan in Tambakbulusan, Demak, Central Java | |
Zhang et al. | DNA barcoding of marine fish species in the waters surrounding Hainan Island, northern South China Sea | |
Jha et al. | Coastal and marine environmental quality assessments | |
Gillanders et al. | Distinguishing aquaculture and wild yellowtail kingfish via natural elemental signatures in otoliths | |
Breheny et al. | Ichthyoplankton assemblages associated with pink snapper (Pagrus auratus) spawning aggregations in coastal embayments of southwestern Australia | |
Krzemnicki et al. | Age determination of pearls: A new approach for pearl testing and identification | |
Domínguez‐May et al. | Harvesting time optimization and risk analysis for the mariculture of K appaphycus alvarezii (R hodophyta) | |
Silva et al. | Gas exchange and chlorophyll a fluorescence parameters of ornamental bromeliads | |
Bayer et al. | Predictors of biofilm biomass in oligotrophic headwater streams | |
Liao et al. | Water quality during development and apportionment of pollution from rivers in Tapeng Lagoon, Taiwan | |
Dyer | Stable isotope ecology of South African kelp forests |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130607 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20140225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140527 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140605 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5558991 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |