JP7050550B2 - Differential scanning calorimetry - Google Patents

Differential scanning calorimetry Download PDF

Info

Publication number
JP7050550B2
JP7050550B2 JP2018064169A JP2018064169A JP7050550B2 JP 7050550 B2 JP7050550 B2 JP 7050550B2 JP 2018064169 A JP2018064169 A JP 2018064169A JP 2018064169 A JP2018064169 A JP 2018064169A JP 7050550 B2 JP7050550 B2 JP 7050550B2
Authority
JP
Japan
Prior art keywords
container
sample
sample container
differential scanning
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018064169A
Other languages
Japanese (ja)
Other versions
JP2019174335A (en
Inventor
章司 関原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2018064169A priority Critical patent/JP7050550B2/en
Publication of JP2019174335A publication Critical patent/JP2019174335A/en
Application granted granted Critical
Publication of JP7050550B2 publication Critical patent/JP7050550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、示差走査熱量計に関し、詳しくは、測定試料を収納する試料容器の洗浄機能を備えた示差走査熱量計に関する。 The present invention relates to a differential scanning calorimeter, and more particularly to a differential scanning calorimeter having a function of cleaning a sample container for storing a measurement sample.

示差走査熱量計は、測定対象となる試料(測定試料)を収納した試料容器と、基準となる試料(標準試料)を収納あるいは何も収納しない基準容器とを炉体内に格納するとともに、ヒータによって両容器を一定の昇温速度で加熱し、加熱中の標準試料と測定試料との温度差を熱電対などの温度センサーで検出することにより、測定試料が放出又は吸収する熱量を測定し、有機高分子化合物の融解・転移、ガラス転移、結晶化・酸化・硬化、脱水・昇華などの熱挙動や発熱量や吸熱量をはじめとした熱物性データを採取している(例えば、特許文献1参照。)。 The differential scanning calorimeter stores a sample container containing the sample to be measured (measurement sample) and a reference container containing the reference sample (standard sample) or nothing in the furnace, and also uses a heater. By heating both containers at a constant temperature rise rate and detecting the temperature difference between the standard sample being heated and the measurement sample with a temperature sensor such as a thermocouple, the amount of heat released or absorbed by the measurement sample is measured and organic. We collect thermal property data such as thermal behavior such as melting / transition, glass transition, crystallization / oxidation / hardening, dehydration / sublimation of polymer compounds, calorific value and heat absorption (see, for example, Patent Document 1). .).

特開平5-273167号公報Japanese Unexamined Patent Publication No. 5-273167

このような示差走査熱量計では、測定後の試料容器の内面が試料物質や反応生成物、分解生成物などで汚染されているおそれがあるため、基本的に試料容器は使い捨てであり、測定回数以上の試料容器を用意しなければならず、各測定毎に試料容器を交換しなければならないなど、熱物性データを採取する際のコストが多大なものとなっていた。 In such a differential scanning calorimeter, the inner surface of the sample container after measurement may be contaminated with sample substances, reaction products, decomposition products, etc. Therefore, the sample container is basically disposable and the number of measurements is repeated. Since the above sample container had to be prepared and the sample container had to be replaced for each measurement, the cost for collecting the thermophysical property data was large.

そこで本発明は、測定後の試料容器の洗浄などを効率よく行うことができ、試料容器を繰り返し使用可能な構成を備えた示差走査熱量計を提供することを目的としている。 Therefore, an object of the present invention is to provide a differential scanning calorimeter having a configuration in which a sample container can be efficiently washed after measurement and the sample container can be used repeatedly.

上記目的を達成するため、本発明の示差走査熱量計は、測定試料を収納する試料容器と標準試料を収納する基準容器とを格納する炉体と、試料容器及び基準容器を加熱する加熱手段と、試料容器及び基準容器に測定用雰囲気ガスを導入する雰囲気ガス導入経路と、前記標準試料及び測定試料の温度を測定する温度測定手段とを備えた示差走査熱量計において、前記試料容器にパージガスを流通させるパージガス導入経路と、前記試料容器に測定試料を投入する試料投入経路と、前記試料容器の内部に挿入される挿入管と、洗浄液を貯留した洗浄液容器と、リンス液を貯留したリンス液容器と、洗浄液又はリンス液を前記挿入管に向けて送液するポンプを有する洗浄流体導入経路と、前記試料容器から流体を導出する流体導出経路と、前記リンス液を使用したリンス操作中に前記流体導出経路から導出したリンス排液の導電率を測定する導電率計とを備えていることを特徴としている。 In order to achieve the above object, the differential scanning calorimeter of the present invention includes a furnace body for storing a sample container for storing a measurement sample and a reference container for storing a standard sample, and a heating means for heating the sample container and the reference container. In a differential scanning calorimeter equipped with an atmosphere gas introduction path for introducing a measurement atmosphere gas into a sample container and a reference container, and a temperature measuring means for measuring the temperature of the standard sample and the measurement sample, purge gas is added to the sample container. The purge gas introduction route to be distributed, the sample input route to charge the measurement sample into the sample container, the insertion tube inserted inside the sample container, the cleaning liquid container storing the cleaning liquid, and the rinsing liquid container storing the rinse liquid. A cleaning fluid introduction path having a pump for sending the cleaning solution or the rinsing solution toward the insertion tube, a fluid out-flowing path for deriving the fluid from the sample container, and the fluid during a rinsing operation using the rinsing solution. It is characterized by being equipped with a conductivity meter that measures the conductivity of the rinse drainage derived from the lead-out path.

さらに、本発明の示差走査熱量計は、前記洗浄液を使用した洗浄操作中に前記流体導出経路に導出した洗浄排液を前記洗浄液容器に戻す洗浄液返送配管を備えていること、前記洗浄液がフッ化水素酸水溶液であり、好ましくはフッ化水素酸を0.1~1.0質量%含有するフッ化水素酸水溶液であることを特徴とし、前記リンス液が純水であることを特徴としている。また、前記試料容器内における前記洗浄液の流速が0.63m/sec未満、好ましくは0.06~0.15m/secであることを特徴としている。 Further, the differential scanning calorimeter of the present invention is provided with a cleaning liquid return pipe for returning the cleaning waste liquid led out to the fluid lead-out path to the cleaning liquid container during the cleaning operation using the cleaning liquid, and the cleaning liquid is fluorinated. It is a hydrofluoric acid aqueous solution, preferably a hydrofluoric acid aqueous solution containing 0.1 to 1.0% by mass of hydrofluoric acid, and the rinse liquid is pure water. Further, the flow velocity of the cleaning liquid in the sample container is less than 0.63 m / sec, preferably 0.06 to 0.15 m / sec.

本発明の示差走査熱量計によれば、一つの試料容器を洗浄して繰り返し使用することができるので、測定回数分の専用試料容器を用意する必要がなくなり、測定コストの低減を図ることができる。また、同じ試料容器を使用するため、試料容器の熱容量のばらつきによる誤差を解消でき、より正確かつ容易に比較可能なデータを採取できるとともに、試料容器の着脱交換が不要になるため、作業効率の向上も図れる。 According to the differential scanning calorimeter of the present invention, one sample container can be washed and used repeatedly, so that it is not necessary to prepare a dedicated sample container for the number of measurements, and the measurement cost can be reduced. .. In addition, since the same sample container is used, errors due to variations in the heat capacity of the sample container can be eliminated, more accurate and easily comparable data can be collected, and the sample container does not need to be attached or detached, thus improving work efficiency. It can also be improved.

本発明の示差走査熱量計の一形態例を示す系統図である。It is a system diagram which shows one form example of the differential scanning calorimetry of this invention.

図1は、本発明の示差走査熱量計の一形態例を示す系統図である。本形態例に示す示差走査熱量計は、測定試料を収納する試料容器11と標準試料を収納する基準容器12とを格納する炉体13と、試料容器11及び基準容器12を加熱する加熱手段14と、試料容器11及び基準容器12に測定用雰囲気ガスを導入する雰囲気ガス導入経路15と、標準試料及び測定試料の温度をそれぞれ測定する温度測定手段11a,12aと、前記試料容器11にパージガスを導入するパージガス導入経路16と、試料容器11に測定試料を投入する試料投入経路17と、試料容器11の内部に挿入される挿入管18と、洗浄液を貯留した洗浄液容器19と、リンス液を貯留したリンス液容器20と、洗浄液又はリンス液を挿入管18に向けて送液する送液ポンプ21aを有する洗浄流体導入経路21と、試料容器11から流体を導出する流体導出経路22と、リンス液を使用したリンス操作中に前記流体導出経路22から導出したリンス排液の導電率を測定する導電率計23とを備えるとともに、各経路の所定位置にそれぞれ設けられた開閉弁又は三方切替弁やバイパス経路を備えている。また、一部の経路は共通化されており、開閉弁の開閉や三方切替弁の切り替えにより、共通の経路を切り替え使用するように形成されている。 FIG. 1 is a system diagram showing an example of a form of a differential scanning calorimeter of the present invention. The differential scanning calorimeter shown in this embodiment is a furnace body 13 that stores a sample container 11 that stores a measurement sample and a reference container 12 that stores a standard sample, and a heating means 14 that heats the sample container 11 and the reference container 12. , The atmosphere gas introduction path 15 for introducing the atmosphere gas for measurement into the sample container 11 and the reference container 12, the temperature measuring means 11a and 12a for measuring the temperatures of the standard sample and the measurement sample, respectively, and the purge gas in the sample container 11. The purge gas introduction path 16 to be introduced, the sample injection path 17 for charging the measurement sample into the sample container 11, the insertion tube 18 inserted inside the sample container 11, the cleaning liquid container 19 for storing the cleaning liquid, and the rinse liquid are stored. A cleaning fluid introduction path 21 having a rinse liquid container 20 and a liquid feed pump 21a for sending the cleaning liquid or the rinse liquid toward the insertion tube 18, a fluid lead-out path 22 for deriving the fluid from the sample container 11, and a rinse liquid. It is equipped with a conductivity meter 23 for measuring the conductivity of the rinse drainage discharged from the fluid out-flow path 22 during the rinse operation using the above, and an on-off valve or a three-way switching valve provided at a predetermined position in each path. It has a bypass route. In addition, some routes are standardized, and the common route is switched and used by opening and closing the on-off valve and switching the three-way switching valve.

次に、操作手順に基づいて示差走査熱量計の構成をより詳細に説明する。なお、操作開始時において、各開閉弁は閉じ状態であり、各三方切替弁は図1において直線方向に切り替えられており、試料容器11及び基準容器12は新品である。また、基準容器12は、標準試料を収納せずに空の状態で使用している。 Next, the configuration of the differential scanning calorimeter will be described in more detail based on the operating procedure. At the start of the operation, each on-off valve is in the closed state, each three-way switching valve is switched in the linear direction in FIG. 1, and the sample container 11 and the reference container 12 are new. Further, the reference container 12 is used in an empty state without storing the standard sample.

まず、試料投入経路17の試料投入弁31を開き、三方切替弁32,33を介して試料容器11内にデータを採取する試料を所定量投入する。次に、前記三方切替弁32を雰囲気ガス導入経路15の方向に切り替えるとともに、流体導出経路22の三方切替弁34を流体導出経路22から分岐したパージ排気経路22aの方向に切り替える。 First, the sample charging valve 31 of the sample charging path 17 is opened, and a predetermined amount of the sample for which data is to be collected is charged into the sample container 11 via the three-way switching valves 32 and 33. Next, the three-way switching valve 32 is switched in the direction of the atmospheric gas introduction path 15, and the three-way switching valve 34 of the fluid lead-out path 22 is switched in the direction of the purge exhaust path 22a branched from the fluid lead-out path 22.

そして、図示しない雰囲気ガス源に接続した雰囲気ガス導入経路15の雰囲気ガス導入弁35を開き、雰囲気ガス導入経路15から雰囲気ガス分岐経路15aに分かれた雰囲気ガスを、試料容器11の挿入管18と同様の挿入管12bを通して基準容器12内に導入するとともに、雰囲気ガス導入経路15から三方切替弁32,33を通過した雰囲気ガスを、挿入管18を通して試料容器11内に導入することにより、試料容器11及び基準容器12に雰囲気ガスを所定の高圧状態で充填する操作と、前記雰囲気ガス導入弁35を閉じるとともに、パージ排気経路22aのパージ排気弁36を開き、基準容器12の上部に設けられた排気管12cからパージ排気経路22aを通して基準容器12内の雰囲気ガスを大気圧付近になるまで排出するとともに、試料容器11の上部に接続した前記流体導出経路22から三方切替弁37、三方切替弁34、パージ排気経路22a及びパージ排気弁36を通して試料容器11内の雰囲気ガスを大気圧付近になるまで排出する操作、すなわち、両容器11,12内に雰囲気ガスを高圧で充填する操作と排気する操作とを繰り返して行うバッチパージを所定回数、例えば10回程度繰り返して行う。 Then, the atmosphere gas introduction valve 35 of the atmosphere gas introduction path 15 connected to the atmosphere gas source (not shown) is opened, and the atmosphere gas separated from the atmosphere gas introduction path 15 to the atmosphere gas branch path 15a is sent to the insertion tube 18 of the sample container 11. The sample container is introduced into the reference container 12 through the same insertion tube 12b, and the atmospheric gas that has passed through the three-way switching valves 32 and 33 from the atmosphere gas introduction path 15 is introduced into the sample container 11 through the insertion tube 18. The operation of filling the atmosphere gas 11 and the reference container 12 in a predetermined high pressure state, closing the atmosphere gas introduction valve 35, and opening the purge exhaust valve 36 of the purge exhaust path 22a were provided on the upper part of the reference container 12. Atmospheric gas in the reference container 12 is discharged from the exhaust pipe 12c through the purge exhaust path 22a until it reaches the vicinity of atmospheric pressure, and the three-way switching valve 37 and the three-way switching valve 34 are discharged from the fluid lead-out path 22 connected to the upper part of the sample container 11. , The operation of discharging the atmospheric gas in the sample container 11 through the purge exhaust path 22a and the purge exhaust valve 36 until the atmospheric pressure is near, that is, the operation of filling the atmospheric gas in both containers 11 and 12 at high pressure and the operation of exhausting. The batch purge is repeated a predetermined number of times, for example, about 10 times.

バッチパージ終了後、パージ排気弁36を閉じ、所定圧力に調節した雰囲気ガスを両容器11,12内に充填した密閉状態で、加熱手段14を作動させ、従来と同様に、試料を所定の条件、例えば、毎分0.5℃、毎分1℃、毎分2℃といった条件で加熱し、所定温度、例えば500~600℃まで加熱する過程で試料の熱物性データを採取する。 After the batch purge is completed, the purge exhaust valve 36 is closed, and the heating means 14 is operated in a closed state in which the atmosphere gas adjusted to a predetermined pressure is filled in both the containers 11 and 12, and the sample is subjected to the predetermined conditions as in the conventional case. For example, the thermophysical property data of the sample is collected in the process of heating under the conditions of 0.5 ° C. per minute, 1 ° C. per minute, and 2 ° C. per minute, and heating to a predetermined temperature, for example, 500 to 600 ° C.

データ採取後、加熱手段14による加熱を止めて試料容器11が常温に降下したら、パージ排気弁36を開いて両容器11,12内を大気圧に戻してからパージ排気弁36を閉じる。次に、洗浄弁38を開き、三方切替弁32を直線側に切り替えるとともに、三方切替弁33及び三方切替弁37を分岐したバイパス経路24の方向に切り替え、洗浄流体導出弁39も開いた状態にする。 After collecting the data, when the heating by the heating means 14 is stopped and the sample container 11 drops to room temperature, the purge exhaust valve 36 is opened to return the inside of both containers 11 and 12 to atmospheric pressure, and then the purge exhaust valve 36 is closed. Next, the cleaning valve 38 is opened, the three-way switching valve 32 is switched to the straight line side, the three-way switching valve 33 and the three-way switching valve 37 are switched in the direction of the branched bypass path 24, and the cleaning fluid lead-out valve 39 is also opened. do.

また、洗浄液容器19に、洗浄液、例えばとして0.5%フッ化水素酸水溶液を入れるとともに、リンス液容器20に、リンス液、例えば純水を入れた後、リンス液導入弁40を開き、送液ポンプ21aより上方に配置したリンス液容器20内のリンス液の位置ヘッドを利用して送液ポンプ21a内にリンス液を導入する。このとき、ポンプ排気弁21bを開くことにより、送液ポンプ21a及び周辺配管内に残留する気体を抜くようにする。 Further, a cleaning liquid, for example, a 0.5% hydrofluoric acid aqueous solution is put in the cleaning liquid container 19, and a rinse liquid, for example, pure water is put in the rinse liquid container 20, and then the rinse liquid introduction valve 40 is opened and sent. The rinse liquid is introduced into the liquid feed pump 21a by using the position head of the rinse liquid in the rinse liquid container 20 arranged above the liquid pump 21a. At this time, by opening the pump exhaust valve 21b, the gas remaining in the liquid feed pump 21a and the peripheral piping is removed.

そして、送液ポンプ21aを起動するとともに、流体導出経路22から分岐したリンス液排出経路25の洗浄流体導出弁41及びバイパス弁42を開き、送液ポンプ21aから送出されたリンス液を流して系内をリンス液(純水)で洗浄し、リンス液排出経路25からバイパス経路25aを通して排出する予備リンス操作を行う。このとき、リンス液の流量はポンプバイパス弁21cによって調節することができ、圧力は圧力計21dで確認できる。系内の洗浄を所定時間行った後、バイパス弁42を閉じて導電率測定経路26の導入弁26a及び導出弁26bを開き、系内を流れたリンス液を導電率計23のセンサーセル23aに導入する。導電率計23の指示値が安定したら、この指示値を基準指示値として記録した後、送液ポンプ21aを停止して全ての弁を閉じる。 Then, the liquid feed pump 21a is started, the cleaning fluid lead-out valve 41 and the bypass valve 42 of the rinse liquid discharge path 25 branched from the fluid lead-out path 22 are opened, and the rinse liquid sent out from the liquid feed pump 21a is flowed to the system. The inside is washed with a rinse liquid (pure water), and a preliminary rinse operation is performed to discharge the inside from the rinse liquid discharge path 25 through the bypass path 25a. At this time, the flow rate of the rinse liquid can be adjusted by the pump bypass valve 21c, and the pressure can be confirmed by the pressure gauge 21d. After cleaning the inside of the system for a predetermined time, the bypass valve 42 is closed, the introduction valve 26a and the lead-out valve 26b of the conductivity measurement path 26 are opened, and the rinse liquid flowing in the system is sent to the sensor cell 23a of the conductivity meter 23. Introduce. When the indicated value of the conductivity meter 23 becomes stable, after recording this indicated value as a reference indicated value, the liquid feed pump 21a is stopped and all the valves are closed.

次に、洗浄液(フッ化水素酸水溶液)による試料容器11の洗浄を行う。まず、三方切替弁33及び三方切替弁37をバイパス経路24の方向から試料容器11の方向に切り替え、洗浄液容器19の洗浄液導入弁43を開き、送液ポンプ21aより上方に配置した洗浄液容器19内の洗浄液の位置ヘッドを利用して洗浄液を送液ポンプ21aに導入する。 Next, the sample container 11 is washed with a washing liquid (hydrofluoric acid aqueous solution). First, the three-way switching valve 33 and the three-way switching valve 37 are switched from the direction of the bypass path 24 to the direction of the sample container 11, the cleaning liquid introduction valve 43 of the cleaning liquid container 19 is opened, and the inside of the cleaning liquid container 19 arranged above the liquid feed pump 21a. The cleaning liquid is introduced into the liquid feed pump 21a by using the position head of the cleaning liquid.

洗浄弁38,洗浄流体導出弁39,洗浄流体導出弁41及びバイパス弁42を開くとともに送液ポンプ21aを起動し、試料容器11内に洗浄液を流通させる。洗浄液導入初期は、系内にリンス液が残留しているので、リンス液が十分に排出されるまで、所定時間が経過するまでリンス液排出経路25からバイパス経路25aを通して系内の流体を排出する。 The cleaning valve 38, the cleaning fluid lead-out valve 39, the cleaning fluid lead-out valve 41, and the bypass valve 42 are opened, and the liquid feed pump 21a is started to circulate the cleaning liquid in the sample container 11. Since the rinse liquid remains in the system at the initial stage of introducing the cleaning liquid, the fluid in the system is discharged from the rinse liquid discharge path 25 through the bypass path 25a until a predetermined time elapses until the rinse liquid is sufficiently discharged. ..

所定時間経過後、洗浄流体導出弁41を閉じて循環弁44を開き、試料容器11から流体導出経路22に導出した洗浄液を、循環経路27を通して洗浄液容器19に循環して再利用する。洗浄液を循環させる洗浄操作によって試料容器11内の洗浄を十分に行った後、洗浄液導入弁43を閉じて系内から洗浄液を排出して系内を清浄化するリンス操作を行う。 After a lapse of a predetermined time, the cleaning fluid lead-out valve 41 is closed, the circulation valve 44 is opened, and the cleaning liquid led out from the sample container 11 to the fluid lead-out path 22 is circulated to the cleaning liquid container 19 through the circulation path 27 for reuse. After sufficiently cleaning the inside of the sample container 11 by a cleaning operation in which the cleaning liquid is circulated, the cleaning liquid introduction valve 43 is closed and the cleaning liquid is discharged from the system to perform a rinsing operation to clean the inside of the system.

リンス操作は、前述の予備リンス操作と同様に、リンス液導入弁40及び洗浄流体導出弁41、バイパス弁42を開き、リンス液容器20内のリンス液を送液ポンプ21aで系内に導入することにより、系内及び試料容器11内から洗浄液を排出する。所定時間経過後、バイパス弁42を閉じて導入弁26a及び導出弁26bを開き、試料容器11から導出したリンス排液を導電率計23のセンサーセル23aに導入する。そして、導電率計23の指示値が、記録した前記基準指示値になったら送液ポンプ21aを停止してリンス操作を終了する。 In the rinsing operation, the rinsing liquid introduction valve 40, the cleaning fluid lead-out valve 41, and the bypass valve 42 are opened, and the rinsing liquid in the rinsing liquid container 20 is introduced into the system by the liquid feed pump 21a in the same manner as the preliminary rinsing operation described above. As a result, the cleaning liquid is discharged from the system and the sample container 11. After the lapse of a predetermined time, the bypass valve 42 is closed, the introduction valve 26a and the lead-out valve 26b are opened, and the rinse drainage discharged from the sample container 11 is introduced into the sensor cell 23a of the conductivity meter 23. Then, when the indicated value of the conductivity meter 23 reaches the recorded reference indicated value, the liquid feed pump 21a is stopped to end the rinsing operation.

その後、導入弁26a及び導出弁26bを閉じてバイパス弁42を開き、パージガスボンベ28から圧力調整器28aを介して所定圧力、例えば0.1MPaの圧力でパージガスを系内に導入し、系内をガスパージして系内に残留するリンス液を排出するとともに、加熱手段14を作動させて試料容器11を加温するベーキング操作を開始する。ベーキング操作における昇温速度は、毎分1~2℃で35~50分間行えばよく、必要に応じて試料投入弁31を開くことにより、パージガスを開放することができる。ベーキング操作終了後、常温まで放置、冷却することにより、一連の洗浄処理が終了するので、前述のように、試料容器11に試料を投入して雰囲気ガスによるバッチパージを行うことにより、次の試料の熱物性データを採取する操作を開始することができる。 After that, the introduction valve 26a and the lead-out valve 26b are closed, the bypass valve 42 is opened, and the purge gas is introduced into the system from the purge gas cylinder 28 via the pressure regulator 28a at a predetermined pressure, for example, 0.1 MPa. The gas is purged to discharge the rinse liquid remaining in the system, and the heating means 14 is operated to start the baking operation for heating the sample container 11. The temperature rising rate in the baking operation may be 1 to 2 ° C. per minute for 35 to 50 minutes, and the purge gas can be released by opening the sample charging valve 31 as needed. After the baking operation is completed, a series of cleaning treatments are completed by leaving the sample to room temperature and cooling it. The operation of collecting thermophysical property data can be started.

試料容器11は、任意の材料で任意の形状に形成することができるが、通常は、ステンレス鋼、例えばSUS316Lで形成することが好ましく、例えば、外径17mm、内径10mmで、底部を半球形状とした、いわゆる試験管形状とすることが好ましい。試料容器11内に挿入される挿入管18は、例えば外径3.18mm、肉厚0.7mmのステンレス鋼製管体を使用することができ、先端が底面から5mm程度離れた位置まで挿入することにより、試料容器11内の洗浄処理を確実に行うことができる。なお、基準容器12は、熱特性を合わせるため、試料容器11と同一に形成すべきである。基準容器12は、何も入れない空の状態で使用することができるが、適当な標準試料を収納してもよい。 The sample container 11 can be formed of any material into any shape, but usually, it is preferably formed of stainless steel, for example, SUS316L, for example, the outer diameter is 17 mm, the inner diameter is 10 mm, and the bottom is hemispherical. It is preferable to have a so-called test tube shape. For the insertion tube 18 to be inserted into the sample container 11, for example, a stainless steel tube having an outer diameter of 3.18 mm and a wall thickness of 0.7 mm can be used, and the tip is inserted to a position about 5 mm away from the bottom surface. This makes it possible to reliably perform the cleaning process inside the sample container 11. The reference container 12 should be formed in the same shape as the sample container 11 in order to match the thermal characteristics. The reference container 12 can be used in an empty state in which nothing is put, but a suitable standard sample may be stored.

洗浄液は、試料容器11の材料、試料の種類、熱物性データ採取時の反応生成物や分解生成物の種類によって適宜な洗浄液を使用することができるが、強い洗浄力を有するフッ化水素酸水溶液を使用することが好ましい。フッ化水素酸水溶液におけるフッ化水素酸の濃度も任意に設定できるが、通常は、0.1~1.0質量%の範囲が好ましく、特に、0.5質量%に設定することにより、試料容器11をはじめとした金属などの材料が洗浄液に暴露されてもダメージが少なくでき、洗浄時間の短縮を図れることができる。洗浄液の流量は、毎分300cc程度が好ましく、また、試料容器11内での流速を毎秒0.63m未満に設定することが好ましく、特に、毎秒0.07m程度の流速とすることにより、洗浄効果を十分に発揮させることができる。 As the cleaning liquid, an appropriate cleaning liquid can be used depending on the material of the sample container 11, the type of sample, the type of reaction product or decomposition product at the time of collecting thermophysical characteristic data, but a hydrofluoric acid aqueous solution having strong cleaning power. It is preferable to use. The concentration of hydrofluoric acid in the aqueous hydrofluoric acid solution can be arbitrarily set, but usually, it is preferably in the range of 0.1 to 1.0% by mass, and in particular, by setting it to 0.5% by mass, the sample. Even if a material such as metal such as the container 11 is exposed to the cleaning liquid, damage can be reduced and the cleaning time can be shortened. The flow rate of the cleaning liquid is preferably about 300 cc per minute, and the flow rate in the sample container 11 is preferably set to less than 0.63 m / s. In particular, the cleaning effect is achieved by setting the flow rate to about 0.07 m / s. Can be fully demonstrated.

例えば、テトラエトキシシラン(TEOS)の熱物性データの採取後には、試料容器11内に直径10μm程度のケイ素化合物粒子が残留するが、前述のように、0.5質量%程度の濃度のフッ化水素酸水溶液を使用することにより、十分に除去することができ、純水でのリンス、窒素ガスでのベーキングを行うことにより、試料容器11を繰り返し使用可能な状態にまで洗浄することができる。 For example, after collecting the thermophysical property data of tetraethoxysilane (TEOS), silicon compound particles having a diameter of about 10 μm remain in the sample container 11, but as described above, fluoride having a concentration of about 0.5% by mass remains. The sample container 11 can be sufficiently removed by using a hydrofluoric acid aqueous solution, and the sample container 11 can be repeatedly washed to a usable state by rinsing with pure water and baking with nitrogen gas.

リンス液は、系内に残留する洗浄液を排出でき、系内に不純物を残すことがない液体を任意に選定できるが、通常は純水を使用すればよい。また、パージガスも、系内に残留するリンス液を排出でき、ベーキングの際に試料容器11などに悪影響を及ぼすことがない流体を任意に選定できるが、通常は高純度窒素ガスを使用すればよい。 As the rinsing liquid, a cleaning liquid remaining in the system can be discharged, and a liquid that does not leave impurities in the system can be arbitrarily selected, but usually pure water may be used. Further, as the purge gas, a fluid that can discharge the rinsing liquid remaining in the system and does not adversely affect the sample container 11 or the like during baking can be arbitrarily selected, but usually high-purity nitrogen gas may be used. ..

雰囲気ガスは、通常の示差走査熱量計と同様に、熱物性計測の目的により、酸素、フッ素、窒素、塩素、NFなどを必要に応じて選択すればよく、2種類以上を混合して使用することもできる。特に、雰囲気ガスとしてフッ素、塩素、NFを使用する場合、耐食性を有する試料容器を必要とするため、熱物性データ採取時のコストが多大であったが、本発明によれば、試料容器を繰り返し使用することができるため、コスト低減に極めて有効である。また、圧力は、大気圧以上、29MPa以下であればよい。 As for the atmospheric gas, oxygen, fluorine, nitrogen, chlorine, NF 3 , etc. may be selected as necessary for the purpose of measuring the thermal characteristics, as in the case of a normal differential scanning calorimeter, and two or more types may be mixed and used. You can also do it. In particular, when fluorine, chlorine, or NF 3 is used as the atmosphere gas, a sample container having corrosion resistance is required, so that the cost for collecting thermophysical characteristic data is high. However, according to the present invention, the sample container is used. Since it can be used repeatedly, it is extremely effective in reducing costs. The pressure may be atmospheric pressure or higher and 29 MPa or lower.

11…試料容器、11a…温度測定手段、12…基準容器、12a…温度測定手段、12b…挿入管、12c…排気管、13…炉体、14…加熱手段、15…雰囲気ガス導入経路、15a…雰囲気ガス分岐経路、16…パージガス導入経路、17…試料投入経路、18…挿入管、19…洗浄液容器、20…リンス液容器、21…洗浄流体導入経路、21a…送液ポンプ、21b…ポンプ排気弁、21c…ポンプバイパス弁、21d…圧力計、22…流体導出経路、22a…パージ排気経路、23…導電率計、23a…センサーセル、24…バイパス経路、25…リンス液排出経路、25a…バイパス経路、26…導電率測定経路、26a…導入弁、26b…導出弁、27…循環経路、28…パージガスボンベ、28a…圧力調整器、31…試料投入弁、32…三方切替弁、33…三方切替弁、34…三方切替弁、35…雰囲気ガス導入弁、36…パージ排気弁、37…三方切替弁、38…洗浄弁、39…洗浄流体導出弁、40…リンス液導入弁、41…洗浄流体導出弁、42…バイパス弁、43…洗浄液導入弁、44…循環弁 11 ... sample container, 11a ... temperature measuring means, 12 ... reference container, 12a ... temperature measuring means, 12b ... insertion tube, 12c ... exhaust pipe, 13 ... furnace body, 14 ... heating means, 15 ... atmosphere gas introduction path, 15a ... Atmospheric gas branch path, 16 ... Purge gas introduction path, 17 ... Sample injection path, 18 ... Insert tube, 19 ... Cleaning liquid container, 20 ... Rinse solution container, 21 ... Cleaning fluid introduction path, 21a ... Liquid transfer pump, 21b ... Pump Exhaust valve, 21c ... Pump bypass valve, 21d ... Pressure gauge, 22 ... Fluid lead-out path, 22a ... Purge exhaust path, 23 ... Conductivity meter, 23a ... Sensor cell, 24 ... Bypass path, 25 ... Rinse solution discharge path, 25a ... Bypass path, 26 ... Conductivity measurement path, 26a ... Introduction valve, 26b ... Derivation valve, 27 ... Circulation path, 28 ... Purge gas cylinder, 28a ... Pressure regulator, 31 ... Sample input valve, 32 ... Three-way switching valve, 33 ... Three-way switching valve, 34 ... Three-way switching valve, 35 ... Atmospheric gas introduction valve, 36 ... Purge exhaust valve, 37 ... Three-way switching valve, 38 ... Cleaning valve, 39 ... Cleaning fluid lead-out valve, 40 ... Rinse liquid introduction valve, 41 ... Cleaning fluid lead-out valve, 42 ... Bypass valve, 43 ... Cleaning liquid introduction valve, 44 ... Circulation valve

Claims (7)

測定試料を収納する試料容器と標準試料を収納する基準容器とを格納する炉体と、試料容器及び基準容器を加熱する加熱手段と、試料容器及び基準容器に測定用雰囲気ガスを導入する雰囲気ガス導入経路と、前記標準試料及び測定試料の温度を測定する温度測定手段とを備えた示差走査熱量計において、前記試料容器にパージガスを流通させるパージガス導入経路と、前記試料容器に測定試料を投入する試料投入経路と、前記試料容器の内部に挿入される挿入管と、洗浄液を貯留した洗浄液容器と、リンス液を貯留したリンス液容器と、洗浄液又はリンス液を前記挿入管に向けて送液するポンプを有する洗浄流体導入経路と、前記試料容器から流体を導出する流体導出経路と、前記リンス液を使用したリンス操作中に前記流体導出経路から導出したリンス排液の導電率を測定する導電率計とを備えていることを特徴とする示差走査熱量計。 A furnace body that stores a sample container that stores a sample container and a reference container that stores a standard sample, a heating means that heats the sample container and the reference container, and an atmosphere gas that introduces an atmosphere gas for measurement into the sample container and the reference container. In a differential scanning calorimeter equipped with an introduction path and a temperature measuring means for measuring the temperature of the standard sample and the measurement sample, the purge gas introduction path for flowing the purge gas through the sample container and the measurement sample are charged into the sample container. The sample charging path, the insertion tube inserted inside the sample container, the cleaning liquid container storing the cleaning liquid, the rinsing liquid container storing the rinsing liquid, and the cleaning liquid or the rinsing liquid are sent toward the insertion tube. Conductivity for measuring the conductivity of the cleaning fluid introduction path having a pump, the fluid derivation path for deriving the fluid from the sample container, and the rinse drainage derivated from the fluid derivation path during the rinsing operation using the rinsing solution. A differential scanning calorimeter characterized by being equipped with a meter. 前記洗浄液を使用した洗浄操作中に前記流体導出経路に導出した洗浄排液を前記洗浄液容器に戻す洗浄液返送配管を備えていることを特徴とする請求項1記載の示差走査熱量計。 The differential scanning calorimeter according to claim 1, further comprising a cleaning liquid return pipe that returns the cleaning waste liquid led out to the fluid lead-out path to the cleaning liquid container during a cleaning operation using the cleaning liquid. 前記洗浄液は、フッ化水素酸水溶液であることを特徴とする請求項1又は2記載の示差走査熱量計。 The differential scanning calorimetry according to claim 1 or 2, wherein the cleaning liquid is an aqueous hydrofluoric acid solution. 前記フッ化水素酸水溶液は、フッ化水素酸を0.1~1.0質量%含有していることを特徴とする請求項3記載の示差走査熱量計。 The differential scanning calorimeter according to claim 3, wherein the hydrofluoric acid aqueous solution contains 0.1 to 1.0% by mass of hydrofluoric acid. 前記リンス液は、純水であることを特徴とする請求項1乃至4のいずれか1項記載の示差走査熱量計。 The differential scanning calorimeter according to any one of claims 1 to 4, wherein the rinsing liquid is pure water. 前記試料容器内における前記洗浄液の流速が0.63m/sec未満であることを特徴とする請求項1乃至5のいずれか1項記載の示差走査熱量計。 The differential scanning calorimeter according to any one of claims 1 to 5, wherein the flow rate of the cleaning liquid in the sample container is less than 0.63 m / sec. 前記試料容器内における前記洗浄液の流速が0.06~0.15m/secであることを特徴とする請求項1乃至5のいずれか1項記載の示差走査熱量計。 The differential scanning calorimeter according to any one of claims 1 to 5, wherein the flow velocity of the cleaning liquid in the sample container is 0.06 to 0.15 m / sec.
JP2018064169A 2018-03-29 2018-03-29 Differential scanning calorimetry Active JP7050550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018064169A JP7050550B2 (en) 2018-03-29 2018-03-29 Differential scanning calorimetry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018064169A JP7050550B2 (en) 2018-03-29 2018-03-29 Differential scanning calorimetry

Publications (2)

Publication Number Publication Date
JP2019174335A JP2019174335A (en) 2019-10-10
JP7050550B2 true JP7050550B2 (en) 2022-04-08

Family

ID=68166818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018064169A Active JP7050550B2 (en) 2018-03-29 2018-03-29 Differential scanning calorimetry

Country Status (1)

Country Link
JP (1) JP7050550B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243674A (en) 2001-02-22 2002-08-28 Ricoh Co Ltd Thermal analyzer
JP2002267625A (en) 2001-03-07 2002-09-18 Santoku Kagaku Kogyo Kk Method and apparatus for inspecting contamination of used container for filling high purity aqueous hydrogen peroxide
JP2012510620A (en) 2008-12-02 2012-05-10 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション Automatic isothermal titration microcalorimeter device and method of use
JP2014163847A (en) 2013-02-26 2014-09-08 Mitsubishi Heavy Ind Ltd Surface deposit measurement instrument

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113998B2 (en) * 1993-07-22 2000-12-04 住友化学工業株式会社 Thermal analyzer
JPH09166524A (en) * 1995-12-14 1997-06-24 Hitachi Ltd Sampling method for washing validation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243674A (en) 2001-02-22 2002-08-28 Ricoh Co Ltd Thermal analyzer
JP2002267625A (en) 2001-03-07 2002-09-18 Santoku Kagaku Kogyo Kk Method and apparatus for inspecting contamination of used container for filling high purity aqueous hydrogen peroxide
JP2012510620A (en) 2008-12-02 2012-05-10 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション Automatic isothermal titration microcalorimeter device and method of use
US20150276634A1 (en) 2008-12-02 2015-10-01 Malvern Instruments Incorporated Automatic isothermal titration microcalorimeter apparatus and method of use
JP2014163847A (en) 2013-02-26 2014-09-08 Mitsubishi Heavy Ind Ltd Surface deposit measurement instrument

Also Published As

Publication number Publication date
JP2019174335A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US8715425B2 (en) Endoscope cleaning/disinfecting apparatus and endoscope cleaning/disinfecting method
JP2019178902A (en) Toc measurement method and toc measuring device using the same
JP7050550B2 (en) Differential scanning calorimetry
KR101284062B1 (en) High temperature oxidation test equipment
US20130233352A1 (en) Apparatus and method for monitoring cleaning
CN207731672U (en) Fission product retention factor measuring device in a kind of high-temperature sodium
CN107238549B (en) Method for measuring tar content in gas generated by biomass pyrolysis
Blench et al. CLIX.—The heat of adsorption of oxygen by charcoal
WO2022065035A1 (en) Aseptic filler cleaning/sterilizing method and aseptic filler
JP2010204017A (en) Method of detecting anomaly in oxidative reaction process
CN103657572A (en) Novel chemical reaction tank
JP2011145126A (en) Abnormality detection method of heat exchange process
CN209410840U (en) A kind of sterile liquid storage pot system
JP2011227011A (en) Device for measuring heat conductivity of scales
JPH058360B2 (en)
JP2003083833A (en) Abnormality detection method of heat exchanging process
US20160114064A1 (en) Method for cleaning dissolution vessels and subsequent dosing of a dissolution media, and mobile modular cleaning and dosing equipment for the implementation thereof
CN104198251A (en) Test tube assembly for low-temperature quick ashing of organic matter sample
CN214427321U (en) Atmospheric pressure double-liquid system gas-liquid boiling point instrument for experiment teaching
CN216846683U (en) Offshore platform export crude oil saturation vapor pressure measuring device and online measuring device
US867831A (en) Process for sterilizing closed vessels.
CN217775058U (en) Wash platinum yellow crucible device
CN108793095A (en) Solution impurity-removing method and solution impurity removed system
JP2016011803A (en) Heat exchange system and cleaning method of heat exchanger
JP2011145125A (en) Method for detecting abnormality in heat-exchange process

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220329

R150 Certificate of patent or registration of utility model

Ref document number: 7050550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150