JP7048367B2 - A coating liquid for forming a flattening film and a method for producing the same, a metal foil coil with a flattening film and a method for producing the same, and a ketone solvent containing silica fine particles used therein. - Google Patents

A coating liquid for forming a flattening film and a method for producing the same, a metal foil coil with a flattening film and a method for producing the same, and a ketone solvent containing silica fine particles used therein. Download PDF

Info

Publication number
JP7048367B2
JP7048367B2 JP2018048104A JP2018048104A JP7048367B2 JP 7048367 B2 JP7048367 B2 JP 7048367B2 JP 2018048104 A JP2018048104 A JP 2018048104A JP 2018048104 A JP2018048104 A JP 2018048104A JP 7048367 B2 JP7048367 B2 JP 7048367B2
Authority
JP
Japan
Prior art keywords
mol
film
silica fine
fine particles
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018048104A
Other languages
Japanese (ja)
Other versions
JP2019157031A (en
Inventor
紀子 山田
左和子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2018048104A priority Critical patent/JP7048367B2/en
Publication of JP2019157031A publication Critical patent/JP2019157031A/en
Application granted granted Critical
Publication of JP7048367B2 publication Critical patent/JP7048367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、電子デバイス用フレキシブル基板に適用可能な平坦化膜形成塗布液および平坦化膜付き金属箔コイル、並びにそれらに用いるシリカ微粒子含有ケトン系溶剤に関する。 The present invention relates to a flattening film forming coating liquid and a metal leaf coil with a flattening film applicable to a flexible substrate for an electronic device, and a silica fine particle-containing ketone solvent used therein.

電子ペーパー、有機ELディスプレイ、有機EL照明、太陽電池などの電子デバイスでは、フレキシブル基板が求められている。従来、これらのデバイスはガラス基板上に作製されていたが、フレキシブル基板上に作製すれば、落としても割れることがなく、軽量性・柔軟性を活かした新しい用途が広がる。フレキシブル基板として検討されている樹脂フィルムは耐熱性が乏しく寸法安定性が悪いという課題があり、薄ガラスは割れやすいという問題がある。金属箔の表面は圧延すじやスクラッチ疵などがあり、表面はガラスとは比較できないほど粗い。このため金属箔を被覆する膜は金属箔の表面をガラス基板並みに平坦化することが重要である。この平坦化膜は金属箔に絶縁性を付与することにもつながる。 Flexible substrates are required for electronic devices such as electronic paper, organic EL displays, organic EL lighting, and solar cells. Conventionally, these devices were made on a glass substrate, but if they are made on a flexible substrate, they will not break even if dropped, and new applications that take advantage of their light weight and flexibility will expand. The resin film being studied as a flexible substrate has a problem of poor heat resistance and poor dimensional stability, and a thin glass has a problem of being easily broken. The surface of the metal foil has rolling streaks and scratches, and the surface is so rough that it cannot be compared with glass. For this reason, it is important for the film covering the metal foil to flatten the surface of the metal foil to the same level as the glass substrate. This flattening film also imparts insulating properties to the metal foil.

電子デバイスを作製する際のプロセス温度は、電子デバイスの種類および構成材料によって異なるが、有機ELディスプレイで求められるアモルファスシリコンあるいはLTPS(low-temperature poly silicon)のTFTを作る場合には300~400℃程度のプロセス温度になる。従って金属箔を被覆する絶縁膜も400℃まで耐えられる耐熱性が求められる。 The process temperature when manufacturing an electronic device varies depending on the type of electronic device and the constituent materials, but when manufacturing an amorphous silicon or LTPS (low-temperature verify silicon) TFT required for an organic EL display, the temperature is 300 to 400 ° C. The process temperature will be about the same. Therefore, the insulating film that covers the metal foil is also required to have heat resistance that can withstand up to 400 ° C.

金属箔を被覆する膜材料としては、無機・有機ハイブリッド材料が挙げられる。有機材料は耐熱性が不足である。また、有機材料で被覆した場合は、デバイス形成前の平坦化膜付き金属箔の洗浄・乾燥工程において、洗浄用有機溶剤で被覆した有機材料が膨潤したり、洗浄時に被覆有機材料が吸収した水分や溶剤をすべて乾燥で取り除くことが難しく残留成分がデバイスに悪影響を及ぼしたりするので不適である。無機材料はクラックが入りやすく金属箔表面の圧延すじや疵を被覆できるだけの厚膜に成膜することが難しい。このため、耐熱性と柔軟性を適度に兼ね備えた無機・有機ハイブリッド材料が適している。無機・有機ハイブリッド材料による絶縁膜としては有機修飾シリカ膜が代表的である。有機基を含むため、無機膜より柔軟性があり厚膜が得られやすい。有機修飾シリカ膜は主骨格がSi-Oの無機骨格で形成されているため耐熱性は主骨格を修飾している有機基の分解温度で決まる。有機基としてメチル基やフェニル基を選べば400℃程度の耐熱性を確保することができる。特にフェニル基で修飾されたシリカ膜は、フェニル基の高い疎水性により、高温高湿化(たとえば85℃85%RHの環境加速試験)においてもSi-O主骨格が加水分解を受けにくく耐湿性に優れる。このため電子デバイス用基板としては、フェニル基修飾シリカ膜で被覆した金属箔が好ましい。 Examples of the film material for coating the metal foil include an inorganic / organic hybrid material. Organic materials lack heat resistance. When coated with an organic material, the organic material coated with the organic solvent for cleaning swells in the cleaning / drying step of the metal leaf with a flattening film before the device is formed, or the moisture absorbed by the coated organic material during cleaning. It is not suitable because it is difficult to remove all the solvents and solvents by drying, and residual components may adversely affect the device. Inorganic materials are prone to cracks, and it is difficult to form a thick film that can cover rolling streaks and scratches on the surface of metal foil. Therefore, an inorganic / organic hybrid material having appropriate heat resistance and flexibility is suitable. An organically modified silica film is a typical example of an insulating film made of an inorganic / organic hybrid material. Since it contains an organic group, it is more flexible than an inorganic film and a thick film can be easily obtained. Since the main skeleton of the organically modified silica film is formed of an inorganic skeleton of Si—O, the heat resistance is determined by the decomposition temperature of the organic group modifying the main skeleton. If a methyl group or a phenyl group is selected as the organic group, heat resistance of about 400 ° C. can be ensured. In particular, the silica film modified with a phenyl group is resistant to hydrolysis due to the high hydrophobicity of the phenyl group, so that the Si—O main skeleton is not easily hydrolyzed even in high temperature and high humidity (for example, an environmental acceleration test at 85 ° C. and 85% RH). Excellent for. Therefore, as the substrate for the electronic device, a metal foil coated with a phenyl group-modified silica film is preferable.

フレキシブル基材上にデバイスを形成する場合には、Roll to Rollプロセスを採用することにより低コストで量産することが可能になる。そのためには平坦化膜を成膜した金属箔のシートではなく、平坦化膜付きの金属箔コイルが求められる。金属箔コイルとしては、幅が0.3~1.5m程度、長さが50~2000m程度のものが想定される。このような金属箔コイルを無機・有機ハイブリッド材料で被覆する有望な方法の1つとしてRoll to Roll成膜装置を使う方法がある。図1に代表的なRoll to Roll成膜装置の模式図を示す。通常Roll to Rollの成膜装置は、被成膜物である無垢の金属箔コイルをセットする巻出し部、金属箔コイルに塗布液を塗る塗工部、乾燥部、熱処理部、成膜済み金属箔コイルを巻き取る巻き取り部から成る。デバイスは一般的に基板の片面にのみ作製するので、平坦化膜も片面に塗布すればよい。塗布液を付けた後、乾燥・熱処理工程を通過するまでは溶剤や水分を多量に含んでいたり、膜の硬度が不十分で疵が入りやすかったりするので、乾燥・熱処理炉内では成膜面に搬送ロールが触れないことが強く望まれる。図1では成膜面に触れるロールに着色して示したが、このように膜面に触れるロールと膜面の反対側に触れるロールで基材を挟み込むことで基材に張力を付与できる。 When the device is formed on a flexible substrate, mass production can be performed at low cost by adopting the Roll to Roll process. For that purpose, a metal foil coil with a flattening film is required instead of a metal foil sheet on which a flattening film is formed. The metal foil coil is assumed to have a width of about 0.3 to 1.5 m and a length of about 50 to 2000 m. As one of the promising methods for coating such a metal foil coil with an inorganic / organic hybrid material, there is a method using a Roll to Roll film forming apparatus. FIG. 1 shows a schematic diagram of a typical Roll to Roll film forming apparatus. Normally, a Roll to Roll film forming device is a winding section for setting a solid metal foil coil to be deposited, a coating section for applying a coating liquid to the metal leaf coil, a drying section, a heat treatment section, and a deposited metal. It consists of a take-up part that winds up the foil coil. Since the device is generally manufactured on only one side of the substrate, the flattening film may be applied to one side as well. After applying the coating liquid, it may contain a large amount of solvent and moisture until it passes through the drying / heat treatment process, or the film may be inadequately hard and easily scratched. It is strongly desired that the transport roll does not touch the surface. Although the roll that touches the film-forming surface is colored in FIG. 1, tension can be applied to the base material by sandwiching the base material between the roll that touches the film surface and the roll that touches the opposite side of the film surface.

一方、乾燥・熱処理炉は平らに金属箔コイルを搬送する構造になっており、乾燥・熱処理時間が長い材料では非常にゆっくり金属箔を搬送するか、長大な炉を準備する必要がある。しかしながら、炉内で膜面にロールが当たらない状態に保つため、炉長が10mを超えるような長い設備は製造コストが高くなるだけでなく、金属箔に歪みがあっても炉内で金属箔を挟んで張力を掛け直すことができないために、蛇行が発生したり搬送が不安定になってしまったりする。炉長については仮に10mの長さがあっても最高温度や不活性ガス雰囲気などの熱処理環境が確保される領域はその中の一部にとどまるので、現実的な設備で工業生産するには短時間で熱硬化する材料が求められている。その目安は熱処理時間が2分以内で膜が硬化することである。 On the other hand, the drying / heat treatment furnace has a structure for transporting the metal foil coil flatly, and for a material having a long drying / heat treatment time, it is necessary to transport the metal foil very slowly or prepare a long furnace. However, in order to keep the film surface out of the roll in the furnace, long equipment with a furnace length of more than 10 m not only increases the manufacturing cost, but also makes the metal foil in the furnace even if the metal foil is distorted. Since the tension cannot be reapplied by sandwiching the metal, meandering may occur or the transportation may become unstable. As for the furnace length, even if it has a length of 10 m, the area where the heat treatment environment such as the maximum temperature and the atmosphere of the inert gas is secured is only a part of it, so it is short for industrial production with practical equipment. There is a demand for a material that can be heat-cured over time. The guideline is that the film cures within 2 minutes of heat treatment.

すなわち、フレキシブルなデバイス基板として使える平坦化膜付き金属箔コイルを得るためには、金属箔の表面をガラス基板なみの高い平滑性になるよう被覆することができ、絶縁性を付与し、2分以内で硬化できるような無機・有機ハイブリッド膜、特にフェニル基で修飾されたシリカ膜が求められている。 That is, in order to obtain a metal leaf coil with a flattening film that can be used as a flexible device substrate, the surface of the metal foil can be coated so as to have high smoothness similar to that of a glass substrate, and insulation is imparted for 2 minutes. There is a demand for an inorganic / organic hybrid film that can be cured within a range, particularly a silica film modified with a phenyl group.

特許文献1には太陽電池用絶縁基板およびその製造方法として、オルガノアルコキシシランを含む材料で被覆されたステンレス鋼板が開示されている。いわゆるゾルゲル法による塗布液を成膜して絶縁性・耐熱性・短時間硬化が実現されているが、ゾルゲル法による塗布液は固形分濃度を高くするとゲル化してしまうため、多量の溶媒を含んでいる。金属箔の表面には圧延すじや疵のような凹凸が多数あり、深さ数μmの凹みが散見されるのが通常である。このような金属箔表面に固形分濃度が低い塗布液を塗ると、溶剤蒸発後に凹みが緩和されるものの、完全に平坦化されることはない。 Patent Document 1 discloses an insulating substrate for a solar cell and a stainless steel sheet coated with a material containing organoalkoxysilane as a method for producing the same. Insulation, heat resistance, and short-time curing are realized by forming a coating liquid by the so-called sol-gel method, but the coating liquid by the sol-gel method contains a large amount of solvent because it gels when the solid content concentration is increased. I'm out. The surface of the metal foil has many irregularities such as rolling streaks and scratches, and dents having a depth of several μm are usually found scattered on the surface. When a coating liquid having a low solid content concentration is applied to the surface of such a metal foil, the dents are alleviated after the solvent evaporates, but the metal foil surface is not completely flattened.

本願発明者は、特許文献2において、フェニルトリアルコキシシランを用いて、フェニルシルセスキオキサンラダーポリマーを形成し、これを芳香族炭化水素系溶剤に溶解した平坦化膜形成用塗布液を提案した。特許文献2に記載の平坦化膜形成用塗布液は、有機溶媒中にフェニルトリアルコキシシラン、酢酸、および有機スズを触媒として加え、水で加水分解後、160℃以上210℃以下の温度で、加水分解で生成したものを含む有機溶媒を減圧留去して得られたフェニルシルセスキオキサンラダーポリマー(以下、単に「ラダーポリマー」ともいう)を芳香族炭化水素系溶剤に溶解して得られる。 In Patent Document 2, the inventor of the present application has proposed a coating liquid for forming a flattening film by forming a phenylsilsesquioxane ladder polymer using phenyltrialkoxysilane and dissolving it in an aromatic hydrocarbon-based solvent. .. The coating liquid for forming a flattening film described in Patent Document 2 is prepared by adding phenyltrialkoxysilane, acetic acid, and organic tin as catalysts in an organic solvent, hydrocarbonizing with water, and then at a temperature of 160 ° C. or higher and 210 ° C. or lower. It is obtained by dissolving a phenylsilsesquioxane ladder polymer (hereinafter, also simply referred to as "ladder polymer") obtained by distilling off an organic solvent containing a product produced by hydrolysis under reduced pressure in an aromatic hydrocarbon solvent. ..

特許文献2の平坦化膜用塗布液を基材に塗工し、フェニルシルセスキオキサンラダーポリマーの有機基に応じた条件で乾燥・熱処理を行うと、基材上に有機基で修飾されたラダーポリマーの平坦化膜が得られる。この平坦化膜は通常のゾルゲル膜に比べると高分子量の前駆体から形成されるため熱処理中に、膜の収縮が少なく、厚膜化が可能という特徴を持つ。しかし膜の硬度が低く疵が入りやすかった。 When the coating liquid for a flattening film of Patent Document 2 was applied to a base material and dried and heat-treated under the conditions corresponding to the organic group of the phenylsilsesquioxane ladder polymer, the base material was modified with an organic group. A flattening film of rudder polymer is obtained. Since this flattening film is formed from a precursor having a higher molecular weight than a normal sol-gel film, it has a feature that the film shrinks less during heat treatment and can be thickened. However, the hardness of the film was low and it was easy to get scratches.

基材上の平坦化膜耐疵付き性を向上させるために、膜中にフィラーを添加することが一般的に行われ、フュームドシリカ、コロイダルシリカ等のシリカ微粒子が用いられている。しかし、シリカ微粒子の乾燥粉末は溶剤中で凝集しやすい。例えば、コロイダルシリカ微粒子をケトン系溶剤に分散させて、特許文献2の平坦化膜形成用塗布液に加えた場合、シリカ微粒子が凝集して成膜が困難であった。また、得られた平坦化膜にもひび割れの発生が見られた。 In order to improve the flaw resistance of the flattening film on the substrate, it is common practice to add a filler to the film, and silica fine particles such as fumed silica and colloidal silica are used. However, the dry powder of silica fine particles tends to aggregate in a solvent. For example, when colloidal silica fine particles were dispersed in a ketone solvent and added to the coating liquid for forming a flattening film of Patent Document 2, the silica fine particles aggregated and it was difficult to form a film. In addition, cracks were also observed in the obtained flattening film.

特許文献3は、シリカ微粒子分散液を基材に塗布することでシリカ微粒子の単層構造を基材に形成する際に、シリカ微粒子の凝集物の生成を抑制し、より均一な状態で基材にシリカ微粒子を配置することが容易な微粒子分散液を開示している。特許文献3では、ゾル-ゲル法(シュテーバー法)によって得られた単分散のシリカ粒子の凝集を抑制するために、シリカ微粒子をシランカップリング剤で疎水化して、(メタ)アクリル酸エステル系高分子を含有する、分散媒に分散させている。 Patent Document 3 suppresses the formation of aggregates of silica fine particles when forming a single-layer structure of silica fine particles on the base material by applying a silica fine particle dispersion liquid to the base material, and the base material is in a more uniform state. Discloses a fine particle dispersion liquid in which silica fine particles can be easily arranged. In Patent Document 3, in order to suppress the aggregation of monodisperse silica particles obtained by the sol-gel method (Staver method), the silica fine particles are hydrophobicized with a silane coupling agent to obtain a (meth) acrylic acid ester-based high molecular weight. It is dispersed in a dispersion medium containing molecules.

特許文献4は、SiNウェハのような研磨対象物を研磨するための研磨用組成物において砥粒として変性コロイダルシリカを用いることを開示する。ここでは、原料コロイダルシリカを、化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤の存在下で加熱して、シランカップリング剤がシリカ粒子の表面に結合した変性コロイダルシリカにより、シリカ同士の凝集を抑制している。 Patent Document 4 discloses that modified colloidal silica is used as an abrasive grain in a polishing composition for polishing an object to be polished such as a SiN wafer. Here, the raw colloidal silica is heated in the presence of a silane coupling agent having a functional group capable of chemically converting to a sulfonic acid group, and the modified colloidal silica in which the silane coupling agent is bonded to the surface of the silica particles is used. It suppresses aggregation of silicas.

特許文献3,4に記載のシリカ微粒子は、いずれも、シリカ微粒子単独で含む分散液、研磨用組成物であって、シリカ微粒子を、シリカ微粒子以外の成分を含む塗布液と混合して用いるフィラーとして用いられてはいない。したがって、シリカ微粒子以外の成分を考慮した、凝集性については、検討されていない。 The silica fine particles described in Patent Documents 3 and 4 are all dispersion liquids and polishing compositions containing the silica fine particles alone, and are fillers used by mixing the silica fine particles with a coating liquid containing components other than the silica fine particles. Not used as. Therefore, the cohesiveness in consideration of the components other than the silica fine particles has not been investigated.

従来技術においては、特許文献2記載のフェニルシルセスキオキサンラダーポリマーレジンをマトリックスとし、凝集していないシリカ微粒子をフィラーとして含み、シリカ微粒子の耐疵付き性の良い膜は得られていない。 In the prior art, the phenylsilsesquioxane ladder polymer resin described in Patent Document 2 is used as a matrix, and non-aggregated silica fine particles are contained as a filler, and a film having good scratch resistance of the silica fine particles has not been obtained.

特開平11-40829号公報Japanese Unexamined Patent Publication No. 11-40829 国際公開第2016/076399号International Publication No. 2016/076399 特開2013-155096号公報Japanese Unexamined Patent Publication No. 2013-155096 国際公開第2016/117560号International Publication No. 2016/117560

上述したように、従来技術においては、特許文献2に記載のフェニルシルセスキオキサンラダーポリマーレジンをマトリックスとし、凝集していないシリカ微粒子をフィラーとして含む耐疵付き性の良い膜は得られていない。 As described above, in the prior art, a film having good scratch resistance has not been obtained, in which the phenylsilsesquioxane ladder polymer resin described in Patent Document 2 is used as a matrix and non-aggregated silica fine particles are contained as a filler. ..

本発明は、上記課題を解決すべくなされたものであって、ケトン系有機溶媒中にフェニルトリアルコキシシラン、酢酸、有機スズを加え、加水分解後、加水分解で生成したものを含む有機溶媒を減圧留去して得られたフェニルシルセスキオキサンラダーポリマーレジンを、シリカ微粒子含有ケトン系溶剤に溶解した平坦化膜形成塗布液およびそれに用いるシリカ微粒子含有ケトン系溶剤である。 The present invention has been made to solve the above-mentioned problems, and an organic solvent including a solvent produced by adding phenyltrialkoxysilane, acetic acid, and organic tin to a ketone-based organic solvent, hydrolyzing, and then hydrolyzing is provided. A flattening film-forming coating solution in which the phenylsilsesquioxane ladder polymer resin obtained by distilling under reduced pressure is dissolved in a silica fine particle-containing ketone solvent, and a silica fine particle-containing ketone solvent used therein.

本発明により以下が提供される。
(1) アルコール溶媒中、フェニルトリアルコキシシラン1モルに対して、酢酸0.1モル以上1モル以下、有機スズ0.005モル以上0.05モル以下を触媒として加え、2モル以上4モル以下の水で加水分解後、160℃以上210℃以下の温度で、加水分解で生成したものを含む有機溶媒を減圧留去して得られたフェニルシルセスキオキサンラダーポリマーのレジンおよびシリカ微粒子含有ケトン系溶剤を含み、前記シリカ微粒子含有ケトン系溶剤が、メチルエチルケトン、メチルイソブチルケトン、およびシクロヘキサノンから選ばれる有機溶媒中で、アルコキシシランを塩基性触媒下で加水分解して生成される、シリカ微粒子とシリカ微粒子の形態をとらないアルコキシシランの加水分解縮合反応物とを含む、平坦化膜形成塗布液。
) アルコール溶媒中、フェニルトリアルコキシシラン1モルに対して、酢酸0.1モル以上1モル以下、有機スズ0.005モル以上0.05モル以下を触媒として加え、2モル以上4モル以下の水で加水分解後、160℃以上210℃以下の温度で、加水分解で生成したものを含む有機溶媒を減圧留去して得られたフェニルシルセスキオキサンラダーポリマーのレジンをシリカ微粒子含有ケトン系溶剤に溶解した平坦化膜形成塗布液の製造方法であって、前記シリカ微粒子含有ケトン系溶剤が、メチルエチルケトン、メチルイソブチルケトン、およびシクロヘキサノンから選ばれる有機溶媒中で、アルコキシシランを塩基性触媒下で加水分解して生成される、シリカ微粒子とシリカ微粒子の形態をとらないアルコキシシランの加水分解縮合反応物とを含む、平坦化膜形成塗布液の製造方法
) 前記(1記載の塗布液を金属箔コイルに塗布後、不活性ガス雰囲気中300℃以上450℃以下の熱処理プロセスでリフローおよび膜硬化させることにより金属箔コイルの表面を膜厚2.0μm以上5.0μm以下、圧延に垂直な方向のRaが30nm以下であるフェニルシルセスキオキサンラダーポリマーの膜で被覆した平坦化膜付き金属箔コイル。
) 前記金属箔がステンレス箔であることを特徴とする前記()に記載の金属箔コイル。
) 前記(1)記載の塗布液を金属箔に膜厚2.0μm以上5.0μm以下となるように塗布し、不活性ガス雰囲気中300℃以上450℃以下の熱処理炉を通過させることによりリフローおよび膜硬化させた後、巻き取った平坦化膜付き金属箔コイルの製造方法。
) 前記金属箔がステンレス箔であることを特徴とする前記()に記載の金属箔コイルの製造方法。
) メチルエチルケトン、メチルイソブチルケトン、およびシクロヘキサノンから選ばれる有機溶媒中で、アルコキシシランを塩基性触媒下で加水分解して生成される、シリカ微粒子とシリカ微粒子の形態をとらないアルコキシシランの加水分解縮合反応物とを含むシリカ微粒子含有ケトン系溶剤。
) アルコキシシラン1モルに対して、0.5~85モルのメチルエチルケトン、メチルイソブチルケン、およびシクロヘキサノンから選ばれる有機溶媒を、アルコキシシランと混合し、撹拌して、溶液1を作製する工程、
アルコキシシラン1モルに対して、0.8~8モルの水と0.1~6モルの塩基性触媒とを混合し溶液2を作製する工程、および
前記溶液1を撹拌しながら、前記溶液1に、前記溶液2を全量滴下し、滴下終了後、さらに撹拌する工程を含む前記()に記載のシリカ微粒子含有ケトン系溶剤の製造方法。
The present invention provides:
(1) In an alcohol solvent, 0.1 mol or more and 1 mol or less of acetic acid and 0.005 mol or more and 0.05 mol or less of organic tin are added as a catalyst to 1 mol of phenyltrialkoxysilane, and 2 mol or more and 4 mol or less. After hydrolysis with water, the organic solvent containing the product produced by hydrolysis was distilled off under reduced pressure at a temperature of 160 ° C. or higher and 210 ° C. or lower. Silica fine particles and silica produced by hydrolyzing alkoxysilane under a basic catalyst in an organic solvent selected from methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, the silica fine particle-containing ketone solvent containing a system solvent. A flattening film-forming coating solution containing a hydrolysis-condensation reaction product of an alkoxysilane that does not take the form of fine particles .
( 2 ) In an alcohol solvent, 0.1 mol or more and 1 mol or less of acetic acid and 0.005 mol or more and 0.05 mol or less of organic tin are added as a catalyst to 1 mol of phenyltrialkoxysilane, and 2 mol or more and 4 mol or less. After hydrolysis with water, the resin of the phenylsilsesquioxane ladder polymer obtained by distilling off the organic solvent containing the one produced by hydrolysis at a temperature of 160 ° C. or higher and 210 ° C. or lower under reduced pressure is obtained from a ketone containing silica fine particles. A method for producing a flattening film-forming coating solution dissolved in a system solvent, wherein the silica fine particle-containing ketone solvent is an organic solvent selected from methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone under a basic catalyst of alkoxysilane. A method for producing a flattening film-forming coating liquid, which comprises silica fine particles and a hydrolysis-condensation reaction product of an alkoxysilane that does not take the form of silica fine particles, which is produced by hydrolysis in the above .
( 3 ) After applying the coating liquid according to (1 ) above to the metal foil coil, the surface of the metal foil coil is coated with a film thickness 2 by reflowing and film curing in a heat treatment process of 300 ° C. or higher and 450 ° C. or lower in an inert gas atmosphere. A metal leaf coil with a flattening film coated with a film of a phenylsilsesquioxane ladder polymer having a Ra of 0.0 μm or more and 5.0 μm or less and Ra of 30 nm or less in the direction perpendicular to rolling.
( 4 ) The metal foil coil according to ( 3 ) above, wherein the metal foil is a stainless steel foil.
( 5 ) The coating liquid according to (1 ) above is applied to a metal foil so as to have a film thickness of 2.0 μm or more and 5.0 μm or less, and is passed through a heat treatment furnace at 300 ° C. or more and 450 ° C. or less in an inert gas atmosphere. A method for manufacturing a metal leaf coil with a flattening film that is wound after reflowing and film curing.
( 6 ) The method for manufacturing a metal foil coil according to ( 5 ) above, wherein the metal foil is a stainless steel foil .
( 7 ) Hydrolysis of silica fine particles and alkoxysilanes that do not take the form of silica fine particles, which are produced by hydrolyzing alkoxysilane under a basic catalyst in an organic solvent selected from methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. A ketone solvent containing silica fine particles containing a condensation reaction product.
( 8 ) A step of mixing 0.5 to 85 mol of an organic solvent selected from methyl ethyl ketone, methyl isobutylken, and cyclohexanone with 1 mol of alkoxysilane, and stirring the mixture to prepare a solution 1.
A step of mixing 0.8 to 8 mol of water and 0.1 to 6 mol of a basic catalyst with respect to 1 mol of alkoxysilane to prepare a solution 2, and while stirring the solution 1, the solution 1 The method for producing a silica fine particle-containing ketone solvent according to ( 7 ) above, which comprises a step of dropping the entire amount of the solution 2 and further stirring after the dropping is completed.

本発明によれば、フェニルシルセスキオキサンラダーポリマーレジンとシリカ微粒子フィラーとの密着性が高く、シリカ微粒子の充填率が高くても、ひび割れのない耐疵付き性の高い膜が得られる。また、Roll to Rollプロセスに適用可能な短時間硬化が可能な耐疵付き性が向上した平坦化膜形成塗布液および平坦化膜付き金属箔が提供される。 According to the present invention, a film having high adhesion between the phenylsilsesquioxane ladder polymer resin and the silica fine particle filler and having high scratch resistance without cracks can be obtained even if the silica fine particle filling rate is high. Further provided, a flattening film forming coating liquid and a metal foil with a flattening film, which can be cured for a short time and have improved scratch resistance, can be applied to the Roll to Roll process.

Roll to Roll 成膜装置の模式図を示す。The schematic diagram of the Roll to Roll film forming apparatus is shown. 本発明に用いるシリカ微粒子含有ケトン系溶剤をスライドガラス上で室温乾燥させ、走査型電子顕微鏡で観察した写真を示す。A photograph of the silica fine particle-containing ketone solvent used in the present invention dried on a slide glass at room temperature and observed with a scanning electron microscope is shown.

平坦化膜付き金属箔コイルを得るには、平坦化という観点で膜が硬化過程でリフローして金属箔の表面の凹凸をならすこと、その膜がRoll to Rollプロセスで成膜できるよう2分以内の熱処理時間で硬化できることの2点に加えて、得られる膜の硬度が高く耐疵付き性に優れていることが重要である。 To obtain a metal leaf coil with a flattening film, from the viewpoint of flattening, the film reflows during the curing process to smooth out the unevenness of the surface of the metal foil, and within 2 minutes so that the film can be formed by the Roll to Roll process. In addition to the two points that it can be cured in the heat treatment time, it is important that the obtained film has high hardness and excellent scratch resistance.

発明者らは耐熱性・耐湿性に優れるフェニルシルセスキオキサンラダーポリマーの膜で上記の2点を両立させ、且つ耐疵付き性に優れている膜が得られる平坦化膜形成塗布液を見出した。本発明の平坦化膜形成塗布液は、アルコール溶媒中、フェニルトリアルコキシシラン1モルに対して、酢酸0.1モル以上1モル以下、有機スズ0.005モル以上0.05モル以下を触媒として加え、2モル以上4モル以下の水で加水分解後、160℃以上210℃以下の温度で、加水分解で生成したものを含む有機溶媒を減圧留去して得られたフェニルシルセスキオキサンラダーポリマーレジンを、シリカ微粒子含有ケトン系溶剤に溶解した平坦化膜形成塗布液である。 The inventors have found a flattening film-forming coating film that can obtain a film having both the above two points and excellent scratch resistance with a film of a phenylsilsesquioxane ladder polymer having excellent heat resistance and moisture resistance. rice field. The flattening film-forming coating liquid of the present invention uses 0.1 mol or more and 1 mol or less of acetic acid and 0.005 mol or more and 0.05 mol or less of organic tin as catalysts with respect to 1 mol of phenyltrialkoxysilane in an alcohol solvent. In addition, after hydrolysis with 2 mol or more and 4 mol or less of water, the organic solvent containing the product produced by hydrolysis was distilled off under reduced pressure at a temperature of 160 ° C. or higher and 210 ° C. or lower to obtain a phenylsilsesquioxane ladder. It is a flattening film forming coating liquid in which a polymer resin is dissolved in a ketone solvent containing silica fine particles.

発明者らは、基材上の平坦化膜耐疵付き性を向上させるために添加する凝集しにくいフィラーとして、種々のシリカ微粒子を検討した。その結果、アルコキシシランからをゾルゲル法でシリカ微粒子を生成する方法において、ケトン系の溶媒で、アンモニアを触媒としてアルコキシシランを加水分解すると、大きさの異なるシリカ微粒子が析出するとともに、加水分解されたアルコキシシランのモノマーまたはオリゴマーも生成することを見出し、これを、フェニルシルセスキオキサンラダーポリマーのレジンのシリカ微粒子含有ケトン系溶剤として用いることにより、耐疵付き性に優れている膜が得られることを見出した。 The inventors have studied various silica fine particles as a filler that does not easily aggregate, which is added to improve the flaw resistance of the flattening film on the substrate. As a result, in the method of producing silica fine particles from alkoxysilane by the sol-gel method, when alkoxysilane was hydrolyzed using an ammonia as a catalyst with a ketone solvent, silica fine particles of different sizes were precipitated and hydrolyzed. It has been found that an alkoxysilane monomer or oligomer is also produced, and by using this as a silica fine particle-containing ketone solvent for the resin of the phenylsilsesquioxane ladder polymer, a film having excellent scratch resistance can be obtained. I found.

本発明に用いることができる、シリカ微粒子含有ケトン系溶剤は、メチルエチルケトン、メチルイソブチルケトン、およびシクロヘキサノンから選ばれる有機溶媒中で、アルコキシシランを塩基性触媒下で加水分解して生成される、シリカ微粒子とシリカ微粒子の形態をとらないアルコキシシランの加水分解縮合反応物とを含んでいる。図2に本発明に用いるシリカ微粒子含有ケトン系溶剤を走査型電子顕微鏡で観察した写真を示す。図2は、本発明に用いるシリカ微粒子含有ケトン系溶剤をスポイトで1ml吸い上げ、スライドガラス上で室温乾燥させた顕微鏡写真である。直径0.9μm前後と50nm前後の大きさの異なるシリカ粒子と、膜を形成している部分(図2で「膜成分」として示す)が認められる。膜を形成している部分がシリカ微粒子の形態をとらないアルコキシシランの加水分解縮合反応物である。 The silica fine particle-containing ketone solvent that can be used in the present invention is a silica fine particle produced by hydrolyzing alkoxysilane under a basic catalyst in an organic solvent selected from methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. And a hydrolysis condensation reaction product of alkoxysilane which does not take the form of silica fine particles. FIG. 2 shows a photograph of the silica fine particle-containing ketone solvent used in the present invention observed with a scanning electron microscope. FIG. 2 is a micrograph of the silica fine particle-containing ketone solvent used in the present invention sucked up by a dropper and dried at room temperature on a slide glass. Silica particles having different sizes of about 0.9 μm and about 50 nm and a portion forming a film (shown as “film component” in FIG. 2) are observed. The portion forming the film is a hydrolysis condensation reaction product of alkoxysilane that does not take the form of silica fine particles.

シリカ微粒子含有ケトン系溶剤の製造に用いる有機溶媒は、メチルエチルケトン、メチルイソブチルケトン、およびシクロヘキサノンから選ばれるケトン系溶媒である。ケトン系溶媒であってもアセトンは、水との親和性が高いので、シリカ微粒子含有ケトン系溶剤の製造には適していない。特に好ましいケトン系溶媒は、シクロヘキサノンである。 The organic solvent used for producing the silica fine particle-containing ketone solvent is a ketone solvent selected from methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Even if it is a ketone solvent, acetone has a high affinity with water and is not suitable for producing a ketone solvent containing silica fine particles. A particularly preferred ketone solvent is cyclohexanone.

ケトン系溶媒は、20℃における水の溶解度が250g/L以下であることが好ましい。アルコキシシランは、通常、ケトン系溶媒と均一に混じり合うが、水の溶解度が低いケトン系溶媒では、水が均一に混じり合わないので、アルコキシシランの加水分解が不均一に進む。塩基性触媒下では、一か所加水分解されたアルコキシシラン分子は、選択的に、次の加水分解を受けやすい。疎水性溶媒中では、親水性基同士が集まった方が安定であるため、加水分解初期には、脱水縮合反応が進み、シリカ微粒子が形成され、脱水反応で生じた水が次の加水分解反応に使用され、シリカ微粒子が成長する。この時一か所のみ加水分解されて、他の部分は加水分解されなかったアルコキシシラン分子は、シリカ微粒子の形成に関わることなく、溶媒中にそのままモノマーとして存在し、またモノマー同士で逐次的に縮合してオリゴマー(アルコキシシランの加水分解縮合反応物)を形成する。このように水の溶解度が低いケトン系溶媒中で塩基性触媒を使った場合、加水分解の初期には100nm以上の比較的大きめの粒子と、モノマーまたはオリゴマーが生成する。一定量の加水分解が進むとアルコキシシランの副生成物としてアルコールが得られ、ケトン・アルコール・水から構成される完全に混和した溶液になり、加水分解は溶媒内で均一に進行し、シュテーバー法と同様に水の添加量に応じて100nm未満の小さいナノ粒子が生成する。 The ketone solvent preferably has a water solubility of 250 g / L or less at 20 ° C. Alkoxysilane usually mixes uniformly with a ketone solvent, but in a ketone solvent having low water solubility, water does not mix uniformly, so that the hydrolysis of alkoxysilane proceeds non-uniformly. Under a basic catalyst, the alkoxysilane molecule hydrolyzed in one place is selectively susceptible to the next hydrolysis. In a hydrophobic solvent, it is more stable if the hydrophilic groups are gathered together. Therefore, in the initial stage of hydrolysis, the dehydration condensation reaction proceeds, silica fine particles are formed, and the water generated in the dehydration reaction is the next hydrolysis reaction. Used in the growth of silica fine particles. At this time, the alkoxysilane molecule, which was hydrolyzed only in one place and not in the other part, exists as a monomer in the solvent as it is without being involved in the formation of silica fine particles, and the monomers are sequentially present with each other. Condensate to form an oligomer (a hydrolyzed condensation reaction product of alkoxysilane). When a basic catalyst is used in a ketone solvent having a low solubility in water as described above, relatively large particles of 100 nm or more and a monomer or an oligomer are produced at the initial stage of hydrolysis. When a certain amount of hydrolysis progresses, alcohol is obtained as a by-product of alkoxysilane, and it becomes a completely mixed solution consisting of ketone, alcohol, and water. Hydrolysis proceeds uniformly in the solvent, and the Stever method Similarly, small nanoparticles of less than 100 nm are generated depending on the amount of water added.

本発明のシリカ微粒子含有ケトン系溶剤の製造では、前述のようにアルコキシシランの加水分解反応の結果、シリカ微粒子と、シリカ微粒子の形態をとらないアルコキシシランの加水分解縮合反応物(モノマーまたはオリゴマー)が共存して生成する。このモノマーまたはオリゴマーが、シリカ微粒子とラダーポリマーレジンマトリックスとの密着性を高める効果を提供している。 In the production of the silica fine particle-containing ketone solvent of the present invention, as a result of the hydrolysis reaction of alkoxysilane as described above, the hydrolysis condensation reaction product (monomer or oligomer) of the silica fine particles and the alkoxysilane which does not take the form of the silica fine particles). Coexist and generate. This monomer or oligomer provides the effect of enhancing the adhesion between the silica fine particles and the ladder polymer resin matrix.

生成したシリカ微粒子と、前記アルコキシシランの加水分解縮合反応物の総固形分は、通常、1mass%以上20mass%以下である。総固形分濃度が1mass%未満である場合は、得られる平坦化膜の中に含まれるシリカ微粒子およびアルコキシシランの加水分解縮合反応物が少ないため、耐疵付き性の効果が発現しにくい。総固形分濃度が20mass%を超える場合は、シリカ微粒子含有ケトン系溶媒そのものの貯蔵安定性が悪くなりやすいうえ、平坦化膜中のシリカ微粒子の割合が高くなり、膜に微細なクラックが入って、リーク電流が低下しやすい。 The total solid content of the generated silica fine particles and the hydrolysis condensation reaction product of the alkoxysilane is usually 1 mass% or more and 20 mass% or less. When the total solid content concentration is less than 1 mass%, the effect of scratch resistance is less likely to be exhibited because the amount of silica fine particles and the hydrolysis condensation reaction product of alkoxysilane contained in the obtained flattening film is small. When the total solid content concentration exceeds 20 mass%, the storage stability of the silica fine particle-containing ketone solvent itself tends to deteriorate, and the proportion of silica fine particles in the flattening film increases, resulting in fine cracks in the film. , Leakage current tends to decrease.

本発明に用いるシリカ微粒子含有ケトン系溶剤中のシリカ微粒子の粒度分布は、シュテーバー法に代表される従来技術のゾル-ゲル法によって得られるような、単分散のシリカ微粒子ではなく、10nm~100nmの範囲と、100nm~1000nmの範囲にピークを有している。これらの大きな粒径の粒子群と、小さな粒径の粒子群の2つのタイプが存在することにより、単分散のシリカ微粒子に比較して、シリカ微粒子フィラーの充填率を高めることができ、得られる平坦化膜の耐疵付き性をさらに高める効果を提供している。
本発明ではシリカ微粒子含有ケトン系溶媒を1ml採取してスライドガラス上で乾燥させたもののSEM写真を20枚撮影し、画像解析ソフトで球形近似した粒子の個数を縦軸に、0~25nm、25~50nmのように25nm刻みで、球形近似した粒子の直径を横軸にヒストグラムを作製することで、ピークが2山のバイモーダルな粒度分布になっているかどうか調べている。
The particle size distribution of the silica fine particles in the silica fine particle-containing ketone solvent used in the present invention is not monodisperse silica fine particles as obtained by the conventional sol-gel method represented by the Stever method, but is 10 nm to 100 nm. It has a range and a peak in the range of 100 nm to 1000 nm. Due to the existence of these two types, a group of particles having a large particle size and a group of particles having a small particle size, it is possible to increase the filling rate of the silica fine particle filler as compared with the monodisperse silica fine particles, which is obtained. It provides the effect of further enhancing the flaw resistance of the flattening film.
In the present invention, 1 ml of a ketone solvent containing silica fine particles is collected and dried on a slide glass, and 20 SEM photographs are taken. By creating a histogram on the horizontal axis with the diameter of particles that are similar to a sphere in increments of 25 nm such as ~ 50 nm, it is investigated whether or not the peak has a bimodal particle size distribution with two peaks.

シリカ微粒子含有ケトン系溶剤の製造に用いるアルコキシシランは、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、トリメトキシシラン、トリエトキシシランが挙げられる。特に好ましいアルコキシシランは、テトラエトキシシランである。また、使用する触媒は、塩基性触媒である。使用可能な塩基性触媒としては、アンモニア水、NaOH、KOHが挙げられる。特に好ましい塩基性触媒は、アンモニア水である。 The alkoxysilanes used in the production of the silica fine particle-containing ketone solvent are tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, trimethoxysilane, and tri. Ethoxysilane can be mentioned. A particularly preferred alkoxysilane is tetraethoxysilane. The catalyst used is a basic catalyst. Examples of the basic catalyst that can be used include aqueous ammonia, NaOH, and KOH. A particularly preferred basic catalyst is aqueous ammonia.

本発明に用いるシリカ微粒子含有ケトン系溶剤は、以下の工程によって製造することができる。
アルコキシシラン1モルに対して、0.5~85モルのケトン系溶媒を用意して1モルのアルコキシシランと撹拌混合する。別の容器でアルコキシシラン1モルに対して、0.8~8モルの水と0.1~6モルの塩基性触媒とを混ぜ合わせて、塩基性の水溶液を作製する。アルコキシシランとケトン系溶媒とを撹拌しているところへ、塩基性水溶液を滴下する。滴下終了後、さらに1時間撹拌することにより本発明に用いるシリカ微粒子含有ケトン系溶剤が得られる。
The silica fine particle-containing ketone solvent used in the present invention can be produced by the following steps.
For 1 mol of alkoxysilane, 0.5 to 85 mol of a ketone solvent is prepared and mixed with 1 mol of alkoxysilane by stirring. In another container, 0.8 to 8 mol of water and 0.1 to 6 mol of the basic catalyst are mixed with 1 mol of alkoxysilane to prepare a basic aqueous solution. A basic aqueous solution is added dropwise to the place where the alkoxysilane and the ketone solvent are stirred. After the completion of the dropping, the mixture is further stirred for 1 hour to obtain the silica fine particle-containing ketone solvent used in the present invention.

本発明の平坦化膜形成塗布液のフェニルシルセスキオキサンラダーポリマーのレジンは、有機溶媒中、フェニルトリアルコキシシラン1モルに対して、酢酸0.1モル以上1モル以下、有機スズ0.005モル以上0.05モル以下を触媒として加え、2~4モルの水で加水分解後、160℃以上220℃以下の温度でフェニルトリアルコキシシランの加水分解時に用いた有機溶媒、反応副生成物としての水およびアルコールを減圧留去して得られる。 The resin of the phenylsilsesquioxane ladder polymer of the flattening film forming coating solution of the present invention contains 0.1 mol or more and 1 mol or less of acetic acid and 0.005 organic tin with respect to 1 mol of phenyltrialkoxysilane in an organic solvent. As a reaction by-product, an organic solvent used for hydrolysis of phenyltrialkoxysilane at a temperature of 160 ° C. or higher and 220 ° C. or lower after hydrolysis with 2 to 4 mol of water by adding mol or more and 0.05 mol or less as a catalyst. It is obtained by distilling off water and alcohol under reduced pressure.

加水分解後の溶液は、粘度1~2mPa・sの透明なものであった。GPC (gel permeation chromatography)により求めたスチレン換算重量平均分子量は300であり、部分加水分解されたフェニルトリアルコキシシランの単分子あるいは2分子程度の縮合物であることを示した。減圧留去は室温から初めて突沸が起きないように徐々に温度を上げていく。オイルバスを用いてロータリーエバポレータで600mlの加水分解溶液の溶媒を減圧留去する場合、オイルバス50℃で溶媒が出なくなるまで約30分保った後、130℃にオイルバスの温度を上げて溶媒が出なくなるまで30分保つ。温度上昇と溶媒除去に伴って、固形分濃度が上がり、固形物の粘度が高くなり、曳糸性を示すようになる。160~210℃にオイルバスの温度を上げて溶媒が出なくなるまで30分保ち、さらに15分保持して溶媒を完全に取り除くことができる。溶媒がほとんどなくなると固形物すなわち曳糸性を示していたレジンは160~210℃において流動性がなくなってくる。この時得られるレジンは室温では半透明~白色の固体である。レジンをシリカ微粒子含有ケトン系溶剤に溶解後、GPCにより求めたスチレン換算重量平均分子量は5000~100000であった。 The solution after hydrolysis was transparent with a viscosity of 1 to 2 mPa · s. The styrene-equivalent weight average molecular weight determined by GPC (gel permeation chromatography) was 300, indicating that it was a single molecule or a condensate of about two molecules of partially hydrolyzed phenyltrialkoxysilane. For vacuum distillation, the temperature is gradually raised from room temperature so that bumping does not occur. When the solvent of 600 ml of the hydrolyzed solution is distilled off under reduced pressure using an oil bath with a rotary evaporator, the solvent is kept at 50 ° C. for about 30 minutes until the solvent disappears, and then the temperature of the oil bath is raised to 130 ° C. to obtain the solvent. Hold for 30 minutes until no longer appears. As the temperature rises and the solvent is removed, the solid content concentration increases, the viscosity of the solid matter increases, and the spinnability is exhibited. The temperature of the oil bath can be raised to 160-210 ° C. and held for 30 minutes until the solvent disappears, and then held for another 15 minutes to completely remove the solvent. When the solvent is almost exhausted, the solid substance, that is, the resin showing spinnability, loses its fluidity at 160 to 210 ° C. The resin obtained at this time is a translucent to white solid at room temperature. After dissolving the resin in a ketone solvent containing silica fine particles, the styrene-equivalent weight average molecular weight determined by GPC was 5000 to 100,000.

このように曳糸性を示したことと、高分子量でありながら溶剤に溶解したこと、赤外線吸収スペクトルにおいて1100cm-1付近にシロキサン結合に由来するダブルピークを示したことから、本発明によるフェニルトリエトキシシランを原料としたレジンはラダー構造に近い形をとっていると推定される。 As described above, the phenyltri according to the present invention showed spinnability, was dissolved in a solvent even though it had a high molecular weight, and showed a double peak derived from a siloxane bond near 1100 cm -1 in the infrared absorption spectrum. It is presumed that the resin made from ethoxysilane has a shape close to the ladder structure.

本発明では酸触媒として酢酸を用いているため、ラダーポリマーに近い構造ではあるが欠陥部にアルコキシ基や水酸基が比較的多く残っており、反応基を多く含むため、熱処理時にこれらの反応基間で縮合反応が進み、短時間で膜硬化が可能になると考えられる。ここで膜硬化とは、熱処理後の膜の鉛筆高度が3H以上になり疵が入りにくくなることと、膜中の溶剤や水分など絶縁膜のリークの原因となりえる成分が揮発し、絶縁膜のリーク電流が1E-6A/cm以下である絶縁膜が形成されることの2つの条件を満たすことを意味する。絶縁膜のリーク電流は、金属箔と、フェニルシルセスキオキサンラダーポリマーの膜の膜上に形成した1cm角の上部電極の間に100Vの電圧を印加して測定する。 Since acetic acid is used as an acid catalyst in the present invention, the structure is similar to that of a ladder polymer, but a relatively large number of alkoxy groups and hydroxyl groups remain in the defective portion, and many reactive groups are contained. Therefore, between these reaction groups during heat treatment. It is considered that the condensation reaction proceeds and the film can be cured in a short time. Here, film hardening means that the pencil altitude of the film after heat treatment becomes 3H or higher, making it difficult for flaws to occur, and components that can cause leakage of the insulating film, such as the solvent and moisture in the film, volatilize, resulting in the insulating film. This means that the two conditions of forming an insulating film having a leakage current of 1E-6A / cm 2 or less are satisfied. The leakage current of the insulating film is measured by applying a voltage of 100 V between the metal foil and the 1 cm square upper electrode formed on the film of the phenylsilsesquioxane ladder polymer film.

さらに、本発明においては触媒として加えている有機スズ由来のSnにより熱処理中の縮合反応が一層促進され、300~450℃において2分以内という連続熱処理可能な短時間での膜硬化が可能となる。 Further, in the present invention, the condensation reaction during the heat treatment is further promoted by the organic tin-derived Sn added as a catalyst, and the film can be cured in a short time capable of continuous heat treatment within 2 minutes at 300 to 450 ° C. ..

以下、本発明の高平滑化膜を得るためのパラメータ条件について記載する。特に断りのない限り、モル数はフェニルトリアルコキシシラン1モルに対する量である。 Hereinafter, the parameter conditions for obtaining the highly smoothed film of the present invention will be described. Unless otherwise specified, the number of moles is the amount per mole of phenyltrialkoxysilane.

塗布液合成時の酢酸の量はフェニルトリアルコキシシランの加水分解の進行具合に大きく影響を及ぼす。酢酸の量が0.1モルより少ない場合は、一部のフェニルトリアルコキシシランのみしか加水分解されないため、その後の重縮合反応がなかなか進行せず、低分子量のレジンとなってしまう。ラダーポリマーとしてある程度の長さがなければ、絡まり合ったポリマーが熱振動でほどけてリフロー性を発揮することにならないので不適である。1モルより多い時は、ほとんどすべてのフェニルトリアルコキシシランのすべてのアルコキシ基が加水分解されてしまうため、その後の重縮合反応が急速に進みすぎ、減圧留去前の加水分解の段階でゲル化が発生するため不適である。 The amount of acetic acid during the synthesis of the coating liquid has a great influence on the progress of hydrolysis of phenyltrialkoxysilane. When the amount of acetic acid is less than 0.1 mol, only a part of phenyltrialkoxysilane is hydrolyzed, so that the subsequent polycondensation reaction does not proceed easily, resulting in a low molecular weight resin. If the rudder polymer does not have a certain length, the entangled polymer will not be unwound by thermal vibration and exhibit reflowability, which is not suitable. When the amount is more than 1 mol, all the alkoxy groups of almost all phenyltrialkoxysilanes are hydrolyzed, so that the subsequent polycondensation reaction proceeds too rapidly and gelation occurs at the stage of hydrolysis before distillation under reduced pressure. Is not suitable because it occurs.

有機スズはフェニルトリアルコキシシランおよびその加水分解縮合反応物や、フェニル基含有ラダーポリマーの重縮合反応を促進する触媒である。有機スズが0.005モルより少ない時は熱処理中のラダーポリマーの縮合反応促進効果が不十分で、短時間硬化ができなくなるので不適である。有機スズが0.05モルを超えると、フェニルトリアルコキシシランおよびその加水分解縮合反応物の重縮合が進みすぎ、減圧留去前の加水分解の段階でゲル化が発生するため不適である。 Organic tin is a catalyst that promotes the polycondensation reaction of phenyltrialkoxysilane, its hydrolysis condensation reaction product, and phenyl group-containing ladder polymer. When the amount of organic tin is less than 0.005 mol, the effect of promoting the condensation reaction of the ladder polymer during the heat treatment is insufficient, and it is not suitable because it cannot be cured for a short time. If the amount of organotin exceeds 0.05 mol, polycondensation of phenyltrialkoxysilane and its hydrolysis condensation reaction product proceeds too much, and gelation occurs at the stage of hydrolysis before distillation under reduced pressure, which is unsuitable.

加水分解に用いる水の量が2モルより少ない場合、レジンに大量のアルコキシ基が残存するため、熱処理中に縮合反応(ラダーポリマー化)をしなければならなくなる。このため350~450℃において2分の熱処理では熱処理時間が不十分で、溶剤や水分が膜に残り絶縁不良となるため不適である。水の量が4モルを超える場合は急速に加水分解が進むため、ラダー状の規則正しい構造を作るよりもランダムに網目構造ができてしまい、レジンが溶解しなくなるため、塗布液が作製できず不適である。減圧留去時の温度が160℃より低い場合は、レジンの縮合反応が不十分であるため、溶解後のレジンの分子量分布にバラつきができ、低分子量成分が成膜時に揮発してハジキ状の欠陥が発生するため、不適である。減圧留去時の温度が210℃を超える場合は、縮合反応が進みすぎてレジンがケトン系溶媒に溶解しにくくなるので不適である。減圧留去時のより好ましい温度は165℃以上180℃以下である。塗布液の粘度はレジンと溶剤の量比、すなわち固形分量で調整することができる。最適な粘度と固形分量は塗布方法に依存するが、一般的には固形分濃度が15mass%以上40mass%以下で、粘度が3mPa・s以上100mPa・s以下に調整しておくと、2~5μmの膜厚で均一に塗ることができ、塗布液の貯蔵安定性も良好である。 If the amount of water used for hydrolysis is less than 2 mol, a large amount of alkoxy groups will remain in the resin, and a condensation reaction (ladder polymerization) will have to be performed during the heat treatment. Therefore, the heat treatment at 350 to 450 ° C. for 2 minutes is unsuitable because the heat treatment time is insufficient and the solvent and moisture remain on the film, resulting in poor insulation. If the amount of water exceeds 4 mol, hydrolysis will proceed rapidly, so a mesh structure will be formed at random rather than a ladder-like regular structure, and the resin will not dissolve, making it unsuitable because a coating solution cannot be prepared. Is. When the temperature at the time of distillation under reduced pressure is lower than 160 ° C., the condensation reaction of the resin is insufficient, so that the molecular weight distribution of the resin after dissolution may vary, and the low molecular weight components volatilize during film formation and become repellent. It is not suitable because it causes defects. If the temperature at the time of distillation under reduced pressure exceeds 210 ° C., the condensation reaction proceeds too much and the resin is difficult to dissolve in the ketone solvent, which is unsuitable. A more preferable temperature at the time of distillation under reduced pressure is 165 ° C. or higher and 180 ° C. or lower. The viscosity of the coating liquid can be adjusted by the amount ratio of the resin and the solvent, that is, the amount of solid content. The optimum viscosity and solid content amount depend on the coating method, but generally, if the solid content concentration is adjusted to 15 mass% or more and 40 mass% or less and the viscosity is adjusted to 3 mPa · s or more and 100 mPa · s or less, 2 to 5 μm. It can be applied uniformly with the same film thickness, and the storage stability of the coating liquid is also good.

次に本発明のフェニルシルセスキオキサンラダーポリマー膜による平坦化膜付き金属箔について説明する。 Next, the metal leaf with a flattening film using the phenylsilsesquioxane ladder polymer film of the present invention will be described.

金属箔は圧延によって薄くするので、圧延方向にすじが認められる。また、元の溶融金属に含まれる介在物や、圧延ロールに巻き込まれた異物などによって、圧延方向に引き伸ばされた疵も存在する。疵の大きさは幅数十μm、長さ1~数mm程度であることが多い。 Since the metal leaf is thinned by rolling, streaks are recognized in the rolling direction. In addition, there are also flaws stretched in the rolling direction due to inclusions contained in the original molten metal, foreign matter caught in the rolling roll, and the like. The size of the flaw is often several tens of μm in width and one to several mm in length.

金属箔の表面粗さは圧延すじに対して平行な方向と垂直な方向で異なり、垂直方向の方が表面粗さとしては大きい数字となる。したがって、被覆によって金属箔の平坦性を向上させる目的では表面粗さとして最も大きい数字になる垂直方向に注目する必要がある。具体的には、触針式粗さ計により1.25mmの測定長さで表面粗さを10箇所以上、金属箔コイルの圧延方向に対して垂直、すなわちコイルの幅方向に測定し、平均値を採用する。 The surface roughness of the metal foil differs between the direction parallel to the rolling streaks and the direction perpendicular to the rolling streaks, and the vertical direction has a larger surface roughness. Therefore, for the purpose of improving the flatness of the metal foil by coating, it is necessary to pay attention to the vertical direction, which is the largest number of surface roughness. Specifically, the surface roughness is measured at 10 or more points with a measurement length of 1.25 mm by a stylus type roughness meter, perpendicular to the rolling direction of the metal foil coil, that is, in the width direction of the coil, and the average value is measured. Is adopted.

平坦化膜付き金属箔の表面粗さと、その上に形成した有機EL素子の特性の関係を詳細に調べた結果、膜表面の平坦性は素子のリーク電流を減らすうえで重要であることがわかった。平坦化膜付き金属箔表面の圧延と垂直方向の算術平均粗さRaが30nm以下であれば、有機EL発光素子のリーク電流を1E-4A/m以下という実用的なレベルにすることができる。素子のリーク電流はフェニルシルセスキオキサンラダーポリマーの膜の上に、素子の下部電極、発光部、上部電極の順に成膜して素子を作り下部電極と上部電極の間に3Vの電圧を加えたときの電流を素子面積で割って求める。発光部は複数の層から成り全層厚は100~150nm程度であるので、膜の表面が粗い場合は下部電極と上部電極の間の距離の短いところができてしまい、素子のリーク電流が増えることになる。平坦化膜付き金属箔のRaが30nmを超える場合は、1E-4A/mを超えるリーク電流の大きい素子になるため素子としての効率が悪くなったりショートが発生したりするので不適である。Raのより好ましい範囲は20nm以下、さらに好ましくは15nm以下で、より小さなリーク電流にすることができる。 As a result of investigating in detail the relationship between the surface roughness of the metal foil with a flattening film and the characteristics of the organic EL element formed on it, it was found that the flatness of the film surface is important for reducing the leakage current of the element. rice field. Rolling of the surface of the metal foil with a flattening film and arithmetic in the vertical direction If the average roughness Ra is 30 nm or less, the leakage current of the organic EL light emitting element can be set to a practical level of 1E-4A / m 2 or less. .. The leak current of the device is formed on the film of the phenylsilsesquioxane ladder polymer in the order of the lower electrode, the light emitting part, and the upper electrode of the device to form the device, and a voltage of 3 V is applied between the lower electrode and the upper electrode. Divide the current at the time by the element area to obtain it. Since the light emitting part is composed of a plurality of layers and the total layer thickness is about 100 to 150 nm, if the surface of the film is rough, a short distance between the lower electrode and the upper electrode is created, and the leakage current of the element increases. become. When Ra of the metal foil with a flattening film exceeds 30 nm, the element has a large leak current exceeding 1E-4A / m 2 , which is unsuitable because the efficiency of the element is deteriorated or a short circuit occurs. A more preferable range of Ra is 20 nm or less, more preferably 15 nm or less, and a smaller leakage current can be obtained.

平坦化膜の表面粗さは、被覆する金属箔の表面粗さを反映する。金属箔表面そのものの表面粗さは圧延方向と垂直な方向に測ったRaが60nm以下であることが平坦化膜のRaを30nm以下にする目安となる。ただし、比較的粗い金属箔であってもフェニルシルセスキオキサンラダーポリマーの膜を厚く成膜すれば平坦化はしやすくなる傾向がある。金属箔としてはステンレス箔、アルミ箔、チタン箔、めっき鋼箔、銅箔などが挙げられる。金属箔の厚みは折れやしわが入らず扱うことが可能で、かつフレキシブル性を損なわない範囲が望ましく、通常30μm以上150μm以下が使いやすく、更に好ましい板厚は35μm以上80μm以下である。 The surface roughness of the flattening film reflects the surface roughness of the metal foil to be coated. As for the surface roughness of the metal foil surface itself, Ra of 60 nm or less measured in the direction perpendicular to the rolling direction is a guideline for Ra of the flattening film to be 30 nm or less. However, even a relatively coarse metal foil tends to be easily flattened if a thick film of the phenylsilsesquioxane ladder polymer is formed. Examples of the metal foil include stainless steel foil, aluminum foil, titanium foil, plated steel foil, and copper foil. The thickness of the metal foil is preferably within a range that can be handled without breaking or wrinkling and does not impair flexibility, and is usually 30 μm or more and 150 μm or less easy to use, and a more preferable plate thickness is 35 μm or more and 80 μm or less.

平坦化膜の膜厚は2μm以上5μm以下である。2μmより薄い場合は、金属箔そのものの凹凸を被覆しきれない。5μmを超える場合は膜にクラックが入りやすくなる。成膜時のクラックが入りやすいだけでなく、平坦化膜で被覆されたステンレス箔をフレキシブル基板として曲げたときにも膜にクラックが入りやすくなる。膜厚は2.5μm以上4μm以下であることが、凹凸被覆とクラック防止の観点からさらに好ましい。 The film thickness of the flattening film is 2 μm or more and 5 μm or less. If it is thinner than 2 μm, the unevenness of the metal foil itself cannot be completely covered. If it exceeds 5 μm, cracks are likely to occur in the film. Not only is it easy for cracks to form during film formation, but it is also easy for cracks to form in the film when the stainless steel foil coated with the flattening film is bent as a flexible substrate. It is more preferable that the film thickness is 2.5 μm or more and 4 μm or less from the viewpoint of uneven coating and crack prevention.

平坦化膜は1ppm以上5000ppm以下のSnを含むことが望ましい。Snの濃度はSIMS(secondary ion mass spectrometry) 分析あるいはX線蛍光分析によって測定することができる。Snの濃度が1ppmよりも少ない時は、短時間での膜硬化ができにくいためRoll to Rollでコイルに連続成膜することが難しい場合がある。Snの濃度が5000ppmを超えるときは膜が硬くなり曲げたときにクラックが発生しやすくなる場合がある。 It is desirable that the flattening film contains Sn of 1 ppm or more and 5000 ppm or less. The concentration of Sn can be measured by SIMS (secondary ion mass spectrometry) analysis or X-ray fluorescence analysis. When the Sn concentration is less than 1 ppm, it may be difficult to continuously form a film on the coil by Roll to Roll because it is difficult to cure the film in a short time. When the Sn concentration exceeds 5000 ppm, the film becomes hard and cracks may easily occur when bent.

金属箔コイルへの塗布後、乾燥処理は20℃以上150℃以下の温度で行う。乾燥工程では塗布した膜に含まれる溶剤や水分を除去して乾燥膜とするのが目的である。減圧留去によるレジン合成温度より高い乾燥温度にすると、レジンを形成しているラダーポリマーが軟化する可能性があるため、乾燥温度はレジン合成温度より低いことが望ましい。乾燥膜中ではラダーポリマーが絡まり合って見掛け上、網目構造のようになって膜硬化しているように見えるが、熱振動で分子の運動が活発になるとラダーポリマーはほどけて流動性を示すようになる。熱処理工程は乾燥膜を形成しているラダーポリマーを溶融軟化、すなわちリフローさせて膜の表面を平坦化させることと、リフローに引き続きポリマーの架橋を進めて三次元網目構造を形成させ膜を硬化させることの2つが目的である。リフローは減圧留去によるレジン合成温度より高温域、三次元的な架橋が進んで膜が硬化し始める温度より低い温度域で発生する現象である。リフローのために特別な熱処理プロセスをとる必要はなく、熱処理を300℃以上450℃以下で行えば、熱処理温度まで昇温される過程でリフローが起き、引き続き架橋による膜硬化が進む。金属箔の表面を平坦にするには図1に示したように水平な状態で熱処理を行うことが効果的である。膜硬化は架橋反応による網目構造形成であるので、ひとたび膜が硬化すると、再度リフローすることはない。熱処理温度が300℃より低い場合は、架橋が十分進まずシラノール基などの反応基が膜の中に残るため絶縁性が不十分となるうえ、有機デバイス作製中にシラノール基などに吸着した水分が脱離すると素子に悪影響を及ぼすので不適である。熱処理温度が450℃より高い場合は、フェニル基の熱分解による体積収縮が起き、クラックが入りやすくなるので不適である。より好ましい熱処理温度は360℃以上420℃以下である。 After the coating on the metal foil coil, the drying treatment is performed at a temperature of 20 ° C. or higher and 150 ° C. or lower. The purpose of the drying step is to remove the solvent and moisture contained in the applied film to form a dry film. If the drying temperature is higher than the resin synthesis temperature by distillation under reduced pressure, the rudder polymer forming the resin may soften, so it is desirable that the drying temperature is lower than the resin synthesis temperature. In the dry film, the rudder polymer is entangled and looks like a mesh structure and the film is cured, but when the movement of the molecule becomes active due to thermal vibration, the rudder polymer unravels and shows fluidity. become. In the heat treatment step, the rudder polymer forming the dry film is melt-softened, that is, reflowed to flatten the surface of the film, and the polymer is crosslinked following the reflow to form a three-dimensional network structure and cure the film. Two things are the purpose. Reflow is a phenomenon that occurs in a temperature range higher than the resin synthesis temperature by distilling under reduced pressure, and in a temperature range lower than the temperature at which three-dimensional cross-linking progresses and the film begins to harden. It is not necessary to take a special heat treatment process for reflow, and if the heat treatment is performed at 300 ° C. or higher and 450 ° C. or lower, reflow occurs in the process of raising the temperature to the heat treatment temperature, and the film hardening by crosslinking continues. In order to flatten the surface of the metal foil, it is effective to perform the heat treatment in a horizontal state as shown in FIG. Since film hardening is the formation of a network structure by a cross-linking reaction, once the film is hardened, it does not reflow again. If the heat treatment temperature is lower than 300 ° C, the cross-linking does not proceed sufficiently and reactive groups such as silanol groups remain in the film, resulting in insufficient insulation and moisture adsorbed on the silanol groups during the production of the organic device. Desorption is unsuitable because it adversely affects the element. If the heat treatment temperature is higher than 450 ° C., volume shrinkage occurs due to thermal decomposition of the phenyl group, and cracks are likely to occur, which is unsuitable. A more preferable heat treatment temperature is 360 ° C. or higher and 420 ° C. or lower.

本発明で用いるフェニルトリアルコキシシランとしては、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシランなどが挙げられる。 Examples of the phenyltrialkoxysilane used in the present invention include phenyltrimethoxysilane, phenyltriethoxysilane, and phenyltripropoxysilane.

フェニルトリアルコキシシランを加水分解するときに用いる有機溶媒としては、メタノール、エタノール、プロパノール、ブタノールから選ばれるアルコール系溶媒である。 The organic solvent used for hydrolyzing phenyltrialkoxysilane is an alcohol solvent selected from methanol, ethanol, propanol and butanol.

有機スズとしては、ジブチルスズジアセテート、ビス(アセトキシジブチルスズ)オキサイド、ジブチルスズビスアセチルアセトナート、ジブチルスズビスマレイン酸モノブチルエステル、ジオクチルスズビスマレイン酸モノブチルエステル、ビス(ラウロキシジブチルスズ)オキサイドなどが挙げられる。 Examples of the organic tin include dibutyltin diacetate, bis (acetoxydibutyltin) oxide, dibutyltin bisacetylacetonate, dibutyltin bismaleic acid monobutyl ester, dioctyl tin bismaleic acid monobutyl ester, and bis (lauroxydibutyltin) oxide. ..

減圧留去時に留去される加水分解で生成したものを含む有機溶媒は、フェニルトリアルコキシシランを加水分解するときに用いた有機溶媒に加えてフェニルトリアルコキシシランの加水分解によって生成したアルコールも含まれる。また加水分解されたフェニルトリアルコキシシランの縮合反応に伴って生成する水が含まれることもある。 The organic solvent including the one produced by hydrolysis distilled under reduced pressure includes alcohol produced by hydrolysis of phenyltrialkoxysilane in addition to the organic solvent used when hydrolyzing phenyltrialkoxysilane. Is done. It may also contain water produced by the condensation reaction of hydrolyzed phenyltrialkoxysilane.

酸触媒として、塩酸、硝酸、リン酸も検討したが、酢酸の時のような高分子量のラダーポリマーを作ってリフロー性を利用して平滑な膜を得ることは難しかった。この理由は弱酸である酢酸の場合と、塩酸などを用いた場合では酢酸の方がゆっくりと加水分解が進むことにより、得られるラダーポリマーの構造が異なるためと推測される。 Hydrochloric acid, nitric acid, and phosphoric acid were also examined as acid catalysts, but it was difficult to obtain a smooth film by making a ladder polymer with a high molecular weight as in the case of acetic acid and utilizing the reflow property. It is presumed that the reason for this is that the structure of the obtained ladder polymer is different in the case of acetic acid, which is a weak acid, and in the case of using hydrochloric acid, etc., because the hydrolysis proceeds more slowly in acetic acid.

金属箔コイルに成膜するにはRoll to Rollによる連続成膜を行う。一般的な装置構成はコイルの巻きだし部、塗工部、乾燥炉、熱処理炉、コイル巻き取り部から成る。通板速度は速いほど生産性が良いが、1mpmから20mpm程度が一般的である。塗布する方法としては、マイクログラビアロール、グラビアロールなどによる塗布や、スリットコータ、スクリーン印刷などが挙げられる。ステンレス箔の両面に塗工したい場合は、ディップコートによる成膜もできる。乾燥は20℃以上150℃以下で0.5~2分程度行う。乾燥時の炉内の雰囲気は大気でも窒素などの不活性ガス雰囲気でもよい。熱処理はフェニル基が熱分解しにくいように不活性ガスを流しながら行う。連続成膜装置の場合、基材が熱処理炉内に入るときに若干量の大気を持ち込むが、本発明のフェニルシルセスキオキサンラダーポリマーの膜は1%程度の大気の混入があっても膜特性に影響はない。乾燥炉および熱処理炉内ではデバイス形成側の膜面にロールが当たらないような装置設計にする。巻き取り時には膜面に保護フィルムを貼りつけたり、疵が入らないように合紙を挿入したりしてもよい。また、乾燥と熱処理を連続して行うのではなく、乾燥膜が付いたコイルを一度巻き取って、再度熱処理のみを行ってもよい。この場合は乾燥膜作製用の設備と熱処理用の設備と2種類必要になるが、それぞれを最適の通板速度で処理できる長所がある。 To form a film on a metal foil coil, continuous film formation by Roll to Roll is performed. A general device configuration consists of a coil winding part, a coating part, a drying furnace, a heat treatment furnace, and a coil winding part. The faster the plate passing speed, the better the productivity, but it is generally about 1 mpm to 20 mpm. Examples of the coating method include coating with a microgravure roll, a gravure roll, etc., a slit coater, screen printing, and the like. If you want to apply on both sides of the stainless steel foil, you can also use a dip coat to form a film. Drying is carried out at 20 ° C. or higher and 150 ° C. or lower for about 0.5 to 2 minutes. The atmosphere in the furnace at the time of drying may be the atmosphere or the atmosphere of an inert gas such as nitrogen. The heat treatment is performed while flowing an inert gas so that the phenyl group is not easily decomposed by heat. In the case of a continuous film forming apparatus, a small amount of air is brought in when the substrate enters the heat treatment furnace, but the film of the phenylsilsesquioxane ladder polymer of the present invention is a film even if there is about 1% of air contamination. There is no effect on the characteristics. In the drying furnace and heat treatment furnace, design the equipment so that the roll does not hit the film surface on the device forming side. At the time of winding, a protective film may be attached to the film surface, or a slip sheet may be inserted to prevent scratches. Further, instead of continuously performing the drying and the heat treatment, the coil having the dried film may be wound once and only the heat treatment may be performed again. In this case, two types of equipment are required, one for producing a dry film and the other for heat treatment, but each has the advantage of being able to process at the optimum plate passing speed.

以上、本発明の平坦化膜付き金属箔コイルを、Roll to Rollで連続成膜する製造方法を説明したが、本発明の平坦化膜付き金属箔コイルは、連続塗布ではなく、バッチ式で塗布して製造することもできる。 Although the manufacturing method for continuously forming a metal leaf coil with a flattening film of the present invention by Roll to Roll has been described above, the metal leaf coil with a flattening film of the present invention is not continuously coated but is coated by a batch method. Can also be manufactured.

次に、実施例により本発明を更に説明する。本発明がここに提示した実施例に限定されないことは言うまでもない。 Next, the present invention will be further described by way of examples. It goes without saying that the present invention is not limited to the examples presented herein.

試験1
試験1は、本発明の範囲に入るフェニルシルセスキオキサンラダーポリマーのレジンAに対して、種々のシリカ微粒子含有ケトン系溶剤を用いて、平坦化膜形成塗布液を作製し、得られた平坦化膜を評価した。
Test 1
In Test 1, a flattening film-forming coating solution was prepared using various silica fine particle-containing ketone solvents for the phenylsilsesquioxane ladder polymer resin A falling within the scope of the present invention, and the obtained flatness was obtained. The chemical membrane was evaluated.

<フェニルシルセスキオキサンラダーポリマーのレジンAの製造>
以下の方法によりフェニルシルセスキオキサンラダーポリマーのレジンAを作製した。エタノール中で、フェニルトリエトキシシラン1モルに対して、酢酸0.3モルとジブチルスズジアセテート0.012モルを触媒として加え、3モルの水で加水分解した。窒素気流下で3時間還流後、ロータリーエバポレータを用いて突沸しないように徐々に温度を上げ、最終的に160℃で、加水分解で生成したものを含む有機溶媒を減圧留去してレジンを得た。GPCにより求めたスチレン換算重量平均分子量Mwは150,000であった。赤外線吸収スペクトルでは1035cm-1と1135cm-1に2つのピークを示しラダーポリマーであることが示唆された。
<Manufacturing of Resin A of Phenyl Sesquioxan Ladder Polymer>
Resin A of phenylsilsesquioxane ladder polymer was prepared by the following method. In ethanol, 0.3 mol of acetic acid and 0.012 mol of dibutyltin diacetate were added as catalysts to 1 mol of phenyltriethoxysilane, and the mixture was hydrolyzed with 3 mol of water. After refluxing under a nitrogen stream for 3 hours, the temperature was gradually raised using a rotary evaporator so as not to bump, and finally at 160 ° C., the organic solvent containing the product produced by hydrolysis was distilled off under reduced pressure to obtain a resin. rice field. The styrene-equivalent weight average molecular weight Mw determined by GPC was 150,000. Infrared absorption spectra showed two peaks at 1035 cm -1 and 1135 cm -1 , suggesting that it is a ladder polymer.

このレジンAを表1に示す種々のシリカ微粒子含有ケトン系溶剤に溶解させ、平坦化膜形成用塗布液を作製した。使用したシリカ微粒子含有溶剤の原料であるアルコキシシランの量(g)、塩基性触媒の量(g)および水の量(g)を表1に示す。尚、表1の下段に、シリカ微粒子含有溶剤の原料と配合比(モル)を表した。ここでの「水の量(※)」は、塩基性触媒としてアンモニア水溶液を使用する場合は、アンモニア水溶液中の水の量と添加した水の量との合計モル数である。表1のシリカ微粒子含有ケトン系溶剤とアルコキシシランとを混合・撹拌しているところに、表1に示す塩基性触媒と水の混合溶液を約1時間かけて滴下し、滴下終了後さらに1時間撹拌した。 This resin A was dissolved in various silica fine particle-containing ketone solvents shown in Table 1 to prepare a coating liquid for forming a flattening film. Table 1 shows the amount (g) of alkoxysilane, which is the raw material of the silica fine particle-containing solvent used, the amount of basic catalyst (g), and the amount of water (g). The lower part of Table 1 shows the raw materials and the compounding ratio (mol) of the silica fine particle-containing solvent. The "amount of water (*)" here is the total number of moles of the amount of water in the aqueous ammonia solution and the amount of added water when the aqueous ammonia solution is used as the basic catalyst. While the silica fine particle-containing ketone solvent of Table 1 and the alkoxysilane are mixed and stirred, the mixed solution of the basic catalyst and water shown in Table 1 is added dropwise over about 1 hour, and another 1 hour after the addition is completed. Stirred.

シリカ微粒子含有ケトン系溶剤1mlをスポイトで採取しシリカガラス上で、24時間室温で乾燥させた。倍率3万倍でSEM写真を20枚とり、株式会社マウンテックの画像解析式粒度分布ソフトウエアMac-View ver.4を用いて粒度分布のヒストグラムを作製した。縦軸は個数、横軸は25nm刻みで0~1000nmまでの粒子直径とした。粒子は球形近似した。粒度分布が1山のものは分布全体を使って平均粒子径を求めた。ピークが2山のバイモーダルな分布の場合は、ピーク毎に平均粒子径を計算した。
平坦化膜形成用塗布液はフェニルシルセスキオキサンラダーポリマーとシリカ微粒子およびアルコキシシランの加水分解縮合反応物をあわせた固形分濃度が30mass%になるような配合比で作製した。
1 ml of a ketone solvent containing silica fine particles was collected with a dropper and dried on silica glass for 24 hours at room temperature. 20 SEM photographs were taken at a magnification of 30,000 times, and image analysis type particle size distribution software Mac-View ver. A histogram of the particle size distribution was prepared using No. 4. The vertical axis is the number of particles, and the horizontal axis is the particle diameter from 0 to 1000 nm in 25 nm increments. The particles approximated a sphere. For those with a single particle size distribution, the average particle size was calculated using the entire distribution. In the case of a bimodal distribution with two peaks, the average particle size was calculated for each peak.
The coating liquid for forming a flattening film was prepared in a blending ratio such that the solid content concentration of the phenylsilsesquioxane ladder polymer, the silica fine particles, and the hydrolysis condensation reaction product of alkoxysilane was 30 mass%.

平坦化膜形成用塗布液はスピンコータで12cm角の金属箔に成膜した。膜厚はスピンコータの回転数で制御し、すべて3μmの膜厚で成膜した。
室温乾燥後、熱処理は赤外線加熱炉で窒素雰囲気中400℃まで0.5分で昇温し、2分保持した後にヒータースイッチをOFFとした。この場合、200℃までの冷却時間は1分であった。
The coating liquid for forming a flattening film was formed on a 12 cm square metal foil with a spin coater. The film thickness was controlled by the rotation speed of the spin coater, and all the film thicknesses were 3 μm.
After drying at room temperature, the heat treatment was carried out in an infrared heating furnace in a nitrogen atmosphere at 400 ° C. in 0.5 minutes, and after holding for 2 minutes, the heater switch was turned off. In this case, the cooling time to 200 ° C. was 1 minute.

熱処理後の膜の硬さはJIS K5600に従い鉛筆硬度で評価した。鉛筆硬度は、7H以上は非常に良好(◎)、7H未満5H以上は良好(○)とした。 The hardness of the film after the heat treatment was evaluated by the pencil hardness according to JIS K5600. The pencil hardness was very good (⊚) for 7H or more, and good (◯) for less than 7H and 5H or more.

フェニルシルセスキオキサンラダーポリマーの膜のリーク電流は、フェニルシルセスキオキサンラダーポリマーの膜の上にマスクを用いて1cm角の白金上部電極を、イオンコータで成膜して、上部電極とし、ステンレス箔を下部電極として、上下の電極間に100Vをかけて測定した。 For the leakage current of the phenylsilsesquioxane ladder polymer film, a 1 cm square platinum upper electrode was formed on the phenylsilsesquioxane ladder polymer film using a mask with an ion coater to form an upper electrode. Using a stainless steel foil as a lower electrode, 100 V was applied between the upper and lower electrodes for measurement.

繰り返し曲げ試験はユアサシステム機器株式会社製U字折り返し試験機を用い、面間隔10mm、ストローク±60mm、1分間に60ストロークで10000回実施した。実施前後のリーク電流は1E-8A/cm2未満であれば非常に良好(◎)、1E-8A/cm以上1E-7未満であれば良好(○)とした。 The repeated bending test was carried out 10,000 times with a surface spacing of 10 mm, a stroke of ± 60 mm, and 60 strokes per minute using a U-shaped folding tester manufactured by Yuasa System Equipment Co., Ltd. The leak current before and after the implementation was very good (⊚) if it was less than 1E-8A / cm2, and good (◯) if it was 1E-8A / cm or more and less than 1E-7.

比較例1-1は、シリカ微粒子含有溶剤の作製にトルエンを使った。アルコキシシランの加水分解に伴うアルコールの生成が起きても、トルエンと水・アルコールの混和が進まず、相分離したままゲルが生成してしまったので、フェニルシルセスキオキサンラダーポリマーのレジンを溶解させる工程に進めなかった。 In Comparative Example 1-1, toluene was used for producing the silica fine particle-containing solvent. Even if the production of alcohol due to the hydrolysis of alkoxysilane occurred, the mixing of toluene with water / alcohol did not proceed, and the gel was formed with phase separation, so the resin of the phenylsilsesquioxane ladder polymer was dissolved. I couldn't proceed to the process of letting it go.

比較例1-2は通常のシュテーバー法と同様にエタノール溶媒を用いた。このため、35nmにピークを示す1山の粒度分布となり、加水分解されたアルコキシシランのモノマー・オリゴマーの生成が見られなかった。モノマー・オリゴマーが生成しなかったので、粒子とフェニルシルセスキオキサンラダーポリマーの密着性が低く、繰り返し曲げ試験によって平坦化膜に微細なクラックが生じてリーク電流が増大した。 In Comparative Example 1-2, an ethanol solvent was used in the same manner as in the usual Steber method. Therefore, the particle size distribution was one mountain with a peak at 35 nm, and no hydrolyzed monomer / oligomer of alkoxysilane was observed. Since no monomer / oligomer was formed, the adhesion between the particles and the phenylsilsesquioxane ladder polymer was low, and repeated bending tests caused fine cracks in the flattening film and increased the leakage current.

比較例1-3は水と混和するケトンであるアセトンを使った例である。水とアセトンが混じるため初期に不均一な加水分解が起きることがなく、加水分解されたアルコキシシランのモノマー・オリゴマーが生成せず、繰り返し曲げ試験後のリーク電流が増大した。比較例1-4は市販の高濃度シリカスラリーを使った例で、シリカ粒子の量が多すぎて乾燥後の平坦化膜にひび割れが発生した。 Comparative Example 1-3 is an example using acetone, which is a ketone that is miscible with water. Since water and acetone were mixed, non-uniform hydrolysis did not occur at the initial stage, hydrolyzed alkoxysilane monomers and oligomers were not produced, and the leakage current after repeated bending tests increased. Comparative Example 1-4 is an example using a commercially available high-concentration silica slurry, in which the amount of silica particles was too large and cracks occurred in the flattened film after drying.

比較例1-5は低濃度に希釈したシリカスラリーを使った例である。アルコキシシランのモノマー・オリゴマーが含まれていないため繰り返し曲げ試験後のリーク電流が増大した。 Comparative Example 1-5 is an example using a silica slurry diluted to a low concentration. Since the monomer / oligomer of alkoxysilane was not contained, the leakage current after repeated bending tests increased.

比較例1-6~1-8はシリカ粒子を含まない溶媒のみにフェニルシルセスキオキサンラダーポリマーを溶解させたものである。シリカ粒子がないため皮膜の鉛筆硬度が低かった。 Comparative Examples 1-6 to 1-8 are obtained by dissolving a phenylsilsesquioxane ladder polymer only in a solvent containing no silica particles. The pencil hardness of the film was low due to the absence of silica particles.

実施例1-1はシリカ微粒子含有溶媒の固形分濃度がやや高いためややリーク電流が高めであった。実施例1-5はシリカ微粒子の粒度分布が1山であるため粒子の充填率が上げられずやや鉛筆硬度が低めであった。実施例1-6はシリカ微粒子含有溶媒の固形分濃度がやや低いため、鉛筆硬度が低めであった。それ以外の実施例は非常に良好な結果を示した。 In Example 1-1, the leakage current was slightly higher because the solid content concentration of the silica fine particle-containing solvent was slightly higher. In Example 1-5, since the particle size distribution of the silica fine particles was one mountain, the packing rate of the particles could not be increased and the pencil hardness was slightly low. In Examples 1-6, the solid content concentration of the silica fine particle-containing solvent was slightly low, so that the pencil hardness was low. The other examples showed very good results.

Figure 0007048367000001
Figure 0007048367000001

試験2
試験2は、本発明の範囲に入るシリカ微粒子含有ケトン系溶剤Bに対して、種々のフェニルシルセスキオキサンラダーポリマーのレジンを用いて、平坦化膜形成塗布液を作製し、得られた平坦化膜を評価した。
Test 2
In Test 2, a flattening film-forming coating solution was prepared using various phenylsilsesquioxane ladder polymer resins against the silica fine particle-containing ketone solvent B falling within the scope of the present invention, and the obtained flatness was obtained. The chemical membrane was evaluated.

<シリカ微粒子含有ケトン系溶剤Bの製造>
ビーカーにシクロヘキサノン5モルとテトラエトキシシラン1モルを入れ、マグネティックスターラーで撹拌した。別のビーカーで30%アンモニア水溶液28.39gと水1.73gを混ぜ合わせて、シクロヘキサノンとテトラエトキシシランが入っているビーカーに滴下した。30%アンモニア水溶液28.39gと水1.73gを混ぜ合わせたものは、0.5モルのアンモニアと1.2モルの水の混合物になる。滴下中もマグネティックスターラーで撹拌を続け、滴下終了後も1時間撹拌した。
<Manufacturing of Ketone Solvent B Containing Silica Fine Particles>
5 mol of cyclohexanone and 1 mol of tetraethoxysilane were placed in a beaker and stirred with a magnetic stirrer. In another beaker, 28.39 g of a 30% aqueous ammonia solution and 1.73 g of water were mixed and added dropwise to a beaker containing cyclohexanone and tetraethoxysilane. A mixture of 28.39 g of a 30% aqueous ammonia solution and 1.73 g of water results in a mixture of 0.5 mol of ammonia and 1.2 mol of water. Stirring was continued with a magnetic stirrer during the dropping, and the mixture was stirred for 1 hour after the dropping was completed.

種々の条件でフェニルシルセスキオキサンラダーポリマーの平坦化膜形成用塗布液を合成した。エタノール溶媒中でフェニルトリエトキシシラン1モルに対して、表2に記載の条件で酢酸と有機スズと水を添加して加水分解を行った。窒素気流下80℃で5時間還流後、ロータリーエバポレータで溶媒を減圧留去した。減圧留去時に徐々に温度を上げていくが、その時の最高温度が減圧留去温度として表2に記載されている。減圧留去して得られたフェニルシルセスキオキサンラダーポリマーをシリカ微粒子含有ケトン系溶剤Bにフェニルシルセスキオキサンラダーポリマーと、シリカ微粒子と、モノマー・オリゴマーを合わせた全固形分濃度が30mass%になるように溶解させて平坦化膜形成用塗布液を作製した。 A coating liquid for forming a flattening film of a phenylsilsesquioxane ladder polymer was synthesized under various conditions. Hydrolysis was carried out by adding acetic acid, organotin and water to 1 mol of phenyltriethoxysilane in an ethanol solvent under the conditions shown in Table 2. After refluxing at 80 ° C. under a nitrogen stream for 5 hours, the solvent was distilled off under reduced pressure using a rotary evaporator. The temperature is gradually increased at the time of distilling under reduced pressure, and the maximum temperature at that time is shown in Table 2 as the distilling under reduced pressure. The total solid content concentration of the phenylsylsesquioxane ladder polymer obtained by distilling under reduced pressure, which is a combination of the phenylsylsesquioxane ladder polymer, the silica fine particles, and the monomer / oligomer in the silica fine particle-containing ketone solvent B, is 30 mass%. A coating liquid for forming a flattening film was prepared by dissolving the mixture so as to be.

作製した塗布液をスピンコータでNSSC190SB仕上げの厚さ50μmのステンレス箔の上に膜厚3μmで塗布した。乾燥は80℃で1分行った。熱処理は赤外線加熱炉で窒素雰囲気中、表2に記載の熱処理温度まで0.5分で昇温し、1分、2分、5分、15分、30分の各時間保持した後にヒータースイッチをOFFとした。この場合、200℃までの冷却時間は1分であった。 The prepared coating liquid was applied with a spin coater on a stainless steel foil having a thickness of 50 μm finished with NSSC190SB and having a film thickness of 3 μm. Drying was carried out at 80 ° C. for 1 minute. The heat treatment is performed in an infrared heating furnace in a nitrogen atmosphere, the temperature is raised to the heat treatment temperature shown in Table 2 in 0.5 minutes, and the heater switch is turned on after holding for 1 minute, 2 minutes, 5 minutes, 15 minutes, and 30 minutes. It was turned off. In this case, the cooling time to 200 ° C. was 1 minute.

フェニルシルセスキオキサンラダーポリマーの膜の膜厚は膜付き金属箔をカットして断面方向から走査型電子顕微鏡(SEM)観察により測定した。圧延に対して垂直な方向に触針式粗さ計で10回測定した平坦化膜の表面粗さRaの平均値が30nm以下○、15nm超である場合は平坦性良好○、15nm以下の場合は平坦性非常に良好◎と判断した。30nmを超える場合は不適×とした。 The film thickness of the phenylsilsesquioxane ladder polymer was measured by cutting a metal foil with a film and observing from a cross-sectional direction with a scanning electron microscope (SEM). When the average value of the surface roughness Ra of the flattening film measured 10 times with a stylus type roughness meter in the direction perpendicular to rolling is 30 nm or less ○, when it is over 15 nm, the flatness is good ○, when it is 15 nm or less Was judged to have very good flatness. When it exceeds 30 nm, it is regarded as unsuitable ×.

熱処理後の平坦化膜の硬さはJIS K5600に従い鉛筆硬度で評価した。フェニルシルセスキオキサンラダーポリマーの膜のリーク電流はフェニルシルセスキオキサンラダーポリマーの膜の上にマスクを用いて1cm角の白金上部電極をイオンコータで成膜して上部電極とし、ステンレス箔を下部電極として上下の電極間に100Vをかけて測定した。 The hardness of the flattening film after the heat treatment was evaluated by the pencil hardness according to JIS K5600. The leak current of the phenylsilsesquioxane ladder polymer film is formed by forming a 1 cm square platinum upper electrode with an ion coater on the phenylsilsesquioxane ladder polymer film using a mask and using a stainless steel foil as the upper electrode. As a lower electrode, 100 V was applied between the upper and lower electrodes for measurement.

鉛筆硬度5H以上とリーク電流1E-6A/cm以下が得られる最も短い熱処理保持時間を硬化時間とした。鉛筆硬度が5H以上であれば耐疵付き性の良い膜と言える。硬化時間が2分であればRoll to Rollの連続成膜が現実的であり良好○と判断し、1分であればより確実にRoll to Roll の連続成膜ができるので非常に良好◎とした。5分以上の場合は不適×とした。 The shortest heat treatment holding time at which a pencil hardness of 5H or more and a leakage current of 1E-6A / cm 2 or less can be obtained was defined as the curing time. If the pencil hardness is 5H or more, it can be said that the film has good scratch resistance. If the curing time is 2 minutes, continuous film formation of Roll to Roll is realistic and good. If it is 1 minute, continuous film formation of Roll to Roll can be performed more reliably, so it is very good. .. In the case of 5 minutes or more, it was judged as unsuitable ×.

平坦性とRoll to Roll適合性の両方が満たされていれば、電子デバイス基板として機能する絶縁膜付きコイルが得られると考えられるため総合評価合格とした。 If both flatness and roll-to-roll compatibility are satisfied, it is considered that a coil with an insulating film that functions as an electronic device substrate can be obtained, so the overall evaluation was passed.

Figure 0007048367000002
Figure 0007048367000002

実験番号2-1は酢酸の量が少ないためラダーポリマーとして高分子量化がうまく進まず、リフロー性が低く平坦性が悪かった。2-5は酢酸が多すぎるため還流中にゲル化が発生したため塗布液が合成できなかった。2-6は有機スズが少ないため熱処理時間が長くなった。2-10は有機スズの添加量が多すぎたため、還流中にゲル化が発生し塗布液が合成できなかった。2-11は水が少ないため原料であるフェニルトリエトキシシランのエトキシ基が過剰に残留し、熱処理時間が長くなった。2-14は水が多すぎたため難溶解性のレジンとなり塗布液が得られなかった。恐らくラダーポリマーの他に3次元にランダムに網目構造をもつ重合物も同時に生成したためと思われる。2-15は減圧留去の温度が低かったので、低分子量の重縮合物が残り熱処理中にこれらが揮発してハジキとなった。ハジキが多いため短絡が発生し絶縁膜として機能しなかった。2-20は減圧留去時の温度が高すぎたため、ラダーポリマーが3次元的につながって高分子量化したレジンになり、溶媒に溶解しなかった。2-21は熱処理温度が低かったので、膜中のエトキシ基やシラノール基の縮合反応が完了せず、これらの残留する極性基のために高いリーク電流を示した。2-26は熱処理温度が高すぎたためフェニル基の分解が進みクラックが発生した。表2に示すその他の実験番号のものは本発明の範囲であり総合評価合格となった。 In Experiment No. 2-1, since the amount of acetic acid was small, the molecular weight was not increased well as a ladder polymer, the reflow property was low, and the flatness was poor. In 2-5, gelation occurred during reflux due to too much acetic acid, and the coating solution could not be synthesized. Since 2-6 has less organic tin, the heat treatment time becomes longer. In 2-10, the amount of organic tin added was too large, so gelation occurred during reflux and the coating liquid could not be synthesized. Since the amount of water in 2-11 is small, the ethoxy group of phenyltriethoxysilane, which is a raw material, remains excessively, and the heat treatment time becomes long. Since 2-14 had too much water, it became a poorly soluble resin and a coating liquid could not be obtained. Probably because, in addition to the ladder polymer, a polymer having a three-dimensional random network structure was also produced at the same time. Since the temperature of distilling under reduced pressure was low in 2-15, low molecular weight polycondensates remained, which volatilized during the heat treatment and became repellent. Since there were many repellents, a short circuit occurred and it did not function as an insulating film. In 2-20, the temperature at the time of distillation under reduced pressure was too high, so that the ladder polymers were three-dimensionally connected to form a high molecular weight resin, which was not dissolved in the solvent. Since the heat treatment temperature of 2-21 was low, the condensation reaction of the ethoxy group and the silanol group in the membrane was not completed, and a high leakage current was exhibited due to these residual polar groups. In 2-26, the heat treatment temperature was too high, so that the phenyl group was decomposed and cracks were generated. The other experimental numbers shown in Table 2 are within the scope of the present invention and have passed the comprehensive evaluation.

最後に実験番号2-8の組成の平坦化膜形成塗布液を用いてRoll to Rollの成膜試験を実施した。成膜試験には厚さ50μm、幅300mm、長さ200mのNSSC190SB仕上げのステンレス箔を用いた(NSSC190は新日鉄住金ステンレスの独自鋼種でSUS444とほぼ同じである。SBはスーパーブライト仕上げで新日鉄住金マテリアルズの独自仕上げを表わす。)。ステンレス箔はベークライト製の6インチのコアに巻いてロール状にしたものを巻きだし部に取り付けた。塗布液の粘度は10mPa・sで固形分濃度は31%であった。塗布はセル容積の異なる複数のグラビアロール使って行い、乾燥膜の厚さが3μm前後になるものを選定した。用いたR2R(Roll to Roll)の成膜装置の概略は図1に示したものと同じである。総張力100Nをかけてステンレス箔を搬送した。巻き取り部にはEPC(edge position control)センサーを取り付けて箔の端部を揃えて、ベークライト製の6インチのコアに巻き取った。乾燥炉および熱処理炉はどちらも赤外線パネルヒータと熱風による加熱方式とした。乾燥炉は総長が8mあり炉内設定温度を100℃として運転した。熱風として100℃に加熱した大気を送風した。熱処理炉は長さが12mあり炉内設定温度を380℃とした。熱風として380℃に加熱した窒素を送風した。冷却帯では室温の大気をステンレス箔の上下から吹き付けた。冷却帯の長さは2mであった。巻きだしから巻き取りまでの総長は35mであった。搬送速度4mpmでステンレス箔を通板し、塗布・乾燥・熱処理を実施し、平坦化膜付きステンレス箔を約150mロールとして巻き取った。 Finally, a Roll to Roll film formation test was carried out using the flattening film forming coating solution having the composition of Experiment No. 2-8. For the film formation test, a stainless steel foil with a thickness of 50 μm, a width of 300 mm, and a length of 200 m was used. Represents the original finish of the stainless steel.) The stainless steel foil was wound around a 6-inch core made of Bakelite and rolled into a roll, which was attached to the unwinding part. The viscosity of the coating liquid was 10 mPa · s and the solid content concentration was 31%. The coating was performed using a plurality of gravure rolls having different cell volumes, and those having a dry film thickness of about 3 μm were selected. The outline of the R2R (Roll to Roll) film forming apparatus used is the same as that shown in FIG. The stainless steel foil was conveyed with a total tension of 100 N. An EPC (edge position control) sensor was attached to the winding part, and the edges of the foil were aligned, and the winding was wound on a 6-inch core made of Bakelite. Both the drying furnace and the heat treatment furnace are heated by an infrared panel heater and hot air. The drying furnace had a total length of 8 m and was operated with the set temperature inside the furnace set to 100 ° C. Atmosphere heated to 100 ° C. was blown as hot air. The heat treatment furnace has a length of 12 m and the set temperature in the furnace is set to 380 ° C. Nitrogen heated to 380 ° C. was blown as hot air. In the cooling zone, room temperature air was blown from above and below the stainless steel foil. The length of the cooling zone was 2 m. The total length from unwinding to winding was 35m. A stainless steel foil was passed through the plate at a transport speed of 4 mpm, coated, dried and heat-treated, and the stainless steel foil with a flattening film was wound up as a roll of about 150 m.

計算上の乾燥処理時間は2分、熱処理時間は3分となるが、ステンレス箔に熱電対を取り付けて4mpmで搬送したところ乾燥炉内でステンレス箔の基板の温度が上がり始め100℃になるまでに約1分、100℃に保持されている時間が約1分であることがわかった。また熱処理炉については、約100℃のステンレス箔が熱処理炉内に入った後、380℃にステンレス箔の温度が上がるまでに1.5分、380℃に保持されている時間が1.5分であることがわかった。したがって、グラビアコータで塗布された膜のトルエンなどの溶媒が乾燥炉内で蒸発して取り除かれ、熱処理炉に入った後、1分前後の間に200~250℃のリフローが起きやすい温度域を通過して膜がレベリングされ、残りの2分で膜硬化することになる。 The calculated drying treatment time is 2 minutes and the heat treatment time is 3 minutes, but when a thermocouple is attached to the stainless steel foil and transported at 4 mpm, the temperature of the stainless steel foil substrate begins to rise in the drying oven until it reaches 100 ° C. It was found that the time for holding at 100 ° C. for about 1 minute was about 1 minute. As for the heat treatment furnace, after the stainless steel foil at about 100 ° C. enters the heat treatment furnace, it takes 1.5 minutes for the temperature of the stainless steel foil to rise to 380 ° C. and 1.5 minutes for the stainless steel foil to be held at 380 ° C. It turned out to be. Therefore, the solvent such as toluene in the film coated with the gravure coater evaporates and is removed in the drying furnace, and after entering the heat treatment furnace, the temperature range in which reflow of 200 to 250 ° C. is likely to occur within about 1 minute is reached. After passing through, the film is leveled and the film is cured in the remaining 2 minutes.

得られた平坦化膜付きステンレス箔のロールについてJIS K5600に従って鉛筆硬度を測定したところ7Hの硬さで十分な耐疵付き性であった。平坦化膜付きステンレス箔の断面をSEMで観察したところ、膜厚は3.0μmであった。1cm角の上部電極を付けてリーク電流を測定したところ1E-9A/cmであった。触針式粗さ計によるコイルの幅方向の表面粗さRaは12nmであった。耐熱性を確認するために皮膜を削り取って熱重量分析を窒素ガス中で実施した。測定結果を表2に示した。5%重量減少を示した温度は500℃を超えており400℃までの耐熱性は十分あることが示唆された。次に耐湿性を評価するために、膜付きの基板を85℃85%RH(相対湿度)の恒温恒湿槽に保管してリーク電流の変化を調べた。リーク電流は200時間保管後まで全く変化がなく1E-9A/cmであり、膜質の劣化がないことが確認された。 When the pencil hardness of the obtained roll of stainless steel foil with a flattening film was measured according to JIS K5600, a hardness of 7H was sufficient for scratch resistance. When the cross section of the stainless steel foil with a flattening film was observed by SEM, the film thickness was 3.0 μm. When the leak current was measured with a 1 cm square upper electrode attached, it was 1E-9 A / cm 2 . The surface roughness Ra in the width direction of the coil by the stylus type roughness meter was 12 nm. The film was scraped off and thermogravimetric analysis was performed in nitrogen gas to confirm the heat resistance. The measurement results are shown in Table 2. The temperature showing a 5% weight loss exceeded 500 ° C, suggesting that the heat resistance up to 400 ° C is sufficient. Next, in order to evaluate the moisture resistance, the substrate with the film was stored in a constant temperature and humidity chamber at 85 ° C. and 85% RH (relative humidity), and the change in leakage current was examined. The leak current was 1E-9A / cm 2 without any change until after storage for 200 hours, and it was confirmed that there was no deterioration in film quality.

Claims (8)

アルコール溶媒中、フェニルトリアルコキシシラン1モルに対して、酢酸0.1モル以上1モル以下、有機スズ0.005モル以上0.05モル以下を触媒として加え、2モル以上4モル以下の水で加水分解後、160℃以上210℃以下の温度で、加水分解で生成したものを含む有機溶媒を減圧留去して得られたフェニルシルセスキオキサンラダーポリマーのレジンおよびシリカ微粒子含有ケトン系溶剤を含み、前記シリカ微粒子含有ケトン系溶剤が、メチルエチルケトン、メチルイソブチルケトン、およびシクロヘキサノンから選ばれる有機溶媒中で、アルコキシシランを塩基性触媒下で加水分解して生成される、シリカ微粒子とシリカ微粒子の形態をとらないアルコキシシランの加水分解縮合反応物とを含む、平坦化膜形成塗布液。 In an alcohol solvent, add 0.1 mol or more and 1 mol or less of acetic acid and 0.005 mol or more and 0.05 mol or less of organic tin as a catalyst to 1 mol of phenyltrialkoxysilane, and use water of 2 mol or more and 4 mol or less. After hydrolysis, the phenylsilsesquioxane ladder polymer resin and silica fine particle-containing ketone solvent obtained by distilling off the organic solvent containing the one produced by hydrolysis at a temperature of 160 ° C. or higher and 210 ° C. or lower under reduced pressure are used. In the form of silica fine particles and silica fine particles, the silica fine particle-containing ketone solvent is produced by hydrolyzing alkoxysilane under a basic catalyst in an organic solvent selected from methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. A flattening film-forming coating solution containing a hydrolysis-condensation reaction product of an alkoxysilane that does not take . アルコール溶媒中、フェニルトリアルコキシシラン1モルに対して、酢酸0.1モル以上1モル以下、有機スズ0.005モル以上0.05モル以下を触媒として加え、2モル以上4モル以下の水で加水分解後、160℃以上210℃以下の温度で、加水分解で生成したものを含む有機溶媒を減圧留去して得られたフェニルシルセスキオキサンラダーポリマーのレジンをシリカ微粒子含有ケトン系溶剤に溶解した平坦化膜形成塗布液の製造方法であって、前記シリカ微粒子含有ケトン系溶剤が、メチルエチルケトン、メチルイソブチルケトン、およびシクロヘキサノンから選ばれる有機溶媒中で、アルコキシシランを塩基性触媒下で加水分解して生成される、シリカ微粒子とシリカ微粒子の形態をとらないアルコキシシランの加水分解縮合反応物とを含む、平坦化膜形成塗布液の製造方法。In an alcohol solvent, add 0.1 mol or more and 1 mol or less of acetic acid and 0.005 mol or more and 0.05 mol or less of organic tin as a catalyst to 1 mol of phenyltrialkoxysilane, and use water of 2 mol or more and 4 mol or less. After hydrolysis, the resin of the phenylsilsesquioxane ladder polymer obtained by distilling off the organic solvent containing the one produced by hydrolysis at a temperature of 160 ° C. or higher and 210 ° C. or lower under reduced pressure is used as a ketone solvent containing silica fine particles. A method for producing a dissolved flattening film-forming coating liquid, wherein the silica fine particle-containing ketone solvent hydrolyzes alkoxysilane in an organic solvent selected from methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone under a basic catalyst. A method for producing a flattening film-forming coating liquid, which comprises silica fine particles and a hydrolysis / condensation reaction product of an alkoxysilane that does not take the form of silica fine particles. 請求項1記載の塗布液を金属箔コイルに塗布後、不活性ガス雰囲気中300℃以上450℃以下の熱処理プロセスでリフローおよび膜硬化させることにより金属箔コイルの表面を膜厚2.0μm以上5.0μm以下、圧延に垂直な方向のRaが30nm以下であるフェニルシルセスキオキサンラダーポリマーの膜で被覆した平坦化膜付き金属箔コイル。After the coating liquid according to claim 1 is applied to the metal foil coil, the surface of the metal foil coil is coated with a thickness of 2.0 μm or more by reflowing and film curing in a heat treatment process of 300 ° C. or higher and 450 ° C. or lower in an inert gas atmosphere. A metal leaf coil with a flattening film coated with a film of a phenylsilsesquioxane ladder polymer having a Ra of 0.0 μm or less and a Ra in the direction perpendicular to rolling of 30 nm or less. 前記金属箔がステンレス箔であることを特徴とする請求項3に記載の金属箔コイル。The metal foil coil according to claim 3, wherein the metal foil is a stainless steel foil. 請求項1記載の塗布液を金属箔に膜厚2.0μm以上5.0μm以下となるように塗布し、不活性ガス雰囲気中300℃以上450℃以下の熱処理炉を通過させることによりリフローおよび膜硬化させた後、巻き取った平坦化膜付き金属箔コイルの製造方法。The coating liquid according to claim 1 is applied to a metal foil so as to have a film thickness of 2.0 μm or more and 5.0 μm or less, and is passed through a heat treatment furnace at 300 ° C. or more and 450 ° C. or less in an inert gas atmosphere to reflow and film. A method for manufacturing a metal leaf coil with a flattening film that is wound after being cured. 前記金属箔がステンレス箔であることを特徴とする請求項5に記載の金属箔コイルの製造方法。The method for manufacturing a metal foil coil according to claim 5, wherein the metal foil is a stainless steel foil. メチルエチルケトン、メチルイソブチルケトン、およびシクロヘキサノンから選ばれる有機溶媒中で、アルコキシシランを塩基性触媒下で加水分解して生成される、シリカ微粒子とシリカ微粒子の形態をとらないアルコキシシランの加水分解縮合反応物とを含むシリカ微粒子含有ケトン系溶剤。Hydrolysis condensation reaction product of silica fine particles and alkoxysilane in the form of silica fine particles, which is produced by hydrolyzing alkoxysilane under a basic catalyst in an organic solvent selected from methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. A ketone solvent containing silica fine particles including. アルコキシシラン1モルに対して、0.5~85モルのメチルエチルケトン、メチルイソブチルケン、およびシクロヘキサノンから選ばれる有機溶媒を、アルコキシシランと混合し、撹拌して、溶液1を作製する工程、A step of mixing 0.5 to 85 mol of an organic solvent selected from methyl ethyl ketone, methyl isobutylken, and cyclohexanone with 1 mol of alkoxysilane, and stirring the mixture to prepare a solution 1.
アルコキシシラン1モルに対して、0.8~8モルの水と0.1~6モルの塩基性触媒とを混合し溶液2を作製する工程、および A step of mixing 0.8 to 8 mol of water and 0.1 to 6 mol of a basic catalyst with respect to 1 mol of alkoxysilane to prepare a solution 2.
前記溶液1を撹拌しながら、前記溶液1に、前記溶液2を全量滴下し、滴下終了後、さらに撹拌する工程を含む請求項7に記載のシリカ微粒子含有ケトン系溶剤の製造方法。 The method for producing a silica fine particle-containing ketone solvent according to claim 7, further comprising a step of dropping the entire amount of the solution 2 into the solution 1 while stirring the solution 1 and further stirring after the dropping is completed.
JP2018048104A 2018-03-15 2018-03-15 A coating liquid for forming a flattening film and a method for producing the same, a metal foil coil with a flattening film and a method for producing the same, and a ketone solvent containing silica fine particles used therein. Active JP7048367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018048104A JP7048367B2 (en) 2018-03-15 2018-03-15 A coating liquid for forming a flattening film and a method for producing the same, a metal foil coil with a flattening film and a method for producing the same, and a ketone solvent containing silica fine particles used therein.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018048104A JP7048367B2 (en) 2018-03-15 2018-03-15 A coating liquid for forming a flattening film and a method for producing the same, a metal foil coil with a flattening film and a method for producing the same, and a ketone solvent containing silica fine particles used therein.

Publications (2)

Publication Number Publication Date
JP2019157031A JP2019157031A (en) 2019-09-19
JP7048367B2 true JP7048367B2 (en) 2022-04-05

Family

ID=67993212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018048104A Active JP7048367B2 (en) 2018-03-15 2018-03-15 A coating liquid for forming a flattening film and a method for producing the same, a metal foil coil with a flattening film and a method for producing the same, and a ketone solvent containing silica fine particles used therein.

Country Status (1)

Country Link
JP (1) JP7048367B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502333A (en) 2003-08-01 2007-02-08 ダウ・コーニング・コーポレーション Silicone-based dielectric coatings and films for photovoltaic applications
JP2008291186A (en) 2007-05-28 2008-12-04 Shin Etsu Chem Co Ltd Excoriation-resistant coating composition and covered article
JP2012214340A (en) 2011-03-31 2012-11-08 Dainippon Printing Co Ltd Method for producing silica particle
WO2016076399A1 (en) 2014-11-12 2016-05-19 新日鉄住金マテリアルズ株式会社 Coating liquid for forming leveling film, and metal foil coil provided with leveling film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502333A (en) 2003-08-01 2007-02-08 ダウ・コーニング・コーポレーション Silicone-based dielectric coatings and films for photovoltaic applications
JP2008291186A (en) 2007-05-28 2008-12-04 Shin Etsu Chem Co Ltd Excoriation-resistant coating composition and covered article
JP2012214340A (en) 2011-03-31 2012-11-08 Dainippon Printing Co Ltd Method for producing silica particle
WO2016076399A1 (en) 2014-11-12 2016-05-19 新日鉄住金マテリアルズ株式会社 Coating liquid for forming leveling film, and metal foil coil provided with leveling film

Also Published As

Publication number Publication date
JP2019157031A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6091705B2 (en) Flattening film forming coating solution and metal foil coil with flattening film
WO2012141150A1 (en) Functional article, article for transport equipment, article for construction, and composition for coating
JP6820354B2 (en) Coating composition, antireflection film and its manufacturing method, laminate, and solar cell module
Kim et al. Multi-purpose overcoating layers based on PVA/silane hybrid composites for highly transparent, flexible, and durable AgNW/PEDOT: PSS films
US20160299260A1 (en) Manufacturing method of antireflection article, antireflection article, cover glass, and image display device
KR101916503B1 (en) Composition For Hydrophobic Thin Film, Hydrophobic Thin Film And Manufacturing Method Thereof
JP7048367B2 (en) A coating liquid for forming a flattening film and a method for producing the same, a metal foil coil with a flattening film and a method for producing the same, and a ketone solvent containing silica fine particles used therein.
JP6491910B2 (en) Transparent conductive sheet and method for producing the same
JP7102118B2 (en) A transparent conductive film, a coating composition for forming a transparent conductive film, and a method for producing a transparent conductive film.
WO2019150638A1 (en) Transparent conductive film and method for producing same
JP6187115B2 (en) Silica porous membrane
JP7020890B2 (en) A coating liquid for forming a flattening film and a method for manufacturing the same, and a metal foil coil with a flattening film and a method for manufacturing the same.
JP2016085239A (en) Coating composition and method of manufacturing optical coating film
JP7047927B2 (en) A method for producing a coating liquid for forming a flattening film, a method for producing a coating liquid for forming a flattening film, a method for producing a metal foil with a flattening film, and a method for producing a metal foil with a flattening film.
JP2019135704A (en) Method for producing transparent conductive film
JP7020889B2 (en) A coating liquid for forming a flattening film and a method for manufacturing the same, and a metal foil coil with a flattening film and a method for manufacturing the same.
JP6022663B2 (en) Functional coating
JP6914330B2 (en) Method for manufacturing coating composition and laminate
KR20190033172A (en) Composition for hydrophobic and self-healing thin film and hydrophobic thin film made from the same
JP6285152B2 (en) Laminate manufacturing method, laminate, solar cell cover glass, and solar power generation mirror
JP2020041097A (en) Transparent conductive film, coating composition for forming transparent conductive film, and method of producing transparent conductive film
TW201800504A (en) Coating liquid for forming transparent coated film and base material with transparent coating film
JP2020128907A (en) sensor
KR20170049483A (en) Composition For Hydrophobic Thin Film, Hydrophobic Thin Film And Manufacturing Method Thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20181029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150