JP7048345B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP7048345B2
JP7048345B2 JP2018028125A JP2018028125A JP7048345B2 JP 7048345 B2 JP7048345 B2 JP 7048345B2 JP 2018028125 A JP2018028125 A JP 2018028125A JP 2018028125 A JP2018028125 A JP 2018028125A JP 7048345 B2 JP7048345 B2 JP 7048345B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
ion secondary
lithium ion
barium compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018028125A
Other languages
Japanese (ja)
Other versions
JP2019145323A (en
Inventor
英和 山本
智信 水雲
賢一 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2018028125A priority Critical patent/JP7048345B2/en
Priority to KR1020190014091A priority patent/KR20190100029A/en
Publication of JP2019145323A publication Critical patent/JP2019145323A/en
Application granted granted Critical
Publication of JP7048345B2 publication Critical patent/JP7048345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)

Description

本発明は、リチウムイオン二次電池
に関する。
The present invention relates to a lithium ion secondary battery.

リチウムイオン(lithium ion)二次電池等の非水電解質二次電池は、ノート型パソコン(note PC)又は携帯電話などのポータブル(portable)機器の電源として広く用いられている。また、リチウムイオン二次電池は、これらの用途に加え、電気自動車又はハイブリッド(hybrid)自動車等のxEV向けの電源としても注目されている。このため、近年、リチウムイオン二次電池の需要は、さらに活発に伸長するものと考えられる。 Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are widely used as a power source for portable devices such as notebook personal computers (note PCs) and mobile phones. In addition to these applications, lithium-ion secondary batteries are also attracting attention as a power source for xEVs such as electric vehicles and hybrid vehicles. Therefore, in recent years, the demand for lithium-ion secondary batteries is expected to grow even more actively.

ここで、xEV向けのリチウムイオン二次電池は、従来のガソリンエンジン(gasoline engine)車と同等の性能を確保するために、高容量及び長寿命が求められる。また、xEV向けのリチウムイオン二次電池では、ガソリンエンジン車の給油時間と同等の時間内に充電を完了するための急速充電特性も強く求められている。 Here, the lithium ion secondary battery for xEV is required to have a high capacity and a long life in order to secure the same performance as a conventional gasoline engine (gasoline engine) vehicle. Further, in the lithium ion secondary battery for xEV, there is a strong demand for a quick charge characteristic for completing charging within a time equivalent to the refueling time of a gasoline engine vehicle.

ただし、リチウムイオン二次電池では、高容量化又は高寿命化についての開発が進んでいるものの、急速充電特性(すなわち、高レートでの充放電特性)についての開発は、十分に進んでいかった。 However, although the development of lithium-ion secondary batteries with higher capacity or longer life is progressing, the development of quick charge characteristics (that is, charge / discharge characteristics at high rates) has not progressed sufficiently. ..

一方、他の二次電池では、様々な観点から充電特性についての研究が行われている。例えば、下記の非特許文献1には、鉛蓄電池の電解液に硫酸バリウム(barium sulfate)等を添加することで負極の充放電特性が向上することが開示されている。 On the other hand, in other secondary batteries, research on charging characteristics is being conducted from various viewpoints. For example, Non-Patent Document 1 below discloses that the charge / discharge characteristics of a negative electrode are improved by adding barium sulfate or the like to an electrolytic solution of a lead storage battery.

H. Vermesan, et al.,"Effect of barium sulfate and strontium sulfate on charging anddischarging of the negative electrode in a lead-acid battery" Journal ofPower Sources, 28 May 2004, Volume 133, Issue 1, Pages 52-58H. Vermesan, et al., "Effect of barium sulfate and strontium sulfate on charging and discharging of the negative electrode in a lead-acid battery" Journal of Power Sources, 28 May 2004, Volume 133, Issue 1, Pages 52-58

しかし、上記の非特許文献1に開示される技術は、あくまでも鉛蓄電池に関するものであった。そのため、二次電池としての構造及び機構が異なるリチウムイオン二次電池に対して、非特許文献1に開示される技術が適用できるか否かについては十分な検証がなされていなかった。加えて、上記の非特許文献1に開示される技術をリチウムイオン二次電池に適用した場合の好適な構成ついては全く検討がされていなかった。 However, the technique disclosed in Non-Patent Document 1 described above has only been related to a lead storage battery. Therefore, it has not been sufficiently verified whether or not the technique disclosed in Non-Patent Document 1 can be applied to a lithium ion secondary battery having a different structure and mechanism as a secondary battery. In addition, no study has been made on a suitable configuration when the technique disclosed in Non-Patent Document 1 is applied to a lithium ion secondary battery.

そこで、本発明は、上記事情に鑑みてなされたものであり、本発明の目的とするところは、高レート(rate)での充放電特性を向上させることが可能な、新規かつ改良されたリチウムイオン二次電池を提供することにある。 Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is a new and improved lithium capable of improving charge / discharge characteristics at a high rate (rate). The purpose is to provide an ion secondary battery.

上記課題を解決するために、本発明のある観点によれば、バリウム化合物を含有するSEI膜を有する負極を備え、前記バリウム化合物は、0.8μm以下の粒径を有する微粒子として前記SEI膜に含有され、前記SEI膜における前記バリウム化合物の含有量は、バリウム換算で0.3原子%以下である、リチウムイオン二次電池が提供される。 In order to solve the above problems, according to a certain aspect of the present invention, the SEI film is provided with a negative electrode having an SEI film containing a barium compound, and the barium compound is formed into the SEI film as fine particles having a particle size of 0.8 μm or less. Provided is a lithium ion secondary battery that is contained and the content of the barium compound in the SEI film is 0.3 atomic% or less in terms of barium.

本観点によれば、リチウムイオン二次電池の高レートでの充放電特性が向上する。 According to this viewpoint, the charge / discharge characteristics of the lithium ion secondary battery at a high rate are improved.

前記バリウム化合物は、硫酸バリウムであってもよい。 The barium compound may be barium sulfate.

本観点によれば、高レートでの充放電特性が向上したリチウムイオン二次電池を提供することができる。 From this viewpoint, it is possible to provide a lithium ion secondary battery having improved charge / discharge characteristics at a high rate.

前記SEI膜は、前記負極の表面に設けられ得る。 The SEI film may be provided on the surface of the negative electrode.

本観点によれば、高レートでの充放電特性が向上したリチウムイオン二次電池を提供することができる。 From this viewpoint, it is possible to provide a lithium ion secondary battery having improved charge / discharge characteristics at a high rate.

前記SEI膜は、前記負極が含浸される電解液に含まれる成分の分解物から構成され得る。 The SEI film may be composed of a decomposition product of a component contained in the electrolytic solution impregnated with the negative electrode.

本観点によれば、高レートでの充放電特性が向上したリチウムイオン二次電池を提供することができる。 From this viewpoint, it is possible to provide a lithium ion secondary battery having improved charge / discharge characteristics at a high rate.

以上説明したように本発明によれば、高レートでの充放電特性が向上したリチウムイオン二次電池を提供することができる。 As described above, according to the present invention, it is possible to provide a lithium ion secondary battery having improved charge / discharge characteristics at a high rate.

リチウムイオン二次電池の構成を概略的に示す側断面図である。It is a side sectional view schematically showing the structure of a lithium ion secondary battery.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.

<1.リチウムイオン二次電池の構成>
まず、図1を参照して、本発明の一実施形態に係るリチウムイオン二次電池10の構成について説明する。図1は、リチウムイオン二次電池の構成を概略的に示す側断面図である。
<1. Lithium-ion secondary battery configuration>
First, with reference to FIG. 1, the configuration of the lithium ion secondary battery 10 according to the embodiment of the present invention will be described. FIG. 1 is a side sectional view schematically showing the configuration of a lithium ion secondary battery.

図1に示すように、リチウムイオン二次電池10は、正極20と、負極30と、セパレータ40と、電解液とを備える。なお、リチウムイオン二次電池10の形態は、特に限定されない。即ち、リチウムイオン二次電池10は、円筒形、角形、ラミネート(laminate)形又はボタン(button)形等のいずれの形態であってもよい。 As shown in FIG. 1, the lithium ion secondary battery 10 includes a positive electrode 20, a negative electrode 30, a separator 40, and an electrolytic solution. The form of the lithium ion secondary battery 10 is not particularly limited. That is, the lithium ion secondary battery 10 may be in any form such as a cylindrical shape, a square shape, a laminated shape, or a button shape.

(正極20)
正極20は、集電体21と、正極活物質層22とを備える。集電体21は、導電体であればどのようなものでも良い。集電体21は、例えば、アルミニウム(aluminium)、ステンレス(stainless)鋼、又はニッケルメッキ(nickel coated)鋼等で構成される。
(Positive electrode 20)
The positive electrode 20 includes a current collector 21 and a positive electrode active material layer 22. The current collector 21 may be any conductor as long as it is a conductor. The current collector 21 is made of, for example, aluminum, stainless steel, nickel-plated steel, or the like.

正極活物質層22は、少なくとも正極活物質を含み、導電剤と、バインダとをさらに含んでいてもよい。なお、正極活物質、導電剤及びバインダの含有量の比率は、特に制限されず、一般的なリチウムイオン二次電池にて用いられる含有量の比率を使用することが可能である。 The positive electrode active material layer 22 contains at least the positive electrode active material, and may further contain a conductive agent and a binder. The ratio of the contents of the positive electrode active material, the conductive agent and the binder is not particularly limited, and the ratio of the contents used in a general lithium ion secondary battery can be used.

正極活物質は、例えばリチウムを含む固溶体酸化物である。ただし、正極活物質は、電気化学的にリチウムイオンを吸蔵及び放出することができる物質であれば特に制限されない。固溶体酸化物は、例えば、LiMnCoNi(1.150≦a≦1.430、0.45≦x≦0.6、0.10≦y≦0.15、0.20≦z≦0.28)、LiMnCoNi(0.3≦x≦0.85、0.10≦y≦0.3、0.10≦z≦0.3)、又はLiMn1.5Ni0.5などであってもよい。 The positive electrode active material is, for example, a solid solution oxide containing lithium. However, the positive electrode active material is not particularly limited as long as it is a substance that can electrochemically occlude and release lithium ions. The solid solution oxide is, for example, Li a Mn x Coy Niz O 2 ( 1.150 ≦ a ≦ 1.430, 0.45 ≦ x ≦ 0.6, 0.10 ≦ y ≦ 0.15, 0. 20 ≦ z ≦ 0.28), LiMn x Coy Ni z O 2 (0.3 ≦ x ≦ 0.85, 0.10 ≦ y ≦ 0.3, 0.10 ≦ z ≦ 0.3), or It may be LiMn 1.5 Ni 0.5 O 4 or the like.

導電剤は、例えば、ケッチェンブラック(ketjen black)若しくはアセチレンブラック(acetylene black)等のカーボンブラック(carbon black)、天然黒鉛、人造黒鉛、カーボンナノチューブ(carbon nanotubes)、グラフェン(graphene)若しくはカーボンナノファイバ(carbon nanofibers)等の繊維状炭素、又はこれら繊維状炭素とカーボンブラック(carbon black)との複合体等を用いることができる。ただし、導電剤は、正極の導電性を高めるためのものであれば特に制限されない。 The conductive agent is, for example, carbon black such as ketjen black or acetylene black, natural graphite, artificial graphite, carbon nanotubes, graphene or carbon nanofibers. Fibrous carbon such as (carbon nanofibers), or a composite of these fibrous carbon and carbon black (carbon black) or the like can be used. However, the conductive agent is not particularly limited as long as it is for increasing the conductivity of the positive electrode.

バインダは、例えばポリフッ化ビニリデン(polyvinylidene fluoride)、エチレンプロピレンジエン(ethylene-propylene-diene)三元共重合体、スチレンブタジエンゴム(Styrene-butadiene rubber)、アクリロニトリルブタジエンゴム(acrylonitrile-butadiene rubber)、フッ素ゴム(fluororubber)、ポリ酢酸ビニル(polyvinyl acetate)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリエチレン(polyethylene)、又はニトロセルロース(cellulose nitrate)等である。ただし、バインダは、正極活物質及び導電剤を集電体21上に結着させることができるものであれば、特に制限されない。 The binder is, for example, polyvinylidene fluoride, ethylene propylene diene (ethylene-polyethylene-diene) ternary copolymer, styrene butadiene rubber (Stylene-butadiene rubber), acrylonitrile butadiene rubber (acrylloburi) rubber (acrylone). (Fluororubber), polyvinyl acetate, polymethylmethacrylate, polyethylene, nitrocellulose, and the like. However, the binder is not particularly limited as long as it can bind the positive electrode active material and the conductive agent onto the current collector 21.

(負極30)
負極30は、集電体31と、負極活物質層32とを含む。集電体31は、導電体であればどのようなものでも良い。集電体31は、例えば、銅、銅合金、アルミニウム、ステンレス鋼又はニッケルメッキ鋼等であってもよい。
(Negative electrode 30)
The negative electrode 30 includes a current collector 31 and a negative electrode active material layer 32. The current collector 31 may be any conductor. The current collector 31 may be, for example, copper, a copper alloy, aluminum, stainless steel, nickel-plated steel, or the like.

負極活物質層32は、少なくとも負極活物質を含み、導電剤と、バインダとをさらに含んでいてもよい。なお、負極活物質、導電剤及びバインダの含有量の比率は、特に制限されず、一般的なリチウムイオン二次電池にて用いられる含有量の比率を使用することが可能である。 The negative electrode active material layer 32 contains at least the negative electrode active material, and may further contain a conductive agent and a binder. The ratio of the contents of the negative electrode active material, the conductive agent and the binder is not particularly limited, and the ratio of the contents used in a general lithium ion secondary battery can be used.

負極活物質は、例えば、黒鉛活物質、ケイ素(Si)若しくはスズ(Sn)系活物質、又は酸化チタン(TiO)系活物質等である。ただし、負極活物質は、電気化学的にリチウムイオンを吸蔵及び放出することができる物質であれば特に制限されない。黒鉛系活物質は、人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛との混合物、又は人造黒鉛で被覆した天然黒鉛などであってもよい。ケイ素若しくはスズ系活物質は、ケイ素若しくはスズの微粒子、ケイ素若しくはスズの酸化物の微粒子、又はケイ素若しくはスズの合金などであってもよい。酸化チタン系活物質は、LiTi12等であってもよい。さらに、負極活物質は、これらの他に、例えば金属リチウム(Li)等であってもよい。 The negative electrode active material is, for example, a graphite active material, a silicon (Si) or tin (Sn) -based active material, a titanium oxide (TiO x ) -based active material, or the like. However, the negative electrode active material is not particularly limited as long as it is a substance that can electrochemically occlude and release lithium ions. The graphite-based active material may be artificial graphite, natural graphite, a mixture of artificial graphite and natural graphite, natural graphite coated with artificial graphite, or the like. The silicon or tin-based active material may be fine particles of silicon or tin, fine particles of an oxide of silicon or tin, an alloy of silicon or tin, or the like. The titanium oxide-based active material may be Li 4 Ti 5 O 12 or the like. Further, the negative electrode active material may be, for example, metallic lithium (Li) or the like in addition to these.

導電剤は、正極活物質層22で用いた導電剤と同様のものが使用可能である。 As the conductive agent, the same conductive agent as that used in the positive electrode active material layer 22 can be used.

バインダは、例えば、スチレンブタジエンゴム(Styrene-Butadiene Rubber:SBR)などを用いることができる。ただし、バインダは、負極活物質及び導電剤を集電体31上に結着させることができるものであれば、特に制限されない。 As the binder, for example, styrene-butadiene rubber (Stylene-Butagene Rubber: SBR) or the like can be used. However, the binder is not particularly limited as long as it can bind the negative electrode active material and the conductive agent onto the current collector 31.

ここで、本実施形態では、負極30の表面には、バリウム(barium)化合物を含有するSEI(Solid Electrolyte Interphase)膜が形成される。 Here, in the present embodiment, a SEI (Solid Electrolyte Interphase) film containing a barium compound is formed on the surface of the negative electrode 30.

SEI膜は、初回の充放電時に、負極30の表面で電解液が分解されることによって形成される。具体的には、SEI膜は、負極30を含浸する電解液及び電解液の添加剤の分解物等によって形成される極薄の膜である。SEI膜は、リチウムイオンを負極30中に挿入又は脱離させる役割を果たしつつ、負極30上でのさらなる電解液の分解反応を抑制することができる。 The SEI film is formed by decomposing the electrolytic solution on the surface of the negative electrode 30 at the time of initial charging / discharging. Specifically, the SEI film is an ultrathin film formed by an electrolytic solution impregnating the negative electrode 30 and a decomposition product of an additive of the electrolytic solution. The SEI film can suppress further decomposition reaction of the electrolytic solution on the negative electrode 30 while playing a role of inserting or removing lithium ions into the negative electrode 30.

SEI膜に含有されるバリウム化合物は、バリウムの塩、酸化物、硫化物、水酸化物又はハロゲン化物などであってもよい。バリウム化合物は、例えば、硫酸バリウム(BaSO)であってもよい。硫酸バリウム(BaSO)は、水に対する溶解度が低く、安定であるため、容易に取り扱うことができる。 The barium compound contained in the SEI film may be a salt of barium, an oxide, a sulfide, a hydroxide, a halide or the like. The barium compound may be, for example, barium sulfate (BaSO 4 ). Barium sulfate (BaSO 4 ) has low solubility in water and is stable, so that it can be easily handled.

SEI膜にバリウム化合物を含有されることで、リチウムイオン二次電池の高レートでの充放電特性が向上することは、以下で説明する実施例及び比較例から明らかであるが、その理由については定かではない。おそらく、誘電体であるバリウム化合物が負極30の表面で分極することによって、負極30へのリチウムイオンの挿入又は脱離を支援しているのではないかと推測される。 It is clear from the examples and comparative examples described below that the inclusion of the barium compound in the SEI film improves the charge / discharge characteristics of the lithium ion secondary battery at a high rate. I'm not sure. It is presumed that the barium compound, which is a dielectric, is polarized on the surface of the negative electrode 30 to support the insertion or desorption of lithium ions into the negative electrode 30.

本実施形態に係るリチウムイオン二次電池10では、負極30の作製時に、バリウム化合物を負極30の表面に散布することで、負極30の表面のSEI膜にバリウム化合物を含有させる。この方法によれば、SEI膜に含有されるバリウム化合物の量及び粒径を後述する範囲に制御することが容易になる。 In the lithium ion secondary battery 10 according to the present embodiment, the barium compound is contained in the SEI film on the surface of the negative electrode 30 by spraying the barium compound on the surface of the negative electrode 30 at the time of manufacturing the negative electrode 30. According to this method, it becomes easy to control the amount and particle size of the barium compound contained in the SEI film within the range described later.

SEI膜におけるバリウム化合物の含有量は、初期充放電を行った後、さらに満充電状態にしたリチウムイオン二次電池10を解体し、負極30の表面のSEI膜をX線光電子分光法によって解析することで測定することができる。SEI膜におけるバリウム化合物の含有量は、バリウム換算で0.3原子%以下であり、0.2原子%以下であることが好ましい。 The content of the barium compound in the SEI film is determined by disassembling the fully charged lithium ion secondary battery 10 after initial charging and discharging, and analyzing the SEI film on the surface of the negative electrode 30 by X-ray photoelectron spectroscopy. It can be measured by. The content of the barium compound in the SEI film is 0.3 atomic% or less in terms of barium, and preferably 0.2 atomic% or less.

バリウム化合物の含有量が0.3原子%超である場合、SEI膜中のバリウム化合物が過剰となることで、リチウムイオン二次電池の高レートでの充放電特性が低下してしまう。一方、SEI膜におけるバリウム化合物の含有量は、特に下限を定めないが、0.05原子%超であればよい。換言すると、SEI膜におけるバリウム化合物の含有量の下限は、X線光電子分光法のスペクトルにおいて、バリウムのピークが確認できる程度であればよい。 When the content of the barium compound is more than 0.3 atomic%, the excess amount of the barium compound in the SEI film deteriorates the charge / discharge characteristics of the lithium ion secondary battery at a high rate. On the other hand, the content of the barium compound in the SEI film is not particularly limited, but may be more than 0.05 atomic%. In other words, the lower limit of the content of the barium compound in the SEI film may be such that the peak of barium can be confirmed in the spectrum of X-ray photoelectron spectroscopy.

なお、SEI膜におけるバリウム化合物の含有量は、負極30へのバリウム化合物の散布量とは一致しない。ただし、負極30へのバリウム化合物の散布量を増加させることで、SEI膜におけるバリウム化合物の含有量を増加させることができる。 The content of the barium compound in the SEI film does not match the amount of the barium compound sprayed on the negative electrode 30. However, the content of the barium compound in the SEI film can be increased by increasing the amount of the barium compound sprayed on the negative electrode 30.

また、バリウム化合物は、微粒子としてSEI膜に含有される。SEI膜に含有されるバリウム化合物の粒径は、0.8μm以下であり、0.5μm以下であることが好ましい。バリウム化合物の粒径が0.8μm超である場合、SEI膜中でバリウム化合物が占める領域が過剰となることで、リチウムイオン二次電池の高レートでの充放電特性が低下してしまう。一方、バリウム化合物の粒径は、特に下限を定めないが、バリウム化合物の微粒子の製造上、0.01μm以上であればよい。 Further, the barium compound is contained in the SEI film as fine particles. The particle size of the barium compound contained in the SEI film is 0.8 μm or less, preferably 0.5 μm or less. When the particle size of the barium compound is more than 0.8 μm, the region occupied by the barium compound in the SEI film becomes excessive, and the charge / discharge characteristics of the lithium ion secondary battery deteriorate at a high rate. On the other hand, the particle size of the barium compound is not particularly limited, but may be 0.01 μm or more in the production of fine particles of the barium compound.

なお、バリウム化合物の粒径は、負極30に散布した際の粒径である。バリウム化合物の粒径は、例えば、散布前のバリウム化合物を走査型電子顕微鏡(Scanning Electron Microscope:SEM)にて観察し、バリウム化合物の形状を球形と近似した場合の直径の平均値として算出することができる。 The particle size of the barium compound is the particle size when sprayed on the negative electrode 30. The particle size of the barium compound is calculated as, for example, the average value of the diameters when the barium compound before spraying is observed with a scanning electron microscope (SEM) and the shape of the barium compound is approximated to a spherical shape. Can be done.

(セパレータ40)
セパレータ40は、リチウムイオン二次電池のセパレータとして使用されるものであれば、特に制限されず使用することが可能である。セパレータは、優れた高率放電性能を示す多孔膜又は不織布等を、単独若しくは併用して用いることが好ましい。セパレータを構成する樹脂は、例えばポリエチレン(polyethylene),ポリプロピレン(polypropylene)等に代表されるポリオレフィン(polyolefin)系樹脂、ポリエチレンテレフタレート(Polyethylene terephthalate),ポリブチレンテレフタレート(polybutylene terephthalate)等に代表されるポリエステル(Polyester)系樹脂、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン(VDF)-ヘキサフルオロプロピレン(HFP)共重合体、フッ化ビニリデン-パーフルオロビニルエーテル(par fluorovinyl ether)共重合体、フッ化ビニリデン-テトラフルオロエチレン(tetrafluoroethylene)共重合体、フッ化ビニリデン-トリフルオロエチレン(trifluoroethylene)共重合体、フッ化ビニリデン-フルオロエチレン(fluoroethylene)共重合体、フッ化ビニリデン-ヘキサフルオロアセトン(hexafluoroacetone)共重合体、フッ化ビニリデン-エチレン(ethylene)共重合体、フッ化ビニリデン-プロピレン(propylene)共重合体、フッ化ビニリデン-トリフルオロプロピレン(trifluoro propylene)共重合体、フッ化ビニリデン-テトラフルオロエチレン(tetrafluoroethylene)-ヘキサフルオロプロピレン(hexafluoropropylene)共重合体、フッ化ビニリデン-エチレン(ethylene)-テトラフルオロエチレン(tetrafluoroethylene)共重合体等であってもよい。
(Separator 40)
The separator 40 can be used without particular limitation as long as it is used as a separator for a lithium ion secondary battery. As the separator, it is preferable to use a porous membrane or a non-woven fabric showing excellent high rate discharge performance alone or in combination. The resin constituting the separator is, for example, a polyolefin-based resin typified by polyethylene, polymer, or the like, a polyethylene terephthalate, a polybutylene terephthalate, or the like. Polymer) -based resin, polyvinylidene fluoride (PVDF), vinylidene fluoride (VDF) -hexafluoropropylene (HFP) copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetra Fluoroethylene polymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoroacetone, polymer. Vinylidene fluoride-ethylene (ethylene) polymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene- Hexafluoropropylene copolymer, vinylidene fluoride-ethylene-tetrafluoroethylene copolymer and the like may be used.

(電解液)
電解液は、リチウムイオン二次電池の電解液として用いられるものであれば、特に限定されず使用することが可能である。電解液は、非水溶媒に電解質塩を含有させた組成を有する。
(Electrolytic solution)
The electrolytic solution is not particularly limited as long as it is used as an electrolytic solution for a lithium ion secondary battery. The electrolytic solution has a composition in which an electrolyte salt is contained in a non-aqueous solvent.

非水溶媒は、例えば、プロピレンカーボネート(propylene carbonate)、エチレンカーボネート(ethylene carbonate)、ブチレンカーボネート(ethylene carbonate)、クロロエチレンカーボネート(chloroethylene carbonate)、ビニレンカーボネート(vinylene carbonate)等の環状炭酸エステル(ester)類;γ-ブチロラクトン(butyrolactone)、γ-バレロラクトン(valerolactone)等の環状エステル類;ジメチルカーボネート(dimethyl carbonate)、ジエチルカーボネート(diethyl carbonate)、エチルメチルカーボネート(ethyl methyl carbonate)等の鎖状カーボネート類;ギ酸メチル(methyl formate)、酢酸メチル(methyl acetate)、酪酸メチル(butyric acid methyl)等の鎖状エステル類;テトラヒドロフラン(Tetrahydrofuran)又はその誘導体;1,3-ジオキサン(dioxane)、1,4-ジオキサン(dioxane)、1,2-ジメトキシエタン(dimethoxyethane)、1,4-ジブトキシエタン(dibutoxyethane)、メチルジグライム(methyl diglyme)等のエーテル(ether)類;アセトニトリル(acetonitrile)、ベンゾニトリル(benzonitrile)等のニトリル(nitrile)類;ジオキソラン(Dioxolane)又はその誘導体;エチレンスルフィド(ethylene sulfide)、スルホラン(sulfolane)、スルトン(sultone)又はその誘導体等を単独で若しくは2種以上混合して用いることができる。 Examples of the non-aqueous solvent include propylene carbonate (propylene carbonate), ethylene carbonate (ethylene carbonate), butylene carbonate (ethylene carbononate), chloroethylene carbonate (chloroethylene carbonate), vinylene carbonate (vinylene carbonate), and the like. Kind: Cyclic esters such as γ-butyrolactone and γ-valerolactone; chains of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and the like. Chain esters such as methyl format, methyl acetate, butyric acid methyl; tetrahydrofuran (Tetrahydrofuran) or derivatives thereof; 1,3-dioxane, 1,4- Ethers such as dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyldilyme; acetonitrile (acetylene), benzonitrile (benez). ) Etc. nitriles; dioxolane or its derivatives; ethylene sulfide (estersulfide), sulfolane, sultone (sultone) or its derivatives, etc. may be used alone or in admixture of two or more. can.

電解質塩は、例えば、LiClO、LiBF、LiAsF、LiPF,LiPF6-x(C2n+1(但し、1<x<6,n=1or2),LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)又はカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n-CNClO,(n-CNI,(CN-maleate,(CN-benzoate,(CN-phtalate、ステアリルスルホン酸リチウム(stearyl sulfonic acid lithium)、オクチルスルホン酸リチウム(octyl sulfonic acid)、ドデシルベンゼンスルホン酸リチウム(dodecyl benzene sulphonic acid)等の有機イオン塩等であってもよい。電解質塩は、これらのイオン塩又はイオン性化合物を単独で若しくは2種以上混合して用いることができる。なお、電解質塩の濃度は、一般的なリチウムイオン二次電池で使用される濃度と同様の濃度(0.8mol/L~2.0mol/L程度)を使用することができる。 The electrolyte salts are, for example, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiPF 6-x (Cn F 2n + 1 ) x (where 1 <x <6, n = 1 or 2), LiSCN, LiBr, LiI, Li. 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN and other inorganic ion salts containing one of lithium (Li), sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-malate, (C 2 H 5 ) 4 N-benzoate, (C) 2 H 5 ) 4 N-phtalate, lithium sulphonic acid lithium, lithium sulphonic acid, lithium dodecylbenzene sulphonate, etc., organic salts, etc. May be good. The electrolyte salt can be used alone or in combination of two or more of these ionic salts or ionic compounds. The concentration of the electrolyte salt can be the same as the concentration used in a general lithium ion secondary battery (about 0.8 mol / L to 2.0 mol / L).

なお、電解液には、各種の添加剤が添加されてもよい。このような添加剤としては、負極作用添加剤、正極作用添加剤、エステル系添加剤、炭酸エステル系添加剤、硫酸エステル系添加剤、リン酸エステル系添加剤、ホウ酸エステル系添加剤、酸無水物系添加剤、又は電解質系添加剤等が挙げられる。これらのうちいずれか1種又は複数種類の添加剤が電解液に添加されてもよい。 In addition, various additives may be added to the electrolytic solution. Examples of such additives include negative-negative action additives, positive-side action additives, ester-based additives, carbonic acid ester-based additives, sulfuric acid ester-based additives, phosphate ester-based additives, borate ester-based additives, and acids. Examples thereof include an anhydride-based additive and an electrolyte-based additive. One or more of these additives may be added to the electrolytic solution.

<2.リチウムイオン二次電池の製造方法>
次に、リチウムイオン二次電池10の製造方法について説明する。
<2. Manufacturing method of lithium-ion secondary battery >
Next, a method for manufacturing the lithium ion secondary battery 10 will be described.

正極20は、以下の方法にて作製される。まず、正極活物質、導電剤及びバインダを所定の割合で混合したものを、溶媒(例えばN-メチル-2-ピロリドン)に分散させることでスラリー(slurry)を形成する。次に、スラリーを集電体21上に塗布し、乾燥させることで、正極活物質層22を形成する。なお、塗布の方法は、特に限定されない。塗布の方法としては、例えば、ナイフコーター(knife coater)法、グラビアコーター(gravure coater)法等を用いることができる。続いて、プレス(press)機により正極活物質層22を所定の密度となるように圧縮する。これにより、正極20が作製される。 The positive electrode 20 is manufactured by the following method. First, a slurry is formed by dispersing a mixture of a positive electrode active material, a conductive agent and a binder in a predetermined ratio in a solvent (for example, N-methyl-2-pyrrolidone). Next, the slurry is applied onto the current collector 21 and dried to form the positive electrode active material layer 22. The method of application is not particularly limited. As a method of coating, for example, a knife coater method, a gravure coater method, or the like can be used. Subsequently, the positive electrode active material layer 22 is compressed to a predetermined density by a press machine. As a result, the positive electrode 20 is manufactured.

負極30も、正極20と同様の方法にて作製される。まず、負極活物質、及びバインダを混合したものを、溶媒(例えば水)に分散させることでスラリーを形成する。次に、スラリーを集電体31上に塗布し、乾燥させることで、負極活物質層32を形成する。続いて、プレス機により負極活物質層32を所定の密度となるように圧縮する。さらに、圧縮後の負極30の表面に所定の粒径のバリウム化合物の微粒子を噴霧することで、負極30の表面にバリウム化合物の微粒子を配置させた。これにより、負極30が作製される。 The negative electrode 30 is also manufactured by the same method as that of the positive electrode 20. First, a slurry is formed by dispersing a mixture of a negative electrode active material and a binder in a solvent (for example, water). Next, the slurry is applied onto the current collector 31 and dried to form the negative electrode active material layer 32. Subsequently, the negative electrode active material layer 32 is compressed to a predetermined density by a press machine. Further, by spraying fine particles of the barium compound having a predetermined particle size on the surface of the negative electrode 30 after compression, the fine particles of the barium compound were arranged on the surface of the negative electrode 30. As a result, the negative electrode 30 is manufactured.

次に、セパレータ40を正極20及び負極30で挟むことで、電極構造体を作製する。続いて、作製した電極構造体を所望の形態(例えば、円筒形、角形、ラミネート形又はボタン形等)に加工し、該所望の形態の容器に挿入する。その後、容器内に電解液を注入することで、セパレータ40内の各気孔に電解液を含浸させる。これにより、リチウムイオン二次電池10が作製される。 Next, an electrode structure is manufactured by sandwiching the separator 40 between the positive electrode 20 and the negative electrode 30. Subsequently, the prepared electrode structure is processed into a desired shape (for example, cylindrical shape, square shape, laminated shape, button shape, etc.) and inserted into the container having the desired shape. Then, by injecting the electrolytic solution into the container, each pore in the separator 40 is impregnated with the electrolytic solution. As a result, the lithium ion secondary battery 10 is manufactured.

さらに、作製したリチウムイオン二次電池10に対して、初回充放電を行うことで、負極30の表面に、バリウム化合物を含有するSEI膜を形成する。 Further, the produced lithium ion secondary battery 10 is initially charged and discharged to form an SEI film containing a barium compound on the surface of the negative electrode 30.

以上にて説明したように、本実施形態によれば、あらかじめ負極30の表面にバリウム化合物の微粒子を散布することによって、バリウム化合物が好適な量にて含有されたSEI膜を負極30の表面に形成することができる。これによれば、リチウムイオン二次電池10の高レートでの充放電特性を向上させることができる。 As described above, according to the present embodiment, by spraying fine particles of the barium compound on the surface of the negative electrode 30 in advance, an SEI film containing a suitable amount of the barium compound is applied to the surface of the negative electrode 30. Can be formed. According to this, the charge / discharge characteristics of the lithium ion secondary battery 10 at a high rate can be improved.

以下では、実施例及び比較例を参照しながら、本実施形態に係るリチウムイオン二次電池、及びリチウムイオン二次電池の製造方法について具体的に説明する。なお、以下に示す実施例は、あくまでも一例であって、本実施形態に係るリチウムイオン二次電池、及びリチウムイオン二次電池の製造方法が下記の例に限定されるものではない。 Hereinafter, the lithium ion secondary battery and the method for manufacturing the lithium ion secondary battery according to the present embodiment will be specifically described with reference to Examples and Comparative Examples. The examples shown below are merely examples, and the method for manufacturing the lithium ion secondary battery and the lithium ion secondary battery according to the present embodiment is not limited to the following examples.

(リチウムイオン二次電池の作製)
正極活物質としてLiNi0.88Co0.1Al0.02で表されるリチウムニッケルコバルト酸化物を用い、導電剤として炭素粉末を用い、バインダとしてポリフッ化ビニリデンを用いた。正極活物質、導電剤、及びバインダを94:4:2の質量比になるように混合し、N-メチル-2-ピロリドンを加えて混練することで、正極スラリー(正極合剤)を調整した。
(Manufacturing of lithium-ion secondary battery)
Lithium nickel-cobalt oxide represented by LiNi 0.88 Co 0.1 Al 0.02 O 2 was used as the positive electrode active material, carbon powder was used as the conductive agent, and polyvinylidene fluoride was used as the binder. The positive electrode slurry (positive electrode mixture) was prepared by mixing the positive electrode active material, the conductive agent, and the binder in a mass ratio of 94: 4: 2, and adding N-methyl-2-pyrrolidone and kneading. ..

次に、厚み12μm、長さ238mm及び幅29mmのアルミニウム箔からなる集電体に、上記の正極スラリーを集電体の一面に長さ222mm及び幅29mmで塗布し、集電体の一面と対向する他面に長さ172mm及び幅29mmで塗布した。正極スラリー塗布後の集電体を乾燥させた後、圧延し、正極極板を作製した。このとき、正極の厚みは、両面で125μmであり、集電体上の正極合剤の量は42.5mg/cmであり、正極合剤の充填密度は3.75g/cmであった。 Next, on a current collector made of aluminum foil having a thickness of 12 μm, a length of 238 mm and a width of 29 mm, the above positive positive slurry is applied to one surface of the current collector with a length of 222 mm and a width of 29 mm to face one surface of the current collector. The other surface was coated with a length of 172 mm and a width of 29 mm. The current collector after applying the positive electrode slurry was dried and then rolled to prepare a positive electrode plate. At this time, the thickness of the positive electrode was 125 μm on both sides, the amount of the positive electrode mixture on the current collector was 42.5 mg / cm 2 , and the packing density of the positive electrode mixture was 3.75 g / cm 3 . ..

その後、上記の正極極板の正極合剤が塗布されていない部分に、厚み70μm、長さ40mm及び幅4mmのアルミニウム平板からなる集電タブを取り付けた。 Then, a current collecting tab made of an aluminum flat plate having a thickness of 70 μm, a length of 40 mm, and a width of 4 mm was attached to the portion of the positive electrode electrode plate to which the positive electrode mixture was not applied.

負極活物質として人造黒鉛及びシリコン含有炭素を用い、バインダとしてカルボキシメチルセルロース及びスチレンブタジエンゴムを用いた。人造黒鉛、シリコン含有炭素、カルボキシメチルセルロース、及びスチレンブタジエンゴムを92.2:5.3:1.0:1.5の質量比になるように混合し、水を加えて混練することで、負極スラリー(負極合剤)を調整した。 Artificial graphite and silicon-containing carbon were used as the negative electrode active material, and carboxymethyl cellulose and styrene-butadiene rubber were used as the binder. Artificial graphite, silicon-containing carbon, carboxymethyl cellulose, and styrene-butadiene rubber are mixed so as to have a mass ratio of 92.2: 5.3: 1.0: 1.5, and water is added and kneaded to obtain a negative electrode. The slurry (negative electrode mixture) was adjusted.

次に、厚み8μm、長さ271mm及び幅30mmのアルミニウム箔からなる集電体に、上記の負極スラリーを集電体の一面に長さ235mm及び幅30mmで塗布し、集電体の一面と対向する他面に長さ178mm及び幅30mmで塗布した。負極スラリー塗布後の集電体を乾燥させた後、圧延し、負極極板を作製した。このとき、負極の厚みは両面で152μmであり、集電体上の負極合剤の量は23.0mg/cmであり、負極合剤の充填密度は1.6g/cmであった。 Next, the above negative electrode slurry was applied to one surface of the current collector having a length of 235 mm and a width of 30 mm on a current collector made of an aluminum foil having a thickness of 8 μm, a length of 271 mm and a width of 30 mm, and opposed to one surface of the current collector. The other surface was coated with a length of 178 mm and a width of 30 mm. The current collector after applying the negative electrode slurry was dried and then rolled to prepare a negative electrode electrode plate. At this time, the thickness of the negative electrode was 152 μm on both sides, the amount of the negative electrode mixture on the current collector was 23.0 mg / cm 2 , and the packing density of the negative electrode mixture was 1.6 g / cm 3 .

その後、作製した負極極板の表面に、下記の表1で示す粒径の硫酸バリウム粉末を異なる量で噴霧した。さらに、上記の負極極板の負極合剤が塗布されていない部分に、厚み70μm、長さ40mm及び幅4mmのニッケル平板からなる集電タブを取り付けた。 Then, barium sulfate powder having a particle size shown in Table 1 below was sprayed on the surface of the prepared negative electrode plate in different amounts. Further, a current collecting tab made of a nickel flat plate having a thickness of 70 μm, a length of 40 mm and a width of 4 mm was attached to the portion of the negative electrode electrode plate not coated with the negative electrode mixture.

エチレンカーボネート、メチルエチルカーボネート、及びジメチルカーボネートを20:40:40の体積比になるように混合することで、非水溶媒を作製した。作製した非水溶媒に、電解質塩としてLiPFを1.15mol/Lの濃度で溶解させ、電解液を作製した。さらに、作製した電解液に、ビニレンカーボネートを電解液の総質量に対して1.5質量%にて外添した。 A non-aqueous solvent was prepared by mixing ethylene carbonate, methyl ethyl carbonate, and dimethyl carbonate in a volume ratio of 20:40:40. LiPF 6 as an electrolyte salt was dissolved in the prepared non-aqueous solvent at a concentration of 1.15 mol / L to prepare an electrolytic solution. Further, vinylene carbonate was added to the prepared electrolytic solution in an amount of 1.5% by mass based on the total mass of the electrolytic solution.

上記で作製した正極、負極及び電解液を用いてリチウム二次電池を作製した。正極及び負極はセパレータを介して対向するように配置し、これらを所定の位置で折り返して巻回した後、プレスすることで扁平型の電極組立体を作製した。なお、セパレータは、長さ350mm及び幅32mmのポリエチレン製多孔体からなるセパレータを2枚用いた。 A lithium secondary battery was manufactured using the positive electrode, the negative electrode, and the electrolytic solution prepared above. The positive electrode and the negative electrode were arranged so as to face each other via a separator, and these were folded back at a predetermined position, wound, and then pressed to prepare a flat electrode assembly. As the separator, two separators made of a polyethylene porous body having a length of 350 mm and a width of 32 mm were used.

作製した電極組立体をアルミラミネートにて構成される電池容器に収納し、電池容器に電解液を注入した。このとき、正極及び負極の集電タブを外部に取り出せるように配置した。作製したリチウムイオン二次電池の設計容量は480mAhである。 The prepared electrode assembly was housed in a battery container made of aluminum laminate, and the electrolytic solution was injected into the battery container. At this time, the current collecting tabs of the positive electrode and the negative electrode were arranged so that they could be taken out. The design capacity of the manufactured lithium ion secondary battery is 480 mAh.

(リチウムイオン二次電池の評価)
続いて、上記で作製したリチウムイオン二次電池の初期充放電を行った。具体的には、25℃の環境下において、リチウムイオン二次電池を48mAの定電流で4.3Vになるまで充電し、さらに4.3Vの定電圧で電流値が24mAになるまで充電した後、48mAの定電流で2.8Vになるまで放電を行った。このときの放電容量を初期容量Q1とした。
(Evaluation of lithium-ion secondary battery)
Subsequently, the lithium ion secondary battery produced above was initially charged and discharged. Specifically, in an environment of 25 ° C., the lithium ion secondary battery is charged with a constant current of 48 mA until it reaches 4.3 V, and then charged with a constant voltage of 4.3 V until the current value reaches 24 mA. , A constant current of 48 mA was discharged until it reached 2.8 V. The discharge capacity at this time was set to the initial capacity Q1.

次に、上記のように初期充放電を行ったリチウム二次電池について、25℃の環境下において、240mAの定電流で4.3Vになるまで充電し、さらに4.3Vの定電圧で電流値が24mAになるまで充電した。その後、充電後のリチウムイオン二次電池を解体し、負極極板を取り出した。 Next, the lithium secondary battery that has been initially charged and discharged as described above is charged in an environment of 25 ° C. with a constant current of 240 mA until it reaches 4.3 V, and further, the current value is a constant voltage of 4.3 V. Was charged until the voltage reached 24 mA. Then, the charged lithium ion secondary battery was disassembled, and the negative electrode plate was taken out.

取り出した負極極板の表面に形成されたSEI膜をX線光電子分光法にて解析した。なお、X線源は単色化AlKα(1486.6eV)とし、負極極板の解析領域は700μm×300μmとした。X線光電子分光法にて得られたスペクトルから、バリウムの組成率を原子%で算出した。結果を表1に示す。 The SEI film formed on the surface of the negative electrode plate taken out was analyzed by X-ray photoelectron spectroscopy. The X-ray source was monochromatic AlKα (1486.6 eV), and the analysis area of the negative electrode plate was 700 μm × 300 μm. From the spectrum obtained by X-ray photoelectron spectroscopy, the composition ratio of barium was calculated in atomic%. The results are shown in Table 1.

さらに、上記のように初期充放電を行ったリチウム二次電池について、25℃の環境下において、240mAの定電流で4.3Vになるまで充電した後、4.3Vの定電圧で電流値が24mAになるまで充電し、さらに240mAの電流で2.8Vになるまで放電を行った。これを1サイクルとして、100サイクルの充放電を繰り返し行った。その後、初期容量Q1及び100サイクル目の放電容量Q[0.5C]から、以下の式を用いて、0.5Cサイクルにおける容量維持率を求めた。
0.5Cサイクルにおける容量維持率(%)=(Q[0.5C]/Q1)×100
Further, the lithium secondary battery that has been initially charged and discharged as described above is charged in an environment of 25 ° C. with a constant current of 240 mA until it reaches 4.3 V, and then the current value changes at a constant voltage of 4.3 V. The battery was charged to 24 mA and then discharged to 2.8 V with a current of 240 mA. With this as one cycle, 100 cycles of charging and discharging were repeated. Then, from the initial capacity Q1 and the discharge capacity Q [0.5C] at the 100th cycle, the capacity retention rate in the 0.5C cycle was determined using the following formula.
Capacity retention rate (%) in 0.5C cycle = (Q [0.5C] / Q1) × 100

また、上記のように初期充放電を行ったリチウム二次電池について、25℃の環境下において、960mAの定電流で4.3Vになるまで充電した後、4.3Vの定電圧で電流値が24mAになるまで充電し、さらに240mAの電流で2.8Vになるまで放電を行った。これを1サイクルとして、100サイクルの充放電を繰り返し行った。その後、初期容量Q1及び100サイクル目の放電容量Q[2C]から、以下の式を用いて、2.0Cサイクルにおける容量維持率を求めた。
2.0Cサイクルにおける容量維持率(%)=(Q[2C]/Q1)×100
Further, the lithium secondary battery that has been initially charged and discharged as described above is charged at a constant current of 960 mA until it reaches 4.3 V in an environment of 25 ° C., and then the current value changes at a constant voltage of 4.3 V. The battery was charged to 24 mA and then discharged to 2.8 V with a current of 240 mA. With this as one cycle, 100 cycles of charging and discharging were repeated. Then, from the initial capacity Q1 and the discharge capacity Q [2C] at the 100th cycle, the capacity retention rate in the 2.0C cycle was obtained using the following formula.
Capacity retention rate (%) in 2.0C cycle = (Q [2C] / Q1) × 100

実施例及び比較例の各々のバリウム化合物の粒径及び含有量、並びに評価結果を下記の表1に示す。なお、比較例1は、負極の表面にバリウム化合物を噴霧していない比較例である。 The particle size and content of each barium compound in Examples and Comparative Examples, and the evaluation results are shown in Table 1 below. Comparative Example 1 is a comparative example in which the barium compound is not sprayed on the surface of the negative electrode.

Figure 0007048345000001
Figure 0007048345000001

表1を参照すると、実施例1~4は、負極表面のSEI膜にバリウム化合物が含有されているため、比較例1に対して、0.5Cサイクル及び2.0Cサイクルの容量維持率が向上していることがわかる。 Referring to Table 1, in Examples 1 to 4, since the barium compound is contained in the SEI film on the surface of the negative electrode, the capacity retention rates of 0.5 C cycle and 2.0 C cycle are improved as compared with Comparative Example 1. You can see that it is doing.

また、比較例2は、負極表面のSEI膜におけるバリウム化合物の含有量が本実施形態に係る範囲を超えているため、0.5Cサイクル及び2.0Cサイクルの容量維持率が低下していることがわかる。さらに、比較例3は、負極表面に噴霧したバリウム化合物の粒径が本実施形態に係る範囲を超えているため、0.5Cサイクル及び2.0Cサイクルの容量維持率が低下していることがわかる。 Further, in Comparative Example 2, since the content of the barium compound in the SEI film on the surface of the negative electrode exceeds the range according to the present embodiment, the capacity retention rate of the 0.5C cycle and the 2.0C cycle is lowered. I understand. Further, in Comparative Example 3, since the particle size of the barium compound sprayed on the surface of the negative electrode exceeds the range according to the present embodiment, the capacity retention rate of the 0.5C cycle and the 2.0C cycle is lowered. Understand.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to these examples. It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can come up with various modifications or modifications within the scope of the technical ideas described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.

10 リチウムイオン二次電池
20 正極
21 集電体
22 正極活物質層
30 負極
31 集電体
32 負極活物質層
40 セパレータ
10 Lithium-ion secondary battery 20 Positive electrode 21 Current collector 22 Positive electrode active material layer 30 Negative electrode 31 Current collector 32 Negative electrode active material layer 40 Separator

Claims (3)

バリウム化合物を含有するSEI膜を有する負極
を備え、
前記バリウム化合物は、0.8μm以下の粒径を有する微粒子として前記SEI膜に含有され、前記SEI膜における前記バリウム化合物の含有量は、バリウム換算で0.3原子%以下であり、
前記バリウム化合物は、硫酸バリウムである、リチウムイオン二次電池。
A negative electrode having an SEI film containing a barium compound is provided.
The barium compound is contained in the SEI film as fine particles having a particle size of 0.8 μm or less, and the content of the barium compound in the SEI film is 0.3 atomic% or less in terms of barium .
The barium compound is a lithium ion secondary battery, which is barium sulfate .
前記SEI膜は、前記負極の表面に設けられる、請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1 , wherein the SEI film is provided on the surface of the negative electrode. 前記SEI膜は、前記負極を含浸する電解液に含まれる成分の分解物から構成される、請求項1又は2に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1 or 2 , wherein the SEI film is composed of a decomposition product of a component contained in an electrolytic solution impregnating the negative electrode.
JP2018028125A 2018-02-20 2018-02-20 Lithium ion secondary battery Active JP7048345B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018028125A JP7048345B2 (en) 2018-02-20 2018-02-20 Lithium ion secondary battery
KR1020190014091A KR20190100029A (en) 2018-02-20 2019-02-01 Lithium ion rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028125A JP7048345B2 (en) 2018-02-20 2018-02-20 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2019145323A JP2019145323A (en) 2019-08-29
JP7048345B2 true JP7048345B2 (en) 2022-04-05

Family

ID=67773904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028125A Active JP7048345B2 (en) 2018-02-20 2018-02-20 Lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP7048345B2 (en)
KR (1) KR20190100029A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529762A (en) 2006-03-10 2009-08-20 エルジー・ケム・リミテッド Electrode coated with porous active layer, method for producing the same, and electrochemical device including the same
JP2011023241A (en) 2009-07-16 2011-02-03 Sony Corp Secondary battery, anode, cathode, and electrolyte
JP2015069863A (en) 2013-09-30 2015-04-13 Tdk株式会社 Negative electrode active material, negative electrode containing the same, and lithium ion secondary battery using the same
CN105304907A (en) 2015-11-02 2016-02-03 多氟多(焦作)新能源科技有限公司 Binder for lithium ion battery compound pole piece, preparation method for binder, compound pole piece, battery core, and lithium ion battery
JP2016134267A (en) 2015-01-19 2016-07-25 トヨタ自動車株式会社 Lithium ion secondary battery
WO2017221572A1 (en) 2016-06-21 2017-12-28 日本ゼオン株式会社 Composition for function layers of nonaqueous secondary batteries, function layer for nonaqueous secondary batteries, and nonaqueous secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529762A (en) 2006-03-10 2009-08-20 エルジー・ケム・リミテッド Electrode coated with porous active layer, method for producing the same, and electrochemical device including the same
JP2011023241A (en) 2009-07-16 2011-02-03 Sony Corp Secondary battery, anode, cathode, and electrolyte
JP2015069863A (en) 2013-09-30 2015-04-13 Tdk株式会社 Negative electrode active material, negative electrode containing the same, and lithium ion secondary battery using the same
JP2016134267A (en) 2015-01-19 2016-07-25 トヨタ自動車株式会社 Lithium ion secondary battery
CN105304907A (en) 2015-11-02 2016-02-03 多氟多(焦作)新能源科技有限公司 Binder for lithium ion battery compound pole piece, preparation method for binder, compound pole piece, battery core, and lithium ion battery
WO2017221572A1 (en) 2016-06-21 2017-12-28 日本ゼオン株式会社 Composition for function layers of nonaqueous secondary batteries, function layer for nonaqueous secondary batteries, and nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2019145323A (en) 2019-08-29
KR20190100029A (en) 2019-08-28

Similar Documents

Publication Publication Date Title
KR102434887B1 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery
US10700341B2 (en) Negative electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
WO2015115051A1 (en) Nonaqueous-electrolyte secondary-battery negative electrode
JP5455975B2 (en) Positive electrode active material, and positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6874605B2 (en) Aqueous electrolyte and aqueous lithium-ion secondary battery
KR20150067049A (en) Conductive composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP6304746B2 (en) Lithium ion secondary battery
JP6959010B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6989430B2 (en) Lithium ion secondary battery
KR20160069996A (en) Rechargeable lithium battery
JP6572882B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN108963192B (en) Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
CN109935905B (en) Electrolyte and lithium ion battery
JP6656623B2 (en) Non-aqueous electrolyte for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP6763144B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary batteries
JP7068851B2 (en) Lithium ion secondary battery
JP7048345B2 (en) Lithium ion secondary battery
JP2019036455A (en) Non-aqueous electrolyte secondary battery
JP6839380B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR102725307B1 (en) Lithium ion rechargeable battery
JP6931986B2 (en) Negative electrode for secondary battery and secondary battery
JP6766359B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary batteries
JP6699267B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries
JP6699268B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries
JP2014146518A (en) Nonaqueous electrolyte for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150