JP7048254B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP7048254B2
JP7048254B2 JP2017206371A JP2017206371A JP7048254B2 JP 7048254 B2 JP7048254 B2 JP 7048254B2 JP 2017206371 A JP2017206371 A JP 2017206371A JP 2017206371 A JP2017206371 A JP 2017206371A JP 7048254 B2 JP7048254 B2 JP 7048254B2
Authority
JP
Japan
Prior art keywords
fuel gas
flow path
gas flow
refrigerant
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017206371A
Other languages
Japanese (ja)
Other versions
JP2019079722A (en
Inventor
正史 前田
一彦 吉田
克英 菊地
優 角川
哲也 下村
直樹 竹広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017206371A priority Critical patent/JP7048254B2/en
Publication of JP2019079722A publication Critical patent/JP2019079722A/en
Application granted granted Critical
Publication of JP7048254B2 publication Critical patent/JP7048254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池に関する。 The present invention relates to a fuel cell.

燃料ガス流路と酸化剤ガス流路とが交差して配置された空冷式燃料電池において、セルの面内温度差を小さくするために、燃料ガス流路の上流側に位置する酸化剤ガス流路の流路断面積を下流側に位置する酸化剤ガス流路の流路断面積よりも大きくすることが知られている(例えば、特許文献1)。 In an air-cooled fuel cell in which the fuel gas flow path and the oxidant gas flow path intersect each other, the oxidant gas flow located upstream of the fuel gas flow path in order to reduce the in-plane temperature difference of the cell. It is known that the cross-sectional area of the flow path of the road is larger than the cross-sectional area of the flow path of the oxidant gas flow path located on the downstream side (for example, Patent Document 1).

特開平10-134833Japanese Patent Application Laid-Open No. 10-134833

燃料ガスが流れる燃料ガス流路と冷媒が流れる冷媒流路とが交差して配置された燃料電池において、発電部のうちの冷媒流路の上流側に位置する部位において発電性能が低下することがある。 In a fuel cell in which a fuel gas flow path through which fuel gas flows and a refrigerant flow path through which a refrigerant flows intersect with each other, the power generation performance may deteriorate at a portion of the power generation unit located on the upstream side of the refrigerant flow path. be.

本発明は、上記課題に鑑みなされたものであり、発電性能の低下を抑制することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to suppress deterioration of power generation performance.

本発明は、膜電極接合体と、前記膜電極接合体の一方の面側に配置され、前記膜電極接合体に供給される燃料ガスが流れる複数の燃料ガス流路が形成されたアノード側セパレータと、前記膜電極接合体の他方の面側に配置され、前記膜電極接合体に供給される酸化剤ガスが流れる酸化剤ガス流路が形成されたカソード側セパレータと、を備え、前記複数の燃料ガス流路は、燃料ガス供給マニホールドと燃料ガス排出マニホールドとの間に接続され且つ前記アノード側セパレータと前記カソード側セパレータとの間に形成され冷媒流路に交差し、前記冷媒流路は、前記複数の燃料ガス流路の配列方向に冷媒が流れるように前記配列方向に直線状に延びていて、前記複数の燃料ガス流路のうちの前記冷媒流路の下流側に位置する第1燃料ガス流路の前記燃料ガスの流通方向に交差する方向における流路断面積を、前記第1燃料ガス流路の流路幅と、前記第1燃料ガス流路に隣接する燃料ガス流路と前記第1燃料ガス流路との間の幅と、の和で割った値は、前記燃料ガス供給マニホールドから前記燃料ガス排出マニホールドにかけての全範囲において前記第1燃料ガス流路より前記冷媒流路の上流側に位置する第2燃料ガス流路の前記燃料ガスの流通方向に交差する方向における流路断面積を、前記第2燃料ガス流路の流路幅と、前記第2燃料ガス流路に隣接する燃料ガス流路と前記第2燃料ガス流路との間の幅と、の和で割った値より小さい、燃料電池である。 INDUSTRIAL APPLICABILITY The present invention is an anode-side separator arranged on one surface side of the membrane electrode junction and the membrane electrode junction, and having a plurality of fuel gas flow paths through which fuel gas supplied to the membrane electrode junction flows. And a cathode side separator which is arranged on the other surface side of the film electrode joint and has an oxidant gas flow path through which the oxidant gas supplied to the film electrode joint flows. The fuel gas flow path is connected between the fuel gas supply manifold and the fuel gas discharge manifold and intersects the refrigerant flow path formed between the anode side separator and the cathode side separator, and the fuel gas flow path intersects the refrigerant flow path . Is linearly extended in the arrangement direction so that the refrigerant flows in the arrangement direction of the plurality of fuel gas flow paths, and is located on the downstream side of the refrigerant flow path among the plurality of fuel gas flow paths. 1 The cross-sectional area of the fuel gas flow path in the direction intersecting the flow direction of the fuel gas is the flow path width of the first fuel gas flow path and the fuel gas flow path adjacent to the first fuel gas flow path. The value divided by the sum of the width between the first fuel gas flow path and the first fuel gas flow path is the refrigerant flow from the first fuel gas flow path in the entire range from the fuel gas supply manifold to the fuel gas discharge manifold. The cross-sectional area of the second fuel gas flow path located on the upstream side of the road in the direction intersecting the flow direction of the fuel gas is the flow path width of the second fuel gas flow path and the second fuel gas flow. It is a fuel cell smaller than the value divided by the sum of the width between the fuel gas flow path adjacent to the road and the second fuel gas flow path .

本発明によれば、発電性能の低下を抑制することができる。 According to the present invention, deterioration of power generation performance can be suppressed.

図1(a)は、実施例に係る燃料電池を構成する単セルの分解斜視図、図1(b)は、図1(a)のA-A間におけるアノード側セパレータの断面図である。1 (a) is an exploded perspective view of a single cell constituting the fuel cell according to the embodiment, and FIG. 1 (b) is a cross-sectional view of an anode-side separator between A and A in FIG. 1 (a). 図2(a)は、比較例に係る燃料電池を構成する単セルの分解斜視図、図2(b)は、図2(a)のA-A間におけるアノード側セパレータの断面図である。FIG. 2A is an exploded perspective view of a single cell constituting the fuel cell according to the comparative example, and FIG. 2B is a cross-sectional view of the anode-side separator between A and A in FIG. 2A. 図3は、比較例の燃料電池で生じる課題を説明するための図である。FIG. 3 is a diagram for explaining a problem that occurs in the fuel cell of the comparative example.

以下、図面を参照して、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

実施例の燃料電池は、反応ガスとして燃料ガス(例えば水素)と酸化剤ガス(例えば空気)の供給を受けて発電する固体高分子形燃料電池であり、多数の単セルを積層したスタック構造を有する。図1(a)は、実施例に係る燃料電池を構成する単セル100の分解斜視図、図1(b)は、図1(a)のA-A間におけるアノード側セパレータ18aの断面図である。 The fuel cell of the embodiment is a polymer electrolyte fuel cell that generates power by being supplied with a fuel gas (for example, hydrogen) and an oxidant gas (for example, air) as reaction gases, and has a stack structure in which a large number of single cells are laminated. Have. 1 (a) is an exploded perspective view of a single cell 100 constituting the fuel cell according to the embodiment, and FIG. 1 (b) is a cross-sectional view of the anode side separator 18a between A and A in FIG. 1 (a). be.

図1(a)のように、実施例の単セル100は、アノード側セパレータ18a、膜電極ガス拡散層接合体(MEGA:Membrane Electrode Gas diffusion layer Assembly)20、及びカソード側セパレータ18cを備える。MEGA20は、絶縁部材40の内側に配置されている。絶縁部材40は、例えばエポキシ樹脂又はフェノール樹脂などの樹脂で形成されている。MEGA20及び絶縁部材40は、アノード側セパレータ18aとカソード側セパレータ18cによって挟持されている。 As shown in FIG. 1A, the single cell 100 of the embodiment includes an anode side separator 18a, a membrane electrode gas diffusion layer assembly (MEGA) 20, and a cathode side separator 18c. The MEGA 20 is arranged inside the insulating member 40. The insulating member 40 is made of a resin such as an epoxy resin or a phenol resin. The MEGA 20 and the insulating member 40 are sandwiched between the anode side separator 18a and the cathode side separator 18c.

アノード側セパレータ18aは、ガス遮断性及び電子伝導性を有する部材によって形成され、例えばカーボンを圧縮してガス不透過とした緻密性カーボンなどのカーボン部材又はステンレス鋼などの金属部材によって形成されている。アノード側セパレータ18aには孔a1及び孔a2が設けられ、絶縁部材40には孔s1及び孔s2が設けられ、カソード側セパレータ18cの両側に配置された絶縁部材42には孔c1及び孔c2が設けられている。孔a1と孔s1と孔c1は連通し、水素を供給する燃料ガス供給マニホールド44を画定する。孔a2と孔s2と孔c2は連通し、水素を排出する燃料ガス排出マニホールド46を画定する。アノード側セパレータ18aのMEGA20側の面には、燃料ガス供給マニホールド44から燃料ガス排出マニホールド46に向かって直線状に延在し、MEGA20に供給される水素が流れる複数の燃料ガス流路32が設けられている。 The anode-side separator 18a is formed of a member having gas blocking property and electron conductivity, and is formed of, for example, a carbon member such as dense carbon obtained by compressing carbon to make it opaque to gas, or a metal member such as stainless steel. .. The anode-side separator 18a is provided with holes a1 and holes a2, the insulating member 40 is provided with holes s1 and holes s2, and the insulating members 42 arranged on both sides of the cathode-side separator 18c are provided with holes c1 and holes c2. It is provided. The holes a1, the holes s1 and the holes c1 communicate with each other to define a fuel gas supply manifold 44 for supplying hydrogen. The hole a2, the hole s2, and the hole c2 communicate with each other to define a fuel gas discharge manifold 46 that discharges hydrogen. On the surface of the anode-side separator 18a on the MEGA20 side, a plurality of fuel gas flow paths 32 extending linearly from the fuel gas supply manifold 44 toward the fuel gas discharge manifold 46 and through which hydrogen supplied to the MEGA 20 flows are provided. Has been done.

カソード側セパレータ18cは、ガス遮断性及び電子伝導性を有する部材によって形成されている。カソード側セパレータ18cは、例えばプレス成型による曲げ加工によって凹凸形状が形成されたステンレス鋼などの金属板からなる。カソード側セパレータ18cには、厚み方向の凹凸形状によって、それぞれ空気が流れる酸化剤ガス流路22と冷媒流路24が形成されている。酸化剤ガス流路22と冷媒流路24は、カソード側セパレータ18cの一端から他端に向かって直線状に延在し、互いに隣り合って配置されている。酸化剤ガス流路22及び冷媒流路24を流れる空気は、カソード側セパレータ18cの一端側である空気供給口から他端側である空気排出口に向かって流れる。 The cathode side separator 18c is formed of a member having gas blocking property and electron conductivity. The cathode side separator 18c is made of a metal plate such as stainless steel whose uneven shape is formed by bending by press molding, for example. The cathode side separator 18c is formed with an oxidant gas flow path 22 and a refrigerant flow path 24 through which air flows, respectively, due to the uneven shape in the thickness direction. The oxidant gas flow path 22 and the refrigerant flow path 24 extend linearly from one end to the other end of the cathode side separator 18c, and are arranged adjacent to each other. The air flowing through the oxidant gas flow path 22 and the refrigerant flow path 24 flows from the air supply port on one end side of the cathode side separator 18c toward the air discharge port on the other end side.

酸化剤ガス流路22は、カソード側セパレータ18cのMEGA20側の面に設けられてMEGA20側に開口した凹部26によって形成されている。したがって、酸化剤ガス流路22を流れる空気は、MEGA20に供給されて主に発電に用いられる。冷媒流路24は、カソード側セパレータ18cのMEGA20とは反対側の面に設けられてMEGA20とは反対側に開口した凹部28によって形成されている。したがって、冷媒流路24は、アノード側セパレータ18aとカソード側セパレータ18cの間に形成され、MEGA20の冷却に用いられる空気(冷媒)が主に流れる。このように、実施例の燃料電池は、空冷式の燃料電池である。 The oxidant gas flow path 22 is formed by a recess 26 provided on the surface of the cathode side separator 18c on the MEGA 20 side and opened on the MEGA 20 side. Therefore, the air flowing through the oxidant gas flow path 22 is supplied to the MEGA 20 and is mainly used for power generation. The refrigerant flow path 24 is formed by a recess 28 provided on the surface of the cathode side separator 18c opposite to the MEGA 20 and opened on the side opposite to the MEGA 20. Therefore, the refrigerant flow path 24 is formed between the anode side separator 18a and the cathode side separator 18c, and the air (refrigerant) used for cooling the MEGA 20 mainly flows. As described above, the fuel cell of the embodiment is an air-cooled fuel cell.

MEGA20は、電解質膜12、アノード触媒層14a、カソード触媒層14c、アノードガス拡散層16a、及びカソードガス拡散層16cを備える。アノード触媒層14aは電解質膜12の一方の面に設けられ、カソード触媒層14cは電解質膜12の他方の面に設けられている。これにより、膜電極接合体(MEA:Membrane Electrode Assembly)10が形成されている。電解質膜12は、例えばスルホン酸基を有するフッ素系樹脂材料又は炭化水素系樹脂材料で形成された固体高分子膜であり、湿潤状態において良好なプロトン伝導性を有する。アノード触媒層14a及びカソード触媒層14cは、例えば電気化学反応を進行する触媒(白金又は白金-コバルト合金など)を担持したカーボン粒子(カーボンブラックなど)と、スルホン酸基を有する固体高分子であって湿潤状態で良好なプロトン伝導性を有するアイオノマーと、を含む。 The MEGA 20 includes an electrolyte membrane 12, an anode catalyst layer 14a, a cathode catalyst layer 14c, an anode gas diffusion layer 16a, and a cathode gas diffusion layer 16c. The anode catalyst layer 14a is provided on one surface of the electrolyte membrane 12, and the cathode catalyst layer 14c is provided on the other surface of the electrolyte membrane 12. As a result, a membrane electrode assembly (MEA) 10 is formed. The electrolyte membrane 12 is, for example, a solid polymer membrane formed of a fluorine-based resin material or a hydrocarbon-based resin material having a sulfonic acid group, and has good proton conductivity in a wet state. The anode catalyst layer 14a and the cathode catalyst layer 14c are, for example, carbon particles (carbon black or the like) carrying a catalyst (platinum or platinum-cobalt alloy or the like) for advancing an electrochemical reaction, and a solid polymer having a sulfonic acid group. Includes ionomers, which have good proton conductivity in wet conditions.

アノードガス拡散層16aとカソードガス拡散層16cは、MEA10の両側に設けられ、MEA10を挟持している。アノードガス拡散層16a及びカソードガス拡散層16cは、ガス透過性及び電子伝導性を有する部材によって形成されていて、例えばカーボンクロス又はカーボンペーパなどの多孔質カーボン製部材によって形成されている。 The anode gas diffusion layer 16a and the cathode gas diffusion layer 16c are provided on both sides of the MEA 10 and sandwich the MEA 10. The anode gas diffusion layer 16a and the cathode gas diffusion layer 16c are formed of a member having gas permeability and electron conductivity, and are formed of a porous carbon member such as carbon cloth or carbon paper.

図1(a)及び図1(b)のように、アノード側セパレータ18aに形成された複数の燃料ガス流路32は、アノード側セパレータ18aとカソード側セパレータ18cの間に形成された冷媒流路24に交差(例えば直交)して延在している。複数の燃料ガス流路32の全てにおいて深さDは略同じである。なお、略同じとは製造誤差程度のずれを含むものである(以下においても同じである)。一方、複数の燃料ガス流路32の水素の流通方向に交差(例えば直交)する方向における幅に関しては、複数の燃料ガス流路32のうちの冷媒流路24の下流側(空気排出口側)に位置する燃料ガス流路32bの幅W2は、燃料ガス流路32bよりも冷媒流路24の上流側(空気供給口側)に位置する燃料ガス流路32aの幅W1よりも小さくなっている。このため、燃料ガス流路32bは、燃料ガス流路32aに比べて、水素の流通方向に交差(例えば直交)する方向における流路断面積が小さくなっている。例えば、発電面積あたりの流路断面積が、冷媒流路24の下流側に位置する燃料ガス流路32bは上流側の位置する燃料ガス流路32aに比べて小さくなっている。発電面積あたりの流路断面積とは、燃料ガス流路32の流路断面積Sを燃料ガス流路32の幅と燃料ガス流路32間のリブ幅との和Xで割った値(S/X)である。したがって、燃料ガス流路32の流路断面積Sを燃料ガス流路32の幅と燃料ガス流路32間のリブ幅との和Xである燃料ガス流路32間のピッチで割った値(S/X)が、冷媒流路24の下流側に位置する燃料ガス流路32bは上流側の位置する燃料ガス流路32aに比べて小さくなっている。なお、複数の燃料ガス流路32において、燃料ガス流路32の幅と燃料ガス流路32間のリブ幅との和Xは略同じである。したがって、実施例においては発電面積当たりの流路断面積は、燃料ガス流路32の流路断面積を所定の長さ(一定の値)で割った値と言い換えることもできる。 As shown in FIGS. 1A and 1B, the plurality of fuel gas flow paths 32 formed in the anode side separator 18a are the refrigerant flow paths formed between the anode side separator 18a and the cathode side separator 18c. It intersects (for example, orthogonally) with 24 and extends. The depth D is substantially the same in all of the plurality of fuel gas flow paths 32. It should be noted that substantially the same includes a deviation of about a manufacturing error (the same applies to the following). On the other hand, regarding the width of the plurality of fuel gas flow paths 32 in the direction intersecting (for example, orthogonal to) the hydrogen flow direction, the downstream side (air discharge port side) of the refrigerant flow path 24 of the plurality of fuel gas flow paths 32. The width W2 of the fuel gas flow path 32b located in is smaller than the width W1 of the fuel gas flow path 32a located on the upstream side (air supply port side) of the refrigerant flow path 24 with respect to the fuel gas flow path 32b. .. Therefore, the fuel gas flow path 32b has a smaller flow path cross-sectional area in the direction intersecting (for example, orthogonal to) the hydrogen flow direction than the fuel gas flow path 32a. For example, the cross-sectional area of the flow path per power generation area is smaller in the fuel gas flow path 32b located on the downstream side of the refrigerant flow path 24 than in the fuel gas flow path 32a located on the upstream side. The flow path cross-sectional area per power generation area is a value obtained by dividing the flow path cross-sectional area S of the fuel gas flow path 32 by the sum X of the width of the fuel gas flow path 32 and the rib width between the fuel gas flow paths 32 (S). / X). Therefore, the value obtained by dividing the flow path cross-sectional area S of the fuel gas flow path 32 by the pitch between the fuel gas flow paths 32, which is the sum X of the width of the fuel gas flow path 32 and the rib width between the fuel gas flow paths 32 ( The S / X) is smaller in the fuel gas flow path 32b located on the downstream side of the refrigerant flow path 24 than in the fuel gas flow path 32a located on the upstream side. In the plurality of fuel gas flow paths 32, the sum X of the width of the fuel gas flow path 32 and the rib width between the fuel gas flow paths 32 is substantially the same. Therefore, in the embodiment, the cross-sectional area of the flow path per power generation area can be rephrased as a value obtained by dividing the cross-sectional area of the flow path of the fuel gas flow path 32 by a predetermined length (constant value).

ここで、実施例の燃料電池の効果を説明するにあたり、比較例の燃料電池について説明する。図2(a)は、比較例に係る燃料電池を構成する単セル500の分解斜視図、図2(b)は、図2(a)のA-A間におけるアノード側セパレータ18aの断面図である。図2(a)及び図2(b)のように、比較例の単セル500は、アノード側セパレータ18aに形成された複数の燃料ガス流路32の全てにおいて、水素の流通方向に交差(例えば直交)する方向における幅Wが略同じになっている。したがって、複数の燃料ガス流路32の全てにおいて、水素の流通方向に交差(例えば直交)する方向における流路断面積が略同じになっている。例えば、複数の燃料ガス流路32の幅Wは実施例における燃料ガス流路32aの幅W1と略同じになっていて、複数の燃料ガス流路32の流路断面積は実施例における燃料ガス流路32aの流路断面積と略同じになっている。その他の構成は実施例と同じであるため説明を省略する。 Here, in explaining the effect of the fuel cell of the example, the fuel cell of the comparative example will be described. FIG. 2A is an exploded perspective view of the single cell 500 constituting the fuel cell according to the comparative example, and FIG. 2B is a cross-sectional view of the anode side separator 18a between A and A in FIG. 2A. be. As shown in FIGS. 2A and 2B, the single cell 500 of the comparative example intersects the hydrogen flow direction in all of the plurality of fuel gas flow paths 32 formed in the anode side separator 18a (for example,). The width W in the direction (orthogonal) is substantially the same. Therefore, in all of the plurality of fuel gas flow paths 32, the cross-sectional areas of the flow paths in the directions intersecting (for example, orthogonal to) the hydrogen flow direction are substantially the same. For example, the width W of the plurality of fuel gas flow paths 32 is substantially the same as the width W1 of the fuel gas flow path 32a in the embodiment, and the flow path cross-sectional area of the plurality of fuel gas flow paths 32 is the fuel gas in the embodiment. It is substantially the same as the flow path cross-sectional area of the flow path 32a. Since other configurations are the same as those in the embodiment, the description thereof will be omitted.

図3は、比較例の燃料電池で生じる課題を説明するための図である。燃料電池では、MEA10で電気化学反応が進行することによって水分が生成される。カソード側で多くの水分が生成されるが、カソード側で生成された水分は電解質膜12を介してアノード側に透過する。ここで、図3のように、比較例の燃料電池では、複数の燃料ガス流路32を流れる水素の流通方向と、冷媒流路24を流れる空気(冷媒)の流通方向と、は交差(例えば直交)している。MEA10(発電部)のうちの空気(冷媒)供給口側に位置する部位は、空気(冷媒)によって十分に冷却されて温度が低くなる。このため、MEA10のうちの空気(冷媒)供給口側で生成された水分は気化され難く液水の状態で存在し易い。よって、MEA10のうちの空気(冷媒)供給口側に位置する部位では、カソード側で生成された液水がアノード側に透過して、アノード側セパレータ18aに形成された燃料ガス流路32に液水が到達し易い。酸化剤ガス流路22は大流量の空気が流れるため、酸化剤ガス流路22内に液水は滞留し難いが、燃料ガス流路32を流れる水素は流量が比較的少ないため、燃料ガス流路32内に液水が滞留し易い。特に、燃料ガス流路32を流れる水素は発電で消費されることから、燃料ガス流路32の下流側に向かうに連れて水素の流量が減少していき、燃料ガス流路32の下流側において燃料ガス流路32内に液水が滞留し易い。したがって、図3のように、MEA10のうちの空気(冷媒)供給口側で且つ水素排出口側に位置する部位50において、燃料ガス流路32内に液水が溜まり易い。 FIG. 3 is a diagram for explaining a problem that occurs in the fuel cell of the comparative example. In a fuel cell, water is generated by the progress of an electrochemical reaction in MEA10. Although a large amount of water is generated on the cathode side, the water generated on the cathode side permeates to the anode side via the electrolyte membrane 12. Here, as shown in FIG. 3, in the fuel cell of the comparative example, the flow direction of hydrogen flowing through the plurality of fuel gas flow paths 32 and the flow direction of air (refrigerator) flowing through the refrigerant flow path 24 intersect (for example). Orthogonal). The portion of the MEA10 (power generation unit) located on the air (refrigerant) supply port side is sufficiently cooled by the air (refrigerant) to lower the temperature. Therefore, the water generated on the air (refrigerant) supply port side of the MEA 10 is difficult to vaporize and tends to exist in the state of liquid water. Therefore, in the portion of the MEA 10 located on the air (refrigerator) supply port side, the liquid water generated on the cathode side permeates the anode side and the liquid flows into the fuel gas flow path 32 formed in the anode side separator 18a. Easy to reach water. Since a large flow of air flows through the oxidant gas flow path 22, it is difficult for liquid water to stay in the oxidant gas flow path 22, but the flow rate of hydrogen flowing through the fuel gas flow path 32 is relatively small, so that the fuel gas flow. Liquid water tends to stay in the road 32. In particular, since the hydrogen flowing through the fuel gas flow path 32 is consumed by power generation, the flow rate of hydrogen decreases toward the downstream side of the fuel gas flow path 32, and in the downstream side of the fuel gas flow path 32. Liquid water tends to stay in the fuel gas flow path 32. Therefore, as shown in FIG. 3, liquid water tends to accumulate in the fuel gas flow path 32 at the portion 50 of the MEA 10 located on the air (refrigerant) supply port side and the hydrogen discharge port side.

比較例のように複数の燃料ガス流路32の全ての流路断面積が略同じである場合、液水が溜まっている燃料ガス流路32の圧力損失は液水が溜まっていない燃料ガス流路32の圧力損失よりも大きくなる。このため、水素は、液水が溜まっていない燃料ガス流路32を流れ、液水が溜まった燃料ガス流路32は流れ難くなる。このため、液水が溜まることで水素が流れ難くなった燃料ガス流路32が設けられている部位では、発電性能の低下が生じてしまう。 When the cross-sectional areas of all the flow paths of the plurality of fuel gas flow paths 32 are substantially the same as in the comparative example, the pressure loss of the fuel gas flow path 32 in which the liquid water is accumulated is the fuel gas flow in which the liquid water is not accumulated. It is larger than the pressure loss of the path 32. Therefore, hydrogen flows through the fuel gas flow path 32 in which the liquid water is not accumulated, and it becomes difficult for the hydrogen to flow in the fuel gas flow path 32 in which the liquid water is accumulated. For this reason, the power generation performance is deteriorated at the portion where the fuel gas flow path 32 where the hydrogen is difficult to flow due to the accumulation of the liquid water is provided.

一方、実施例では、図1(a)及び図1(b)のように、複数の燃料ガス流路32のうちの冷媒流路24の下流側に位置する燃料ガス流路32bは、燃料ガス流路32bより上流側に位置する燃料ガス流路32aよりも水素の流通方向に交差する方向において小さな流路断面積を有する。これにより、例えば冷媒流路24の上流側に位置する燃料ガス流路32aに液水が溜まった場合でも、燃料ガス流路32aの圧力損失と冷媒流路24の下流側に位置する燃料ガス流路32bの圧力損失との差を小さくすることができる。よって、燃料ガス流路32aに水素が流れ難くなることを抑制できる。燃料ガス流路32aに水素が流れ難くなることを抑制できるため、燃料ガス流路32a内の液水が外部に排水され易くなる。このようなことから、発電性能の低下を抑制できる。なお、冷媒流路24の下流側に位置する燃料ガス流路32bの流路断面積が小さいことで水素流量は少なくなるが、冷媒流路24の下流側でのMEA10の温度は高く乾燥していることから、ガス拡散性が良好であるため、発電性能が大きく低下することはない。 On the other hand, in the embodiment, as shown in FIGS. 1A and 1B, the fuel gas flow path 32b located on the downstream side of the refrigerant flow path 24 among the plurality of fuel gas flow paths 32 is the fuel gas. It has a small flow path cross-sectional area in the direction intersecting the hydrogen flow direction with respect to the fuel gas flow path 32a located on the upstream side of the flow path 32b. As a result, for example, even when liquid water collects in the fuel gas flow path 32a located on the upstream side of the refrigerant flow path 24, the pressure loss of the fuel gas flow path 32a and the fuel gas flow located on the downstream side of the refrigerant flow path 24 The difference from the pressure loss of the path 32b can be reduced. Therefore, it is possible to prevent hydrogen from becoming difficult to flow in the fuel gas flow path 32a. Since it is possible to prevent hydrogen from becoming difficult to flow in the fuel gas flow path 32a, the liquid water in the fuel gas flow path 32a is likely to be drained to the outside. Therefore, it is possible to suppress a decrease in power generation performance. Since the cross-sectional area of the fuel gas flow path 32b located on the downstream side of the refrigerant flow path 24 is small, the hydrogen flow rate is small, but the temperature of the MEA 10 on the downstream side of the refrigerant flow path 24 is high and dry. Therefore, since the gas diffusivity is good, the power generation performance does not deteriorate significantly.

また、実施例によれば、冷媒流路24の下流側に位置する燃料ガス流路32bの幅W2が上流側に位置する燃料ガス流路32aの幅W1よりも狭いことで、燃料ガス流路32bの流路断面積が燃料ガス流路32aの流路断面積よりも小さくなっている。MEA10(発電部)のうちの冷媒流路24の下流側に位置する部位は温度が高くなり易いが、燃料ガス流路32bの幅W2が狭いことで、この部位のアノード側セパレータ18aによる熱伝導性を向上させることができる。よって、MEA10のうちの冷媒流路24の下流側に位置する部位の乾燥を抑制することができる。なお、複数の燃料ガス流路32の幅が一定で且つ深さが変わることで、冷媒流路24の下流側に位置する燃料ガス流路32bの流路断面積が上流側に位置する燃料ガス流路32aの流路断面積よりも小さくなるようにしてもよい。 Further, according to the embodiment, the width W2 of the fuel gas flow path 32b located on the downstream side of the refrigerant flow path 24 is narrower than the width W1 of the fuel gas flow path 32a located on the upstream side, so that the fuel gas flow path is narrower. The flow path cross-sectional area of 32b is smaller than the flow path cross-sectional area of the fuel gas flow path 32a. The temperature of the portion of the MEA10 (power generation unit) located on the downstream side of the refrigerant flow path 24 tends to be high, but since the width W2 of the fuel gas flow path 32b is narrow, heat conduction by the anode side separator 18a of this portion. It is possible to improve the sex. Therefore, it is possible to suppress the drying of the portion of the MEA 10 located on the downstream side of the refrigerant flow path 24. Since the width of the plurality of fuel gas flow paths 32 is constant and the depth changes, the fuel gas whose flow path cross-sectional area of the fuel gas flow path 32b located on the downstream side of the refrigerant flow path 24 is located on the upstream side. It may be smaller than the flow path cross-sectional area of the flow path 32a.

なお、実施例では、冷媒流路24の下流側に位置する燃料ガス流路32bの流路断面積が、水素の流通方向で一定である場合を例に示したが、この場合に限られる訳ではない。燃料ガス流路32bの一部において、燃料ガス流路32aよりも流路断面積が小さくなっていればよい。また、別の例においては、複数の燃料ガス流路32それぞれの流路断面積は同じで、冷媒流路24の下流側に位置する発電面積あたりの燃料ガス流路32の本数が、冷媒流路24の上流側に位置する発電面積あたりの燃料ガス流路32の本数よりも少なくてもよい。言い換えると、複数の燃料ガス流路32それぞれの流路断面積は同じで、流路間のリブ幅が冷媒流路24の下流側では上流側よりも長い場合でもよい。燃料電池の発電面において発電量がほぼ均一である場合、燃料電池から生成される水分の量もほぼ均一となる。ここで水分には、液水と水蒸気の両方を含む。冷媒流路24の上流側では、水分中の液水の割合が大きくなるが、冷媒流路24の上流側に位置する発電面積あたりの燃料ガス流路32の本数が冷媒流路24の下流側に位置する発電面積あたりの燃料ガス流路32の本数よりも多いため、発電面積あたりの燃料ガスの流量が多くなり、実施例と同様に液水を排水しやすくすることができる。 In the embodiment, the case where the cross-sectional area of the fuel gas flow path 32b located on the downstream side of the refrigerant flow path 24 is constant in the hydrogen flow direction is shown as an example, but this is limited to this case. is not. In a part of the fuel gas flow path 32b, the cross-sectional area of the flow path may be smaller than that of the fuel gas flow path 32a. In another example, the cross-sectional area of each of the plurality of fuel gas flow paths 32 is the same, and the number of fuel gas flow paths 32 per power generation area located on the downstream side of the refrigerant flow path 24 is the refrigerant flow. It may be less than the number of fuel gas flow paths 32 per power generation area located on the upstream side of the road 24. In other words, the cross-sectional area of each of the plurality of fuel gas flow paths 32 may be the same, and the rib width between the flow paths may be longer on the downstream side of the refrigerant flow path 24 than on the upstream side. When the amount of power generation is substantially uniform on the power generation surface of the fuel cell, the amount of water generated from the fuel cell is also substantially uniform. Here, the water content includes both liquid water and water vapor. On the upstream side of the refrigerant flow path 24, the ratio of liquid water in the water content is large, but the number of fuel gas flow paths 32 per power generation area located on the upstream side of the refrigerant flow path 24 is on the downstream side of the refrigerant flow path 24. Since the number of the fuel gas flow paths 32 is larger than the number of the fuel gas flow paths 32 located in the power generation area, the flow rate of the fuel gas per the power generation area becomes large, and the liquid water can be easily drained as in the embodiment.

なお、実施例において、小さい流路断面積を有する燃料ガス流路32bは、MEA10のうちの冷媒流路24の出口側の0~20%の範囲に設けられることが好ましく、0~18%の範囲に設けられることがより好ましく、0~15%の範囲に設けられることが更に好ましい。この部位ではMEA10の温度が高くなり易いため、生成水が気化されて、燃料ガス流路32に液水が溜まり難いためである。 In the embodiment, the fuel gas flow path 32b having a small flow path cross section is preferably provided in the range of 0 to 20% on the outlet side of the refrigerant flow path 24 in the MEA 10, and is preferably 0 to 18%. It is more preferably provided in the range, and further preferably provided in the range of 0 to 15%. This is because the temperature of the MEA 10 tends to be high in this portion, so that the generated water is vaporized and it is difficult for the liquid water to collect in the fuel gas flow path 32.

なお、実施例では空冷式の燃料電池の場合を例に示したが、水冷式の燃料電池の場合でもよい。しかしながら、空冷式の燃料電池では、発電部のうちの冷媒流路の下流側で温度が高くなり易い一方で、上流側では温度が低くなり易い。したがって、本発明を空冷式の燃料電池に適用することが好ましい。 In the embodiment, the case of an air-cooled fuel cell is shown as an example, but a water-cooled fuel cell may also be used. However, in an air-cooled fuel cell, the temperature tends to be high on the downstream side of the refrigerant flow path in the power generation unit, while the temperature tends to be low on the upstream side. Therefore, it is preferable to apply the present invention to an air-cooled fuel cell.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the examples of the present invention have been described in detail above, the present invention is not limited to such specific examples, and various modifications and variations are made within the scope of the gist of the present invention described in the claims. It can be changed.

10 膜電極接合体
12 電解質膜
14a アノード触媒層
14c カソード触媒層
16a アノードガス拡散層
16c カソードガス拡散層
18a アノード側セパレータ
18c カソード側セパレータ
20 膜電極ガス拡散層接合体
22 酸化剤ガス流路
24 冷媒流路
26、28 凹部
32~32b 燃料ガス流路
40、42 絶縁部材
44 燃料ガス供給マニホールド
46 燃料ガス排出マニホールド
50 部位
100、500 単セル
10 Film electrode junction 12 Electrolyte membrane 14a Anodic catalyst layer 14c Cathode catalyst layer 16a Anodic gas diffusion layer 16c Cathode gas diffusion layer 18a Anodic side separator 18c Cathode side separator 20 Film electrode gas diffusion layer junction 22 Oxidizer gas flow path 24 Refrigerator Flow path 26, 28 Recessed 32 to 32b Fuel gas flow path 40, 42 Insulation member 44 Fuel gas supply manifold 46 Fuel gas discharge manifold 50 Part 100, 500 Single cell

Claims (1)

膜電極接合体と、
前記膜電極接合体の一方の面側に配置され、前記膜電極接合体に供給される燃料ガスが流れる複数の燃料ガス流路が形成されたアノード側セパレータと、
前記膜電極接合体の他方の面側に配置され、前記膜電極接合体に供給される酸化剤ガスが流れる酸化剤ガス流路が形成されたカソード側セパレータと、を備え、
前記複数の燃料ガス流路は、燃料ガス供給マニホールドと燃料ガス排出マニホールドとの間に接続され且つ前記アノード側セパレータと前記カソード側セパレータとの間に形成され冷媒流路に交差し、
前記冷媒流路は、前記複数の燃料ガス流路の配列方向に冷媒が流れるように前記配列方向に直線状に延びていて、
前記複数の燃料ガス流路のうちの前記冷媒流路の下流側に位置する第1燃料ガス流路の前記燃料ガスの流通方向に交差する方向における流路断面積を、前記第1燃料ガス流路の流路幅と、前記第1燃料ガス流路に隣接する燃料ガス流路と前記第1燃料ガス流路との間の幅と、の和で割った値は、前記燃料ガス供給マニホールドから前記燃料ガス排出マニホールドにかけての全範囲において前記第1燃料ガス流路より前記冷媒流路の上流側に位置する第2燃料ガス流路の前記燃料ガスの流通方向に交差する方向における流路断面積を、前記第2燃料ガス流路の流路幅と、前記第2燃料ガス流路に隣接する燃料ガス流路と前記第2燃料ガス流路との間の幅と、の和で割った値より小さい、燃料電池。
Membrane electrode assembly and
An anode-side separator arranged on one surface side of the membrane electrode assembly and having a plurality of fuel gas flow paths through which fuel gas supplied to the membrane electrode assembly flows.
A cathode side separator, which is arranged on the other surface side of the membrane electrode assembly and has an oxidant gas flow path through which the oxidant gas supplied to the membrane electrode assembly flows, is provided.
The plurality of fuel gas flow paths are connected between the fuel gas supply manifold and the fuel gas discharge manifold, and intersect the refrigerant flow paths formed between the anode side separator and the cathode side separator.
The refrigerant flow path extends linearly in the arrangement direction so that the refrigerant flows in the arrangement direction of the plurality of fuel gas flow paths.
The cross-sectional area of the first fuel gas flow path located on the downstream side of the refrigerant flow path among the plurality of fuel gas flow paths in the direction intersecting the flow direction of the fuel gas is the first fuel gas flow. The value divided by the sum of the flow path width of the path and the width between the fuel gas flow path adjacent to the first fuel gas flow path and the first fuel gas flow path is from the fuel gas supply manifold. The cross-sectional area of the second fuel gas flow path located on the upstream side of the refrigerant flow path from the first fuel gas flow path in the entire range extending to the fuel gas discharge manifold in the direction intersecting the flow direction of the fuel gas. Is divided by the sum of the flow path width of the second fuel gas flow path and the width between the fuel gas flow path adjacent to the second fuel gas flow path and the second fuel gas flow path. Smaller , fuel cell.
JP2017206371A 2017-10-25 2017-10-25 Fuel cell Active JP7048254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017206371A JP7048254B2 (en) 2017-10-25 2017-10-25 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206371A JP7048254B2 (en) 2017-10-25 2017-10-25 Fuel cell

Publications (2)

Publication Number Publication Date
JP2019079722A JP2019079722A (en) 2019-05-23
JP7048254B2 true JP7048254B2 (en) 2022-04-05

Family

ID=66628880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206371A Active JP7048254B2 (en) 2017-10-25 2017-10-25 Fuel cell

Country Status (1)

Country Link
JP (1) JP7048254B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3155038A1 (en) 2019-10-16 2021-04-22 Ftxt Energy Technology Co., Ltd. Fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039540A (en) 2002-07-05 2004-02-05 Nippon Soken Inc Fuel cell
JP2005276736A (en) 2004-03-26 2005-10-06 Nissan Motor Co Ltd Fuel cell stack
JP2007141551A (en) 2005-11-16 2007-06-07 Honda Motor Co Ltd Fuel cell stack
JP2008218392A (en) 2007-02-06 2008-09-18 Honda Motor Co Ltd Fuel cell
JP2009170206A (en) 2008-01-15 2009-07-30 Nissan Motor Co Ltd Fuel cell, and fuel cell separator
JP2010073564A (en) 2008-09-19 2010-04-02 Nissan Motor Co Ltd Fuel cell and separator for fuel cell
JP2017199609A (en) 2016-04-28 2017-11-02 トヨタ自動車株式会社 Fuel cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3078235B2 (en) * 1997-02-05 2000-08-21 三菱電機株式会社 Polymer electrolyte fuel cell stack and method for producing gas separator plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039540A (en) 2002-07-05 2004-02-05 Nippon Soken Inc Fuel cell
JP2005276736A (en) 2004-03-26 2005-10-06 Nissan Motor Co Ltd Fuel cell stack
JP2007141551A (en) 2005-11-16 2007-06-07 Honda Motor Co Ltd Fuel cell stack
JP2008218392A (en) 2007-02-06 2008-09-18 Honda Motor Co Ltd Fuel cell
JP2009170206A (en) 2008-01-15 2009-07-30 Nissan Motor Co Ltd Fuel cell, and fuel cell separator
JP2010073564A (en) 2008-09-19 2010-04-02 Nissan Motor Co Ltd Fuel cell and separator for fuel cell
JP2017199609A (en) 2016-04-28 2017-11-02 トヨタ自動車株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2019079722A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US10847816B2 (en) Fuel cell
JP5408263B2 (en) Fuel cell
JP6604261B2 (en) Fuel cell
US10553881B2 (en) Fuel cell
EP3644422A1 (en) Fuel cell separator including embossing structure for uniform distribution of gas and fuel cell stack including the same
JP2009064772A (en) Separator for fuel cell and fuel cell using it
JP5501237B2 (en) POLYMER ELECTROLYTE FUEL CELL AND FUEL CELL STACK HAVING THE SAME
US10854892B2 (en) Fuel cell stack having improved joining strength between separators
JP2003132911A (en) Fuel cell
JP7048254B2 (en) Fuel cell
US10826084B2 (en) Fuel cell
JP6050158B2 (en) Fuel cell
US11584999B2 (en) Electrochemical hydrogen compressor
CN107799786B (en) Fuel cell and fuel cell separator
JP5098324B2 (en) Fuel cell separator and fuel cell
JP7044564B2 (en) Fuel cell stack
KR100766154B1 (en) Seperator of a fuel cell
JP6780612B2 (en) Fuel cell separator
JP5098305B2 (en) Fuel cell separator and fuel cell
JP2005310586A (en) Fuel battery
JP2018081880A (en) Fuel battery
JP6696201B2 (en) Separator for fuel cell
JP2013157315A (en) Fuel battery
JP6519496B2 (en) Fuel cell
JP5694093B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150