JP2017199609A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2017199609A
JP2017199609A JP2016090744A JP2016090744A JP2017199609A JP 2017199609 A JP2017199609 A JP 2017199609A JP 2016090744 A JP2016090744 A JP 2016090744A JP 2016090744 A JP2016090744 A JP 2016090744A JP 2017199609 A JP2017199609 A JP 2017199609A
Authority
JP
Japan
Prior art keywords
power generation
flow path
air
cathode
supply port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016090744A
Other languages
Japanese (ja)
Other versions
JP6604261B2 (en
JP2017199609A5 (en
Inventor
直樹 竹広
Naoki Takehiro
直樹 竹広
誠 安達
Makoto Adachi
誠 安達
石原 孝宏
Takahiro Ishihara
孝宏 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2016090744A priority Critical patent/JP6604261B2/en
Publication of JP2017199609A publication Critical patent/JP2017199609A/en
Publication of JP2017199609A5 publication Critical patent/JP2017199609A5/ja
Application granted granted Critical
Publication of JP6604261B2 publication Critical patent/JP6604261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To hinder degradation in power generation performance.SOLUTION: A fuel cell comprises: an MEA 10; an anode-side separator 18a and a cathode-side separator 18c sandwiching the MEA; a power generation passage 22 extending in a first direction from one end to the other end of the cathode-side separator on an MEA-side face of the cathode-side separator, and in which air circulates; and a cooling passage 24 extending in one direction from the one end to the other end of the cathode-side separator opposite the MEA of the cathode-side separator, separated by the power generation passage and the side wall 26 in a second direction intersecting the first direction, and in which air circulates. A cross-sectional area of an air-supply side of the power generation passage is smaller than a cross-sectional area of the power generation passage located further downstream than the air-supply side. A cross-sectional area of an air-supply side of the cooling passage is larger than a cross-sectional area of the cooling passage located downstream than the air-supply side. A through-hole 30 is provided in the side wall separating the power generation passage and the cooling passage.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池に関する。   The present invention relates to a fuel cell.

固体高分子形燃料電池は、電解質膜の両面に触媒電極層が設けられた膜電極接合体を、一対のセパレータで挟持した構造を有する。燃料電池の冷却方法として、冷却水を循環させる水冷式の他に、発電用に供給される酸化剤ガスを冷却に用いる空冷式が知られている。例えば、冷却用流路と発電用流路とが貫通孔で接続されると共に、冷却用流路の断面積の一部が上流から下流に向かって小さくなった空冷式の燃料電池が知られている(例えば、特許文献1)。膜電極接合体での電気化学反応によって生成された生成水は、発電用流路を流れる酸化剤ガスによってガス供給口からガス排出口に向かって移動する。このため、発電用流路のガス供給口よりも下流側で液水が過剰になり、フラッディングによる発電性能の低下が生じる場合がある。特許文献1の構成によれば、液水が過剰になる部位で空気流量を増加できるため、フラッディングを抑制できる。   The polymer electrolyte fuel cell has a structure in which a membrane electrode assembly in which catalyst electrode layers are provided on both surfaces of an electrolyte membrane is sandwiched between a pair of separators. As a cooling method of the fuel cell, in addition to a water-cooling method in which cooling water is circulated, an air-cooling method in which an oxidant gas supplied for power generation is used for cooling is known. For example, an air-cooled fuel cell is known in which a cooling channel and a power generation channel are connected by a through-hole, and a part of the cross-sectional area of the cooling channel decreases from upstream to downstream. (For example, Patent Document 1). The generated water generated by the electrochemical reaction in the membrane electrode assembly moves from the gas supply port toward the gas discharge port by the oxidant gas flowing through the power generation channel. For this reason, liquid water becomes excessive on the downstream side of the gas supply port of the power generation channel, and the power generation performance may be deteriorated due to flooding. According to the configuration of Patent Document 1, since the air flow rate can be increased at a portion where liquid water becomes excessive, flooding can be suppressed.

特開2008−27748号公報JP 2008-27748 A

しかしながら、特許文献1の構成では、発電用流路の下流側では、ガス供給口側と同じ断面積であるにも関わらず流量を増加させているため、圧力損失が増大し、補機負荷が増大したり、空気流量が不足したりすることにより、燃料電池を十分に冷却できずに、発電性能が低下する場合があった。   However, in the configuration of Patent Document 1, since the flow rate is increased on the downstream side of the power generation flow path in spite of the same cross-sectional area as the gas supply port side, the pressure loss increases, and the auxiliary load is increased. Due to the increase or the air flow rate being insufficient, the fuel cell cannot be sufficiently cooled, and the power generation performance may be lowered.

本発明は、上記課題に鑑みなされたものであり、発電性能の低下を抑制することを目的とする。   This invention is made | formed in view of the said subject, and aims at suppressing the fall of electric power generation performance.

本発明は、膜電極接合体と、前記膜電極接合体を挟持するアノード側セパレータ及びカソード側セパレータと、前記カソード側セパレータの前記膜電極接合体側の面に前記カソード側セパレータの一端から他端にかけて第1方向に延在して設けられ、酸化剤ガスが流通する発電用流路と、前記カソード側セパレータの前記膜電極接合体とは反対側の面に前記カソード側セパレータの前記一端から前記他端にかけて前記第1方向に延在して設けられ、前記第1方向に交差する第2方向で前記発電用流路と側壁によって隔てられていて、前記酸化剤ガスが流通する冷却用流路と、を備え、前記発電用流路の前記酸化剤ガスが供給される供給口側の断面積は、前記発電用流路の前記供給口側よりも下流における前記発電用流路の断面積よりも小さく、前記冷却用流路の前記酸化剤ガスが供給される供給口側の断面積は、前記冷却用流路の前記供給口側よりも下流における前記冷却用流路の断面積よりも大きく、前記発電用流路と前記冷却用流路とを隔てる前記側壁に貫通孔が設けられている、燃料電池である。   The present invention provides a membrane electrode assembly, an anode-side separator and a cathode-side separator that sandwich the membrane-electrode assembly, and a surface of the cathode-side separator on the membrane-electrode assembly side from one end to the other end of the cathode-side separator. A power generation flow path that extends in the first direction and through which an oxidant gas flows, and the other surface from the one end of the cathode side separator on the surface of the cathode side separator opposite to the membrane electrode assembly. A cooling channel that extends in the first direction toward the end, is separated from the power generation channel and a side wall in a second direction intersecting the first direction, and through which the oxidizing gas flows. The cross-sectional area on the supply port side to which the oxidant gas of the power generation channel is supplied is more than the cross-sectional area of the power generation channel on the downstream side of the supply port side of the power generation channel small The cross-sectional area of the cooling channel on the supply port side to which the oxidant gas is supplied is larger than the cross-sectional area of the cooling channel on the downstream side of the cooling channel, and the power generation In the fuel cell, a through hole is provided in the side wall that separates the flow path from the cooling flow path.

本発明によれば、発電性能の低下を抑制することができる。   According to the present invention, it is possible to suppress a decrease in power generation performance.

図1は、実施例1に係る燃料電池を構成する単セルの分解斜視図である。FIG. 1 is an exploded perspective view of a single cell constituting the fuel cell according to the first embodiment. 図2は、図1におけるカソード側セパレータを拡大した斜視図である。FIG. 2 is an enlarged perspective view of the cathode separator in FIG. 図3は、比較例1に係る燃料電池を構成する単セルの分解斜視図である。3 is an exploded perspective view of a single cell constituting the fuel cell according to Comparative Example 1. FIG. 図4は、実施例2に係る燃料電池を構成する単セルのカソード側セパレータを拡大した斜視図である。FIG. 4 is an enlarged perspective view of a single-cell cathode separator constituting the fuel cell according to the second embodiment. 図5(a)は、実施例3に係る燃料電池を構成する単セルのカソード側セパレータを拡大した斜視図、図5(b)は、実施例3の変形例1に係る燃料電池を構成する単セルのカソード側セパレータを拡大した斜視図である。5A is an enlarged perspective view of a single-cell cathode-side separator constituting the fuel cell according to the third embodiment, and FIG. 5B constitutes a fuel cell according to the first modification of the third embodiment. It is the perspective view which expanded the cathode side separator of the single cell. 図6(a)は、実施例4に係る燃料電池を構成する単セルのカソード側セパレータを拡大した斜視図、図6(b)は、実施例4の変形例1に係る燃料電池を構成する単セルのカソード側セパレータを拡大した斜視図である。6A is an enlarged perspective view of a single-cell cathode-side separator constituting the fuel cell according to the fourth embodiment, and FIG. 6B constitutes a fuel cell according to the first modification of the fourth embodiment. It is the perspective view which expanded the cathode side separator of the single cell. 図7は、実施例5に係る燃料電池を構成する単セルのカソード側セパレータを拡大した斜視図である。FIG. 7 is an enlarged perspective view of a single-cell cathode-side separator constituting the fuel cell according to Example 5. 図8は、実施例6に係る燃料電池を構成する単セルのカソード側セパレータを拡大した斜視図である。FIG. 8 is an enlarged perspective view of a cathode separator of a single cell constituting the fuel cell according to Example 6.

以下、図面を参照して、本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

実施例1に係る燃料電池は、反応ガスとして燃料ガス(例えば水素)と酸化剤ガス(例えば空気)との供給を受けて発電する固体高分子形燃料電池であり、多数の単セルを積層したスタック構造を有する。実施例1の燃料電池は、例えば持ち運び可能な携帯用燃料電池である。図1は、実施例1に係る燃料電池を構成する単セル100の分解斜視図である。図2は、図1におけるカソード側セパレータ18cを拡大した斜視図である。   The fuel cell according to Example 1 is a polymer electrolyte fuel cell that generates power by receiving supply of a fuel gas (for example, hydrogen) and an oxidant gas (for example, air) as a reaction gas, and has a large number of single cells stacked. It has a stack structure. The fuel cell of Example 1 is, for example, a portable fuel cell that can be carried. FIG. 1 is an exploded perspective view of a single cell 100 constituting the fuel cell according to the first embodiment. FIG. 2 is an enlarged perspective view of the cathode-side separator 18c in FIG.

図1及び図2のように、実施例1の燃料電池を構成する単セル100は、アノード側セパレータ18a、膜電極ガス拡散層接合体(MEGA:Membrane Electrode Gas diffusion layer Assembly)20、及びカソード側セパレータ18c、を備える。MEGA20は、例えば樹脂(エポキシ樹脂やフェノール樹脂など)からなる絶縁部材34の内側に配置されている。MEGA20及び絶縁部材34は、アノード側セパレータ18aとカソード側セパレータ18cとによって挟持されている。   As shown in FIGS. 1 and 2, the single cell 100 constituting the fuel cell of Example 1 includes an anode separator 18a, a membrane electrode gas diffusion layer assembly (MEGA) 20, and a cathode side. A separator 18c. The MEGA 20 is disposed inside an insulating member 34 made of, for example, a resin (such as an epoxy resin or a phenol resin). The MEGA 20 and the insulating member 34 are sandwiched between the anode side separator 18a and the cathode side separator 18c.

カソード側セパレータ18cは、ガス遮断性及び電子伝導性を有する部材によって形成されている。例えば、カソード側セパレータ18cは、プレス成型による曲げ加工によって凹凸形状が形成されたステンレス鋼などの金属板からなる。カソード側セパレータ18cには、厚み方向の凹凸形状によって、それぞれ空気が流れる発電用流路22と冷却用流路24とが形成されている。発電用流路22は、カソード側セパレータ18cのMEGA20側の面に設けられている。冷却用流路24は、カソード側セパレータ18cのMEGA20とは反対側の面に設けられている。発電用流路22には、MEGA20に供給される空気が空気供給口から空気排出口に向かって流れる。冷却用流路24には、単セル100を冷却する空気が空気供給口から空気排出口に向かって流れる。なお、発電用流路22を流れる空気によっても単セル100は冷却される。   The cathode separator 18c is formed of a member having gas barrier properties and electronic conductivity. For example, the cathode-side separator 18c is made of a metal plate such as stainless steel having an uneven shape formed by bending by press molding. The cathode separator 18c is formed with a power generation channel 22 and a cooling channel 24 through which air flows, respectively, according to the uneven shape in the thickness direction. The power generation flow path 22 is provided on the MEGA 20 side surface of the cathode side separator 18c. The cooling flow path 24 is provided on the surface of the cathode separator 18c opposite to the MEGA 20 side. In the power generation flow path 22, the air supplied to the MEGA 20 flows from the air supply port toward the air discharge port. In the cooling channel 24, air for cooling the single cell 100 flows from the air supply port toward the air discharge port. The single cell 100 is also cooled by the air flowing through the power generation flow path 22.

発電用流路22と冷却用流路24とは、カソード側セパレータ18cの一端から他端に第1方向に直線状に延在し、且つ、第1方向に交差する方向で交互に並んで設けられている。すなわち、発電用流路22と冷却用流路24とは、第1方向に交差する第2方向で側壁26によって隔てられている。発電用流路22は、空気供給口から空気排出口にかけてほぼ一定の深さDを有する。言い換えると、冷却用流路24は、空気供給口から空気排出口にかけてほぼ一定の深さDを有する。また、発電用流路22のピッチ間隔W1(中心間の距離)は、空気供給口から空気排出口にかけてほぼ一定である。冷却用流路24のピッチ間隔W2(中心間の距離)も、空気供給口から空気排出口にかけてほぼ一定である。   The power generation flow path 22 and the cooling flow path 24 extend linearly in the first direction from one end to the other end of the cathode-side separator 18c and are alternately arranged in a direction intersecting the first direction. It has been. That is, the power generation flow path 22 and the cooling flow path 24 are separated by the side wall 26 in the second direction that intersects the first direction. The power generation flow path 22 has a substantially constant depth D from the air supply port to the air discharge port. In other words, the cooling flow path 24 has a substantially constant depth D from the air supply port to the air discharge port. The pitch interval W1 (distance between the centers) of the power generation channel 22 is substantially constant from the air supply port to the air discharge port. The pitch interval W2 (distance between the centers) of the cooling flow path 24 is also substantially constant from the air supply port to the air discharge port.

発電用流路22及び冷却用流路24の幅は空気供給口から空気排出口にかけて一定ではない。発電用流路22の幅は、空気供給口と空気排出口との間で、空気排出口側が空気供給口側よりも広くなるように階段状に変化している。冷却用流路24の幅は、空気供給口と空気排出口との間で、空気排出口側が空気供給口側よりも狭くなるように階段状に変化している。すなわち、発電用流路22は空気供給口側の断面積S1が空気排出口側の断面積S11よりも小さく、冷却用流路24は空気供給口側の断面積S2が空気排出口側の断面積S12よりも大きくなっている。発電用流路22及び冷却用流路24の幅が階段状に変化する階段部28は、例えば空気排出口よりも空気供給口側寄りに位置している。ここで、階段部28とは、発電用流路22と冷却用流路24とを隔てる側壁26のうち、空気の流れ方向に直交している部分を指す。   The width of the power generation channel 22 and the cooling channel 24 is not constant from the air supply port to the air discharge port. The width of the power generation flow path 22 changes stepwise between the air supply port and the air discharge port so that the air discharge port side is wider than the air supply port side. The width of the cooling flow path 24 changes stepwise between the air supply port and the air discharge port so that the air discharge port side is narrower than the air supply port side. In other words, the cross-sectional area S1 on the air supply port side of the power generation flow channel 22 is smaller than the cross-sectional area S11 on the air discharge port side, and the cross-sectional area S2 on the air supply port side of the cooling flow channel 24 is cut off on the air discharge port side. It is larger than the area S12. The staircase portion 28 in which the widths of the power generation flow path 22 and the cooling flow path 24 change in a staircase shape is located closer to the air supply port than the air discharge port, for example. Here, the staircase 28 refers to a portion of the side wall 26 that separates the power generation flow path 22 and the cooling flow path 24 and that is orthogonal to the air flow direction.

側壁26内の階段部28に、発電用流路22と冷却用流路24とを連通させる貫通孔30が設けられている。貫通孔30は、冷却用流路24を流れる空気の流通方向に直交して設けられている。この貫通孔30によって、空気供給口から空気排出口に向かって冷却用流路24を流れる空気の一部は、発電用流路22に流れ込むようになる。   A through-hole 30 is provided in the stepped portion 28 in the side wall 26 to allow the power generation flow path 22 and the cooling flow path 24 to communicate with each other. The through hole 30 is provided orthogonal to the flow direction of the air flowing through the cooling flow path 24. Through this through hole 30, part of the air flowing through the cooling flow path 24 from the air supply port toward the air discharge port flows into the power generation flow path 22.

アノード側セパレータ18aは、ガス遮断性及び電子伝導性を有する部材によって形成され、例えばカーボンを圧縮してガス不透過とした緻密性カーボンなどのカーボン部材やステンレス鋼などの金属部材によって形成されている。アノード側セパレータ18aには孔a1、a2が設けられ、絶縁部材34には孔s1、s2が設けられ、カソード側セパレータ18cの両側に設けられた絶縁部材36には孔c1、c2が設けられている。孔a1、s1、c1は連通し、水素を供給する供給マニホールドを画定する。孔a2、s2、c2は連通し、水素を排出する排出マニホールドを画定する。アノード側セパレータ18aのMEGA20側の面には、供給マニホールドから排出マニホールドに向かって直線状に延在し、MEGA20に供給される水素が流れる水素流路32が設けられている。水素流路32は、発電用流路22及び冷却用流路24と交差(例えば直交)している。   The anode-side separator 18a is formed of a member having gas barrier properties and electronic conductivity. For example, the anode-side separator 18a is formed of a carbon member such as dense carbon made of compressed carbon and impermeable to gas, or a metal member such as stainless steel. . The anode side separator 18a is provided with holes a1 and a2, the insulating member 34 is provided with holes s1 and s2, and the insulating member 36 provided on both sides of the cathode side separator 18c is provided with holes c1 and c2. Yes. The holes a1, s1, and c1 communicate and define a supply manifold that supplies hydrogen. The holes a2, s2, c2 communicate and define a discharge manifold that discharges hydrogen. A surface of the anode separator 18a on the MEGA 20 side is provided with a hydrogen flow path 32 that extends linearly from the supply manifold toward the discharge manifold and through which hydrogen supplied to the MEGA 20 flows. The hydrogen channel 32 intersects (for example, orthogonally intersects) the power generation channel 22 and the cooling channel 24.

MEGA20は、電解質膜12、アノード触媒層14a、カソード触媒層14c、アノードガス拡散層16a、及びカソードガス拡散層16cを備える。電解質膜12の一方の面にアノード触媒層14aが設けられ、他方の面にカソード触媒層14cが設けられている。これにより、膜電極接合体(MEA:Membrane Electrode Assembly)10が形成されている。電解質膜12は、スルホン酸基を有するフッ素系樹脂材料又は炭化水素系樹脂材料で形成された固体高分子膜であり、湿潤状態において良好なプロトン伝導性を有する。アノード触媒層14a及びカソード触媒層14cは、電気化学反応を進行する触媒(例えば白金や白金−コバルト合金)を担持したカーボン粒子(例えばカーボンブラック)と、スルホン酸基を有する固体高分子であり、湿潤状態で良好なプロトン伝導性を有するアイオノマーと、を含む。   The MEGA 20 includes an electrolyte membrane 12, an anode catalyst layer 14a, a cathode catalyst layer 14c, an anode gas diffusion layer 16a, and a cathode gas diffusion layer 16c. An anode catalyst layer 14a is provided on one surface of the electrolyte membrane 12, and a cathode catalyst layer 14c is provided on the other surface. Thereby, the membrane electrode assembly (MEA: Membrane Electrode Assembly) 10 is formed. The electrolyte membrane 12 is a solid polymer membrane formed of a fluorine-based resin material or a hydrocarbon-based resin material having a sulfonic acid group, and has good proton conductivity in a wet state. The anode catalyst layer 14a and the cathode catalyst layer 14c are solid particles having carbon particles (for example, carbon black) supporting a catalyst (for example, platinum or platinum-cobalt alloy) that progresses an electrochemical reaction, and a sulfonic acid group. And ionomers having good proton conductivity in the wet state.

MEA10の両側にアノードガス拡散層16a及びカソードガス拡散層16cが配置されている。アノードガス拡散層16a及びカソードガス拡散層16cは、ガス透過性及び電子伝導性を有する部材によって形成されており、例えばカーボンクロスやカーボンペーパなどの多孔質カーボン製部材によって形成されている。なお、MEA10とアノードガス拡散層16aとの間及びMEA10とカソードガス拡散層16cとの間に、MEA10内に含まれる水分量の調整を目的とした撥水層を備えていてもよい。撥水層は、アノードガス拡散層16a及びカソードガス拡散層16cと同じく、ガス透過性及び電子伝導性を有する部材によって形成され、例えばカーボンクロスやカーボンペーパなどの多孔質カーボン製部材によって形成される。ただし、撥水層は、アノードガス拡散層16a及びカソードガス拡散層16cと比べて、多孔質カーボン製部材の細孔が小さい。   An anode gas diffusion layer 16 a and a cathode gas diffusion layer 16 c are disposed on both sides of the MEA 10. The anode gas diffusion layer 16a and the cathode gas diffusion layer 16c are formed of members having gas permeability and electron conductivity, and are formed of a porous carbon member such as carbon cloth or carbon paper. A water repellent layer may be provided between the MEA 10 and the anode gas diffusion layer 16a and between the MEA 10 and the cathode gas diffusion layer 16c for the purpose of adjusting the amount of water contained in the MEA 10. Similar to the anode gas diffusion layer 16a and the cathode gas diffusion layer 16c, the water repellent layer is formed of a member having gas permeability and electronic conductivity, and is formed of a porous carbon member such as carbon cloth or carbon paper. . However, the water repellent layer has smaller pores of the porous carbon member than the anode gas diffusion layer 16a and the cathode gas diffusion layer 16c.

ここで、実施例1に係る燃料電池の効果を説明するに当たり、比較例1に係る燃料電池について説明する。図3は、比較例1に係る燃料電池を構成する単セル500の分解斜視図である。図3のように、比較例1の燃料電池を構成する単セル500は、カソード側セパレータ18cの発電用流路22及び冷却用流路24の幅が、空気供給口から空気排出口にかけて一定となっている。すなわち、発電用流路22の断面積は空気供給口から空気排出口にかけて一定になっている。冷却用流路24の断面積も空気供給口から空気排出口にかけて一定になっている。また、発電用流路22と冷却用流路24とを隔てる側壁26に貫通孔は設けられていない。その他の構成は、実施例1と同じであるため説明を省略する。   Here, in describing the effect of the fuel cell according to Example 1, the fuel cell according to Comparative Example 1 will be described. FIG. 3 is an exploded perspective view of a single cell 500 constituting the fuel cell according to Comparative Example 1. As shown in FIG. 3, in the single cell 500 constituting the fuel cell of Comparative Example 1, the widths of the power generation flow path 22 and the cooling flow path 24 of the cathode side separator 18c are constant from the air supply port to the air discharge port. It has become. That is, the cross-sectional area of the power generation flow path 22 is constant from the air supply port to the air discharge port. The cross-sectional area of the cooling flow path 24 is also constant from the air supply port to the air discharge port. Further, no through hole is provided in the side wall 26 separating the power generation flow path 22 and the cooling flow path 24. Since other configurations are the same as those of the first embodiment, the description thereof is omitted.

比較例1では、発電用流路22の断面積が空気供給口から空気排出口にかけて一定であるため、発電用流路22を流れる空気の流量も空気供給口から空気排出口にかけて一定である。MEA10で生成された生成水は、発電用流路22を流れる空気によって空気供給口側から空気排出口側に向かって移動する。発電用流路22を流れる空気の流量が空気供給口から空気排出口にかけて一定の場合では、空気供給口側ではMEGA20に触れる空気によってMEA10から生成水が持ち去られてMEA10が乾燥する場合がある。空気排出口側では空気供給口側から移動してきた生成水によってMEA10内の液水が過多になる場合がある。つまり、空気供給口側ではMEA10の乾燥による発電性能の低下が生じ、空気排出口側ではMEA10内の液水過多によるフラッディングによって発電性能の低下が生じる場合がある。なお、空気供給口側でのMEA10の乾燥を抑制するために供給する空気量を少なくすると、空気排出口側でのフラッディングによる発電性能の低下や空気の供給量不足による発電性能の低下を引き起こす。例えば、携帯用燃料電池のような発電量が比較的小さいがために供給される空気量が比較的少ない燃料電池では、空気排出口側における液水の排出が難しいため、空気排出口側でフラッディングによる発電性能の低下が起こり易い。   In Comparative Example 1, since the cross-sectional area of the power generation flow path 22 is constant from the air supply port to the air discharge port, the flow rate of air flowing through the power generation flow path 22 is also constant from the air supply port to the air discharge port. The generated water generated by the MEA 10 moves from the air supply port side toward the air discharge port side by the air flowing through the power generation flow path 22. When the flow rate of the air flowing through the power generation flow path 22 is constant from the air supply port to the air discharge port, the generated water may be taken away from the MEA 10 by the air touching the MEGA 20 on the air supply port side, and the MEA 10 may be dried. On the air discharge port side, liquid water in the MEA 10 may become excessive due to the generated water that has moved from the air supply port side. That is, the power generation performance may be reduced due to drying of the MEA 10 on the air supply port side, and the power generation performance may be reduced due to flooding due to excessive liquid water in the MEA 10 on the air discharge port side. Note that if the amount of air supplied to suppress the drying of the MEA 10 on the air supply port side is reduced, the power generation performance is reduced due to flooding on the air discharge port side, or the power generation performance is reduced due to insufficient air supply amount. For example, in a fuel cell such as a portable fuel cell, which generates a relatively small amount of air, but is supplied with a relatively small amount of air, it is difficult to discharge liquid water on the air outlet side. The power generation performance is likely to deteriorate due to the above.

一方、実施例1によれば、図2のように、発電用流路22は空気供給口側の断面積が下流側の断面積よりも小さく、冷却用流路24は空気供給口側の断面積が下流側の断面積よりも大きい。そして、発電用流路22と冷却用流路24とを隔てる側壁26に貫通孔30が設けられている。発電用流路22の空気供給口側の断面積を小さくすることで、空気供給口側においてMEGA20に触れる空気量を少なくすることができ、空気によるMEA10からの液水の持ち去りを抑制することができる。よって、空気供給口側におけるMEA10の乾燥を抑制することができ、空気供給口側における発電性能の低下を抑制することができる。また、発電用流路22の下流側の断面積を大きくし、且つ、貫通孔30を設けて冷却用流路24から発電用流路22に空気が流れ込むようにすることで、流路全体の圧力損失の増大を抑制しながら発電用流路22の下流側を流れる空気の流量を多くすることができる。これにより、発電用流路22の下流側においてMEGA20に触れる空気量を多くすることができ、MEA10からの液水の排出を促進することができる。よって、発電用流路22の下流側におけるMEA10内の液水が過多になることを抑制することができ、発電用流路22の下流側における発電性能の低下を抑制することができる。   On the other hand, according to the first embodiment, as shown in FIG. 2, the power generation flow path 22 has a smaller cross-sectional area on the air supply port side than the cross-sectional area on the downstream side, and the cooling flow path 24 has a cross-section on the air supply port side. The area is larger than the downstream cross-sectional area. A through hole 30 is provided in a side wall 26 that separates the power generation flow path 22 and the cooling flow path 24. By reducing the cross-sectional area on the air supply port side of the power generation channel 22, the amount of air touching the MEGA 20 on the air supply port side can be reduced, and the removal of liquid water from the MEA 10 by air is suppressed. Can do. Therefore, drying of the MEA 10 on the air supply port side can be suppressed, and a decrease in power generation performance on the air supply port side can be suppressed. Further, by increasing the cross-sectional area on the downstream side of the power generation flow path 22 and providing the through hole 30 so that air flows from the cooling flow path 24 to the power generation flow path 22, The flow rate of the air flowing downstream of the power generation flow path 22 can be increased while suppressing an increase in pressure loss. Thereby, the air quantity which touches MEGA20 in the downstream of the flow path 22 for electric power generation can be increased, and discharge | emission of the liquid water from MEA10 can be accelerated | stimulated. Therefore, it is possible to suppress an excessive amount of liquid water in the MEA 10 on the downstream side of the power generation flow path 22, and it is possible to suppress a decrease in power generation performance on the downstream side of the power generation flow path 22.

また、実施例1によれば、図1のように、発電用流路22と冷却用流路24とは、発電用空気及び冷却用空気の流れ方向である第1方向に交差する第2方向に並んで設けられている。これにより、冷却用流路24をカソード触媒層14cの近くに配置することができるため、冷却効率を良好にすることができる。   Further, according to the first embodiment, as illustrated in FIG. 1, the power generation flow path 22 and the cooling flow path 24 are in the second direction intersecting the first direction that is the flow direction of the power generation air and the cooling air. It is provided side by side. Thereby, since the cooling flow path 24 can be disposed near the cathode catalyst layer 14c, the cooling efficiency can be improved.

また、実施例1によれば、図2のように、発電用流路22の幅は空気の流通方向で広がるように階段状に変化し、冷却用流路24の幅は空気の流通方向で狭まるように階段状に変化している。貫通孔30は、発電用流路22及び冷却用流路24の幅が階段状に変化する階段部28に空気の流通方向に直交して設けられている。これにより、冷却用流路24から発電用流路22への空気の流れをスムーズにすることができる。   Further, according to the first embodiment, as shown in FIG. 2, the width of the power generation flow path 22 changes in a stepped manner so as to expand in the air flow direction, and the width of the cooling flow path 24 varies in the air flow direction. It changes in a staircase shape to narrow. The through-hole 30 is provided in a stepped portion 28 where the widths of the power generation flow path 22 and the cooling flow path 24 change in a step shape so as to be orthogonal to the air flow direction. Thereby, the flow of air from the cooling flow path 24 to the power generation flow path 22 can be made smooth.

また、実施例1によれば、カソード側セパレータ18cは凹凸形状をした金属板からなる。これにより、カソード側セパレータ18cを簡素な構造とすることができ、生産性の向上や製造コストの低減ができる。なお、カソード側セパレータ18cは、例えばカーボンを圧縮してガス不透過とした緻密性カーボンなどのカーボン部材で形成されていてもよい。   Moreover, according to Example 1, the cathode side separator 18c consists of an uneven | corrugated shaped metal plate. Thereby, the cathode side separator 18c can be made into a simple structure, and productivity can be improved and manufacturing cost can be reduced. The cathode-side separator 18c may be formed of a carbon member such as dense carbon that has been made carbon impermeable by compressing carbon, for example.

図4は、実施例2に係る燃料電池を構成する単セルのカソード側セパレータ18cを拡大した斜視図である。図4のように、実施例2の単セルのカソード側セパレータ18cでは、発電用流路22及び冷却用流路24の幅が3段階で変化している。すなわち、発電用流路22及び冷却用流路24の断面積が3段階で変化している。発電用流路22の断面積は、空気供給口側で最も小さく、次いで空気供給口と空気排出口との間で小さく、空気排出口側では最も大きくなっている。冷却用流路24の断面積は、空気供給口側で最も大きく、次いで空気供給口と空気排出口との間で大きく、空気排出口側では最も小さくなっている。貫通孔30は、発電用流路22及び冷却用流路24の幅を変化させる2箇所の階段部28a、28bの両方の側壁26に設けられている。その他の構成は、実施例1と同じであるため説明を省略する。   FIG. 4 is an enlarged perspective view of the single-cell cathode-side separator 18c constituting the fuel cell according to the second embodiment. As shown in FIG. 4, in the cathode separator 18c of the single cell of Example 2, the widths of the power generation flow path 22 and the cooling flow path 24 are changed in three stages. That is, the cross-sectional areas of the power generation flow path 22 and the cooling flow path 24 change in three stages. The cross-sectional area of the power generation flow path 22 is the smallest on the air supply port side, then is small between the air supply port and the air discharge port, and is largest on the air discharge port side. The cross-sectional area of the cooling flow path 24 is the largest on the air supply port side, then the largest between the air supply port and the air discharge port, and the smallest on the air discharge port side. The through holes 30 are provided in both side walls 26 of the two staircase portions 28 a and 28 b that change the widths of the power generation flow path 22 and the cooling flow path 24. Since other configurations are the same as those of the first embodiment, the description thereof is omitted.

実施例2によれば、発電用流路22の幅が変化する複数の階段部28a、28bが設けられ、貫通孔30は複数の階段部28a、28bそれぞれに設けられている。これにより、発電用流路22を細分化した各領域に適切な空気量を流すことができる。   According to the second embodiment, the plurality of stepped portions 28a and 28b in which the width of the power generation flow path 22 is changed are provided, and the through hole 30 is provided in each of the plurality of stepped portions 28a and 28b. As a result, an appropriate amount of air can be supplied to each region obtained by subdividing the power generation flow path 22.

図5(a)は、実施例3に係る燃料電池を構成する単セルのカソード側セパレータ18cを拡大した斜視図、図5(b)は、実施例3の変形例1に係る燃料電池を構成する単セルのカソード側セパレータ18cを拡大した斜視図である。図5(a)のように、実施例3の単セルのカソード側セパレータ18cでは、発電用流路22及び冷却用流路24の幅が変化する階段部28の近傍であって、階段部28よりも空気の流れに対して前段側の側壁26に貫通孔30が設けられている。貫通孔30は空気の流通方向に平行に設けられている。その他の構成は、実施例1と同じであるため説明を省略する。   5A is an enlarged perspective view of a single-cell cathode-side separator 18c constituting the fuel cell according to the third embodiment, and FIG. 5B shows a fuel cell according to the first modification of the third embodiment. It is the perspective view which expanded the cathode side separator 18c of the single cell which does. As shown in FIG. 5A, in the single-cell cathode-side separator 18c of Example 3, the stepped portion 28 is in the vicinity of the stepped portion 28 where the widths of the power generation flow path 22 and the cooling flow path 24 change. Further, the through hole 30 is provided in the side wall 26 on the front stage side with respect to the air flow. The through hole 30 is provided in parallel with the air flow direction. Since other configurations are the same as those of the first embodiment, the description thereof is omitted.

実施例3では、貫通孔30は階段部28の近傍に設けられている。冷却用流路24の断面積は階段部28で小さくなるため、冷却用流路24を流れてきた空気は階段部28近傍で滞り、その結果、階段部28近傍の圧力が上昇するようになる。この冷却用流路24内の圧力が上昇した階段部28の近傍に貫通孔30を設けることで、冷却用流路24から発電用流路22へと空気を流すことができる。なお、上述の記載から明らかなように、階段部28の近傍とは、冷却用流路24内の空気の流れが滞って圧力が上昇する範囲であり、冷却用流路24内の圧力が発電用流路22内の圧力よりも高くなる範囲である。   In the third embodiment, the through hole 30 is provided in the vicinity of the stepped portion 28. Since the cross-sectional area of the cooling flow path 24 becomes smaller at the staircase portion 28, the air flowing through the cooling flow path 24 stagnate in the vicinity of the staircase portion 28, and as a result, the pressure in the vicinity of the staircase portion 28 increases. . By providing the through hole 30 in the vicinity of the stepped portion 28 where the pressure in the cooling flow path 24 has increased, air can flow from the cooling flow path 24 to the power generation flow path 22. As is clear from the above description, the vicinity of the staircase portion 28 is a range in which the flow of air in the cooling flow path 24 stagnate and the pressure rises, and the pressure in the cooling flow path 24 generates power. This is a range that is higher than the pressure in the working flow path 22.

なお、実施例3では、貫通孔30は、階段部28よりも空気の流れに対して前段側の側壁26に設けられている場合を例に示したがこれに限られない。図5(b)のように、貫通孔30は、階段部28よりも空気の流れに対して後段側であって、階段部28近傍の側壁26に設けられていてもよい。また、貫通孔30は、後述する実施例5と同様に、階段部28よりも前段側及び後段側の両方に設けられていてもよい。   In the third embodiment, the case where the through hole 30 is provided in the side wall 26 on the front stage side with respect to the air flow from the staircase portion 28 is described as an example, but the present invention is not limited thereto. As shown in FIG. 5B, the through hole 30 may be provided on the side wall 26 in the vicinity of the staircase portion 28 on the rear side of the staircase portion 28 with respect to the air flow. Moreover, the through-hole 30 may be provided in both the front | former stage side and the back | latter stage side rather than the step part 28 similarly to Example 5 mentioned later.

図6(a)は、実施例4に係る燃料電池を構成する単セルのカソード側セパレータ18cを拡大した斜視図、図6(b)は、実施例4の変形例1に係る燃料電池を構成する単セルのカソード側セパレータ18cを拡大した斜視図である。図6(a)のように、実施例4の単セルのカソード側セパレータ18cでは、発電用流路22の幅は、空気排出口側が空気供給口側よりも広くなるように傾斜して変化(テーパ状に変化)している。冷却用流路24の幅は、空気排出口側が空気供給口側よりも狭くなるように傾斜して変化(テーパ状に変化)している。貫通孔30は、発電用流路22及び冷却用流路24の幅が傾斜して変化する傾斜部40に設けられている。その他の構成は、実施例1と同じであるため説明を省略する。   6A is an enlarged perspective view of a single-cell cathode-side separator 18c constituting the fuel cell according to the fourth embodiment, and FIG. 6B shows a fuel cell according to the first modification of the fourth embodiment. It is the perspective view which expanded the cathode side separator 18c of the single cell which does. As shown in FIG. 6 (a), in the single-cell cathode-side separator 18c of Example 4, the width of the power generation flow path 22 changes so as to be inclined so that the air discharge port side is wider than the air supply port side ( (Changes in a taper shape). The width of the cooling flow path 24 is inclined and changed (changes in a taper shape) so that the air discharge port side is narrower than the air supply port side. The through-hole 30 is provided in the inclined portion 40 where the widths of the power generation flow path 22 and the cooling flow path 24 change with inclination. Since other configurations are the same as those of the first embodiment, the description thereof is omitted.

実施例4によれば、発電用流路22の幅は空気の流通方向において広がるように傾斜して変化し、冷却用流路24の幅は空気の流通方向において狭まるように傾斜して変化している。貫通孔30は、発電用流路22及び冷却用流路24の幅が傾斜して変化する傾斜部40に設けられている。この場合でも、冷却用流路24から発電用流路22へと空気を流すことができる。   According to the fourth embodiment, the width of the power generation flow path 22 is changed so as to be widened in the air flow direction, and the width of the cooling flow path 24 is changed so as to be narrowed in the air flow direction. ing. The through-hole 30 is provided in the inclined portion 40 where the widths of the power generation flow path 22 and the cooling flow path 24 change with inclination. Even in this case, air can flow from the cooling channel 24 to the power generation channel 22.

なお、実施例4では、空気供給口から空気排出口までの全領域にわたって、発電用流路22及び冷却用流路24の幅が傾斜して変化する場合を例に示したがこれに限られない。図6(b)のように、空気供給口と空気排出口との間の一部の領域において、発電用流路22及び冷却用流路24の幅が傾斜して変化している場合でもよい。   In the fourth embodiment, the case where the widths of the power generation flow path 22 and the cooling flow path 24 change in an inclined manner over the entire region from the air supply port to the air discharge port is described as an example. Absent. As shown in FIG. 6B, the width of the power generation flow path 22 and the cooling flow path 24 may be changed in an inclined manner in a partial region between the air supply port and the air discharge port. .

なお、実施例4においては、貫通孔30は、冷却用流路24を流れる空気の流通方向に沿って傾斜部40に複数設けられている場合が好ましい。これにより、冷却用流路24を流れる空気を複数の貫通孔30を介して少しずつ発電用流路22に流すことができる。   In the fourth embodiment, it is preferable that a plurality of the through holes 30 are provided in the inclined portion 40 along the flow direction of the air flowing through the cooling flow path 24. Thereby, the air flowing through the cooling flow path 24 can be gradually passed through the power generation flow path 22 through the plurality of through holes 30.

図7は、実施例5に係る燃料電池を構成する単セルのカソード側セパレータ18cを拡大した斜視図である。図7のように、実施例5の単セルのカソード側セパレータ18cでは、発電用流路22及び冷却用流路24の幅が変化する傾斜部40の近傍であって、傾斜部40よりも空気の流れに対して前段側及び後段側の側壁26に貫通孔30が設けられている。貫通孔30は空気の流通方向に平行に設けられている。その他の構成は、実施例1と同じであるため説明を省略する。   FIG. 7 is an enlarged perspective view of the single-cell cathode-side separator 18c constituting the fuel cell according to the fifth embodiment. As shown in FIG. 7, in the single-cell cathode-side separator 18 c of Example 5, the air flow path 22 and the cooling flow path 24 are in the vicinity of the inclined portion 40 where the width changes, and are more air than the inclined portion 40. A through-hole 30 is provided in the side wall 26 on the front stage side and the rear stage side with respect to the flow. The through hole 30 is provided in parallel with the air flow direction. Since other configurations are the same as those of the first embodiment, the description thereof is omitted.

実施例5では、貫通孔30は傾斜部40の近傍に設けられている。実施例3と同様に、傾斜部40の近傍では冷却用流路24内の圧力が上昇することから、傾斜部40の近傍に貫通孔30を設けることで、冷却用流路24から発電用流路22へと空気を流すことができる。なお、傾斜部40の近傍とは、実施例3の階段部28の近傍と同じく、冷却用流路24内の空気の流れが滞って圧力が上昇する範囲であり、冷却用流路24内の圧力が発電用流路22内の圧力よりも高くなる範囲である。   In the fifth embodiment, the through hole 30 is provided in the vicinity of the inclined portion 40. As in the third embodiment, since the pressure in the cooling flow path 24 increases in the vicinity of the inclined portion 40, the power generation flow is generated from the cooling flow path 24 by providing the through hole 30 in the vicinity of the inclined portion 40. Air can flow to the path 22. Note that the vicinity of the inclined portion 40 is a range in which the air flow in the cooling flow path 24 is stagnated and the pressure rises, as in the vicinity of the stepped portion 28 of the third embodiment. This is a range in which the pressure is higher than the pressure in the power generation flow path 22.

なお、実施例5では、貫通孔30は傾斜部40よりも前段側及び後段側の両方に設けられている場合を例に示したがこれに限られない。実施例3と同様に、傾斜部40の後段側にのみ設けられていてもよいし、実施例3の変形例1と同様に、傾斜部40の前段側にのみ設けられていてもよい。   In addition, in Example 5, although the case where the through-hole 30 was provided in both the front | former stage side and the back | latter stage side rather than the inclination part 40 was shown as an example, it is not restricted to this. Similarly to the third embodiment, it may be provided only on the rear stage side of the inclined portion 40 or may be provided only on the front stage side of the inclined portion 40 as in the first modification of the third embodiment.

図8は、実施例6に係る燃料電池を構成する単セルのカソード側セパレータ18cを拡大した斜視図である。図8のように、実施例6の単セルのカソード側セパレータ18cでは、発電用流路22及び冷却用流路24の幅が3段階で変化している。発電用流路22の断面積は、空気供給口側及び空気排出口側で小さく、空気供給口と空気排出口との中間部で大きくなっている。冷却用流路24の断面積は、空気供給口側及び空気排出口側で大きく、空気供給口と空気排出口との中間部で小さくなっている。貫通孔30a、30bが、発電用流路22及び冷却用流路24の幅が変化する2箇所の階段部28a、28bの側壁26に設けられている。その他の構成は、実施例1と同じであるため説明を省略する。   FIG. 8 is an enlarged perspective view of the single-cell cathode-side separator 18c constituting the fuel cell according to Example 6. As shown in FIG. 8, in the cathode separator 18c of the single cell of Example 6, the widths of the power generation flow path 22 and the cooling flow path 24 are changed in three stages. The cross-sectional area of the power generation channel 22 is small at the air supply port side and the air discharge port side, and is large at an intermediate portion between the air supply port and the air discharge port. The cross-sectional area of the cooling flow path 24 is large at the air supply port side and the air discharge port side, and is small at an intermediate portion between the air supply port and the air discharge port. The through holes 30a and 30b are provided in the side walls 26 of the two step portions 28a and 28b where the widths of the power generation flow path 22 and the cooling flow path 24 change. Since other configurations are the same as those of the first embodiment, the description thereof is omitted.

実施例6のように、発電用流路22の空気排出口側の断面積が小さくなっていてもよい。この場合でも、発電用流路22の空気供給口側の断面積が小さいことで、空気供給口側においてMEGA20に触れる空気量を少なくすることができ、空気供給口側においてMEA10が乾燥することを抑制できる。また、空気供給口側よりも下流側の断面積を大きくし、且つ、貫通孔30aを設けて冷却用流路24から発電用流路22に空気が流れ込むようにすることで、発電用流路22の下流側を流れる空気の流量を多くすることができ、下流側においてMEA10内の液水が過多になることを抑制できる。よって、発電性能の低下を抑制することができる。   As in the sixth embodiment, the cross-sectional area on the air outlet side of the power generation flow path 22 may be small. Even in this case, since the cross-sectional area on the air supply port side of the power generation channel 22 is small, the amount of air touching the MEGA 20 on the air supply port side can be reduced, and the MEA 10 can be dried on the air supply port side. Can be suppressed. In addition, the cross-sectional area on the downstream side of the air supply port side is increased, and the through-hole 30a is provided so that air flows from the cooling flow path 24 to the power generation flow path 22, thereby generating the power generation flow path. Therefore, it is possible to increase the flow rate of the air flowing on the downstream side of 22 and to prevent the liquid water in the MEA 10 from being excessive on the downstream side. Therefore, a decrease in power generation performance can be suppressed.

また、実施例6によれば、発電用流路22の幅が狭くなる階段部28bにも貫通孔30bが設けられている。これにより、発電用流路22の空気排出口側の断面積が小さい場合でも、発電用流路22を流れる空気が階段部28bの貫通孔30bを介して冷却用流路24に流れるため、発電用流路22の断面積が大きい部分を流れる空気の流量を多くすることができる。   According to the sixth embodiment, the through hole 30b is also provided in the stepped portion 28b in which the width of the power generation flow path 22 is narrowed. As a result, even when the cross-sectional area on the air discharge port side of the power generation channel 22 is small, the air flowing through the power generation channel 22 flows into the cooling channel 24 through the through hole 30b of the staircase portion 28b. The flow rate of the air flowing through the portion where the cross-sectional area of the working channel 22 is large can be increased.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

10 膜電極接合体
12 電解質膜
14a アノード触媒層
14c カソード触媒層
16a アノードガス拡散層
16c カソードガス拡散層
18a アノード側セパレータ
18c カソード側セパレータ
20 膜電極ガス拡散層接合体
22 発電用流路
24 冷却用流路
26 側壁
28〜28b 階段部
30〜30b 貫通孔
32 水素流路
34、36 絶縁部材
40 傾斜部
100、500 単セル
DESCRIPTION OF SYMBOLS 10 Membrane electrode assembly 12 Electrolyte membrane 14a Anode catalyst layer 14c Cathode catalyst layer 16a Anode gas diffusion layer 16c Cathode gas diffusion layer 18a Anode side separator 18c Cathode side separator 20 Membrane electrode gas diffusion layer assembly 22 Power generation channel 24 For cooling Channel 26 Side wall 28-28b Stepped portion 30-30b Through hole 32 Hydrogen channel 34, 36 Insulating member 40 Inclined portion 100, 500 Single cell

Claims (1)

膜電極接合体と、
前記膜電極接合体を挟持するアノード側セパレータ及びカソード側セパレータと、
前記カソード側セパレータの前記膜電極接合体側の面に前記カソード側セパレータの一端から他端にかけて第1方向に延在して設けられ、酸化剤ガスが流通する発電用流路と、
前記カソード側セパレータの前記膜電極接合体とは反対側の面に前記カソード側セパレータの前記一端から前記他端にかけて前記第1方向に延在して設けられ、前記第1方向に交差する第2方向で前記発電用流路と側壁によって隔てられていて、前記酸化剤ガスが流通する冷却用流路と、を備え、
前記発電用流路の前記酸化剤ガスが供給される供給口側の断面積は、前記発電用流路の前記供給口側よりも下流における前記発電用流路の断面積よりも小さく、
前記冷却用流路の前記酸化剤ガスが供給される供給口側の断面積は、前記冷却用流路の前記供給口側よりも下流における前記冷却用流路の断面積よりも大きく、
前記発電用流路と前記冷却用流路とを隔てる前記側壁に貫通孔が設けられている、燃料電池。
A membrane electrode assembly;
An anode-side separator and a cathode-side separator that sandwich the membrane electrode assembly;
A power generation flow path that extends in a first direction from one end of the cathode side separator to the other end of the surface on the membrane electrode assembly side of the cathode side separator, and in which an oxidant gas flows;
A second side of the cathode-side separator that extends in the first direction from the one end to the other end of the cathode-side separator and that intersects the first direction is provided on a surface opposite to the membrane electrode assembly. A cooling channel that is separated by a side wall and a side wall in the direction through which the oxidant gas flows,
The cross-sectional area on the supply port side to which the oxidizing gas of the power generation channel is supplied is smaller than the cross-sectional area of the power generation channel on the downstream side of the supply port side of the power generation channel,
The cross-sectional area of the cooling channel on the supply port side to which the oxidant gas is supplied is larger than the cross-sectional area of the cooling channel on the downstream side of the supply port side of the cooling channel,
A fuel cell, wherein a through hole is provided in the side wall that separates the power generation channel and the cooling channel.
JP2016090744A 2016-04-28 2016-04-28 Fuel cell Active JP6604261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016090744A JP6604261B2 (en) 2016-04-28 2016-04-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016090744A JP6604261B2 (en) 2016-04-28 2016-04-28 Fuel cell

Publications (3)

Publication Number Publication Date
JP2017199609A true JP2017199609A (en) 2017-11-02
JP2017199609A5 JP2017199609A5 (en) 2018-07-19
JP6604261B2 JP6604261B2 (en) 2019-11-13

Family

ID=60239418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016090744A Active JP6604261B2 (en) 2016-04-28 2016-04-28 Fuel cell

Country Status (1)

Country Link
JP (1) JP6604261B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079722A (en) * 2017-10-25 2019-05-23 株式会社Soken Fuel cell
KR20190065922A (en) * 2017-12-04 2019-06-12 인하대학교 산학협력단 Separator for a fuel cell and fuel cell stack comprising it
JP2019125531A (en) * 2018-01-18 2019-07-25 トヨタ自動車株式会社 Fuel cell
CN111477900A (en) * 2019-01-24 2020-07-31 原子能和替代能源委员会 Bipolar plate for leveling coolant temperature
CN113258094A (en) * 2021-05-17 2021-08-13 张国胜 Bipolar plate with asymmetric flow field, fuel cell stack and power generation system
CN113497242A (en) * 2020-04-01 2021-10-12 丰田自动车株式会社 Gas flow path structure, support plate, and fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079722A (en) * 2017-10-25 2019-05-23 株式会社Soken Fuel cell
JP7048254B2 (en) 2017-10-25 2022-04-05 株式会社Soken Fuel cell
KR20190065922A (en) * 2017-12-04 2019-06-12 인하대학교 산학협력단 Separator for a fuel cell and fuel cell stack comprising it
WO2020027400A1 (en) * 2017-12-04 2020-02-06 인하대학교 산학협력단 Fuel cell separation plate and fuel cell stack including same
KR102131702B1 (en) * 2017-12-04 2020-07-09 인하대학교 산학협력단 Separator for a fuel cell and fuel cell stack comprising it
JP2019125531A (en) * 2018-01-18 2019-07-25 トヨタ自動車株式会社 Fuel cell
CN111477900A (en) * 2019-01-24 2020-07-31 原子能和替代能源委员会 Bipolar plate for leveling coolant temperature
CN113497242A (en) * 2020-04-01 2021-10-12 丰田自动车株式会社 Gas flow path structure, support plate, and fuel cell
CN113258094A (en) * 2021-05-17 2021-08-13 张国胜 Bipolar plate with asymmetric flow field, fuel cell stack and power generation system
CN113258094B (en) * 2021-05-17 2024-03-12 张国胜 Bipolar plate with asymmetric flow field, fuel cell stack and power generation system

Also Published As

Publication number Publication date
JP6604261B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP6604261B2 (en) Fuel cell
JP6402740B2 (en) Fuel cell
US10727511B2 (en) Fuel cell
US7745063B2 (en) Fuel cell stack
KR101693993B1 (en) Bipolar plate for fuel cell
JP5408263B2 (en) Fuel cell
US10553881B2 (en) Fuel cell
JP6458286B2 (en) Gas flow path forming plate for fuel cell and fuel cell stack
JP2018078020A (en) Fuel battery single cell
JP2006294503A (en) Fuel battery and gas separator for the same
KR101282619B1 (en) Separator for fuel cell
JP7048254B2 (en) Fuel cell
JP6403099B2 (en) Fuel cell module
JP2020107397A (en) Fuel battery cell
JP6780612B2 (en) Fuel cell separator
JP2019023982A (en) Fuel cell
KR20230097258A (en) Fuel cell apparatus
JP5411604B2 (en) Fuel cell
KR20230097259A (en) Fuel cell apparatus
JP2018081880A (en) Fuel battery
JP2012003875A (en) Fuel cell
KR20190138170A (en) Separator for fuel cell and fuel cell comprising thereof
JP2012003857A (en) Fuel cell
JP2010282747A (en) Fuel battery stack
JP2010232021A (en) Fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190930

R151 Written notification of patent or utility model registration

Ref document number: 6604261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151