JP2019079722A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2019079722A
JP2019079722A JP2017206371A JP2017206371A JP2019079722A JP 2019079722 A JP2019079722 A JP 2019079722A JP 2017206371 A JP2017206371 A JP 2017206371A JP 2017206371 A JP2017206371 A JP 2017206371A JP 2019079722 A JP2019079722 A JP 2019079722A
Authority
JP
Japan
Prior art keywords
fuel gas
flow passage
gas flow
passage
side separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017206371A
Other languages
Japanese (ja)
Other versions
JP7048254B2 (en
Inventor
前田 正史
Masashi Maeda
正史 前田
吉田 一彦
Kazuhiko Yoshida
一彦 吉田
克英 菊地
Katsuhide Kikuchi
克英 菊地
角川 優
Masaru Kadokawa
優 角川
哲也 下村
Tetsuya Shimomura
哲也 下村
直樹 竹広
Naoki Takehiro
直樹 竹広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Toyota Motor Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Soken Inc filed Critical Toyota Motor Corp
Priority to JP2017206371A priority Critical patent/JP7048254B2/en
Publication of JP2019079722A publication Critical patent/JP2019079722A/en
Application granted granted Critical
Publication of JP7048254B2 publication Critical patent/JP7048254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

To restrain degradation of power generation performance.SOLUTION: A fuel cell includes a MEA10, an anode side separator 18a placed on one side of the MEA, and in which multiple fuel gas passages 32 passing hydrogen being supplied to the MEA are formed, and a cathode side separator 18c placed on the other side of the MEA, and in which oxydant gas ducts 22 through which the air supplied to the MEA flows are formed. The multiple fuel gas passages are connected between a fuel gas supply manifold 44 and a fuel gas discharge manifold 46 and formed between the anode side separator and the cathode side separator to intersect a coolant passage 24, and the fuel gas passage 32b located on the downstream side of the coolant passage, out of the multiple fuel gas passages, has a smaller duct cross section area per power generation area in the direction intersecting the circulation direction of oxygen than that of the fuel gas passage 32a located on the farther upstream side of the coolant passage than the fuel gas passage 32b.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池に関する。   The present invention relates to a fuel cell.

燃料ガス流路と酸化剤ガス流路とが交差して配置された空冷式燃料電池において、セルの面内温度差を小さくするために、燃料ガス流路の上流側に位置する酸化剤ガス流路の流路断面積を下流側に位置する酸化剤ガス流路の流路断面積よりも大きくすることが知られている(例えば、特許文献1)。   In an air-cooled fuel cell in which a fuel gas flow passage and an oxidant gas flow passage intersect with each other, an oxidant gas flow located upstream of the fuel gas flow passage in order to reduce the in-plane temperature difference of the cells. It is known to make the flow passage cross-sectional area of the passage larger than the flow passage cross-sectional area of the oxidant gas flow passage located on the downstream side (for example, Patent Document 1).

特開平10−134833JP 10-134833

燃料ガスが流れる燃料ガス流路と冷媒が流れる冷媒流路とが交差して配置された燃料電池において、発電部のうちの冷媒流路の上流側に位置する部位において発電性能が低下することがある。   In the fuel cell in which the fuel gas flow path through which the fuel gas flows and the refrigerant flow path through which the refrigerant crosses, the power generation performance may be lowered at a portion of the power generation unit located upstream of the refrigerant flow path is there.

本発明は、上記課題に鑑みなされたものであり、発電性能の低下を抑制することを目的とする。   This invention is made in view of the said subject, and it aims at suppressing the fall of electric power generation performance.

本発明は、膜電極接合体と、前記膜電極接合体の一方の面側に配置され、前記膜電極接合体に供給される燃料ガスが流れる複数の燃料ガス流路が形成されたアノード側セパレータと、前記膜電極接合体の他方の面側に配置され、前記膜電極接合体に供給される酸化剤ガスが流れる酸化剤ガス流路が形成されたカソード側セパレータと、を備え、前記複数の燃料ガス流路は、燃料ガス供給マニホールドと燃料ガス排出マニホールドとの間に接続され且つ前記アノード側セパレータと前記カソード側セパレータとの間に形成されて冷媒が流れる冷媒流路に交差し、前記複数の燃料ガス流路のうちの前記冷媒流路の下流側に位置する第1燃料ガス流路は前記第1燃料ガス流路より前記冷媒流路の上流側に位置する第2燃料ガス流路よりも前記燃料ガスの流通方向に交差する方向において小さな発電面積あたりの流路断面積を有する、燃料電池である。   The present invention relates to a membrane electrode assembly and an anode side separator disposed on one side of the membrane electrode assembly and having a plurality of fuel gas flow paths through which fuel gas supplied to the membrane electrode assembly flows. And a cathode side separator disposed on the other surface side of the membrane electrode assembly and in which an oxidant gas flow path through which an oxidant gas supplied to the membrane electrode assembly flows is formed; The fuel gas flow path is connected between the fuel gas supply manifold and the fuel gas discharge manifold, is formed between the anode side separator and the cathode side separator, and intersects the refrigerant flow path through which the refrigerant flows, The first fuel gas flow passage located downstream of the refrigerant flow passage among the fuel gas flow passages is the second fuel gas flow passage located upstream of the refrigerant flow passage with respect to the first fuel gas flow passage Also said fuel Having a flow path cross-sectional area per small power area in a direction intersecting the flow direction, is a fuel cell.

本発明によれば、発電性能の低下を抑制することができる。   According to the present invention, a decrease in power generation performance can be suppressed.

図1(a)は、実施例に係る燃料電池を構成する単セルの分解斜視図、図1(b)は、図1(a)のA−A間におけるアノード側セパレータの断面図である。Fig.1 (a) is a disassembled perspective view of the single cell which comprises the fuel cell which concerns on an Example, FIG.1 (b) is sectional drawing of the anode side separator between AA of FIG. 1 (a). 図2(a)は、比較例に係る燃料電池を構成する単セルの分解斜視図、図2(b)は、図2(a)のA−A間におけるアノード側セパレータの断面図である。Fig.2 (a) is a disassembled perspective view of the single cell which comprises the fuel cell which concerns on a comparative example, FIG.2 (b) is sectional drawing of the anode side separator between AA of FIG. 2 (a). 図3は、比較例の燃料電池で生じる課題を説明するための図である。FIG. 3 is a diagram for explaining a problem that occurs in the fuel cell of the comparative example.

以下、図面を参照して、本発明の実施例について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施例の燃料電池は、反応ガスとして燃料ガス(例えば水素)と酸化剤ガス(例えば空気)の供給を受けて発電する固体高分子形燃料電池であり、多数の単セルを積層したスタック構造を有する。図1(a)は、実施例に係る燃料電池を構成する単セル100の分解斜視図、図1(b)は、図1(a)のA−A間におけるアノード側セパレータ18aの断面図である。   The fuel cell of the embodiment is a solid polymer fuel cell that generates electric power by receiving supply of fuel gas (for example, hydrogen) and oxidant gas (for example, air) as reaction gas, and has a stack structure in which a large number of single cells are stacked. Have. FIG. 1 (a) is an exploded perspective view of a unit cell 100 constituting a fuel cell according to the embodiment, and FIG. 1 (b) is a cross-sectional view of the anode side separator 18a between A and A in FIG. 1 (a). is there.

図1(a)のように、実施例の単セル100は、アノード側セパレータ18a、膜電極ガス拡散層接合体(MEGA:Membrane Electrode Gas diffusion layer Assembly)20、及びカソード側セパレータ18cを備える。MEGA20は、絶縁部材40の内側に配置されている。絶縁部材40は、例えばエポキシ樹脂又はフェノール樹脂などの樹脂で形成されている。MEGA20及び絶縁部材40は、アノード側セパレータ18aとカソード側セパレータ18cによって挟持されている。   As shown in FIG. 1A, the unit cell 100 of the embodiment includes an anode separator 18a, a membrane electrode gas diffusion layer assembly (MEGA) 20, and a cathode separator 18c. The MEGA 20 is disposed inside the insulating member 40. The insulating member 40 is formed of, for example, a resin such as an epoxy resin or a phenol resin. The MEGA 20 and the insulating member 40 are sandwiched by the anode side separator 18a and the cathode side separator 18c.

アノード側セパレータ18aは、ガス遮断性及び電子伝導性を有する部材によって形成され、例えばカーボンを圧縮してガス不透過とした緻密性カーボンなどのカーボン部材又はステンレス鋼などの金属部材によって形成されている。アノード側セパレータ18aには孔a1及び孔a2が設けられ、絶縁部材40には孔s1及び孔s2が設けられ、カソード側セパレータ18cの両側に配置された絶縁部材42には孔c1及び孔c2が設けられている。孔a1と孔s1と孔c1は連通し、水素を供給する燃料ガス供給マニホールド44を画定する。孔a2と孔s2と孔c2は連通し、水素を排出する燃料ガス排出マニホールド46を画定する。アノード側セパレータ18aのMEGA20側の面には、燃料ガス供給マニホールド44から燃料ガス排出マニホールド46に向かって直線状に延在し、MEGA20に供給される水素が流れる複数の燃料ガス流路32が設けられている。   The anode-side separator 18a is formed of a member having a gas barrier property and an electron conductivity, and is formed of, for example, a carbon member such as dense carbon or a metal member such as stainless steel or the like in which carbon is compressed to be gas impermeable. . The anode-side separator 18a is provided with holes a1 and a2; the insulating member 40 is provided with holes s1 and s2; and the insulating member 42 disposed on both sides of the cathode-side separator 18c is provided with holes c1 and c2. It is provided. The holes a1, s1 and c1 are in communication and define a fuel gas supply manifold 44 for supplying hydrogen. The holes a2, s2 and c2 communicate with one another to define a fuel gas discharge manifold 46 for discharging hydrogen. On the surface on the MEGA 20 side of the anode-side separator 18a, there are provided a plurality of fuel gas flow paths 32 which extend linearly from the fuel gas supply manifold 44 toward the fuel gas discharge manifold 46 and through which hydrogen supplied to the MEGA 20 flows. It is done.

カソード側セパレータ18cは、ガス遮断性及び電子伝導性を有する部材によって形成されている。カソード側セパレータ18cは、例えばプレス成型による曲げ加工によって凹凸形状が形成されたステンレス鋼などの金属板からなる。カソード側セパレータ18cには、厚み方向の凹凸形状によって、それぞれ空気が流れる酸化剤ガス流路22と冷媒流路24が形成されている。酸化剤ガス流路22と冷媒流路24は、カソード側セパレータ18cの一端から他端に向かって直線状に延在し、互いに隣り合って配置されている。酸化剤ガス流路22及び冷媒流路24を流れる空気は、カソード側セパレータ18cの一端側である空気供給口から他端側である空気排出口に向かって流れる。   The cathode side separator 18c is formed of a member having a gas barrier property and an electron conductivity. The cathode side separator 18c is made of, for example, a metal plate such as stainless steel in which a concavo-convex shape is formed by bending by press molding. In the cathode side separator 18c, an oxidant gas flow passage 22 and a refrigerant flow passage 24 through which air flows are formed by the uneven shape in the thickness direction. The oxidant gas flow path 22 and the refrigerant flow path 24 extend linearly from one end of the cathode side separator 18c toward the other end, and are arranged adjacent to each other. The air flowing through the oxidant gas flow passage 22 and the refrigerant flow passage 24 flows from the air supply port which is one end side of the cathode side separator 18c toward the air discharge port which is the other end side.

酸化剤ガス流路22は、カソード側セパレータ18cのMEGA20側の面に設けられてMEGA20側に開口した凹部26によって形成されている。したがって、酸化剤ガス流路22を流れる空気は、MEGA20に供給されて主に発電に用いられる。冷媒流路24は、カソード側セパレータ18cのMEGA20とは反対側の面に設けられてMEGA20とは反対側に開口した凹部28によって形成されている。したがって、冷媒流路24は、アノード側セパレータ18aとカソード側セパレータ18cの間に形成され、MEGA20の冷却に用いられる空気(冷媒)が主に流れる。このように、実施例の燃料電池は、空冷式の燃料電池である。   The oxidant gas flow path 22 is formed by a recess 26 provided on the surface of the cathode side separator 18 c on the MEGA 20 side and opened on the MEGA 20 side. Therefore, the air flowing through the oxidant gas flow path 22 is supplied to the MEGA 20 and is mainly used for power generation. The refrigerant flow path 24 is formed by a concave portion 28 provided on the surface of the cathode side separator 18 c opposite to the MEGA 20 and opened on the opposite side to the MEGA 20. Therefore, the refrigerant flow path 24 is formed between the anode side separator 18 a and the cathode side separator 18 c, and the air (refrigerant) used for cooling the MEGA 20 mainly flows. Thus, the fuel cell of the embodiment is an air-cooled fuel cell.

MEGA20は、電解質膜12、アノード触媒層14a、カソード触媒層14c、アノードガス拡散層16a、及びカソードガス拡散層16cを備える。アノード触媒層14aは電解質膜12の一方の面に設けられ、カソード触媒層14cは電解質膜12の他方の面に設けられている。これにより、膜電極接合体(MEA:Membrane Electrode Assembly)10が形成されている。電解質膜12は、例えばスルホン酸基を有するフッ素系樹脂材料又は炭化水素系樹脂材料で形成された固体高分子膜であり、湿潤状態において良好なプロトン伝導性を有する。アノード触媒層14a及びカソード触媒層14cは、例えば電気化学反応を進行する触媒(白金又は白金−コバルト合金など)を担持したカーボン粒子(カーボンブラックなど)と、スルホン酸基を有する固体高分子であって湿潤状態で良好なプロトン伝導性を有するアイオノマーと、を含む。   The MEGA 20 includes an electrolyte membrane 12, an anode catalyst layer 14a, a cathode catalyst layer 14c, an anode gas diffusion layer 16a, and a cathode gas diffusion layer 16c. The anode catalyst layer 14 a is provided on one side of the electrolyte membrane 12, and the cathode catalyst layer 14 c is provided on the other side of the electrolyte membrane 12. Thereby, a membrane electrode assembly (MEA: Membrane Electrode Assembly) 10 is formed. The electrolyte membrane 12 is, for example, a fluorine-based resin material having a sulfonic acid group or a solid polymer membrane formed of a hydrocarbon-based resin material, and has good proton conductivity in a wet state. The anode catalyst layer 14a and the cathode catalyst layer 14c are, for example, carbon particles (such as carbon black) carrying a catalyst (such as platinum or platinum-cobalt alloy) that promotes an electrochemical reaction, and a solid polymer having a sulfonic acid group. And an ionomer having good proton conductivity in the wet state.

アノードガス拡散層16aとカソードガス拡散層16cは、MEA10の両側に設けられ、MEA10を挟持している。アノードガス拡散層16a及びカソードガス拡散層16cは、ガス透過性及び電子伝導性を有する部材によって形成されていて、例えばカーボンクロス又はカーボンペーパなどの多孔質カーボン製部材によって形成されている。   The anode gas diffusion layer 16 a and the cathode gas diffusion layer 16 c are provided on both sides of the MEA 10 and sandwich the MEA 10. The anode gas diffusion layer 16a and the cathode gas diffusion layer 16c are formed of a member having gas permeability and electron conductivity, and are formed of, for example, a porous carbon member such as carbon cloth or carbon paper.

図1(a)及び図1(b)のように、アノード側セパレータ18aに形成された複数の燃料ガス流路32は、アノード側セパレータ18aとカソード側セパレータ18cの間に形成された冷媒流路24に交差(例えば直交)して延在している。複数の燃料ガス流路32の全てにおいて深さDは略同じである。なお、略同じとは製造誤差程度のずれを含むものである(以下においても同じである)。一方、複数の燃料ガス流路32の水素の流通方向に交差(例えば直交)する方向における幅に関しては、複数の燃料ガス流路32のうちの冷媒流路24の下流側(空気排出口側)に位置する燃料ガス流路32bの幅W2は、燃料ガス流路32bよりも冷媒流路24の上流側(空気供給口側)に位置する燃料ガス流路32aの幅W1よりも小さくなっている。このため、燃料ガス流路32bは、燃料ガス流路32aに比べて、水素の流通方向に交差(例えば直交)する方向における流路断面積が小さくなっている。例えば、発電面積あたりの流路断面積が、冷媒流路24の下流側に位置する燃料ガス流路32bは上流側の位置する燃料ガス流路32aに比べて小さくなっている。発電面積あたりの流路断面積とは、燃料ガス流路32の流路断面積Sを燃料ガス流路32の幅と燃料ガス流路32間のリブ幅との和Xで割った値(S/X)である。したがって、燃料ガス流路32の流路断面積Sを燃料ガス流路32の幅と燃料ガス流路32間のリブ幅との和Xである燃料ガス流路32間のピッチで割った値(S/X)が、冷媒流路24の下流側に位置する燃料ガス流路32bは上流側の位置する燃料ガス流路32aに比べて小さくなっている。なお、複数の燃料ガス流路32において、燃料ガス流路32の幅と燃料ガス流路32間のリブ幅との和Xは略同じである。したがって、実施例においては発電面積当たりの流路断面積は、燃料ガス流路32の流路断面積を所定の長さ(一定の値)で割った値と言い換えることもできる。   As shown in FIGS. 1A and 1B, the plurality of fuel gas channels 32 formed in the anode side separator 18a are refrigerant channels formed between the anode side separator 18a and the cathode side separator 18c. It extends intersecting (for example, orthogonally) to 24. The depth D is substantially the same in all of the plurality of fuel gas channels 32. Note that “substantially the same” includes deviation about the manufacturing error (the same applies to the following). On the other hand, with respect to the width of the plurality of fuel gas channels 32 in the direction intersecting (for example, orthogonally) with the flow direction of hydrogen, the downstream side (air outlet side) of the refrigerant channel 24 among the plurality of fuel gas channels 32 The width W2 of the fuel gas passage 32b located at the side of the fuel gas passage 32b is smaller than the width W1 of the fuel gas passage 32a located on the upstream side (air supply port side) of the refrigerant passage 24 than the fuel gas passage 32b. . Therefore, the fuel gas flow passage 32b has a smaller flow passage cross-sectional area in the direction intersecting (for example, at right angles with) the flow direction of hydrogen, as compared with the fuel gas flow passage 32a. For example, the fuel gas flow passage 32b located on the downstream side of the refrigerant flow passage 24 is smaller in cross-sectional area per power generation area than the fuel gas flow passage 32a located on the upstream side. The channel cross-sectional area per power generation area is a value obtained by dividing the channel cross-sectional area S of the fuel gas channel 32 by the sum X of the width of the fuel gas channel 32 and the rib width between the fuel gas channels 32 (S / X). Therefore, a value obtained by dividing the flow passage cross-sectional area S of the fuel gas flow passage 32 by the pitch between the fuel gas flow passages 32, which is the sum X of the width of the fuel gas flow passage 32 and the rib width between the fuel gas flow passages 32 The fuel gas flow passage 32b located at the downstream side of the refrigerant flow passage 24 is smaller in S / X) than the fuel gas flow passage 32a located at the upstream side. In the plurality of fuel gas channels 32, the sum X of the width of the fuel gas channel 32 and the rib width between the fuel gas channels 32 is substantially the same. Therefore, in the embodiment, the flow passage cross-sectional area per power generation area can be reworded as a value obtained by dividing the flow passage cross-sectional area of the fuel gas flow passage 32 by a predetermined length (a fixed value).

ここで、実施例の燃料電池の効果を説明するにあたり、比較例の燃料電池について説明する。図2(a)は、比較例に係る燃料電池を構成する単セル500の分解斜視図、図2(b)は、図2(a)のA−A間におけるアノード側セパレータ18aの断面図である。図2(a)及び図2(b)のように、比較例の単セル500は、アノード側セパレータ18aに形成された複数の燃料ガス流路32の全てにおいて、水素の流通方向に交差(例えば直交)する方向における幅Wが略同じになっている。したがって、複数の燃料ガス流路32の全てにおいて、水素の流通方向に交差(例えば直交)する方向における流路断面積が略同じになっている。例えば、複数の燃料ガス流路32の幅Wは実施例における燃料ガス流路32aの幅W1と略同じになっていて、複数の燃料ガス流路32の流路断面積は実施例における燃料ガス流路32aの流路断面積と略同じになっている。その他の構成は実施例と同じであるため説明を省略する。   Here, in describing the effects of the fuel cell of the embodiment, the fuel cell of the comparative example will be described. 2 (a) is an exploded perspective view of a unit cell 500 constituting a fuel cell according to a comparative example, and FIG. 2 (b) is a sectional view of the anode side separator 18a between A and A in FIG. 2 (a). is there. As shown in FIGS. 2A and 2B, the unit cell 500 of the comparative example intersects the hydrogen flow direction in all of the plurality of fuel gas channels 32 formed in the anode side separator 18a (for example, The widths W in the directions orthogonal to each other are substantially the same. Therefore, in all of the plurality of fuel gas channels 32, the channel cross-sectional area in the direction intersecting (for example, at right angles) with the flow direction of hydrogen is substantially the same. For example, the width W of the plurality of fuel gas channels 32 is substantially the same as the width W1 of the fuel gas channel 32a in the embodiment, and the channel cross-sectional area of the plurality of fuel gas channels 32 is the fuel gas in the embodiment It is substantially the same as the flow passage cross-sectional area of the flow passage 32a. The other configuration is the same as that of the embodiment, and thus the description is omitted.

図3は、比較例の燃料電池で生じる課題を説明するための図である。燃料電池では、MEA10で電気化学反応が進行することによって水分が生成される。カソード側で多くの水分が生成されるが、カソード側で生成された水分は電解質膜12を介してアノード側に透過する。ここで、図3のように、比較例の燃料電池では、複数の燃料ガス流路32を流れる水素の流通方向と、冷媒流路24を流れる空気(冷媒)の流通方向と、は交差(例えば直交)している。MEA10(発電部)のうちの空気(冷媒)供給口側に位置する部位は、空気(冷媒)によって十分に冷却されて温度が低くなる。このため、MEA10のうちの空気(冷媒)供給口側で生成された水分は気化され難く液水の状態で存在し易い。よって、MEA10のうちの空気(冷媒)供給口側に位置する部位では、カソード側で生成された液水がアノード側に透過して、アノード側セパレータ18aに形成された燃料ガス流路32に液水が到達し易い。酸化剤ガス流路22は大流量の空気が流れるため、酸化剤ガス流路22内に液水は滞留し難いが、燃料ガス流路32を流れる水素は流量が比較的少ないため、燃料ガス流路32内に液水が滞留し易い。特に、燃料ガス流路32を流れる水素は発電で消費されることから、燃料ガス流路32の下流側に向かうに連れて水素の流量が減少していき、燃料ガス流路32の下流側において燃料ガス流路32内に液水が滞留し易い。したがって、図3のように、MEA10のうちの空気(冷媒)供給口側で且つ水素排出口側に位置する部位50において、燃料ガス流路32内に液水が溜まり易い。   FIG. 3 is a diagram for explaining a problem that occurs in the fuel cell of the comparative example. In the fuel cell, moisture is generated by the progress of the electrochemical reaction in the MEA 10. Although a large amount of water is generated on the cathode side, the water generated on the cathode side is transmitted to the anode side through the electrolyte membrane 12. Here, as in FIG. 3, in the fuel cell of the comparative example, the flow direction of hydrogen flowing through the plurality of fuel gas flow paths 32 and the flow direction of air (refrigerant) flowing through the refrigerant flow path 24 intersect (for example, Orthogonal). The part of the MEA 10 (power generation unit) located on the air (refrigerant) supply port side is sufficiently cooled by the air (refrigerant) to lower its temperature. For this reason, the moisture generated on the air (refrigerant) supply port side of the MEA 10 is less likely to be vaporized, and tends to be present in the state of liquid water. Therefore, in the portion of the MEA 10 located on the air (refrigerant) supply port side, the liquid water generated on the cathode side permeates to the anode side, and the liquid in the fuel gas flow path 32 formed in the anode side separator 18a Water is easy to reach. Since a large flow of air flows through the oxidant gas flow passage 22, liquid water does not easily stay in the oxidant gas flow passage 22, but the flow rate of hydrogen flowing through the fuel gas flow passage 32 is relatively small. Liquid water tends to stay in the passage 32. In particular, since hydrogen flowing through the fuel gas flow passage 32 is consumed by power generation, the flow rate of hydrogen decreases as it goes downstream of the fuel gas flow passage 32, and at the downstream side of the fuel gas flow passage 32 The liquid water tends to stay in the fuel gas channel 32. Therefore, as shown in FIG. 3, liquid water is likely to be accumulated in the fuel gas flow path 32 at the portion 50 of the MEA 10 located on the air (refrigerant) supply port side and the hydrogen discharge port side of the MEA 10.

比較例のように複数の燃料ガス流路32の全ての流路断面積が略同じである場合、液水が溜まっている燃料ガス流路32の圧力損失は液水が溜まっていない燃料ガス流路32の圧力損失よりも大きくなる。このため、水素は、液水が溜まっていない燃料ガス流路32を流れ、液水が溜まった燃料ガス流路32は流れ難くなる。このため、液水が溜まることで水素が流れ難くなった燃料ガス流路32が設けられている部位では、発電性能の低下が生じてしまう。   As in the comparative example, when all the flow passage cross-sectional areas of the plurality of fuel gas flow passages 32 are substantially the same, the pressure loss of the fuel gas flow passage 32 in which the liquid water is accumulated is the fuel gas flow in which the liquid water is not accumulated It becomes larger than the pressure loss of the passage 32. For this reason, hydrogen flows through the fuel gas flow path 32 in which liquid water is not accumulated, and the fuel gas flow path 32 in which liquid water is accumulated is difficult to flow. For this reason, in the part provided with the fuel gas flow path 32 in which hydrogen can not easily flow due to the accumulation of liquid water, the power generation performance is lowered.

一方、実施例では、図1(a)及び図1(b)のように、複数の燃料ガス流路32のうちの冷媒流路24の下流側に位置する燃料ガス流路32bは、燃料ガス流路32bより上流側に位置する燃料ガス流路32aよりも水素の流通方向に交差する方向において小さな流路断面積を有する。これにより、例えば冷媒流路24の上流側に位置する燃料ガス流路32aに液水が溜まった場合でも、燃料ガス流路32aの圧力損失と冷媒流路24の下流側に位置する燃料ガス流路32bの圧力損失との差を小さくすることができる。よって、燃料ガス流路32aに水素が流れ難くなることを抑制できる。燃料ガス流路32aに水素が流れ難くなることを抑制できるため、燃料ガス流路32a内の液水が外部に排水され易くなる。このようなことから、発電性能の低下を抑制できる。なお、冷媒流路24の下流側に位置する燃料ガス流路32bの流路断面積が小さいことで水素流量は少なくなるが、冷媒流路24の下流側でのMEA10の温度は高く乾燥していることから、ガス拡散性が良好であるため、発電性能が大きく低下することはない。   On the other hand, in the embodiment, as shown in FIGS. 1 (a) and 1 (b), the fuel gas passage 32b located downstream of the refrigerant passage 24 among the plurality of fuel gas passages 32 is a fuel gas It has a smaller flow passage cross-sectional area in the direction intersecting with the flow direction of hydrogen than the fuel gas flow passage 32a located on the upstream side of the flow passage 32b. Thus, for example, even when liquid water is accumulated in the fuel gas flow passage 32a located on the upstream side of the refrigerant flow passage 24, the pressure loss of the fuel gas flow passage 32a and the fuel gas flow located on the downstream side of the refrigerant flow passage 24 The difference with the pressure loss of the passage 32b can be reduced. Accordingly, it is possible to suppress the difficulty of flowing hydrogen into the fuel gas flow path 32a. Since it is possible to suppress the difficulty in flowing hydrogen into the fuel gas flow passage 32a, the liquid water in the fuel gas flow passage 32a is easily drained to the outside. From such a thing, the fall of power generation performance can be controlled. Although the hydrogen flow rate decreases because the flow passage cross-sectional area of the fuel gas flow passage 32b located on the downstream side of the refrigerant flow passage 24 is small, the temperature of the MEA 10 downstream of the refrigerant flow passage 24 is highly dry Therefore, since the gas diffusibility is good, the power generation performance is not significantly reduced.

また、実施例によれば、冷媒流路24の下流側に位置する燃料ガス流路32bの幅W2が上流側に位置する燃料ガス流路32aの幅W1よりも狭いことで、燃料ガス流路32bの流路断面積が燃料ガス流路32aの流路断面積よりも小さくなっている。MEA10(発電部)のうちの冷媒流路24の下流側に位置する部位は温度が高くなり易いが、燃料ガス流路32bの幅W2が狭いことで、この部位のアノード側セパレータ18aによる熱伝導性を向上させることができる。よって、MEA10のうちの冷媒流路24の下流側に位置する部位の乾燥を抑制することができる。なお、複数の燃料ガス流路32の幅が一定で且つ深さが変わることで、冷媒流路24の下流側に位置する燃料ガス流路32bの流路断面積が上流側に位置する燃料ガス流路32aの流路断面積よりも小さくなるようにしてもよい。   Further, according to the embodiment, the width W2 of the fuel gas flow path 32b located on the downstream side of the refrigerant flow path 24 is narrower than the width W1 of the fuel gas flow path 32a located on the upstream side. The flow passage cross-sectional area 32b is smaller than the flow passage cross-sectional area of the fuel gas flow passage 32a. The temperature of the portion of the MEA 10 (power generation portion) located on the downstream side of the refrigerant flow path 24 tends to be high, but the width W2 of the fuel gas flow path 32b is narrow, so heat conduction by the anode side separator 18a of this portion It is possible to improve the quality. Thus, the drying of the portion of the MEA 10 located downstream of the coolant channel 24 can be suppressed. It should be noted that the fuel gas flow path 32b located on the downstream side of the refrigerant flow path 24 has a flow passage cross-sectional area located on the upstream side by the width of the plurality of fuel gas flow paths 32 being constant and the depth changing. You may make it smaller than the flow-path cross-sectional area of the flow path 32a.

なお、実施例では、冷媒流路24の下流側に位置する燃料ガス流路32bの流路断面積が、水素の流通方向で一定である場合を例に示したが、この場合に限られる訳ではない。燃料ガス流路32bの一部において、燃料ガス流路32aよりも流路断面積が小さくなっていればよい。また、別の例においては、複数の燃料ガス流路32それぞれの流路断面積は同じで、冷媒流路24の下流側に位置する発電面積あたりの燃料ガス流路32の本数が、冷媒流路24の上流側に位置する発電面積あたりの燃料ガス流路32の本数よりも少なくてもよい。言い換えると、複数の燃料ガス流路32それぞれの流路断面積は同じで、流路間のリブ幅が冷媒流路24の下流側では上流側よりも長い場合でもよい。燃料電池の発電面において発電量がほぼ均一である場合、燃料電池から生成される水分の量もほぼ均一となる。ここで水分には、液水と水蒸気の両方を含む。冷媒流路24の上流側では、水分中の液水の割合が大きくなるが、冷媒流路24の上流側に位置する発電面積あたりの燃料ガス流路32の本数が冷媒流路24の下流側に位置する発電面積あたりの燃料ガス流路32の本数よりも多いため、発電面積あたりの燃料ガスの流量が多くなり、実施例と同様に液水を排水しやすくすることができる。   In the embodiment, although the case where the flow passage cross-sectional area of the fuel gas flow passage 32b located on the downstream side of the refrigerant flow passage 24 is constant in the flow direction of hydrogen is taken as an example, is not. In a part of the fuel gas flow passage 32b, the flow passage cross-sectional area may be smaller than that of the fuel gas flow passage 32a. In another example, the cross-sectional areas of the plurality of fuel gas channels 32 are the same, and the number of fuel gas channels 32 per power generation area located downstream of the refrigerant channel 24 is the refrigerant flow. The number may be smaller than the number of fuel gas passages 32 per power generation area located upstream of the passage 24. In other words, the channel cross-sectional areas of the plurality of fuel gas channels 32 may be the same, and the rib width between the channels may be longer on the downstream side of the coolant channel 24 than on the upstream side. When the amount of power generation is substantially uniform on the power generation surface of the fuel cell, the amount of water generated from the fuel cell is also substantially uniform. Here, the moisture includes both liquid water and steam. Although the proportion of liquid water in the water increases on the upstream side of the refrigerant flow channel 24, the number of fuel gas flow channels 32 per power generation area located on the upstream side of the refrigerant flow channel 24 is on the downstream side of the refrigerant flow channel 24. Since the number of fuel gas flow paths 32 per power generation area located in is larger than the number of fuel gas flow paths 32 per power generation area, the flow rate of fuel gas per power generation area increases, and it is possible to easily drain liquid water as in the embodiment.

なお、実施例において、小さい流路断面積を有する燃料ガス流路32bは、MEA10のうちの冷媒流路24の出口側の0〜20%の範囲に設けられることが好ましく、0〜18%の範囲に設けられることがより好ましく、0〜15%の範囲に設けられることが更に好ましい。この部位ではMEA10の温度が高くなり易いため、生成水が気化されて、燃料ガス流路32に液水が溜まり難いためである。   In the embodiment, the fuel gas flow passage 32b having a small flow passage cross-sectional area is preferably provided in the range of 0 to 20% of the outlet side of the refrigerant flow passage 24 in the MEA 10, 0 to 18% It is more preferable to be provided in the range, and it is further preferable to be provided in the range of 0 to 15%. At this portion, the temperature of the MEA 10 tends to be high, and thus the generated water is vaporized, so that the liquid water is unlikely to be accumulated in the fuel gas passage 32.

なお、実施例では空冷式の燃料電池の場合を例に示したが、水冷式の燃料電池の場合でもよい。しかしながら、空冷式の燃料電池では、発電部のうちの冷媒流路の下流側で温度が高くなり易い一方で、上流側では温度が低くなり易い。したがって、本発明を空冷式の燃料電池に適用することが好ましい。   In the embodiment, the case of the air-cooled fuel cell is shown as an example, but the case of the water-cooled fuel cell may be used. However, in the air-cooled fuel cell, the temperature is likely to be high on the downstream side of the refrigerant flow path in the power generation unit, while the temperature is likely to be low on the upstream side. Therefore, it is preferable to apply the present invention to an air-cooled fuel cell.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   As mentioned above, although the embodiment of the present invention has been described in detail, the present invention is not limited to such a specific embodiment, and various modifications may be made within the scope of the present invention described in the claims. Changes are possible.

10 膜電極接合体
12 電解質膜
14a アノード触媒層
14c カソード触媒層
16a アノードガス拡散層
16c カソードガス拡散層
18a アノード側セパレータ
18c カソード側セパレータ
20 膜電極ガス拡散層接合体
22 酸化剤ガス流路
24 冷媒流路
26、28 凹部
32〜32b 燃料ガス流路
40、42 絶縁部材
44 燃料ガス供給マニホールド
46 燃料ガス排出マニホールド
50 部位
100、500 単セル
Reference Signs List 10 membrane electrode assembly 12 electrolyte membrane 14a anode catalyst layer 14c cathode catalyst layer 16a anode gas diffusion layer 16c cathode gas diffusion layer 18a anode side separator 18c cathode side separator 20 membrane electrode gas diffusion layer assembly 22 oxidant gas flow path 24 refrigerant Flow path 26, 28 Recess 32-32 b Fuel gas flow path 40, 42 Insulating member 44 Fuel gas supply manifold 46 Fuel gas discharge manifold 50 Part 100, 500 single cell

Claims (1)

膜電極接合体と、
前記膜電極接合体の一方の面側に配置され、前記膜電極接合体に供給される燃料ガスが流れる複数の燃料ガス流路が形成されたアノード側セパレータと、
前記膜電極接合体の他方の面側に配置され、前記膜電極接合体に供給される酸化剤ガスが流れる酸化剤ガス流路が形成されたカソード側セパレータと、を備え、
前記複数の燃料ガス流路は、燃料ガス供給マニホールドと燃料ガス排出マニホールドとの間に接続され且つ前記アノード側セパレータと前記カソード側セパレータとの間に形成されて冷媒が流れる冷媒流路に交差し、
前記複数の燃料ガス流路のうちの前記冷媒流路の下流側に位置する第1燃料ガス流路は前記第1燃料ガス流路より前記冷媒流路の上流側に位置する第2燃料ガス流路よりも前記燃料ガスの流通方向に交差する方向において小さな発電面積あたりの流路断面積を有する、燃料電池。
A membrane electrode assembly,
An anode-side separator disposed on one side of the membrane electrode assembly and having a plurality of fuel gas flow paths through which the fuel gas supplied to the membrane electrode assembly flows;
And a cathode side separator disposed on the other surface side of the membrane electrode assembly and having an oxidant gas flow path through which an oxidant gas supplied to the membrane electrode assembly flows.
The plurality of fuel gas flow paths are connected between the fuel gas supply manifold and the fuel gas discharge manifold, and are formed between the anode side separator and the cathode side separator to intersect the refrigerant flow path through which the refrigerant flows. ,
The first fuel gas flow passage positioned downstream of the refrigerant flow passage among the plurality of fuel gas flow passages is a second fuel gas flow positioned upstream of the refrigerant flow passage with respect to the first fuel gas flow passage A fuel cell having a flow passage cross-sectional area per small power generation area in a direction intersecting the flow direction of the fuel gas than a passage.
JP2017206371A 2017-10-25 2017-10-25 Fuel cell Active JP7048254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017206371A JP7048254B2 (en) 2017-10-25 2017-10-25 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206371A JP7048254B2 (en) 2017-10-25 2017-10-25 Fuel cell

Publications (2)

Publication Number Publication Date
JP2019079722A true JP2019079722A (en) 2019-05-23
JP7048254B2 JP7048254B2 (en) 2022-04-05

Family

ID=66628880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206371A Active JP7048254B2 (en) 2017-10-25 2017-10-25 Fuel cell

Country Status (1)

Country Link
JP (1) JP7048254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455202B2 (en) 2019-10-16 2024-03-25 未勢能源科技有限公司 Fuel cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223238A (en) * 1997-02-05 1998-08-21 Mitsubishi Electric Corp Solid polymer electrolyte fuel cell laminate, and manufacture of gas separation plate of the same
JP2004039540A (en) * 2002-07-05 2004-02-05 Nippon Soken Inc Fuel cell
JP2005276736A (en) * 2004-03-26 2005-10-06 Nissan Motor Co Ltd Fuel cell stack
JP2007141551A (en) * 2005-11-16 2007-06-07 Honda Motor Co Ltd Fuel cell stack
JP2008218392A (en) * 2007-02-06 2008-09-18 Honda Motor Co Ltd Fuel cell
JP2009170206A (en) * 2008-01-15 2009-07-30 Nissan Motor Co Ltd Fuel cell, and fuel cell separator
JP2010073564A (en) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd Fuel cell and separator for fuel cell
JP2017199609A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223238A (en) * 1997-02-05 1998-08-21 Mitsubishi Electric Corp Solid polymer electrolyte fuel cell laminate, and manufacture of gas separation plate of the same
JP2004039540A (en) * 2002-07-05 2004-02-05 Nippon Soken Inc Fuel cell
JP2005276736A (en) * 2004-03-26 2005-10-06 Nissan Motor Co Ltd Fuel cell stack
JP2007141551A (en) * 2005-11-16 2007-06-07 Honda Motor Co Ltd Fuel cell stack
JP2008218392A (en) * 2007-02-06 2008-09-18 Honda Motor Co Ltd Fuel cell
JP2009170206A (en) * 2008-01-15 2009-07-30 Nissan Motor Co Ltd Fuel cell, and fuel cell separator
JP2010073564A (en) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd Fuel cell and separator for fuel cell
JP2017199609A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455202B2 (en) 2019-10-16 2024-03-25 未勢能源科技有限公司 Fuel cell

Also Published As

Publication number Publication date
JP7048254B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
JP4431192B2 (en) Fuel cell
US6303245B1 (en) Fuel cell channeled distribution of hydration water
US10847816B2 (en) Fuel cell
EP2680354B1 (en) Fuel cell
US10553881B2 (en) Fuel cell
JP6604261B2 (en) Fuel cell
KR102034457B1 (en) Separator and Fuel cell stack comprising the same
US10854892B2 (en) Fuel cell stack having improved joining strength between separators
JPWO2010029758A1 (en) POLYMER ELECTROLYTE FUEL CELL AND FUEL CELL STACK HAVING THE SAME
JP2011096498A (en) Fuel cell laminate
JP2019079722A (en) Fuel cell
JP6614070B2 (en) Fuel cell and fuel cell separator
JP2020107397A (en) Fuel battery cell
JP2013157315A (en) Fuel battery
JP2019125530A (en) Fuel cell stack
JP2018116861A (en) Fuel battery
JP6780612B2 (en) Fuel cell separator
JP2018081880A (en) Fuel battery
KR20230097258A (en) Fuel cell apparatus
JP2019023982A (en) Fuel cell
KR20230013702A (en) Fuel cell apparatus
KR20230097259A (en) Fuel cell apparatus
JP2012003875A (en) Fuel cell
JP5694093B2 (en) Fuel cell
JP2018206597A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150