JP7047548B2 - Rechargeable battery system - Google Patents

Rechargeable battery system Download PDF

Info

Publication number
JP7047548B2
JP7047548B2 JP2018070931A JP2018070931A JP7047548B2 JP 7047548 B2 JP7047548 B2 JP 7047548B2 JP 2018070931 A JP2018070931 A JP 2018070931A JP 2018070931 A JP2018070931 A JP 2018070931A JP 7047548 B2 JP7047548 B2 JP 7047548B2
Authority
JP
Japan
Prior art keywords
current collector
component value
collector foil
electrode current
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018070931A
Other languages
Japanese (ja)
Other versions
JP2019185861A (en
Inventor
淳史 宝来
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2018070931A priority Critical patent/JP7047548B2/en
Publication of JP2019185861A publication Critical patent/JP2019185861A/en
Application granted granted Critical
Publication of JP7047548B2 publication Critical patent/JP7047548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、電解液の漏洩が検知できる二次電池システムに関する。 The present invention relates to a secondary battery system capable of detecting leakage of an electrolytic solution.

近年、環境問題およびエネルギー問題の解決に向けて、種々の電気自動車の普及が期待されている。しかし、これらの電気自動車を普及させるためには、少なくとも一充電当たりの走行距離をガソリンエンジン車に近づける必要がある。このため、より高いエネルギー密度を有する二次電池の開発が鋭意行われている。 In recent years, various electric vehicles are expected to become widespread in order to solve environmental problems and energy problems. However, in order to popularize these electric vehicles, it is necessary to bring at least the mileage per charge closer to that of a gasoline engine vehicle. Therefore, the development of a secondary battery having a higher energy density is being enthusiastically carried out.

たとえば、高いエネルギー密度を有する二次電池を実現させる技術としては、特許文献1に開示されているものがある。特許文献1では、正極集電体と負極集電体との間を封着部材によって封着させ、これによって単セル間の短絡が防止できるようにしている。この技術によれば、液状の電解液が使用できるようになるので、通常の二次電池と遜色ない出力密度が得られ、また、電池ケースが省略できるので、その分エネルギー密度を向上させることができる。 For example, as a technique for realizing a secondary battery having a high energy density, there is one disclosed in Patent Document 1. In Patent Document 1, the positive electrode current collector and the negative electrode current collector are sealed by a sealing member, whereby a short circuit between single cells can be prevented. According to this technology, since a liquid electrolytic solution can be used, an output density comparable to that of a normal secondary battery can be obtained, and since a battery case can be omitted, the energy density can be improved accordingly. can.

特開2004-349156号公報Japanese Unexamined Patent Publication No. 2004-349156

従来の二次電池のエネルギー密度をさらに向上させるには、電気エネルギーを外部に取り出すための、正極集電板および負極集電板の厚みをさらに薄くする等、二次電池の主材料以外の構成部材の容量比率を下げる必要がある。しかし、正極集電板および負極集電板の厚みを薄くすれば、二次電池を構成する単セルの外装体強度が弱くなる。 In order to further improve the energy density of the conventional secondary battery, the thickness of the positive electrode current collector plate and the negative electrode current collector plate for extracting electric energy to the outside is further reduced, and the configuration other than the main material of the secondary battery is configured. It is necessary to reduce the capacity ratio of the members. However, if the thickness of the positive electrode current collector plate and the negative electrode current collector plate is reduced, the strength of the exterior body of the single cell constituting the secondary battery is weakened.

特に、単セルを構成する正極集電体および負極集電体を樹脂で形成した、投影面積の大きな(数十センチ×数十センチ以上)二次電池の場合、二次電池にかかる応力によって、正極集電体および負極集電体に亀裂が入り、その亀裂から電解液が染み出てきたり、漏れたりする恐れがある。 In particular, in the case of a secondary battery having a large projected area (several tens of centimeters x several tens of centimeters or more) in which the positive electrode current collector and the negative electrode current collector constituting the single cell are formed of resin, the stress applied to the secondary battery causes the secondary battery. The positive electrode current collector and the negative electrode current collector may be cracked, and the electrolytic solution may seep out or leak from the cracks.

電解液が漏洩すると、二次電池の容量が低下してしまったり、満充電時の容量が低下してしまったりするため、二次電池の性能低下が問題となる。また、特に、漏れた電解液が単セルの外側から染み出すと、単セル間の短絡の原因となるため、二次電池の安全性および信頼性も問題となる。このため、電解液の漏洩は迅速に検知する必要がある。 If the electrolytic solution leaks, the capacity of the secondary battery may decrease or the capacity when fully charged may decrease, so that the performance of the secondary battery deteriorates. Further, in particular, if the leaked electrolyte seeps out from the outside of the single cell, it causes a short circuit between the single cells, so that the safety and reliability of the secondary battery also become a problem. Therefore, it is necessary to quickly detect the leakage of the electrolytic solution.

そこで、本発明は、電解液の漏洩が検知できる二次電池システムの提供を目的とする。 Therefore, an object of the present invention is to provide a secondary battery system capable of detecting leakage of an electrolytic solution.

上記目的を達成するための本発明に係る二次電池システムは、二次電池、インピーダンス計測部、および電解液漏洩判断部を有する。二次電池は、正極集電箔と負極集電箔とが積層された集電体の、正極側に正極活物質層、負極側に負極活物質層が形成された双極電極を、電解液が含まれるセパレータを介して直列に複数接続した積層体を有し前記正極集電箔、前記正極活物質層、前記セパレータ、前記負極活物質層および前記負極集電箔によって発電要素が形成され、前記発電要素の端部に、前記正極活物質層、前記負極活物質層およびセパレータの周囲を封止するシール部が設けられてなる。インピーダンス計測部は、隣り合う2つの発電要素隣接する正極集電箔と負極集電箔との間のインピーダンスを計測する。電解液漏洩判断部は、計測された前記インピーダンスを用いて、前記セパレータに含まれる電解液が、前記正極活物質層および前記正極集電箔、または前記負極活物質層および前記負極集電箔から、隣り合う2つの前記発電要素の隣接する前記正極集電箔と前記負極集電箔との間に漏洩したことを判断する。 The secondary battery system according to the present invention for achieving the above object includes a secondary battery , an impedance measurement unit, and an electrolytic solution leakage determination unit. The secondary battery is a bipolar electrode in which a positive electrode collector foil and a negative electrode current collector foil are laminated, and a positive electrode active material layer is formed on the positive electrode side and a negative electrode active material layer is formed on the negative electrode side. It has a laminate in which a plurality of layers are connected in series via a contained separator, and a power generation element is formed by the positive electrode current collector foil, the positive electrode active material layer, the separator, the negative electrode active material layer, and the negative electrode current collector foil. At the end of the power generation element, a sealing portion for sealing the periphery of the positive electrode active material layer, the negative electrode active material layer, and the separator is provided. The impedance measuring unit measures the impedance between the adjacent positive electrode current collector foil and the negative electrode current collector foil of two adjacent power generation elements . The electrolytic solution leakage determination unit uses the measured impedance to allow the electrolytic solution contained in the separator to flow from the positive electrode active material layer and the positive electrode current collector foil, or the negative electrode active material layer and the negative electrode current collector foil. , It is determined that leakage has occurred between the positive electrode current collector foil and the negative electrode current collector foil adjacent to each other of the two adjacent power generation elements .

本発明に係る二次電池システムによれば、双極電極の正極集電箔と負極集電箔との間の電解液の漏洩が検知できる。このため、漏洩した電解液を原因とする、二次電池の電池性能の低下が防止でき、二次電池の信頼性と安全性とが確保できる。 According to the secondary battery system according to the present invention, leakage of the electrolytic solution between the positive electrode current collector foil and the negative electrode current collector foil of the bipolar electrode can be detected. Therefore, deterioration of the battery performance of the secondary battery due to the leaked electrolytic solution can be prevented, and the reliability and safety of the secondary battery can be ensured.

本実施形態に係る二次電池の断面図である。It is sectional drawing of the secondary battery which concerns on this embodiment. 本実施形態に係る二次電池システムの概略構成図である。It is a schematic block diagram of the secondary battery system which concerns on this embodiment. 図2のインピーダンス計測部のブロック図である。It is a block diagram of the impedance measurement part of FIG. 図2の電解液漏洩判断部のブロック図である。It is a block diagram of the electrolytic solution leakage determination part of FIG. 電解液が漏洩していない場合の集電体の状態を示す図である。It is a figure which shows the state of the current collector when the electrolytic solution does not leak. 電解液が漏洩していない場合の等価回路図である。It is an equivalent circuit diagram when the electrolytic solution does not leak. 電解液が漏洩している場合の集電体の状態を示す図である。It is a figure which shows the state of the current collector when the electrolytic solution leaks. 電解液が漏洩している場合の等価回路図である。It is an equivalent circuit diagram in the case where the electrolytic solution is leaking. 本実施形態に係る二次電池システムの動作フローチャートである。It is an operation flowchart of the secondary battery system which concerns on this embodiment. 図6のS100のステップのサブルーチンフローチャートである。It is a subroutine flowchart of the step of S100 of FIG. 電解液が漏洩していない場合のコールコールプロット図である。It is a call call plot figure in the case where the electrolytic solution does not leak. 電解液が漏洩している場合のコールコールプロット図である。It is a call call plot figure in the case where an electrolytic solution is leaking. 図6のS110のステップのサブルーチンフローチャートである。It is a subroutine flowchart of the step of S110 of FIG.

以下、図面を参照しながら本発明の実施形態について説明する。なお、図面の寸法比率は、説明の都合上誇張されており、実際の寸法比率とは異なる場合がある。また、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められ、以下の実施形態の記載に限定されるものでない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual dimensional ratios. Further, the technical scope of the present invention is defined based on the description of the scope of claims, and is not limited to the description of the following embodiments.

[二次電池10の構成]
本実施形態に係る二次電池10の一例として双極型リチウムイオン二次電池について説明する。なお、以下の説明では、双極型リチウムイオン二次電池を単に「二次電池」と称する。
[Structure of secondary battery 10]
A bipolar lithium-ion secondary battery will be described as an example of the secondary battery 10 according to the present embodiment. In the following description, the bipolar lithium ion secondary battery is simply referred to as a "secondary battery".

図1は、本実施形態に係る二次電池10の断面図である。図1に示すように、二次電池10は、複数の発電要素20を積層してなる積層体11が外装体12の内部で封止された構造を有する。積層体11は、外装体12によって、外部から受ける応力や外部から受ける環境の影響から保護される。なお、発電要素20の積層数は、所望する電圧に応じて変える。 FIG. 1 is a cross-sectional view of the secondary battery 10 according to the present embodiment. As shown in FIG. 1, the secondary battery 10 has a structure in which a laminated body 11 formed by laminating a plurality of power generation elements 20 is sealed inside an exterior body 12. The laminate 11 is protected from external stress and external environmental influences by the exterior body 12. The number of stacked power generation elements 20 is changed according to the desired voltage.

図1に示すように、二次電池10は、積層体11の最上部に位置する発電要素20の正極集電箔31a上に、正極集電箔31aと接触する正極集電板34aが配置される。正極集電板34aは外装体12に向けて延長され外装体12から外部に導出される。また、積層体11の最下部に位置する発電要素20の負極集電箔31b下に、負極集電箔31bと接触する負極集電板34bが配置される。負極集電板34bは外装体12に向けて延長され外装体12から外部に導出される。 As shown in FIG. 1, in the secondary battery 10, a positive electrode current collector plate 34a in contact with the positive electrode current collector foil 31a is arranged on the positive electrode current collector foil 31a of the power generation element 20 located at the uppermost portion of the laminated body 11. To. The positive electrode current collector plate 34a is extended toward the exterior body 12 and is led out from the exterior body 12. Further, a negative electrode current collector plate 34b in contact with the negative electrode current collector foil 31b is arranged under the negative electrode current collector foil 31b of the power generation element 20 located at the lowermost portion of the laminated body 11. The negative electrode current collector plate 34b is extended toward the exterior body 12 and is led out from the exterior body 12.

発電要素20は、負極集電箔31bと、負極集電箔31b上に形成された負極活物質層32bと、正極集電箔31aと、正極集電箔31a上に形成された正極活物質層32aと、負極活物質層32bおよび正極活物質層32aの間に介在する、電解液が含まれるセパレータ40とから構成される。発電要素20の両端部にはシール部50が設けられている。シール部50は、正極活物質層32a、負極活物質層32bおよびセパレータ40の周囲を液密に封止し、電解液の漏れによる液絡を防止している。 The power generation element 20 includes a negative electrode current collector foil 31b, a negative electrode active material layer 32b formed on the negative electrode current collector foil 31b, a positive electrode current collector foil 31a, and a positive electrode active material layer formed on the positive electrode current collector foil 31a. It is composed of 32a and a separator 40 containing an electrolytic solution, which is interposed between the negative electrode active material layer 32b and the positive electrode active material layer 32a. Seals 50 are provided at both ends of the power generation element 20. The sealing portion 50 tightly seals the periphery of the positive electrode active material layer 32a, the negative electrode active material layer 32b, and the separator 40 to prevent liquid leakage due to leakage of the electrolytic solution.

積層体11は発電要素20を複数積層したものである。換言すれば、積層体11は、正極集電箔31aと負極集電箔31bとが積層された集電体31の、正極側に正極活物質層32a、負極側に負極活物質層32bが形成された双極電極35を、電解液が含まれるセパレータ40を介して直列に接続したものであるとも言える。 The laminated body 11 is a stack of a plurality of power generation elements 20. In other words, in the laminated body 11, the positive electrode active material layer 32a is formed on the positive electrode side and the negative electrode active material layer 32b is formed on the negative electrode side of the current collector 31 in which the positive electrode collecting foil 31a and the negative electrode collecting foil 31b are laminated. It can also be said that the bipolar electrodes 35 are connected in series via a separator 40 containing an electrolytic solution.

(集電体)
集電体31(正極集電箔31aおよび負極集電箔31b)は、正極活物質層32aと接する一方の面から、負極活物質層32bと接する他方の面へと電子の移動を媒介する機能を有する。正極集電箔31aおよび負極集電箔31bを構成する材料は、特に限定されないが、例えば、導電性を有する樹脂、樹脂を含む導電材料、または金属が用いられうる。
(Current collector)
The current collector 31 (positive electrode current collector foil 31a and negative electrode current collector foil 31b) has a function of mediating the movement of electrons from one surface in contact with the positive electrode active material layer 32a to the other surface in contact with the negative electrode active material layer 32b. Has. The material constituting the positive electrode current collector foil 31a and the negative electrode current collector foil 31b is not particularly limited, and for example, a conductive resin, a conductive material containing a resin, or a metal can be used.

集電体31の軽量化の観点からは、集電体31を構成する正極集電箔31aおよび負極集電箔31bは、上記のように、樹脂または樹脂を含む導電材料で形成された樹脂集電体であることが好ましい。なお、発電要素20間のリチウムイオンの移動を遮断する観点からは、樹脂集電体の一部に金属層を設けてもよい。 From the viewpoint of reducing the weight of the current collector 31, the positive electrode current collector foil 31a and the negative electrode current collector foil 31b constituting the current collector 31 are resin collections formed of resin or a conductive material containing resin as described above. It is preferably an electric body. From the viewpoint of blocking the movement of lithium ions between the power generation elements 20, a metal layer may be provided on a part of the resin current collector.

(正極活物質層、負極活物質層)
電極活物質層32(正極活物質層32a、負極活物質層32b)は、電極活物質(正極活物質または負極活物質)および電解液を含む。また、電極活物質層32は、必要に応じて、導電助剤、導電部材、被覆用樹脂等を含んでもよい。さらに、電極活物質層32は、必要に応じてイオン伝導性ポリマー、リチウム塩等を含んでもよい。
(Positive electrode active material layer, Negative electrode active material layer)
The electrode active material layer 32 (positive electrode active material layer 32a, negative electrode active material layer 32b) contains an electrode active material (positive electrode active material or negative electrode active material) and an electrolytic solution. Further, the electrode active material layer 32 may contain a conductive auxiliary agent, a conductive member, a coating resin and the like, if necessary. Further, the electrode active material layer 32 may contain an ion conductive polymer, a lithium salt, or the like, if necessary.

(正極活物質)
正極活物質としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni-Mn-Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物等が挙げられる。
(Positive electrode active material)
Examples of the positive electrode active material include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni—Mn—Co) O 2 , and lithium such as those in which some of these transition metals are replaced by other elements. Examples thereof include transition metal composite oxides, lithium-transition metal phosphate compounds, and lithium-transition metal sulfate compounds.

(負極活物質)
負極活物質としては、例えば、グラファイト(黒鉛)、ソフトカーボン、ハードカーボン等の炭素材料、リチウム-遷移金属複合酸化物(例えば、LiTi12)、金属材料(スズ、シリコン)、リチウム合金系負極材料(例えばリチウム-スズ合金、リチウム-シリコン合金、リチウム-アルミニウム合金、リチウム-アルミニウム-マンガン合金等)等が挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material include carbon materials such as graphite (graphite), soft carbon, and hard carbon, lithium-transition metal composite oxides (for example, Li 4 Ti 5 O 12 ), metal materials (tin, silicon), and lithium. Examples thereof include alloy-based negative electrode materials (for example, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, lithium-aluminum-manganese alloy, etc.).

(導電助剤)
導電助剤は、電極活物質層32中で電子伝導パスを形成し、電極活物質層32の電子移動抵抗を低減することで、二次電池10の高レートでの出力特性向上に寄与し得る。
(Conductive aid)
The conductive auxiliary agent can contribute to the improvement of the output characteristics of the secondary battery 10 at a high rate by forming an electron conduction path in the electrode active material layer 32 and reducing the electron transfer resistance of the electrode active material layer 32. ..

(導電部材)
導電部材は、電極活物質層32中で電子伝導パスを形成する機能を有する。特に、導電部材の少なくとも一部が、電極活物質層32の2つの主面同士を電気的に接続する導電通路を形成していることが好ましい。このような形態を有することで、電極活物質層32中の厚さ方向の電子移動抵抗がさらに低減されるため、二次電池10の高レートでの出力特性をより一層向上しうる。
(Conductive member)
The conductive member has a function of forming an electron conduction path in the electrode active material layer 32. In particular, it is preferable that at least a part of the conductive member forms a conductive passage that electrically connects the two main surfaces of the electrode active material layer 32. By having such a form, the electron transfer resistance in the thickness direction in the electrode active material layer 32 is further reduced, so that the output characteristics of the secondary battery 10 at a high rate can be further improved.

本実施形態の二次電池10において、電極活物質層32の厚さは、正極活物質層32aについては、好ましくは150~1500μmであり、より好ましくは180~950μmであり、さらに好ましくは200~800μmである。また、負極活物質層32bの厚さは、好ましくは150~1500μmであり、より好ましくは180~1200μmであり、さらに好ましくは200~1000μmである。電極活物質層32の厚さが上記した下限値以上の値であれば、二次電池10のエネルギー密度を十分に高めることができる。一方、電極活物質層32の厚さが上記した上限値以下の値であれば、電極活物質層32の構造を十分に維持することができる。 In the secondary battery 10 of the present embodiment, the thickness of the electrode active material layer 32 is preferably 150 to 1500 μm, more preferably 180 to 950 μm, still more preferably 200 to 200 to 500 μm for the positive electrode active material layer 32a. It is 800 μm. The thickness of the negative electrode active material layer 32b is preferably 150 to 1500 μm, more preferably 180 to 1200 μm, and further preferably 200 to 1000 μm. When the thickness of the electrode active material layer 32 is at least the above-mentioned lower limit value, the energy density of the secondary battery 10 can be sufficiently increased. On the other hand, if the thickness of the electrode active material layer 32 is not more than the above-mentioned upper limit value, the structure of the electrode active material layer 32 can be sufficiently maintained.

(セパレータ)
セパレータ40は、電解質を保持し、正極活物質層32aと負極活物質層32bとの間にあって両者が直接に接触することを防止する。本実施形態のセパレータ40に使用される電解質は、特に制限はなく、例えば、電解液またはゲルポリマー電解質等が挙げられる。これらの電解質を用いることで、高いリチウムイオン伝導性が確保されうる。なお、電解液は、上記の電極活物質層32に使用される電解液と同様のものが用いられうる。
(Separator)
The separator 40 retains the electrolyte and is between the positive electrode active material layer 32a and the negative electrode active material layer 32b to prevent them from coming into direct contact with each other. The electrolyte used in the separator 40 of the present embodiment is not particularly limited, and examples thereof include an electrolytic solution and a gel polymer electrolyte. By using these electrolytes, high lithium ion conductivity can be ensured. As the electrolytic solution, the same electrolytic solution as that used for the electrode active material layer 32 may be used.

(正極集電板および負極集電板)
集電板34(正極集電板34aと負極集電板34bの総称)を構成する材料は、特に制限されず、二次電池用の集電板34として従来用いられている公知の高導電性材料が用いられうる。集電板34の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板34aと負極集電板34bとでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
(Positive current collector plate and negative electrode current collector plate)
The material constituting the current collector plate 34 (general term for the positive electrode current collector plate 34a and the negative electrode current collector plate 34b) is not particularly limited, and is known to have high conductivity conventionally used as a current collector plate 34 for a secondary battery. Materials can be used. As the constituent material of the current collector plate 34, for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel, and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable. The same material may be used for the positive electrode current collector plate 34a and the negative electrode current collector plate 34b, or different materials may be used.

(シール部)
シール部50は、発電要素20を構成する集電体31同士の接触や発電要素20の端部における短絡を防止する機能を有する。シール部50を構成する材料としては、絶縁性、シール性(液密性)、電池動作温度下での耐熱性等を有するものであればよい。
(Seal part)
The seal portion 50 has a function of preventing contact between the current collectors 31 constituting the power generation element 20 and a short circuit at the end of the power generation element 20. The material constituting the seal portion 50 may be any material having insulating property, sealing property (liquidtightness), heat resistance under the battery operating temperature, and the like.

(外装体)
図1に示す本実施形態では、外装体12は、ラミネートフィルムによって袋状に構成されているが、これに限定されず、例えば、公知の金属缶ケース等を用いてもよい。高出力化や冷却性能に優れ、EV、HEV用の大型機器用の二次電池に好適に利用することができるという観点からは、外装体12は、ラミネートフィルムによって構成することが好ましい。ラミネートフィルムには、例えば、ポリプロピレン(PP)、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに限定されるものではない。また、外部から掛かる積層体11への群圧を、容易に調整できることから、外装体12はアルミネートラミネートフィルムを用いることがより好ましい。
(Exterior body)
In the present embodiment shown in FIG. 1, the exterior body 12 is formed in a bag shape by a laminated film, but the present invention is not limited to this, and for example, a known metal can case or the like may be used. The exterior body 12 is preferably made of a laminated film from the viewpoint that it has excellent high output and cooling performance and can be suitably used as a secondary battery for large-sized equipment for EVs and HEVs. As the laminating film, for example, a laminated film having a three-layer structure in which polypropylene (PP), aluminum, and nylon are laminated in this order can be used, but the laminating film is not limited thereto. Further, it is more preferable to use an aluminate laminated film for the exterior body 12 because the group pressure applied to the laminated body 11 from the outside can be easily adjusted.

[二次電池システムの構成]
図2は、本実施形態に係る二次電池システム100の概略構成図である。二次電池システム100は、積層体11(図1参照)、インピーダンス計測部120、電解液漏洩判断部140、および警報部200を有する。図2では、積層体11の一部として、積層された2つの発電要素20を示した。インピーダンス計測部120および電解液漏洩判断部140は、便宜上2つのブロックに分けて記載しているが、これらの部分は、通常RAM、ROM等の半導体メモリとCPU(中央処理装置)とを備えた1つのコンピュータによって構成される。
[Configuration of secondary battery system]
FIG. 2 is a schematic configuration diagram of the secondary battery system 100 according to the present embodiment. The secondary battery system 100 includes a laminated body 11 (see FIG. 1), an impedance measuring unit 120, an electrolytic solution leakage determining unit 140, and an alarm unit 200. FIG. 2 shows two stacked power generation elements 20 as a part of the laminated body 11. The impedance measurement unit 120 and the electrolyte leakage determination unit 140 are described separately in two blocks for convenience, but these parts are usually provided with a semiconductor memory such as a RAM or ROM and a CPU (central processing unit). It consists of one computer.

積層体11は、正極集電箔31aと負極集電箔31bとが積層された集電体31の、正極側に正極活物質層32a、負極側に負極活物質層32bが形成された双極電極35を、電解液が含まれるセパレータ40を介して直列に接続してなる。 The laminate 11 is a bipolar electrode in which a positive electrode active material layer 32a is formed on the positive electrode side and a negative electrode active material layer 32b is formed on the negative electrode side of the current collector 31 in which a positive electrode current collecting foil 31a and a negative electrode collecting foil 31b are laminated. 35 is connected in series via a separator 40 containing an electrolytic solution.

インピーダンス計測部120は、双極電極35の正極集電箔31aと負極集電箔31bとの間のインピーダンスを計測する。インピーダンスの計測は、セル電圧検出線125aおよび125bを介して、正極集電箔31aと負極集電箔31bとの間に、2つの異なる周波数の交流電圧(高周波電圧と低周波電圧)を、交互に印加することで計測する。 The impedance measuring unit 120 measures the impedance between the positive electrode current collecting foil 31a and the negative electrode current collecting foil 31b of the bipolar electrode 35. Impedance is measured by alternating two different frequency AC voltages (high frequency voltage and low frequency voltage) between the positive electrode collector foil 31a and the negative electrode current collector foil 31b via the cell voltage detection lines 125a and 125b. It is measured by applying it to.

電解液漏洩判断部140は、インピーダンス計測部120によって計測されたインピーダンスのコンデンサ成分(虚数成分値)と抵抗成分(実数成分値)とを用いて、正極集電箔31aと負極集電箔31bとの間の電解液の漏洩を判断する。正極集電箔31aと負極集電箔31bとの間で電解液が漏洩しているときには、高周波電圧と低周波電圧とを印加したときに計測されるインピーダンスに、それぞれ異なるコンデンサ成分と抵抗成分とが存在する。電解液漏洩判断部140はこれらのコンデンサ成分と抵抗成分とを用いて電解液の漏洩を検知する。 The electrolyte leakage determination unit 140 uses the capacitor component (imaginary number component value) and the resistance component (real number component value) of the impedance measured by the impedance measurement unit 120 to form a positive electrode current collector foil 31a and a negative electrode current collector foil 31b. Determine the leakage of electrolyte between. When the electrolytic solution leaks between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b, the impedance measured when a high frequency voltage and a low frequency voltage are applied has different capacitor components and resistance components, respectively. Exists. The electrolytic solution leakage determination unit 140 detects the leakage of the electrolytic solution by using these capacitor components and resistance components.

警報部200は、電解液漏洩判断部140によって電解液の漏洩が検知されると、音、光、振動等、人間の五感で検知可能な態様で警報を出力する。本実施形態では、ワーニングランプを点灯させている。 When the electrolytic solution leakage determination unit 140 detects the electrolytic solution leakage, the alarm unit 200 outputs an alarm in a manner that can be detected by the five human senses, such as sound, light, and vibration. In this embodiment, the warning lamp is turned on.

図3Aは、図2のインピーダンス計測部120のブロック図である。インピーダンス計測部120は、高周波電圧出力部122、低周波電圧出力部124、虚数成分値計測部126、および実数成分値計測部128を有する。 FIG. 3A is a block diagram of the impedance measuring unit 120 of FIG. The impedance measurement unit 120 includes a high frequency voltage output unit 122, a low frequency voltage output unit 124, an imaginary number component value measurement unit 126, and a real number component value measurement unit 128.

高周波電圧出力部122は、集電体31の正極集電箔31aと負極集電箔31bとの間(図2参照)に1000Hzの高周波電圧を印加する。本実施形態では、高周波電圧として1000Hzの周波数の交流電圧を選択しているが、この周波数には限られない。 The high frequency voltage output unit 122 applies a high frequency voltage of 1000 Hz between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31 (see FIG. 2). In the present embodiment, an AC voltage having a frequency of 1000 Hz is selected as the high frequency voltage, but the frequency is not limited to this.

低周波電圧出力部124は、集電体31の正極集電箔31aと負極集電箔31bとの間に10Hzの低周波電圧を印加する。本実施形態では、低周波電圧として10Hzの周波数の交流電圧を選択しているが、この周波数には限られない。 The low frequency voltage output unit 124 applies a low frequency voltage of 10 Hz between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31. In the present embodiment, an AC voltage having a frequency of 10 Hz is selected as the low frequency voltage, but the frequency is not limited to this.

虚数成分値計測部126は、高周波電圧出力部122が集電体31の正極集電箔31aと負極集電箔31bとの間に1000Hzの高周波電圧を印加したときに計測されたインピーダンスの虚数成分値を計測する。また、低周波電圧出力部124が集電体31の正極集電箔31aと負極集電箔31bとの間に10Hzの低周波電圧を印加したときに計測されたインピーダンスの虚数成分値を計測する。 The imaginary component value measuring unit 126 has an imaginary component of impedance measured when the high frequency voltage output unit 122 applies a high frequency voltage of 1000 Hz between the positive electrode current collecting foil 31a and the negative electrode current collecting foil 31b of the current collector 31. Measure the value. Further, the low frequency voltage output unit 124 measures the imaginary component value of the impedance measured when a low frequency voltage of 10 Hz is applied between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31. ..

実数成分値計測部128は、高周波電圧出力部122が集電体31の正極集電箔31aと負極集電箔31bとの間に1000Hzの高周波電圧を印加したときに計測されたインピーダンスの実数成分値を計測する。また、低周波電圧出力部124が集電体31の正極集電箔31aと負極集電箔31bとの間に10Hzの低周波電圧を印加したときに計測されたインピーダンスの実数成分値を計測する。 The real number component value measuring unit 128 is the real number component of the impedance measured when the high frequency voltage output unit 122 applies a high frequency voltage of 1000 Hz between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31. Measure the value. Further, the low frequency voltage output unit 124 measures the real number component value of the impedance measured when a low frequency voltage of 10 Hz is applied between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31. ..

図3Bは、図2の電解液漏洩判断部140のブロック図である。電解液漏洩判断部140は、虚数成分値記憶部142、実数成分値記憶部144、および比較判断部146を有する。 FIG. 3B is a block diagram of the electrolytic solution leakage determination unit 140 of FIG. The electrolytic solution leakage determination unit 140 includes an imaginary number component value storage unit 142, a real number component value storage unit 144, and a comparison determination unit 146.

虚数成分値記憶部142は、虚数成分値計測部126が計測した、高周波電圧および低周波電圧印加時の、それぞれのインピーダンスの虚数成分値を記憶する。 The imaginary component value storage unit 142 stores the imaginary component values of the respective impedances measured by the imaginary component value measurement unit 126 when the high frequency voltage and the low frequency voltage are applied.

実数成分値記憶部144は、実数成分値計測部128が計測した、高周波電圧および低周波電圧印加時の、それぞれのインピーダンスの実数成分値を記憶する。 The real number component value storage unit 144 stores the real number component values of the respective impedances measured by the real number component value measurement unit 128 when the high frequency voltage and the low frequency voltage are applied.

比較判断部146は、虚数成分値記憶部142に記憶されている、高周波電圧および低周波電圧印加時の、それぞれのインピーダンスの虚数成分値を比較する。また、実数成分値記憶部144に記憶されている、高周波電圧および低周波電圧印加時の、それぞれのインピーダンスの実数成分値を比較する。虚数成分値の比較結果、実数成分値の比較結果から、集電体31の正極集電箔31aと負極集電箔31bとの間の電解液の漏洩の有無を判断する。 The comparison determination unit 146 compares the imaginary component values of the respective impedances stored in the imaginary component value storage unit 142 when the high frequency voltage and the low frequency voltage are applied. Further, the real number component values of the respective impedances stored in the real number component value storage unit 144 when the high frequency voltage and the low frequency voltage are applied are compared. From the comparison result of the imaginary number component value and the comparison result of the real number component value, it is determined whether or not the electrolytic solution leaks between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31.

[電解液の漏洩の検出原理]
図4Aは、電解液が漏洩していない場合の集電体31の状態を示す図であり、図4Bは、電解液が漏洩していない場合の等価回路図である。また、図5Aは、電解液が漏洩している場合の集電体31の状態を示す図であり、図5Bは、電解液が漏洩している場合の等価回路図である。
[Principle of detecting electrolyte leakage]
FIG. 4A is a diagram showing a state of the current collector 31 when the electrolytic solution does not leak, and FIG. 4B is an equivalent circuit diagram when the electrolytic solution does not leak. Further, FIG. 5A is a diagram showing a state of the current collector 31 when the electrolytic solution is leaking, and FIG. 5B is an equivalent circuit diagram when the electrolytic solution is leaking.

図4Aに示すように、正極集電箔31aと負極集電箔31bとの間に電解液が漏洩していなければ、正極集電箔31aと負極集電箔31bの全面が互いに密着している。このため、正極集電箔31aと負極集電箔31bとの間には抵抗成分のみが存在しコンデンサ成分は存在しない。ただし、正極集電箔31aと負極集電箔31bとの間に微小な隙間が存在することがあるので、この場合には、微小なコンデンサ成分が存在する。 As shown in FIG. 4A, if the electrolytic solution does not leak between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b, the entire surfaces of the positive electrode current collector foil 31a and the negative electrode current collector foil 31b are in close contact with each other. .. Therefore, only the resistance component exists between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b, and the capacitor component does not exist. However, since there may be a minute gap between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b, in this case, a minute capacitor component is present.

本実施形態に係る二次電池システム100は、インピーダンス計測部120(図2参照)からセル電圧検出線125aおよび125bを介して、正極集電箔31aと負極集電箔31bとの間に高周波電圧と低周波電圧を印加する。正極集電箔31aと負極集電箔31bとの間に電解液が漏洩していなければ、コンデンサ成分はほとんど存在しないので、セル電圧検出線125aおよび125b間に流れる電流は、印加された電圧と同位相の電流となる。 The secondary battery system 100 according to the present embodiment has a high frequency voltage between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b from the impedance measuring unit 120 (see FIG. 2) via the cell voltage detection lines 125a and 125b. And apply a low frequency voltage. If the electrolytic solution does not leak between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b, there is almost no capacitor component, so the current flowing between the cell voltage detection lines 125a and 125b is the applied voltage. The currents are in phase.

このため、電解液が漏洩していない場合の正極集電箔31aと負極集電箔31bとの間の等価回路は、図4Bのように表される。この等価回路において、直列に接続されている抵抗Raは、正極集電箔31aの単位長さ当たりの抵抗を示す。また、直列に接続されている抵抗Rbは、負極集電箔31bの単位長さ当たりの抵抗を示す。さらに、抵抗Raと抵抗Rbとの間で並列に接続されている抵抗Rdは、正極集電箔31aと負極集電箔31bとの間における各部の接触抵抗を示す。 Therefore, the equivalent circuit between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b when the electrolytic solution does not leak is represented as shown in FIG. 4B. In this equivalent circuit, the resistance Ra connected in series indicates the resistance per unit length of the positive electrode current collector foil 31a. Further, the resistance Rb connected in series indicates the resistance per unit length of the negative electrode current collector foil 31b. Further, the resistance Rd connected in parallel between the resistance Ra and the resistance Rb indicates the contact resistance of each part between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b.

電解液が漏洩していない場合の等価回路は、図4Bのように、抵抗成分のみで表されるので、インピーダンス計測部120によって計測されるインピーダンスは、抵抗成分、すなわち実数成分値のみを有するインピーダンスとなる。つまり、高周波電圧が印加されたときの図4Bに示した等価回路の高周波インピーダンスZ1がR1であり、低周波電圧が印加されたときの、図4Bに示した等価回路の低周波インピーダンスZ2がR2であれば、インピーダンス計測部120は、高周波電圧を印加したときの実数成分値としてR1、低周波電圧を印加したときの実数成分値としてR2をそれぞれ計測する。 Since the equivalent circuit when the electrolytic solution does not leak is represented only by the resistance component as shown in FIG. 4B, the impedance measured by the impedance measuring unit 120 is the impedance having only the resistance component, that is, the real number component value. It becomes. That is, the high frequency impedance Z1 of the equivalent circuit shown in FIG. 4B when the high frequency voltage is applied is R1, and the low frequency impedance Z2 of the equivalent circuit shown in FIG. 4B when the low frequency voltage is applied is R2. If so, the impedance measuring unit 120 measures R1 as a real component value when a high frequency voltage is applied and R2 as a real component value when a low frequency voltage is applied.

一方、図5Aに示すように、正極集電箔31aと負極集電箔31bとの間で電解液60が漏洩していれば、正極集電箔31aと負極集電箔31bとが直接密着している部分と、正極集電箔31aと負極集電箔31bとの間に電解液60を介在している部分とが存在する。このため、正極集電箔31aと負極集電箔31bとの間には抵抗成分とコンデンサ成分の両方が存在する。 On the other hand, as shown in FIG. 5A, if the electrolytic solution 60 leaks between the positive electrode collecting foil 31a and the negative electrode collecting foil 31b, the positive electrode collecting foil 31a and the negative electrode collecting foil 31b are in direct contact with each other. There is a portion where the electrolytic solution 60 is interposed between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b. Therefore, both a resistance component and a capacitor component are present between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b.

インピーダンス計測部120は、セル電圧検出線125aおよび125bを介して、正極集電箔31aと負極集電箔31bとの間に高周波電圧と低周波電圧を印加する。正極集電箔31aと負極集電箔31bとの間に電解液60が漏洩していると、抵抗成分とコンデンサ成分の両方が存在するので、セル電圧検出線125aおよび125b間に流れる電流は、印加された電圧に対して位相差を持つ電流となる。 The impedance measurement unit 120 applies a high frequency voltage and a low frequency voltage between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b via the cell voltage detection lines 125a and 125b. When the electrolytic solution 60 leaks between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b, both the resistance component and the capacitor component are present, so that the current flowing between the cell voltage detection lines 125a and 125b is increased. It is a current with a phase difference with respect to the applied voltage.

このため、電解液60が漏洩している場合の正極集電箔31aと負極集電箔31bとの間の等価回路は、図5Bのように表される。この等価回路において、直列に接続されている抵抗Raは、正極集電箔31aの単位長さ当たりの抵抗を示す。また、直列に接続されている抵抗Rbは、負極集電箔31bの単位長さ当たりの抵抗を示す。さらに、抵抗Raと抵抗Rbとの間で並列に接続されている抵抗Rdは正極集電箔31aと負極集電箔31bとの間における各部の接触抵抗を示す。また、抵抗Rdと並列に接続されているコンデンサ成分Cは、正極集電箔31aと負極集電箔31bとの間に存在する電解液60が正極集電箔31aと負極集電箔31bとの間に形成するコンデンサ成分を示す。 Therefore, the equivalent circuit between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b when the electrolytic solution 60 is leaking is shown as shown in FIG. 5B. In this equivalent circuit, the resistance Ra connected in series indicates the resistance per unit length of the positive electrode current collector foil 31a. Further, the resistance Rb connected in series indicates the resistance per unit length of the negative electrode current collector foil 31b. Further, the resistance Rd connected in parallel between the resistance Ra and the resistance Rb indicates the contact resistance of each part between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b. Further, in the capacitor component C connected in parallel with the resistor Rd, the electrolytic solution 60 existing between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b is the positive electrode current collector foil 31a and the negative electrode current collector foil 31b. The capacitor components formed between them are shown.

電解液60が漏洩している場合の等価回路は、図5Bのように、抵抗成分とコンデンサ成分との両方の成分で表されるので、インピーダンス計測部120によって計測されるインピーダンスは、実数成分値と虚数成分値の両方を有するインピーダンスとなる。つまり、高周波電圧が印加されたときの図5Bに示した等価回路の高周波インピーダンスZ1がR1+jX1であり、低周波電圧が印加されたときの、図5Bに示した等価回路の低周波インピーダンスZ2がR2+jX2であれば、インピーダンス計測部120は、高周波電圧を印加したときの、実数成分値としてR1、虚数成分値としてjX1、低周波電圧を印加したときの、実数成分値としてR2、虚数成分値としてjX2をそれぞれ計測することになる。 Since the equivalent circuit when the electrolytic solution 60 is leaking is represented by both the resistance component and the capacitor component as shown in FIG. 5B, the impedance measured by the impedance measuring unit 120 is a real number component value. And the impedance that has both the imaginary component value. That is, the high frequency impedance Z1 of the equivalent circuit shown in FIG. 5B when the high frequency voltage is applied is R1 + jX1, and the low frequency impedance Z2 of the equivalent circuit shown in FIG. 5B when the low frequency voltage is applied is R2 + jX2. If so, the impedance measurement unit 120 has R1 as a real component value when a high frequency voltage is applied, jX1 as an imaginary component value, R2 as a real component value when a low frequency voltage is applied, and jX2 as an imaginary component value. Will be measured respectively.

したがって、電解液60が漏洩している場合には、高周波電圧印加時の高周波インピーダンスZ1の実数成分値および虚数成分値と低周波電圧印加時の低周波インピーダンスZ2の実数成分値および虚数成分値は、電解液60が漏洩してない場合とは大きく異なってくる。また、高周波電圧印加時の高周波インピーダンスZ1の実数成分値および虚数成分値の大きさは、低周波電圧印加時の低周波インピーダンスZ2の実数成分値および虚数成分値のそれぞれの大きさよりも小さくなる。等価回路のコンデンサ成分Cのみによる交流抵抗は1/j2πfCで表されるため、周波数fの大きい高周波の交流抵抗の方が低周波の交流抵抗よりも小さくなるからである。本実施形態に係る二次電池システム100では、これらの違いを計測することによって、電解液60の漏洩を検知している。 Therefore, when the electrolytic solution 60 is leaking, the real number component value and the imaginary number component value of the high frequency impedance Z1 when the high frequency voltage is applied and the real number component value and the imaginary number component value of the low frequency impedance Z2 when the low frequency voltage is applied are , It is significantly different from the case where the electrolytic solution 60 does not leak. Further, the magnitudes of the real component value and the imaginary component value of the high frequency impedance Z1 when the high frequency voltage is applied are smaller than the respective magnitudes of the real component value and the imaginary component value of the low frequency impedance Z2 when the low frequency voltage is applied. This is because the AC resistance due to only the capacitor component C of the equivalent circuit is represented by 1 / j2πfC, so that the high frequency AC resistance having a large frequency f is smaller than the low frequency AC resistance. In the secondary battery system 100 according to the present embodiment, leakage of the electrolytic solution 60 is detected by measuring these differences.

[二次電池システムの動作]
図6は、本実施形態に係る二次電池システム100の動作フローチャートである。以下に、図2から図9を参照して、二次電池システム100の動作を詳細に説明する。
[Operation of secondary battery system]
FIG. 6 is an operation flowchart of the secondary battery system 100 according to the present embodiment. Hereinafter, the operation of the secondary battery system 100 will be described in detail with reference to FIGS. 2 to 9.

図6に示すように、インピーダンス計測部120は、集電体31の正極集電箔31aと負極集電箔31bとの間のインピーダンスを計測する(S100)。 As shown in FIG. 6, the impedance measuring unit 120 measures the impedance between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31 (S100).

具体的には、図7に示すように、高周波電圧出力部122が、セル電圧検出線125aおよび125bを介して、集電体31の正極集電箔31aと負極集電箔31bとの間に1000Hzの高周波電圧を印加する(S101)。これにより、正極集電箔31aと負極集電箔31bとの間に高周波電流が流れる。 Specifically, as shown in FIG. 7, the high-frequency voltage output unit 122 is connected between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31 via the cell voltage detection lines 125a and 125b. A high frequency voltage of 1000 Hz is applied (S101). As a result, a high frequency current flows between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b.

インピーダンス計測部120は、高周波電圧を印加した時に流れた高周波電流の実効値(大きさ)と高周波電圧に対する高周波電流の位相差とから、高周波インピーダンスZ1を計測する。なお、高周波インピーダンスとは、集電体31の正極集電箔31aと負極集電箔31bとの間に高周波電圧を印加したときの、正極集電箔31aと負極集電箔31bとの間のインピーダンスである。虚数成分値計測部126は、高周波インピーダンスZ1の虚数成分値jX1を計測し、実数成分値計測部128は、高周波インピーダンスZ1の実数成分値R1を計測する。 The impedance measuring unit 120 measures the high frequency impedance Z1 from the effective value (magnitude) of the high frequency current flowing when the high frequency voltage is applied and the phase difference of the high frequency current with respect to the high frequency voltage. The high-frequency impedance is defined as the distance between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b when a high-frequency voltage is applied between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31. Impedance. The imaginary component value measuring unit 126 measures the imaginary component value jX1 of the high frequency impedance Z1, and the real number component value measuring unit 128 measures the real component value R1 of the high frequency impedance Z1.

電解液漏洩判断部140は、虚数成分値計測部126によって計測された高周波インピーダンスZ1の虚数成分値jX1を虚数成分値記憶部142に記憶させ、また、その実数成分値R1を実数成分値記憶部144に記憶させる(S102)。 The electrolytic solution leakage determination unit 140 stores the imaginary number component value jX1 of the high frequency impedance Z1 measured by the imaginary number component value measurement unit 126 in the imaginary number component value storage unit 142, and stores the real number component value R1 in the real number component value storage unit. It is stored in 144 (S102).

次に、低周波電圧出力部124が、セル電圧検出線125aおよび125bを介して、集電体31の正極集電箔31aと負極集電箔31bとの間に10Hzの低周波電圧を印加する(S103)。これにより、正極集電箔31aと負極集電箔31bとの間に低周波電流が流れる。 Next, the low frequency voltage output unit 124 applies a low frequency voltage of 10 Hz between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31 via the cell voltage detection lines 125a and 125b. (S103). As a result, a low frequency current flows between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b.

インピーダンス計測部120は、低周波電圧を印加した時に流れた低周波電流の実効値(大きさ)と低周波電圧に対する低周波電流の位相差とから、低周波インピーダンスZ2を計測する。なお、低周波インピーダンスとは、集電体31の正極集電箔31aと負極集電箔31bとの間に低周波電圧を印加したときの、正極集電箔31aと負極集電箔31bとの間のインピーダンスである。虚数成分値計測部126は、低周波インピーダンスZ2の虚数成分値jX2を計測し、実数成分値計測部128は、低周波インピーダンスZ2の実数成分値R2を計測する。 The impedance measuring unit 120 measures the low frequency impedance Z2 from the effective value (magnitude) of the low frequency current flowing when the low frequency voltage is applied and the phase difference of the low frequency current with respect to the low frequency voltage. The low frequency impedance refers to the positive electrode current collector foil 31a and the negative electrode current collector foil 31b when a low frequency voltage is applied between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31. Impedance between. The imaginary component value measuring unit 126 measures the imaginary component value jX2 of the low frequency impedance Z2, and the real number component value measuring unit 128 measures the real number component value R2 of the low frequency impedance Z2.

電解液漏洩判断部140は、虚数成分値計測部126によって計測された低周波インピーダンスZ2の虚数成分値jX2を虚数成分値記憶部142に記憶させ、また、その実数成分値R2を実数成分値記憶部144に記憶させる(S104)。 The electrolytic solution leakage determination unit 140 stores the imaginary number component value jX2 of the low frequency impedance Z2 measured by the imaginary number component value measurement unit 126 in the imaginary number component value storage unit 142, and stores the real number component value R2 in the real number component value storage unit 142. It is stored in the unit 144 (S104).

図8Aは、電解液が漏洩していない場合のコールコールプロット図である。図8Bは、電解液が漏洩している場合のコールコールプロット図である。コールコールプロット図は、いろいろな周波数でインピーダンスの実数成分値と虚数成分値を演算し、それぞれを横軸、縦軸にプロットすることによって得られる図である。 FIG. 8A is a call call plot diagram when the electrolytic solution does not leak. FIG. 8B is a call call plot diagram when the electrolytic solution is leaking. The call-call plot diagram is a diagram obtained by calculating the real number component value and the imaginary number component value of impedance at various frequencies and plotting each on the horizontal axis and the vertical axis.

本実施形態の場合、電解液60が漏洩していない場合の、高周波インピーダンスZ1がR1であり、低周波インピーダンスZ2がR2であるので、電解液60が漏洩していない場合のコールコールプロット図としては、たとえば図8Aのようなものになる。また、電解液60が漏洩している場合の、高周波インピーダンスZ1がR1+jX1であり、低周波インピーダンスZ2がR2+jX2であるので、電解液60が漏洩している場合のコールコールプロット図としては、たとえば図8Bのようなものになる。 In the case of this embodiment, since the high frequency impedance Z1 is R1 and the low frequency impedance Z2 is R2 when the electrolytic solution 60 is not leaking, as a call call plot diagram when the electrolytic solution 60 is not leaking. Is, for example, as shown in FIG. 8A. Further, since the high frequency impedance Z1 is R1 + jX1 and the low frequency impedance Z2 is R2 + jX2 when the electrolytic solution 60 is leaking, as a call call plot diagram when the electrolytic solution 60 is leaking, for example, FIG. It will be something like 8B.

図6に戻って、電解液漏洩判断部140は、集電体31の正極集電箔31aと負極集電箔31bとの間で電解液60が漏洩しているか否かを判断する(S110)。 Returning to FIG. 6, the electrolytic solution leakage determination unit 140 determines whether or not the electrolytic solution 60 is leaking between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31 (S110). ..

具体的には、図9に示すように、電解液漏洩判断部140の比較判断部146が、虚数成分値記憶部142に記憶されている高周波および低周波のインピーダンスZ1、Z2の虚数成分値jX1とjX2との大きさを比較する(S111)。 Specifically, as shown in FIG. 9, the comparison determination unit 146 of the electrolytic solution leakage determination unit 140 has the imaginary number component values jX1 of the high-frequency and low-frequency impedances Z1 and Z2 stored in the imaginary number component value storage unit 142. And jX2 are compared in size (S111).

比較の結果、高周波の虚数成分値jX1が低周波の虚数成分値jX2よりも大きいか等しければ(S112:YES)、次のステップの処理に進み、高周波の虚数成分値jX1が低周波の虚数成分値jX2未満であれば(S112:NO)、電解液60が漏洩していると判断する(S116)。 As a result of comparison, if the high frequency imaginary component value jX1 is larger than or equal to the low frequency imaginary component value jX2 (S112: YES), the process proceeds to the next step, and the high frequency imaginary component value jX1 is the low frequency imaginary component. If the value is less than jX2 (S112: NO), it is determined that the electrolytic solution 60 is leaking (S116).

次に、電解液漏洩判断部140の比較判断部146が、実数成分値記憶部144に記憶されている高周波および低周波のインピーダンスZ1、Z2の実数成分値R1とR2との大きさを比較する(S113)。 Next, the comparison determination unit 146 of the electrolyte leakage determination unit 140 compares the magnitudes of the real number component values R1 and R2 of the high-frequency and low-frequency impedances Z1 and Z2 stored in the real number component value storage unit 144. (S113).

比較の結果、高周波の実数成分値R1が低周波の実数成分値R2よりも大きいか等しければ(S114:YES)、電解液60が漏洩していないと判断する(S115)。また、高周波の実数成分値R1が低周波の実数成分値R2未満であれば(S114:NO)、電解液60が漏洩していると判断する(S116)。 As a result of comparison, if the high-frequency real number component value R1 is larger than or equal to the low-frequency real number component value R2 (S114: YES), it is determined that the electrolytic solution 60 has not leaked (S115). Further, if the high frequency real number component value R1 is less than the low frequency real number component value R2 (S114: NO), it is determined that the electrolytic solution 60 is leaking (S116).

つまり、本実施形態では、高周波の虚数成分値jX1が低周波の虚数成分値jX2未満のとき、または、高周波の実数成分値R1が低周波の実数成分値R2未満のとき、のいずれかの場合に、電解液60が漏洩していると判断している。 That is, in the present embodiment, either when the high frequency imaginary component value jX1 is less than the low frequency imaginary component value jX2, or when the high frequency real number component value R1 is less than the low frequency real number component value R2. It is determined that the electrolytic solution 60 is leaking.

また、本実施形態では、高周波の虚数成分値jX1が低周波の虚数成分値jX2よりも大きいか等しいとき、および、高周波の実数成分値R1が低周波の実数成分値R2よりも大きいか等しいときに、電解液60が漏洩していないと判断している。 Further, in the present embodiment, when the high frequency imaginary component value jX1 is larger or equal to the low frequency imaginary component value jX2, and when the high frequency real number component value R1 is larger than or equal to the low frequency real number component value R2. In addition, it is determined that the electrolytic solution 60 has not leaked.

しかし、高周波の虚数成分値jX1が低周波の虚数成分値jX2よりも大きいか等しければ、高周波の実数成分値R1と低周波の実数成分値R2との比較を行うまでもなく、電解液60が漏洩していないと判断しても良い。 However, if the high frequency imaginary component value jX1 is larger than the low frequency imaginary component value jX2, the electrolytic solution 60 does not need to be compared between the high frequency real number component value R1 and the low frequency real number component value R2. It may be determined that there is no leakage.

また、本実施形態では、高周波の虚数成分値jX1と低周波の虚数成分値jX2との比較を先にし、高周波の実数成分値R1と低周波の実数成分値R2の比較を後にしているが、この比較の順番は逆にしても良い。 Further, in the present embodiment, the comparison between the high-frequency imaginary component value jX1 and the low-frequency imaginary component value jX2 is performed first, and the high-frequency real number component value R1 and the low-frequency real number component value R2 are compared later. , The order of this comparison may be reversed.

この順番を逆にした場合、高周波の実数成分値R1が低周波の実数成分値R2よりも大きいか等しければ、高周波の虚数成分値jX1と低周波の虚数成分値jX2との比較を行うまでもなく、電解液60が漏洩していないと判断しても良い。 When this order is reversed, if the high frequency real number component value R1 is larger than the low frequency real number component value R2, even if the high frequency imaginary component value jX1 and the low frequency imaginary component value jX2 are compared. It may be determined that the electrolytic solution 60 has not leaked.

図6に戻って、電解液漏洩判断部140は、電解液60が漏洩していると判断したときには(S120:YES)、警報部200のワーニングランプを点灯させる。ワーニングランプの点灯によって、二次電池10に異常が生じていることがわかる。一方、電解液60が漏洩していないと判断したときには(S120:NO)、S100のステップの処理に戻って、S100、S110、S120のステップの処理を繰り返す。 Returning to FIG. 6, when the electrolytic solution leakage determination unit 140 determines that the electrolytic solution 60 is leaking (S120: YES), the warning lamp of the alarm unit 200 is turned on. By lighting the warning lamp, it can be seen that an abnormality has occurred in the secondary battery 10. On the other hand, when it is determined that the electrolytic solution 60 has not leaked (S120: NO), the process returns to the process of the step of S100, and the process of the steps of S100, S110, and S120 is repeated.

なお、以上の実施形態では、高周波の虚数成分値jX1と低周波の虚数成分値jX2、高周波の実数成分値R1と低周波の実数成分値R2とを計測し、虚数成分値同士、実数成分値同士を比較することで電解液60の漏洩の有無を判断している。しかし、図8A、図8Bに示したコールコールプロット図における、高周波の虚数成分値jX1、実数成分値R1、低周波の虚数成分値jX2、低周波の実数成分値R2のプロット位置だけで、電解液60の漏洩の有無を判断しても良い。 In the above embodiment, the high frequency imaginary component value jX1 and the low frequency imaginary component value jX2, the high frequency real number component value R1 and the low frequency real number component value R2 are measured, and the imaginary number component values and the real number component values are measured. The presence or absence of leakage of the electrolytic solution 60 is determined by comparing the two. However, in the call call plots shown in FIGS. 8A and 8B, electrolysis is performed only at the plot positions of the high frequency imaginary component value jX1, the real number component value R1, the low frequency imaginary component value jX2, and the low frequency real number component value R2. The presence or absence of leakage of the liquid 60 may be determined.

また、本実施形態では、集電体31の正極集電箔31aと負極集電箔31bとの間の電解液60の漏洩のみを検知したが、たとえば、積層体11の上下両端の正極集電箔31aと負極集電箔31bとの間に高周波および低周波の電圧を印加して、積層体11を構成する発電要素20のどこかで電解液60の漏洩があることを検知するようにしても良い。この場合、正常な積層体11の高周波の虚数成分値jX1と低周波の虚数成分値jX2、高周波の実数成分値R1と低周波の実数成分値R2とを計測しておき、この計測しておいた各成分値との比較において、電解液60の漏洩の有無を検知するようにしてもよい。 Further, in the present embodiment, only leakage of the electrolytic solution 60 between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31 is detected. For example, the positive electrode current collectors at the upper and lower ends of the laminated body 11 are detected. High-frequency and low-frequency voltages are applied between the foil 31a and the negative electrode current collector foil 31b so as to detect that the electrolytic solution 60 leaks somewhere in the power generation element 20 constituting the laminated body 11. Is also good. In this case, the high frequency imaginary component value jX1 and the low frequency imaginary component value jX2, the high frequency real number component value R1 and the low frequency real number component value R2 of the normal laminated body 11 are measured and measured. The presence or absence of leakage of the electrolytic solution 60 may be detected in comparison with each component value.

さらに、本実施形態では、発明の内容の理解を容易にするために、1つの集電体31の正極集電箔31aと負極集電箔31bとの間に高周波および低周波の電圧を印加して電解液60の漏洩を検知する場合について記載した。実際には二次電池10の安全性と信頼性を確保するために、積層体11を構成する全ての集電体31の正極集電箔31aと負極集電箔31bとの間に高周波および低周波の電圧を印加して電解液60の漏洩を検知することが好ましい。しかし、全ての集電体31の正極集電箔31aと負極集電箔31bとの間に高周波および低周波の電圧を印加するのではなく、他の集電体31と比較して、機械的強度の弱そうな位置に存在する集電体31の正極集電箔31aと負極集電箔31bとの間に高周波および低周波の電圧を印加するようにしても良い。 Further, in the present embodiment, in order to facilitate understanding of the content of the invention, high frequency and low frequency voltages are applied between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of one current collector 31. The case where the leakage of the electrolytic solution 60 is detected is described. Actually, in order to ensure the safety and reliability of the secondary battery 10, high frequency and low frequency are generated between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of all the current collectors 31 constituting the laminated body 11. It is preferable to apply a voltage of a frequency to detect leakage of the electrolytic solution 60. However, instead of applying high-frequency and low-frequency voltages between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of all current collectors 31, it is mechanical as compared with other current collectors 31. High-frequency and low-frequency voltages may be applied between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the current collector 31 existing at a position where the strength is likely to be weak.

以上、本発明に係る二次電池システム100の実施形態について説明した。この実施形態の効果は、下記の通りである。 The embodiment of the secondary battery system 100 according to the present invention has been described above. The effects of this embodiment are as follows.

本実施形態では、双極電極35の正極集電箔31aと負極集電箔31bとの間のインピーダンスを計測するだけで電解液60の漏洩が検知できる。このため、発電要素20間の短絡が防止でき、二次電池10の安全性および信頼性が確保できる。 In the present embodiment, leakage of the electrolytic solution 60 can be detected only by measuring the impedance between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b of the bipolar electrode 35. Therefore, a short circuit between the power generation elements 20 can be prevented, and the safety and reliability of the secondary battery 10 can be ensured.

本実施形態では、正極集電箔31aと負極集電箔31bとを、樹脂または樹脂を含む導電材料で形成している。このため、金属に比較して機械的強度が相対的に弱くなりがちな、樹脂集電体を用いた二次電池10の安全性および信頼性が確保できる。 In the present embodiment, the positive electrode current collector foil 31a and the negative electrode current collector foil 31b are formed of a resin or a conductive material containing a resin. Therefore, the safety and reliability of the secondary battery 10 using the resin current collector, which tends to be relatively weak in mechanical strength as compared with metal, can be ensured.

本実施形態では、正極集電箔31aと負極集電箔31bとの間の高周波インピーダンスZ1と低周波インピーダンスZ2を計測し、計測された高周波インピーダンスZ1の虚数成分値jX1が低周波インピーダンスZ2の虚数成分値jX2未満であれば電解液60が漏洩していると判断している。このため、正極集電箔31aと負極集電箔31bとの間に、高周波電圧および低周波電圧を印加、または高周波電流および低周波電流を流すだけで、電解液60の漏洩の有無が判断できる。 In the present embodiment, the high frequency impedance Z1 and the low frequency impedance Z2 between the positive voltage collecting foil 31a and the negative frequency collecting foil 31b are measured, and the measured imaginary component value jX1 of the high frequency impedance Z1 is the imaginary number of the low frequency impedance Z2. If the component value is less than jX2, it is determined that the electrolytic solution 60 is leaking. Therefore, the presence or absence of leakage of the electrolytic solution 60 can be determined only by applying a high frequency voltage and a low frequency voltage or passing a high frequency current and a low frequency current between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b. ..

本実施形態では、計測された高周波インピーダンスZ1の実数成分値R1が低周波インピーダンスZ2の実数成分値R2未満であれば電解液60が漏洩していると判断している。このため、正極集電箔31aと負極集電箔31bとの間に、高周波電圧および低周波電圧を印加、または高周波電流および低周波電流を流すだけで、電解液60の漏洩の有無が判断できる。 In the present embodiment, if the measured real number component value R1 of the high frequency impedance Z1 is less than the real number component value R2 of the low frequency impedance Z2, it is determined that the electrolytic solution 60 is leaking. Therefore, the presence or absence of leakage of the electrolytic solution 60 can be determined only by applying a high frequency voltage and a low frequency voltage or passing a high frequency current and a low frequency current between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b. ..

本実施形態では、計測された高周波インピーダンスZ1の虚数成分値jX1または実数成分値R1のいずれかが低周波インピーダンスZ2の虚数成分値jX2または実数成分値R2未満であれば電解液60が漏洩していると判断している。このため、正極集電箔31aと負極集電箔31bとの間に、高周波電圧および低周波電圧を印加、または高周波電流および低周波電流を流すだけで、電解液60の漏洩の有無が判断できる。 In the present embodiment, if either the measured imaginary component value jX1 of the high frequency impedance Z1 or the real number component value R1 is less than the imaginary component value jX2 of the low frequency impedance Z2 or the real number component value R2, the electrolytic solution 60 leaks. I have determined that there is. Therefore, the presence or absence of leakage of the electrolytic solution 60 can be determined only by applying a high frequency voltage and a low frequency voltage or passing a high frequency current and a low frequency current between the positive electrode current collector foil 31a and the negative electrode current collector foil 31b. ..

本実施形態では、正極集電箔31aおよび前記負極集電箔31bにそれぞれ接続されている、セル電圧検出線125a、125bを用いて、高周波電圧および低周波電圧を印加し、または高周波電流および低周波電流を流している。セル電圧検出線125a、125bのいずれか一方は、発電要素20の電圧を検出するためにあらかじめ用いられているので、1本のセル電圧検出線を追加するだけで、本発明の適用が可能となる。 In the present embodiment, high frequency voltage and low frequency voltage are applied, or high frequency current and low frequency are applied by using cell voltage detection lines 125a and 125b connected to the positive electrode current collector foil 31a and the negative electrode current collector foil 31b, respectively. A frequency current is flowing. Since either one of the cell voltage detection lines 125a and 125b is used in advance for detecting the voltage of the power generation element 20, the present invention can be applied only by adding one cell voltage detection line. Become.

10 二次電池、
11 積層体、
12 外装体、
20 発電要素、
31 集電体、
31a 正極集電箔、
31b 負極集電箔、
32 電極活物質層、
32a 正極活物質層、
32b 負極活物質層、
34a 正極集電板、
34b 負極集電板、
35 双極電極、
40 セパレータ、
50 シール部、
60 電解液、
100 二次電池システム、
120 インピーダンス計測部、
122 高周波電圧出力部、
124 低周波電圧出力部、
125a、125b セル電圧検出線、
126 虚数成分値計測部、
128 実数成分値計測部、
140 電解液漏洩判断部、
142 虚数成分値
146 比較判断部、
200 警報部。
10 Rechargeable battery,
11 laminated body,
12 exterior body,
20 power generation elements,
31 Current collector,
31a Positive electrode current collector foil,
31b Negative current collector foil,
32 Electrode active material layer,
32a Positive electrode active material layer,
32b Negative electrode active material layer,
34a Positive current collector plate,
34b Negative current collector plate,
35 bipolar electrode,
40 separator,
50 Seal part,
60 electrolyte,
100 rechargeable battery system,
120 Impedance measurement unit,
122 High frequency voltage output unit,
124 Low frequency voltage output unit,
125a, 125b cell voltage detection line,
126 Imaginary component value measuring unit,
128 Real number component value measuring unit,
140 Electrolyte Leakage Judgment Unit,
142 Imaginary component value 146 Comparison judgment unit,
200 Alarm unit.

Claims (7)

正極集電箔と負極集電箔とが積層された集電体の、正極側に正極活物質層、負極側に負極活物質層が形成された双極電極を、電解液が含まれるセパレータを介して直列に複数接続した積層体を有し前記正極集電箔、前記正極活物質層、前記セパレータ、前記負極活物質層および前記負極集電箔によって発電要素が形成され、前記発電要素の端部に、前記正極活物質層、前記負極活物質層およびセパレータの周囲を封止するシール部が設けられている二次電池と、
隣り合う2つの前記発電要素隣接する前記正極集電箔と前記負極集電箔との間のインピーダンスを計測するインピーダンス計測部と、
計測された前記インピーダンスを用いて、前記セパレータに含まれる電解液が、前記正極活物質層および前記正極集電箔、または前記負極活物質層および前記負極集電箔から、隣り合う2つの前記発電要素の隣接する前記正極集電箔と前記負極集電箔との間に漏洩したことを判断する電解液漏洩判断部と、
を有する、二次電池システム。
A bipolar electrode having a positive electrode active material layer formed on the positive electrode side and a negative electrode active material layer formed on the negative electrode side of a current collector in which a positive electrode current collector foil and a negative electrode current collector foil are laminated is passed through a separator containing an electrolytic solution. A power generation element is formed by the positive electrode current collector foil , the positive electrode active material layer, the separator, the negative electrode active material layer, and the negative electrode current collector foil, and the end of the power generation element is formed. A secondary battery provided with a sealing portion for sealing the periphery of the positive electrode active material layer, the negative electrode active material layer, and the separator.
An impedance measuring unit that measures the impedance between the positive electrode current collector foil and the negative electrode current collector foil that are adjacent to each other of the two adjacent power generation elements .
Using the measured impedance, the electrolytic solution contained in the separator is generated from the positive electrode active material layer and the positive electrode current collector foil, or the negative electrode active material layer and the negative electrode current collector foil, and two adjacent power sources. An electrolytic solution leakage determination unit that determines that leakage has occurred between the positive electrode current collector foil and the negative electrode current collector foil that are adjacent to each other .
Has a secondary battery system.
前記正極集電箔は、樹脂または樹脂を含む導電材料で形成されている、請求項1に記載の二次電池システム。 The secondary battery system according to claim 1, wherein the positive electrode current collector foil is made of a resin or a conductive material containing a resin. 前記負極集電箔は、樹脂または樹脂を含む導電材料で形成されている、請求項1または2に記載の二次電池システム。 The secondary battery system according to claim 1 or 2, wherein the negative electrode current collector foil is made of a resin or a conductive material containing a resin. 前記インピーダンス計測部は、
前記隣り合う2つの前記発電要素の隣接する前記正極集電箔と前記負極集電箔との間に、高周波電圧を印加または高周波電流を流したときの高周波インピーダンスの虚数成分値と低周波電圧を印加または低周波電流を流したときの低周波インピーダンスの虚数成分値とを計測し、
前記電解液漏洩判断部は、
計測された前記高周波インピーダンスの虚数成分値が前記低周波インピーダンスの虚数成分値未満であれば前記電解液が漏洩していると判断する一方、前記高周波インピーダンスの虚数成分値が前記低周波インピーダンスの虚数成分値よりも大きいか等しければ前記電解液が漏洩していないと判断する、請求項1から3のいずれかに記載の二次電池システム。
The impedance measuring unit is
The imaginary component value and low frequency voltage of the high frequency impedance when a high frequency voltage is applied or a high frequency current is passed between the positive positive current collector foil and the negative frequency current collector foil adjacent to each other of the two adjacent power generation elements. Measure the imaginary component value of the low frequency impedance when applied or low frequency current is applied,
The electrolyte leak determination unit is
If the measured imaginary component value of the high frequency impedance is less than the imaginary component value of the low frequency impedance, it is determined that the electrolytic solution is leaking, while the imaginary component value of the high frequency impedance is the imaginary number of the low frequency impedance. The secondary battery system according to any one of claims 1 to 3, wherein it is determined that the electrolytic solution has not leaked if it is larger than or equal to the component value.
前記インピーダンス計測部は、
前記隣り合う2つの前記発電要素の隣接する前記正極集電箔と前記負極集電箔との間に、高周波電圧を印加または高周波電流を流したときの高周波インピーダンスの実数成分値と低周波電圧を印加または低周波電流を流したときの低周波インピーダンスの実数成分値とを計測し、
前記電解液漏洩判断部は、
計測された前記高周波インピーダンスの実数成分値が前記低周波インピーダンスの実数成分値未満であれば前記電解液が漏洩していると判断する一方、前記高周波インピーダンスの実数成分値が前記低周波インピーダンスの実数成分値よりも大きいか等しければ前記電解液が漏洩していないと判断する、請求項1から3のいずれかに記載の二次電池システム。
The impedance measuring unit is
The real component value and low frequency voltage of the high frequency impedance when a high frequency voltage is applied or a high frequency current is passed between the positive positive current collector foil and the negative frequency current collector foil adjacent to each other of the two adjacent power generation elements. Measure the real component value of the low frequency impedance when applied or low frequency current is applied,
The electrolyte leak determination unit is
If the measured real number component value of the high frequency impedance is less than the real number component value of the low frequency impedance, it is determined that the electrolytic solution is leaking, while the real number component value of the high frequency impedance is the real number of the low frequency impedance. The secondary battery system according to any one of claims 1 to 3, wherein it is determined that the electrolytic solution has not leaked if it is larger than or equal to the component value.
前記インピーダンス計測部は、
前記隣り合う2つの前記発電要素の隣接する前記正極集電箔と前記負極集電箔との間に、高周波電圧を印加または高周波電流を流したときの高周波インピーダンスの虚数成分値と実数成分値を計測するとともに、低周波電圧を印加または低周波電流を流したときの低周波インピーダンスの虚数成分値と実数成分値とを計測し、
前記電解液漏洩判断部は、
計測された前記高周波インピーダンスの虚数成分値または実数成分値のいずれかが前記低周波インピーダンスの虚数成分値または実数成分値未満であれば前記電解液が漏洩していると判断する一方、前記高周波インピーダンスの虚数成分値または実数成分値のいずれかが前記低周波インピーダンスの虚数成分値または実数成分値よりも大きいか等しければ前記電解液が漏洩していないと判断する、請求項1から3のいずれかに記載の二次電池システム。
The impedance measuring unit is
The imaginary component value and the real component value of the high frequency impedance when a high frequency voltage is applied or a high frequency current is passed between the positive voltage collecting foil and the negative frequency collecting foil adjacent to each other of the two adjacent power generation elements. In addition to measuring, measure the imaginary component value and real component value of the low frequency impedance when a low frequency voltage is applied or a low frequency current is passed.
The electrolyte leak determination unit is
If either the measured imaginary component value or the real number component value of the high frequency impedance is less than the imaginary number component value or the real number component value of the low frequency impedance, it is determined that the electrolytic solution is leaking, while the high frequency impedance. If either the imaginary component value or the real number component value of the above is larger than the imaginary number component value or the real number component value of the low frequency impedance, it is determined that the electrolytic solution has not leaked, any of claims 1 to 3. The secondary battery system described in.
前記インピーダンス計測部は、
前記隣り合う2つの前記発電要素の隣接する前記正極集電箔および前記負極集電箔にそれぞれ接続されている、セル電圧検出線を用いて、前記正極集電箔と前記負極集電箔との間に、高周波電圧を印加または高周波電流を流し、低周波電圧を印加または低周波電流を流す、請求項4から6のいずれかに記載の二次電池システム。
The impedance measuring unit is
Using the cell voltage detection line connected to the positive electrode current collector foil and the negative electrode current collector foil adjacent to each other of the two adjacent power generation elements, the positive electrode current collector foil and the negative electrode current collector foil are used. The secondary battery system according to any one of claims 4 to 6, wherein a high-frequency voltage is applied or a high-frequency current is applied between the two, and a low-frequency voltage is applied or a low-frequency current is applied.
JP2018070931A 2018-04-02 2018-04-02 Rechargeable battery system Active JP7047548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018070931A JP7047548B2 (en) 2018-04-02 2018-04-02 Rechargeable battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018070931A JP7047548B2 (en) 2018-04-02 2018-04-02 Rechargeable battery system

Publications (2)

Publication Number Publication Date
JP2019185861A JP2019185861A (en) 2019-10-24
JP7047548B2 true JP7047548B2 (en) 2022-04-05

Family

ID=68341551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018070931A Active JP7047548B2 (en) 2018-04-02 2018-04-02 Rechargeable battery system

Country Status (1)

Country Link
JP (1) JP7047548B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7359098B2 (en) 2020-07-31 2023-10-11 株式会社豊田自動織機 Energy storage module
CN112563688B (en) * 2020-12-12 2022-11-08 江西深超能源科技有限公司 Ternary lithium battery with leakage collection protection function
JP7478684B2 (en) 2021-02-19 2024-05-07 日立グローバルライフソリューションズ株式会社 Battery state estimation device and method
KR20230092218A (en) * 2021-12-17 2023-06-26 주식회사 엘지에너지솔루션 Battery module with electrolyte leakage detection function and battery pack comprising the same
DE102022100730A1 (en) 2022-01-13 2023-07-13 Skeleton Technologies GmbH Leakage detection in energy storage modules and associated devices and methods
KR20240047176A (en) * 2022-10-04 2024-04-12 주식회사 엘지에너지솔루션 Electrolyte leakage detection unit using insulation resistance and battery module comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349156A (en) 2003-05-23 2004-12-09 Toyota Motor Corp Secondary battery and stacked secondary battery
JP2011034853A (en) 2009-08-03 2011-02-17 Nissan Motor Co Ltd Failure detection device for bipolar battery, failure detection method for bipolar battery, and bipolar battery
JP2012226866A (en) 2011-04-15 2012-11-15 Sumitomo Electric Ind Ltd Molten salt battery and leakage detection method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349156A (en) 2003-05-23 2004-12-09 Toyota Motor Corp Secondary battery and stacked secondary battery
JP2011034853A (en) 2009-08-03 2011-02-17 Nissan Motor Co Ltd Failure detection device for bipolar battery, failure detection method for bipolar battery, and bipolar battery
JP2012226866A (en) 2011-04-15 2012-11-15 Sumitomo Electric Ind Ltd Molten salt battery and leakage detection method for the same

Also Published As

Publication number Publication date
JP2019185861A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP7047548B2 (en) Rechargeable battery system
EP3993110A1 (en) Electrode sheet, electrochemical device and device thereof
CN109997249B (en) Electrolyte re-injection system for battery pack and method thereof
US11189834B1 (en) Multiple electrolyte battery cells
US7438989B2 (en) Flat cell, battery, combined battery, and vehicle
WO2008010349A1 (en) Electric storage device
US11380967B2 (en) Stacked battery
KR101375398B1 (en) Pouch type secondary battery having enhanced electrical insulation and wetting properties
CN114402473B (en) All-solid-state lithium ion secondary battery system and charging device for all-solid-state lithium ion secondary battery
KR102618844B1 (en) Lead tabs for battery terminals
EP3010069B1 (en) Secondary battery
KR20130063709A (en) Pouch for secondary battery and secondary battery using the same
KR102470882B1 (en) Unit battery module and measuring for state of health thereof
KR20100016719A (en) Pouch type secondary battery having enhanced electrical insulation and wetting properties
EP3933993B1 (en) Battery, electrical apparatus and cell installation method
US20150180089A1 (en) High-voltage battery for vehicle
US20230411812A1 (en) Power storage device
CN110447120B (en) Lithium ion battery
JP2020165859A (en) Impedance measuring device for secondary batteries, secondary battery state estimating device, secondary battery system, and charing device for secondary batteries
JP2010525552A (en) Electrochemical unit cell and energy storage device with welding point connection
US7166387B2 (en) Thin battery with an electrode having a higher strength base portion than a tip portion
JP2013118090A (en) Battery state monitoring device and battery state monitoring method
JP7488984B2 (en) Energy Storage Module
CN211789103U (en) Pouch for secondary battery and pouch type secondary battery
KR20120020893A (en) Lithium ion capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R151 Written notification of patent or utility model registration

Ref document number: 7047548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151