JP2012226866A - Molten salt battery and leakage detection method for the same - Google Patents

Molten salt battery and leakage detection method for the same Download PDF

Info

Publication number
JP2012226866A
JP2012226866A JP2011091097A JP2011091097A JP2012226866A JP 2012226866 A JP2012226866 A JP 2012226866A JP 2011091097 A JP2011091097 A JP 2011091097A JP 2011091097 A JP2011091097 A JP 2011091097A JP 2012226866 A JP2012226866 A JP 2012226866A
Authority
JP
Japan
Prior art keywords
battery
molten salt
battery container
electrolyte
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011091097A
Other languages
Japanese (ja)
Inventor
Koji Nitta
耕司 新田
Shinji Inazawa
信二 稲澤
Shoichiro Sakai
将一郎 酒井
Atsushi Fukunaga
篤史 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011091097A priority Critical patent/JP2012226866A/en
Publication of JP2012226866A publication Critical patent/JP2012226866A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To detect liquid leakage of a molten salt battery reliably with a simple structure.SOLUTION: A molten salt battery B comprises a battery container 11 having a conductive external surface and housing the molten salt battery body containing a molten salt as an electrolyte, an adsorptive sheet 14 provided in contact with the outer surface of the battery container 11 and capable of adsorbing an electrolytic solution leaked from the battery container 11, and a tray 13 of a conductive member which sandwiches the adsorptive sheet 14 between the battery container 11 and the tray. When an AC voltage is applied between the outer surface of the battery container 11 and the tray 13, the adsorptive sheet 14 has an impedance for the AC voltage, and this impedance decreases as the adsorptive sheet 14 adsorbs the electrolytic solution of the molten salt. Leakage of the electrolytic solution from the battery container 11 can thereby be detected based on the change of the impedance.

Description

本発明は、溶融塩を電解質とする電池に関し、特に、電解液の液漏れ検知のための構成及び方法に関する。なお、溶融塩には、室温で溶融するイオン液体も含むものとする。   The present invention relates to a battery using a molten salt as an electrolyte, and more particularly, to a configuration and method for detecting leakage of an electrolyte. The molten salt includes an ionic liquid that melts at room temperature.

エネルギー密度に優れた二次電池として、例えば、リチウムイオン電池、ナトリウム硫黄電池、ニッケル水素電池が知られているが、近年、高いエネルギー密度に加えて、不燃性という強力な利点を持つ二次電池として、溶融塩を電解質とする溶融塩電池が開発され、注目されている(特許文献1及び非特許文献1参照。)。また、溶融塩電池の稼働温度領域は57℃〜190℃であり、これは、上記他の電池と比べて温度範囲が広い。そのため、排熱スペースや防火等の装備が不要であり、個々の素電池を高密度に集めて組電池を構成しても全体としては比較的コンパクトである、という利点がある。このような溶融塩組電池は、中規模電力網や家庭等での電力貯蔵用途の他、トラックやバス等の車載用途にも期待されている。   As secondary batteries with excellent energy density, for example, lithium ion batteries, sodium sulfur batteries, and nickel metal hydride batteries are known, but in recent years, secondary batteries have a strong advantage of nonflammability in addition to high energy density. As a result, a molten salt battery using a molten salt as an electrolyte has been developed and attracted attention (see Patent Document 1 and Non-Patent Document 1). Moreover, the operating temperature range of a molten salt battery is 57 degreeC-190 degreeC, and this has a wide temperature range compared with said other battery. Therefore, there is no need for equipment such as exhaust heat space or fire prevention, and there is an advantage that even if individual unit cells are gathered at a high density to form an assembled battery, it is relatively compact as a whole. Such a molten salt assembled battery is expected to be used for in-vehicle applications such as trucks and buses, as well as power storage applications in medium-scale power networks and homes.

特開2009−67644号公報JP 2009-67644 A

「SEI WORLD」2011年3月号(VOL.402)、住友電気工業株式会社"SEI WORLD" March 2011 issue (VOL. 402), Sumitomo Electric Industries, Ltd.

上記のような溶融塩電池の容器は、内部の気圧が上昇したときに、これを逃がすための安全弁を備えており、完全な密閉構造ではない。そのため、例えば車載の溶融塩電池であれば、加速・減速の際の慣性や、走行中の振動等によって、電解液が若干漏れ出ることも想定される。漏れによって電解液が減ると電池としての性能が低下する。また、多数の素電池で構成される組電池の中の特定の電池のみ性能が低下すると、その分、他の素電池に過度の負担がかかり、好ましくない。   The container of the molten salt battery as described above includes a safety valve for releasing the internal pressure when the internal atmospheric pressure rises, and is not a completely sealed structure. Therefore, for example, in the case of an on-vehicle molten salt battery, it is assumed that the electrolyte solution slightly leaks due to inertia during acceleration / deceleration, vibration during traveling, and the like. When the electrolyte is reduced due to leakage, the performance as a battery deteriorates. Further, if the performance of only a specific battery in the assembled battery composed of a large number of unit cells is reduced, an excessive burden is placed on other unit cells, which is not preferable.

そこで、電解液の液漏れを検知できれば、取り替え等の迅速的確な対策が可能となる。液漏れ検知には、例えば、櫛状のパターン電極を電池の下に配置し、漏れた電解液により局部的なパターン短絡が生じることを利用する装置がある。しかし、このような装置は、専用のパターン電極を用意しなければならない点で構造的に簡単ではなく、また、汚れによる誤動作も生じやすい。
かかる課題に鑑み、本発明は、溶融塩電池の液漏れを、簡単な構造で確実に検知することを目的とする。
Therefore, if the leakage of the electrolyte can be detected, a quick and accurate measure such as replacement can be performed. For example, there is an apparatus that utilizes the fact that a comb-like pattern electrode is disposed under a battery and a local pattern short circuit occurs due to the leaked electrolyte. However, such an apparatus is not structurally simple in that a dedicated pattern electrode has to be prepared, and malfunctions due to contamination are likely to occur.
In view of this problem, an object of the present invention is to reliably detect liquid leakage of a molten salt battery with a simple structure.

(1)本発明の溶融塩電池は、電解質として溶融塩を含む溶融塩電池本体と、前記溶融塩電池本体を収容し、少なくとも外面が導電性の電池容器と、前記電池容器の外面に接して設けられ、前記電池容器から漏れ出た電解液を吸着することが可能な吸着シートと、前記電池容器との間に前記吸着シートを挟み込む導電性部材とを備えたものである。   (1) The molten salt battery of the present invention contains a molten salt battery main body containing a molten salt as an electrolyte, the molten salt battery main body, at least the outer surface being in contact with the conductive container, and the outer surface of the battery container. An adsorbing sheet that is provided and capable of adsorbing the electrolyte leaking from the battery container, and a conductive member that sandwiches the adsorbing sheet between the battery container.

このように構成された溶融塩電池では、電池容器の外面と導電性部材との間に交流電圧を印加すると、吸着シートが交流電圧に対してインピーダンスを有する。このインピーダンスは、吸着シートが溶融塩の電解液を吸着すると低下する。そこで、インピーダンスの変化に基づいて、電解液が電池容器から漏れ出たことを、検知することができる。   In the molten salt battery configured as described above, when an AC voltage is applied between the outer surface of the battery container and the conductive member, the adsorbing sheet has an impedance with respect to the AC voltage. This impedance decreases when the adsorbing sheet adsorbs the molten salt electrolyte. Therefore, it is possible to detect that the electrolyte has leaked from the battery container based on the change in impedance.

(2)また、上記(1)の溶融塩電池において、溶融塩電池本体を収容した電池容器を複数個並べて組電池が構成され、各電池容器の外面が互いに接触していてもよい。
この場合、組電池を構成するいずれの電池容器から電解液が漏れ出ても、これを、インピーダンスの変化に基づいて検知することができる。
(2) In the molten salt battery of (1) above, a battery pack may be configured by arranging a plurality of battery containers containing molten salt battery bodies, and the outer surfaces of the battery containers may be in contact with each other.
In this case, even if the electrolyte leaks from any battery container constituting the assembled battery, this can be detected based on the change in impedance.

(3)また、上記(2)の溶融塩電池において、溶融塩電池本体を収容した電池容器を複数個並べて組電池が構成され、各電池容器は、隙間を設けるか又は絶縁材を挟むことにより互いに絶縁されていてもよい。
この場合、各電池容器について個別にインピーダンスを測定することにより、組電池の中から電解液が漏れ出た電池容器を特定することができる。
(3) Further, in the molten salt battery of (2) above, a plurality of battery containers containing molten salt battery bodies are arranged to form an assembled battery, and each battery container is provided with a gap or sandwiching an insulating material. They may be insulated from each other.
In this case, by measuring the impedance of each battery container individually, it is possible to identify the battery container from which the electrolyte solution has leaked from the assembled battery.

(4)また、上記(1)〜(3)のいずれかの溶融塩電池において、吸着シートは絶縁性の多孔質シートであることが好ましい。
この場合、漏れ出た電解液を素早く確実に保持し、インピーダンス変化につなげることができる。
(4) Moreover, in the molten salt battery in any one of said (1)-(3), it is preferable that an adsorption sheet is an insulating porous sheet.
In this case, the leaked electrolyte can be held quickly and reliably, and this can lead to impedance changes.

(5)また、上記(1)〜(4)のいずれかの溶融塩電池において、吸着シートは電池容器の下に敷かれ、導電性部材は吸着シートを介して電池容器を載せる受け皿となっていてもよい。
この場合、漏れ出た電解液は自然に滴下して吸着シートに吸着される。導電性部材は、受け皿としてより確実に、吸着シートとともに電解液を受け止める。
(5) Moreover, in the molten salt battery according to any one of the above (1) to (4), the adsorption sheet is laid under the battery container, and the conductive member is a tray on which the battery container is placed via the adsorption sheet. May be.
In this case, the leaked electrolyte solution is dripped naturally and is adsorbed by the adsorption sheet. The conductive member receives the electrolytic solution together with the adsorption sheet more reliably as a receiving tray.

(6)また、上記(1)〜(5)のいずれかの溶融塩電池においては、吸着シートを溶融塩の融点以上の温度に維持する加熱装置が設けられていてもよい。
この場合、吸着シートに吸着された電解液は溶融状態を確実に維持することができるので、インピーダンス変化を確実に捉えることができる。なお、溶融塩の電解液は蒸発せずに吸着シートに残る。そのため、吸着シートのインピーダンス変化を生じさせる物質として好適である。
(6) Moreover, in the molten salt battery in any one of said (1)-(5), the heating apparatus which maintains an adsorption sheet at the temperature more than melting | fusing point of molten salt may be provided.
In this case, the electrolyte solution adsorbed on the adsorbing sheet can surely maintain a molten state, so that the impedance change can be reliably captured. The molten salt electrolyte remains on the adsorption sheet without evaporating. Therefore, it is suitable as a substance that causes the impedance change of the suction sheet.

(7)また、少し異なる視点から見た本発明の溶融塩電池は、電解質として溶融塩を含む溶融塩電池本体と、前記溶融塩電池本体を収容し、少なくとも外面が導電性の電池容器と、前記電池容器の外面に接して設けられ、前記電池容器から漏れ出た電解液を吸着することが可能な吸着シートと、前記電池容器との間に前記吸着シートを挟み込む導電性部材と、前記電池容器の外面と前記導電性部材との間に交流電圧を印加してインピーダンスを測定する測定装置とを備えたものである、とも言える。   (7) Further, the molten salt battery of the present invention viewed from a slightly different viewpoint includes a molten salt battery main body containing a molten salt as an electrolyte, the molten salt battery main body, and at least an outer surface of a conductive battery container, An adsorbing sheet provided in contact with an outer surface of the battery container and capable of adsorbing an electrolyte leaked from the battery container; a conductive member sandwiching the adsorbing sheet between the battery container; and the battery It can be said that the apparatus includes a measuring device that measures impedance by applying an AC voltage between the outer surface of the container and the conductive member.

このように構成された溶融塩電池では、交流電圧を印加すると、吸着シートが交流電圧に対してインピーダンスを有する。このインピーダンスは、吸着シートが溶融塩の電解液を吸着すると低下する。そこで、インピーダンスの変化に基づいて、電解液が電池容器から漏れ出たことを、検知することができる。   In the molten salt battery configured as described above, when an AC voltage is applied, the adsorption sheet has an impedance with respect to the AC voltage. This impedance decreases when the adsorbing sheet adsorbs the molten salt electrolyte. Therefore, it is possible to detect that the electrolyte has leaked from the battery container based on the change in impedance.

(8)一方、本発明の溶融塩電池の液漏れ検知方法は、電解質として溶融塩を含む溶融塩電池本体と、前記溶融塩電池本体を収容し、少なくとも外面が導電性の電池容器と、前記電池容器の外面に接して設けられ、前記電池容器から漏れ出た電解液を吸着することが可能な吸着シートと、前記電池容器との間に前記吸着シートを挟み込む導電性部材とを備えた溶融塩電池について、前記電池容器から電解液が漏れ出たことを検知する溶融塩電池の液漏れ検知方法であって、
前記電池容器から電解液が漏れ出る前の前記電池容器の外面と前記導電性部材との間に交流電圧を印加した場合のインピーダンスを予め測定しておき、当該インピーダンスが変化した場合に前記電池容器から電解液が漏れ出たと判定する、というものである。
(8) On the other hand, the method for detecting a leakage of a molten salt battery according to the present invention includes a molten salt battery main body containing a molten salt as an electrolyte, the molten salt battery main body, at least an outer surface of a conductive battery container, A melt provided with an adsorbing sheet provided in contact with the outer surface of the battery container and capable of adsorbing the electrolyte leaking from the battery container, and a conductive member sandwiching the adsorbing sheet between the battery container About a salt battery, a method for detecting a leakage of a molten salt battery that detects that an electrolyte has leaked from the battery container,
Impedance is measured in advance when an AC voltage is applied between the outer surface of the battery container before the electrolyte leaks from the battery container and the conductive member, and the battery container changes when the impedance changes. It is determined that the electrolyte has leaked from the tank.

このような溶融塩電池の液漏れ検知方法では、電池容器の外面と導電性部材との間に交流電圧を印加すると、吸着シートが交流電圧に対してインピーダンスを有する。このインピーダンスは、吸着シートが溶融塩の電解液を吸着すると低下する。そこで、吸着前後でのインピーダンスの変化に基づいて、電解液が電池容器から漏れ出たことを、検知することができる。   In such a liquid leak detection method for a molten salt battery, when an AC voltage is applied between the outer surface of the battery container and the conductive member, the adsorbing sheet has an impedance with respect to the AC voltage. This impedance decreases when the adsorbing sheet adsorbs the molten salt electrolyte. Therefore, it is possible to detect that the electrolyte has leaked from the battery container based on the change in impedance before and after the adsorption.

本発明の溶融塩電池及びその液漏れ検知方法によれば、溶融塩電池の液漏れを、簡単な構造で確実に検知することができる。   According to the molten salt battery and the liquid leakage detection method of the present invention, the liquid leakage of the molten salt battery can be reliably detected with a simple structure.

溶融塩電池における発電要素の基本構造を原理的に示す略図である。1 is a schematic diagram showing in principle the basic structure of a power generation element in a molten salt battery. 溶融塩電池本体(電池としての本体部分)の積層構造を簡略に示す斜視図である。It is a perspective view which shows simply the lamination structure of a molten salt battery main body (main-body part as a battery). 図2と同様の構造についての横断面図である。It is a cross-sectional view about the structure similar to FIG. 電池容器に収められた状態の溶融塩電池の外観の概略を示す斜視図である。It is a perspective view which shows the outline of the external appearance of the molten salt battery of the state accommodated in the battery container. 溶融塩電池を複数並べた組電池について、その液漏れ検知を可能とするための構成(方法)を示す概略図である。It is the schematic which shows the structure (method) for enabling the liquid leak detection about the assembled battery which arranged multiple molten salt batteries. 溶融塩電池を複数並べた組電池について、その液漏れ検知を可能とするための他の構成(他の方法)を示す概略図である。It is the schematic which shows the other structure (other method) for enabling the liquid leak detection about the assembled battery which arranged the molten salt battery in order. 図6と類似の構成であり、隣接する各電池容器間に絶縁材のスペーサを挟んだ構成を示している。FIG. 7 shows a configuration similar to FIG. 6, in which a spacer made of an insulating material is sandwiched between adjacent battery containers.

以下、本発明の実施形態に係る溶融塩電池について、図面を参照して説明する。
図1は、溶融塩電池における発電要素の基本構造を原理的に示す略図である。図において、発電要素は、正極1、負極2及びそれらの間に介在するセパレータ3を備えている。正極1は、正極集電体1aと、正極材1bとによって構成されている。負極2は、負極集電体2aと、負極材2bとによって構成されている。
Hereinafter, a molten salt battery according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing in principle the basic structure of a power generation element in a molten salt battery. In the figure, the power generation element includes a positive electrode 1, a negative electrode 2, and a separator 3 interposed therebetween. The positive electrode 1 is composed of a positive electrode current collector 1a and a positive electrode material 1b. The negative electrode 2 includes a negative electrode current collector 2a and a negative electrode material 2b.

正極集電体1aの素材は、例えば、アルミニウム不織布(線径100μm、気孔率80%)である。正極材1bは、正極活物質としての例えばNaCrOと、アセチレンブラックと、PVDF(ポリフッ化ビニリデン)と、N−メチル−2−ピロリドンとを、質量比85:10:5:50の割合で混練したものである。そして、このように混練したものを、アルミニウム不織布の正極集電体1aに充填し、乾燥後に、1000kgf/cmにてプレスし、正極1の厚みが約1mmとなるように形成される。
一方、負極2においては、アルミニウム製の負極集電体2a上に、負極活物質としての例えば錫を含むSn−Na合金が、メッキにより形成される。
The material of the positive electrode current collector 1a is, for example, an aluminum nonwoven fabric (wire diameter: 100 μm, porosity: 80%). The positive electrode material 1b is a mixture of, for example, NaCrO 2 as a positive electrode active material, acetylene black, PVDF (polyvinylidene fluoride), and N-methyl-2-pyrrolidone at a mass ratio of 85: 10: 5: 50. It is a thing. And what was kneaded in this way is filled in the positive electrode collector 1a of an aluminum nonwoven fabric, and after drying, it presses at 1000 kgf / cm < 2 >, and it forms so that the thickness of the positive electrode 1 may be set to about 1 mm.
On the other hand, in the negative electrode 2, an Sn—Na alloy containing, for example, tin as a negative electrode active material is formed on the aluminum negative electrode current collector 2a by plating.

正極1及び負極2の間に介在するセパレータ3は、ガラスの不織布(厚さ200μm)に電解質としての溶融塩を含浸させたものである。この溶融塩は、例えば、NaFSA(ナトリウム ビスフルオロスルフォニルアミド)0.45mol%と、KFSA(カリウム ビスフルオロスルフォニルアミド)0.55mol%との混合物であり、融点は57℃である。融点以上の温度では、溶融塩は溶融し、高濃度のイオンが溶解した電解液となって、正極1及び負極2に触れている。また、この溶融塩は不燃性である。   The separator 3 interposed between the positive electrode 1 and the negative electrode 2 is obtained by impregnating a glass non-woven fabric (thickness: 200 μm) with a molten salt as an electrolyte. This molten salt is, for example, a mixture of NaFSA (sodium bisfluorosulfonylamide) 0.45 mol% and KFSA (potassium bisfluorosulfonylamide) 0.55 mol%, and its melting point is 57 ° C. At a temperature equal to or higher than the melting point, the molten salt melts and becomes an electrolytic solution in which high-concentration ions are dissolved, and touches the positive electrode 1 and the negative electrode 2. Moreover, this molten salt is nonflammable.

なお、上述した各部の材質・成分や数値は好適な一例であるが、これらに限定されるものではない。
例えば、溶融塩としては、上記の他、LiFSA−KFSA−CsFSAの混合物も好適である。また、他の塩を混合する場合もあり(有機カチオン等)、一般には、溶融塩は、(a)NaFSA、又は、LiFSAを含む混合物、(b)NaTFSA、又は、LiTFSAを含む混合物、が適する。これらの場合、各混合物の溶融塩は、比較的低融点となるので、少ない加熱で溶融塩電池を作動させることができる。
In addition, although the material, component, and numerical value of each part mentioned above are suitable examples, it is not limited to these.
For example, in addition to the above, a mixture of LiFSA-KFSA-CsFSA is also suitable as the molten salt. In addition, other salts may be mixed (such as organic cations). Generally, (a) a mixture containing NaFSA or LiFSA or (b) a mixture containing NaTFSA or LiTFSA is suitable as the molten salt. . In these cases, since the molten salt of each mixture has a relatively low melting point, the molten salt battery can be operated with a small amount of heating.

次に、より具体的な溶融塩電池の発電要素の構成について説明する。図2は、溶融塩電池本体(電池としての本体部分)10の積層構造を簡略に示す斜視図、図3は同様の構造についての横断面図である。
図2及び図3において、複数(図示しているのは6個)の矩形平板状の負極2と、袋状のセパレータ3に各々収容された複数(図示しているのは5個)の矩形平板状の正極1とが、互いに対向して図3における上下方向すなわち積層方向に重ね合わせられ、積層構造を成している。
Next, a more specific configuration of the power generation element of the molten salt battery will be described. FIG. 2 is a perspective view schematically showing a laminated structure of a molten salt battery main body (main body portion as a battery) 10, and FIG. 3 is a cross-sectional view of the same structure.
2 and 3, a plurality (six are shown) of rectangular flat plate-like negative electrodes 2 and a plurality (five are shown) of rectangles accommodated in a bag-like separator 3 respectively. The flat positive electrodes 1 are opposed to each other and are stacked in the vertical direction in FIG. 3, that is, in the stacking direction, to form a stacked structure.

セパレータ3は、隣り合う正極1と負極2との間に介在しており、言い換えれば、セパレータ3を介して、正極1及び負極2が交互に積層されていることになる。実際に積層する数は、例えば、正極1が20個、負極2が21個、セパレータ3は「袋」としては20袋であるが、正極1・負極2間に介在する個数としては40個である。なお、セパレータ3は、袋状に限定されず、分離した40個であってもよい。   The separator 3 is interposed between the positive electrode 1 and the negative electrode 2 adjacent to each other. In other words, the positive electrode 1 and the negative electrode 2 are alternately stacked via the separator 3. For example, 20 positive electrodes 1 and 21 negative electrodes 2 and 20 separators 3 as “bags”, but 40 intervening between positive electrodes 1 and 2 are actually stacked. is there. The separator 3 is not limited to a bag shape, and may be 40 separated.

なお、図3では、セパレータ3と負極2とが互いに離れているように描いているが、溶融塩電池の完成時には互いに密着する。正極1も、当然に、セパレータ3に密着している。また、正極1の縦方向及び横方向それぞれの寸法は、デンドライトの発生を防止するために、負極2の縦方向及び横方向の寸法より小さくしてあり、正極1の外縁が、セパレータ3を介して負極2の周縁部に対向するようになっている。   In FIG. 3, the separator 3 and the negative electrode 2 are drawn so as to be separated from each other, but they are in close contact with each other when the molten salt battery is completed. Naturally, the positive electrode 1 is also in close contact with the separator 3. In addition, the vertical and horizontal dimensions of the positive electrode 1 are smaller than the vertical and horizontal dimensions of the negative electrode 2 in order to prevent the generation of dendrites, and the outer edge of the positive electrode 1 passes through the separator 3. Thus, it faces the peripheral edge of the negative electrode 2.

上記のように構成された溶融塩電池本体10は、例えばアルミニウム合金製で直方体状の電池容器に収容され、素電池すなわち、電池としての物理的な一個体を成す。なお、電池容器は、内面には絶縁処理が施されていてもよいが、少なくとも外面は導電性である。
図4は、このような電池容器11に収められた状態の溶融塩電池Bの外観の概略を示す斜視図である。なお、図2,図3における正極1及び負極2のそれぞれからは、端子(正極1の端子1tのみ図示している。)が電池容器11の外部へ引き出される。図4において、電池容器11の上部には、内部の気圧が過度に上昇したときに放圧するための安全弁12が設けられている。
The molten salt battery main body 10 configured as described above is accommodated in a rectangular parallelepiped battery container made of, for example, an aluminum alloy, and forms a unit cell, that is, a physical individual as a battery. In addition, although the inner surface of the battery container may be insulated, at least the outer surface is conductive.
FIG. 4 is a perspective view showing an outline of the appearance of the molten salt battery B in a state of being housed in such a battery container 11. 2 and 3, terminals (only the terminal 1t of the positive electrode 1 is shown) are drawn out of the battery container 11 from the positive electrode 1 and the negative electrode 2, respectively. In FIG. 4, a safety valve 12 for releasing the pressure when the internal atmospheric pressure rises excessively is provided at the top of the battery container 11.

上記のように構成された溶融塩電池Bは、外部の加熱手段を用いて溶融塩の融点以上になるように加熱される。実際には、安定的な溶融状態とするため、全体が85℃〜95℃になるように加熱される。これにより、溶融塩が融解して、充電及び放電が可能な状態となる。
また、この素電池としての溶融塩電池Bを集めて組電池を構成することができる。例えば、素電池としての溶融塩電池Bを複数個、互いに直列又は並列に接続して成る組電池は、所望の電圧・電流の定格で使用することができる。
The molten salt battery B configured as described above is heated using an external heating means so as to be equal to or higher than the melting point of the molten salt. Actually, in order to obtain a stable molten state, the whole is heated to 85 ° C to 95 ° C. Thereby, molten salt will melt | dissolve and it will be in the state which can be charged and discharged.
Moreover, the molten salt battery B as this unit cell can be collected to constitute an assembled battery. For example, an assembled battery formed by connecting a plurality of molten salt batteries B as unit cells in series or in parallel can be used at a desired voltage / current rating.

図5は、溶融塩電池を複数並べた組電池について、その液漏れ検知を可能とするための構成(方法)を示す概略図である。なお、ここでは4個の溶融塩電池Bを示しているが、これは単なる一例に過ぎない。また、紙面に対して垂直な方向にも列を成すようにマトリックス状に任意の個数の組電池を構成することができる。   FIG. 5 is a schematic diagram showing a configuration (method) for enabling detection of liquid leakage of an assembled battery in which a plurality of molten salt batteries are arranged. Here, four molten salt batteries B are shown, but this is merely an example. In addition, an arbitrary number of assembled batteries can be configured in a matrix so as to form a row in a direction perpendicular to the paper surface.

図5において、各溶融塩電池Bの電池容器11は、互いに密着するように接しており、アルミニウム合金製であることによって、容器同士は、電気的にも相互に接続された関係にある。各電池容器11は、皿状(バット状)に縁が立ち上がった受け皿13の上に載置されている。受け皿13は、導電性部材であり、例えばアルミニウム合金やステンレス等の金属からなる。但し、受け皿13は、非導電性部材(樹脂等)の表面に金属をコーティングしたものであってもよい。   In FIG. 5, the battery containers 11 of the molten salt batteries B are in contact with each other and are made of an aluminum alloy, so that the containers are electrically connected to each other. Each battery container 11 is placed on a tray 13 whose edges rise in a dish shape (bat shape). The tray 13 is a conductive member and is made of a metal such as an aluminum alloy or stainless steel. However, the tray 13 may be a non-conductive member (resin or the like) whose surface is coated with a metal.

受け皿13の内底面13aには、吸着シート14が載せられており、各電池容器11はこの吸着シート14上に載っている。すなわち、電池容器11と受け皿13の内底面13aとは互いに直接触れず、両者の間に、吸着シート14が介在している。吸着シート14は、絶縁材料から成り、多孔質構造を有するものであり、例えば、ガラスの不織布や、多孔質のポリマーフィルムである。厚さは、例えばセパレータと同様に200μm程度である。   A suction sheet 14 is placed on the inner bottom surface 13 a of the tray 13, and each battery container 11 is placed on the suction sheet 14. That is, the battery container 11 and the inner bottom surface 13a of the tray 13 are not in direct contact with each other, and the suction sheet 14 is interposed between them. The adsorption sheet 14 is made of an insulating material and has a porous structure, and is, for example, a glass nonwoven fabric or a porous polymer film. The thickness is, for example, about 200 μm like the separator.

また、例えば受け皿13の下面には加熱装置としての面状のヒータ15が設けられており、受け皿13及び吸着シート14は、溶融塩電池Bの溶融塩の融点以上の温度に維持されている。なお、各溶融塩電池Bに対しては必ず、溶融塩を融点以上の温度に維持する加熱手段が設けられるので、これを、受け皿13及び吸着シート14の加熱手段として兼用してもよい。   For example, a planar heater 15 as a heating device is provided on the lower surface of the tray 13, and the tray 13 and the adsorption sheet 14 are maintained at a temperature equal to or higher than the melting point of the molten salt of the molten salt battery B. Since each molten salt battery B is always provided with a heating means for maintaining the molten salt at a temperature higher than the melting point, it may be used as a heating means for the tray 13 and the suction sheet 14.

電池容器11と、受け皿13との間には、交流電源16から交流電圧が印加される。電圧を印加する回路には、電流センサ17が挿入されている。この交流電圧は、例えば、10mV程度の所定値であり、周波数は1〜100kHzの範囲内の所定値である。このような高周波の交流に対して、吸着シート14は容量性のインピーダンスを有し、ごく微小な電流が流れる。この電流は、電流センサ17によって検知され、その出力がインピーダンス測定部18に送られることにより、回路のインピーダンスすなわち、実質的には吸着シート14のインピーダンスが測定される。このように、交流電源16、電流センサ17、電池容器11、吸着シート14、受け皿13、及び、インピーダンス測定部18は、インピーダンスを測定する測定装置20を構成している。   An AC voltage is applied from the AC power supply 16 between the battery container 11 and the tray 13. A current sensor 17 is inserted in the circuit for applying the voltage. This AC voltage is, for example, a predetermined value of about 10 mV, and the frequency is a predetermined value in the range of 1 to 100 kHz. With respect to such a high frequency alternating current, the suction sheet 14 has a capacitive impedance, and a very small current flows. This current is detected by the current sensor 17, and its output is sent to the impedance measuring unit 18, whereby the impedance of the circuit, that is, the impedance of the suction sheet 14 is substantially measured. As described above, the AC power supply 16, the current sensor 17, the battery container 11, the suction sheet 14, the tray 13, and the impedance measuring unit 18 constitute a measuring device 20 that measures impedance.

ここで、いずれかの電池容器11の安全弁12から電解液の液漏れがあると、その電解液は電池容器11の外面を伝って吸着シート14上に滴下する。吸着シート14は滴下してきた電解液を多孔質構造によって素早く吸着する。ここで、吸着シート14は融点以上の温度に維持されているので、電解液は溶融したままである。電解液を吸着した吸着シート14は、インピーダンスが低下する。このインピーダンスの変化をインピーダンス測定部18によって捉えることにより、液漏れを検知することができる。なお、溶融塩の電解液は蒸発せずに吸着シート14に残る。そのため、吸着シート14のインピーダンス変化を生じさせる物質として好適である。   Here, when the electrolyte leaks from the safety valve 12 of any battery container 11, the electrolyte drops on the adsorption sheet 14 along the outer surface of the battery container 11. The adsorbing sheet 14 quickly adsorbs the dropped electrolyte solution by a porous structure. Here, since the adsorption sheet 14 is maintained at a temperature equal to or higher than the melting point, the electrolytic solution remains molten. The adsorption sheet 14 that has adsorbed the electrolytic solution has a reduced impedance. By capturing this change in impedance by the impedance measuring unit 18, it is possible to detect liquid leakage. The molten salt electrolyte remains on the adsorption sheet 14 without evaporating. Therefore, it is suitable as a substance that causes an impedance change of the suction sheet 14.

このようにして、インピーダンスの変化に基づいて、電解液が電池容器11から漏れ出たことを、検知することができる。また、組電池を構成するいずれの電池容器11から電解液が漏れ出ても、それを、共通の回路で検知することができる。さらに、多孔質構造の吸着シート14により、電解液を素早く確実に保持し、インピーダンス変化につなげることができる。なお、受け皿113の存在により、確実に、吸着シート14とともに電解液を受け止めることができ、漏れた電解液を通過させてしまうことはない。   In this way, it is possible to detect that the electrolyte has leaked from the battery container 11 based on the change in impedance. Moreover, even if electrolyte solution leaks out from any battery container 11 which comprises an assembled battery, it can be detected with a common circuit. Furthermore, the adsorption sheet 14 having a porous structure can hold the electrolytic solution quickly and reliably, and can lead to a change in impedance. In addition, the presence of the receiving tray 113 can reliably receive the electrolytic solution together with the adsorbing sheet 14, and the leaked electrolytic solution is not allowed to pass through.

図6は、溶融塩電池を複数並べた組電池について、その液漏れ検知を可能とするための他の構成(他の方法)を示す概略図である。図5との違いは、交流電圧を各電池容器11ごとに印加し、それぞれに設けられた電流センサ17によって、各電池容器11ごとにインピーダンスを測定する点である。また、そのために、隣接する各電池容器11は互いに接触せず、隙間が設けられている。   FIG. 6 is a schematic diagram showing another configuration (another method) for enabling detection of liquid leakage of an assembled battery in which a plurality of molten salt batteries are arranged. The difference from FIG. 5 is that an AC voltage is applied to each battery container 11 and the impedance is measured for each battery container 11 by a current sensor 17 provided for each battery container 11. For this reason, the adjacent battery containers 11 do not contact each other, and a gap is provided.

図6において、例えば図の右端の電池容器11の安全弁12から電解液の液漏れがあると、その電解液は電池容器11の外面を伝って吸着シート14上に滴下する。吸着シート14は滴下してきた電解液dを、多孔質構造によって素早く吸着する。電解液dを吸着した吸着シート14は、インピーダンスが低下する。但し、インピーダンスの低下が測定に影響するのは右端の電池容器11のみである。従って、このインピーダンスの変化をインピーダンス測定部18によって捉えることにより、右端の電池容器11からの液漏れが生じたことを、検知することができる。他の電池容器11から液漏れがあった場合も同様である。   In FIG. 6, for example, when the electrolyte leaks from the safety valve 12 of the battery container 11 at the right end of the figure, the electrolyte drops on the adsorption sheet 14 along the outer surface of the battery container 11. The adsorbing sheet 14 quickly adsorbs the dropped electrolyte d with a porous structure. The adsorption sheet 14 that has adsorbed the electrolytic solution d has a reduced impedance. However, it is only the rightmost battery case 11 that the drop in impedance affects the measurement. Therefore, it is possible to detect the occurrence of liquid leakage from the battery container 11 at the right end by capturing the change in impedance by the impedance measuring unit 18. The same applies when there is liquid leakage from other battery containers 11.

このようにして、各電池容器11について個別にインピーダンスを測定することにより、組電池の中から電解液が漏れ出た電池容器11を特定することができる。従って、特定した電池容器11を取り替えることにより、他の電池に過度の負担がかかるような事態を迅速的確に防止することができる。   In this way, by measuring the impedance of each battery container 11 individually, the battery container 11 from which the electrolyte solution has leaked out of the assembled battery can be specified. Therefore, by replacing the specified battery container 11, it is possible to quickly and accurately prevent a situation in which an excessive burden is placed on other batteries.

図7は、図6の変形版とも言える類似の構成であり、隣接する各電池容器11間に隙間を設ける代わりに、絶縁材のスペーサ19を挟んだ構成を示している。この場合も同様に、各電池容器11について個別にインピーダンスを測定することにより、組電池の中から電解液が漏れ出た電池容器11を特定することができる。このスペーサ19として、融点以上の温度を維持するための面状のヒータを用いることも可能である。   FIG. 7 shows a similar configuration that can be said to be a modified version of FIG. 6, and shows a configuration in which an insulating spacer 19 is sandwiched instead of providing a gap between adjacent battery containers 11. In this case as well, by measuring the impedance of each battery container 11 individually, it is possible to identify the battery container 11 from which the electrolyte has leaked from the assembled battery. As the spacer 19, a planar heater for maintaining a temperature higher than the melting point can be used.

なお、上記の検知は、組電池を対象として説明したが、単一の溶融塩電池Bを使用している場合でも、同様の構成により、液漏れを検知することができる。
また、上記の例では、漏れ出た電解液を自然に滴下させて下で受け止める構成を示した。これは、重力で自然に滴下する電解液を確実に受け止める構成として好適であるが、その他の構成も可能である。例えば、電池容器11の側面や安全弁12の近傍に吸着シートを当てがい、当該吸着シートを導電性部材(この場合は受け皿ではない。)で押さえ、同様に、電解液の吸着によってインピーダンスが変化する構成とすることも可能である。
In addition, although said detection demonstrated the assembled battery as object, even when using the single molten salt battery B, a liquid leak is detectable with the same structure.
Moreover, in said example, the structure which dripped the electrolyte solution which leaked naturally and received it under was shown. This is suitable as a configuration that reliably receives the electrolytic solution that drops naturally by gravity, but other configurations are possible. For example, an adsorption sheet is applied to the side surface of the battery container 11 or the vicinity of the safety valve 12, and the adsorption sheet is pressed by a conductive member (in this case, not a tray). Similarly, the impedance changes due to adsorption of the electrolytic solution. A configuration is also possible.

なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

10:溶融塩電池本体
11:電池容器
13:受け皿(導電性部材)
14:吸着シート
15:ヒータ(加熱装置)
19:スペーサ(絶縁材)
20:測定装置
B:溶融塩電池
10: Molten salt battery main body 11: Battery container 13: Sauce pan (conductive member)
14: Adsorption sheet 15: Heater (heating device)
19: Spacer (insulating material)
20: Measuring device B: Molten salt battery

Claims (8)

電解質として溶融塩を含む溶融塩電池本体と、
前記溶融塩電池本体を収容し、少なくとも外面が導電性の電池容器と、
前記電池容器の外面に接して設けられ、前記電池容器から漏れ出た電解液を吸着することが可能な吸着シートと、
前記電池容器との間に前記吸着シートを挟み込む導電性部材と
を備えていることを特徴とする溶融塩電池。
A molten salt battery main body containing a molten salt as an electrolyte;
The molten salt battery main body is accommodated, and at least the outer surface has a conductive battery container,
An adsorbing sheet provided in contact with the outer surface of the battery container and capable of adsorbing the electrolyte solution leaking from the battery container;
A molten salt battery, comprising: a conductive member that sandwiches the adsorbing sheet between the battery container and the battery container.
前記溶融塩電池本体を収容した電池容器を複数個並べて組電池が構成され、各電池容器の外面が互いに接触している請求項1記載の溶融塩電池。   The molten salt battery according to claim 1, wherein an assembled battery is configured by arranging a plurality of battery containers containing the molten salt battery main body, and outer surfaces of the battery containers are in contact with each other. 前記溶融塩電池本体を収容した電池容器を複数個並べて組電池が構成され、各電池容器は、隙間を設けるか又は絶縁材を挟むことにより互いに絶縁されている請求項1記載の溶融塩電池。   The molten salt battery according to claim 1, wherein an assembled battery is configured by arranging a plurality of battery containers containing the molten salt battery main body, and each battery container is insulated from each other by providing a gap or sandwiching an insulating material. 前記吸着シートは絶縁性の多孔質シートである請求項1〜3のいずれか1項に記載の溶融塩電池。   The molten salt battery according to claim 1, wherein the adsorption sheet is an insulating porous sheet. 前記吸着シートは前記電池容器の下に敷かれ、前記導電性部材は前記吸着シートを介して前記電池容器を載せる受け皿となっている請求項1〜4のいずれか1項に記載の溶融塩電池。   The molten salt battery according to any one of claims 1 to 4, wherein the adsorption sheet is laid under the battery container, and the conductive member serves as a tray on which the battery container is placed via the adsorption sheet. . 前記吸着シートを前記溶融塩の融点以上の温度に維持する加熱装置を備えた請求項1〜5のいずれか1項に記載の溶融塩電池。   The molten salt battery according to claim 1, further comprising a heating device that maintains the adsorption sheet at a temperature equal to or higher than a melting point of the molten salt. 電解質として溶融塩を含む溶融塩電池本体と、
前記溶融塩電池本体を収容し、少なくとも外面が導電性の電池容器と、
前記電池容器の外面に接して設けられ、前記電池容器から漏れ出た電解液を吸着することが可能な吸着シートと、
前記電池容器との間に前記吸着シートを挟み込む導電性部材と、
前記電池容器の外面と前記導電性部材との間に交流電圧を印加してインピーダンスを測定する測定装置と
を備えていることを特徴とする溶融塩電池。
A molten salt battery main body containing a molten salt as an electrolyte;
The molten salt battery main body is accommodated, and at least the outer surface has a conductive battery container,
An adsorbing sheet provided in contact with the outer surface of the battery container and capable of adsorbing the electrolyte solution leaking from the battery container;
A conductive member that sandwiches the adsorbing sheet between the battery container, and
A molten salt battery, comprising: a measuring device that measures an impedance by applying an AC voltage between an outer surface of the battery container and the conductive member.
電解質として溶融塩を含む溶融塩電池本体と、前記溶融塩電池本体を収容し、少なくとも外面が導電性の電池容器と、前記電池容器の外面に接して設けられ、前記電池容器から漏れ出た電解液を吸着することが可能な吸着シートと、前記電池容器との間に前記吸着シートを挟み込む導電性部材とを備えた溶融塩電池について、前記電池容器から電解液が漏れ出たことを検知する溶融塩電池の液漏れ検知方法であって、
前記電池容器から電解液が漏れ出る前の前記電池容器の外面と前記導電性部材との間に交流電圧を印加した場合のインピーダンスを予め測定しておき、当該インピーダンスが変化した場合に前記電池容器から電解液が漏れ出たと判定する溶融塩電池の液漏れ検知方法。
A molten salt battery main body containing a molten salt as an electrolyte, the molten salt battery main body, the battery container having at least an outer surface in contact with the outer surface of the battery container, and an electrolyte leaking from the battery container Detecting leakage of electrolyte from a battery container in a molten salt battery including an adsorption sheet capable of adsorbing a liquid and a conductive member sandwiching the adsorption sheet between the battery container A method for detecting a liquid leak in a molten salt battery,
Impedance is measured in advance when an AC voltage is applied between the outer surface of the battery container before the electrolyte leaks from the battery container and the conductive member, and the battery container changes when the impedance changes. A method for detecting a leakage of a molten salt battery that determines that an electrolyte has leaked from the battery.
JP2011091097A 2011-04-15 2011-04-15 Molten salt battery and leakage detection method for the same Withdrawn JP2012226866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011091097A JP2012226866A (en) 2011-04-15 2011-04-15 Molten salt battery and leakage detection method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011091097A JP2012226866A (en) 2011-04-15 2011-04-15 Molten salt battery and leakage detection method for the same

Publications (1)

Publication Number Publication Date
JP2012226866A true JP2012226866A (en) 2012-11-15

Family

ID=47276846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011091097A Withdrawn JP2012226866A (en) 2011-04-15 2011-04-15 Molten salt battery and leakage detection method for the same

Country Status (1)

Country Link
JP (1) JP2012226866A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058165A1 (en) * 2013-10-17 2015-04-23 Ambri Inc. Battery management systems for energy storage devices
US9312522B2 (en) 2012-10-18 2016-04-12 Ambri Inc. Electrochemical energy storage devices
US9502737B2 (en) 2013-05-23 2016-11-22 Ambri Inc. Voltage-enhanced energy storage devices
US9520618B2 (en) 2013-02-12 2016-12-13 Ambri Inc. Electrochemical energy storage devices
US9735450B2 (en) 2012-10-18 2017-08-15 Ambri Inc. Electrochemical energy storage devices
CN107342439A (en) * 2017-08-30 2017-11-10 清陶(昆山)能源发展有限公司 A kind of method for improving the interface impedance between positive/negative plate and dielectric film
US9893385B1 (en) 2015-04-23 2018-02-13 Ambri Inc. Battery management systems for energy storage devices
US10181800B1 (en) 2015-03-02 2019-01-15 Ambri Inc. Power conversion systems for energy storage devices
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
JP2019185861A (en) * 2018-04-02 2019-10-24 日産自動車株式会社 Secondary battery system
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US10608212B2 (en) 2012-10-16 2020-03-31 Ambri Inc. Electrochemical energy storage devices and housings
US10637015B2 (en) 2015-03-05 2020-04-28 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
JPWO2019102986A1 (en) * 2017-11-22 2020-10-01 Tdk株式会社 Battery pack
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US11411254B2 (en) 2017-04-07 2022-08-09 Ambri Inc. Molten salt battery with solid metal cathode
EP4213172A1 (en) * 2022-01-13 2023-07-19 Skeleton Technologies GmbH Leakage detection in energy storage modules and associated devices and methods
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
WO2023174311A1 (en) * 2022-03-14 2023-09-21 比亚迪股份有限公司 Battery tray assembly, battery pack, and vehicle
EP4303985A1 (en) 2022-07-05 2024-01-10 Saft Groupe Apparatus and method for detecting electrolyte leakage in an electrochemical cell
US11909004B2 (en) 2013-10-16 2024-02-20 Ambri Inc. Electrochemical energy storage devices
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
WO2024067559A1 (en) * 2022-09-30 2024-04-04 比亚迪股份有限公司 Battery tray assembly, battery pack and vehicle

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608212B2 (en) 2012-10-16 2020-03-31 Ambri Inc. Electrochemical energy storage devices and housings
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US11196091B2 (en) 2012-10-18 2021-12-07 Ambri Inc. Electrochemical energy storage devices
US9735450B2 (en) 2012-10-18 2017-08-15 Ambri Inc. Electrochemical energy storage devices
US11611112B2 (en) 2012-10-18 2023-03-21 Ambri Inc. Electrochemical energy storage devices
US9825265B2 (en) 2012-10-18 2017-11-21 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US9312522B2 (en) 2012-10-18 2016-04-12 Ambri Inc. Electrochemical energy storage devices
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US9520618B2 (en) 2013-02-12 2016-12-13 Ambri Inc. Electrochemical energy storage devices
US9728814B2 (en) 2013-02-12 2017-08-08 Ambri Inc. Electrochemical energy storage devices
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
US10297870B2 (en) 2013-05-23 2019-05-21 Ambri Inc. Voltage-enhanced energy storage devices
US9559386B2 (en) 2013-05-23 2017-01-31 Ambri Inc. Voltage-enhanced energy storage devices
US9502737B2 (en) 2013-05-23 2016-11-22 Ambri Inc. Voltage-enhanced energy storage devices
US11909004B2 (en) 2013-10-16 2024-02-20 Ambri Inc. Electrochemical energy storage devices
WO2015058165A1 (en) * 2013-10-17 2015-04-23 Ambri Inc. Battery management systems for energy storage devices
US10566662B1 (en) 2015-03-02 2020-02-18 Ambri Inc. Power conversion systems for energy storage devices
US10181800B1 (en) 2015-03-02 2019-01-15 Ambri Inc. Power conversion systems for energy storage devices
US10637015B2 (en) 2015-03-05 2020-04-28 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
US11840487B2 (en) 2015-03-05 2023-12-12 Ambri, Inc. Ceramic materials and seals for high temperature reactive material devices
US11289759B2 (en) 2015-03-05 2022-03-29 Ambri, Inc. Ceramic materials and seals for high temperature reactive material devices
US9893385B1 (en) 2015-04-23 2018-02-13 Ambri Inc. Battery management systems for energy storage devices
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
US11411254B2 (en) 2017-04-07 2022-08-09 Ambri Inc. Molten salt battery with solid metal cathode
CN107342439B (en) * 2017-08-30 2021-06-29 清陶(昆山)能源发展有限公司 Method for improving interface impedance between positive and negative pole pieces and electrolyte membrane
CN107342439A (en) * 2017-08-30 2017-11-10 清陶(昆山)能源发展有限公司 A kind of method for improving the interface impedance between positive/negative plate and dielectric film
JP7092148B2 (en) 2017-11-22 2022-06-28 Tdk株式会社 Battery pack
US11437654B2 (en) 2017-11-22 2022-09-06 Tdk Corporation Battery pack
EP3716352A4 (en) * 2017-11-22 2021-09-01 TDK Corporation Battery pack
JPWO2019102986A1 (en) * 2017-11-22 2020-10-01 Tdk株式会社 Battery pack
JP7047548B2 (en) 2018-04-02 2022-04-05 日産自動車株式会社 Rechargeable battery system
JP2019185861A (en) * 2018-04-02 2019-10-24 日産自動車株式会社 Secondary battery system
EP4213172A1 (en) * 2022-01-13 2023-07-19 Skeleton Technologies GmbH Leakage detection in energy storage modules and associated devices and methods
WO2023174311A1 (en) * 2022-03-14 2023-09-21 比亚迪股份有限公司 Battery tray assembly, battery pack, and vehicle
EP4303985A1 (en) 2022-07-05 2024-01-10 Saft Groupe Apparatus and method for detecting electrolyte leakage in an electrochemical cell
WO2024067559A1 (en) * 2022-09-30 2024-04-04 比亚迪股份有限公司 Battery tray assembly, battery pack and vehicle

Similar Documents

Publication Publication Date Title
JP2012226866A (en) Molten salt battery and leakage detection method for the same
EP2978063B1 (en) Inspection method for film covered battery
US20120129037A1 (en) Electrochemical energy storage cell
CN108886179B (en) Battery cell capable of measuring internal temperature of battery cell
KR20130130715A (en) Molten salt battery
CA2978735A1 (en) Current collecting structure for sealed secondary battery
JP2013247031A (en) Nonaqueous electricity storage device and lithium ion secondary battery
JP5617746B2 (en) Closed molten salt battery
JP2020525987A (en) Battery cell
JP2014199780A (en) Electricity storage element
JP2015138648A (en) battery module
KR20120019217A (en) Electrode assembly of novel structure
KR20180072934A (en) Process for Preparation of Pouch-typed Battery Cell Using Member for Preventing Electrolyte Leakage
JP2017224451A (en) Electric storage element
KR101539829B1 (en) Secondary battery including support means
CN110176645B (en) Secondary battery and battery pack including the same
KR101514875B1 (en) Secondary battery
KR101650860B1 (en) Battery Cell Having Separation Film of Suppressed Thermal Shrinkage
JP5696648B2 (en) Method for manufacturing molten salt battery
KR20150131505A (en) Battery Cell Comprising Flexible Current Collector
JP2008059948A (en) Manufacturing method of storage element
KR101577186B1 (en) Battery Cell Having Position-changeable Electrode Lead
KR101849990B1 (en) Battery Cell Having Separation Film of Suppressed Thermal Shrinkage
JP2013073773A (en) Molten salt battery pack
JP2013206605A (en) Separator and power storage element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701