JP7046479B2 - Mixer and electrolyzed water generator - Google Patents

Mixer and electrolyzed water generator Download PDF

Info

Publication number
JP7046479B2
JP7046479B2 JP2016177265A JP2016177265A JP7046479B2 JP 7046479 B2 JP7046479 B2 JP 7046479B2 JP 2016177265 A JP2016177265 A JP 2016177265A JP 2016177265 A JP2016177265 A JP 2016177265A JP 7046479 B2 JP7046479 B2 JP 7046479B2
Authority
JP
Japan
Prior art keywords
water
electrolytic cell
space
electrolytic
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016177265A
Other languages
Japanese (ja)
Other versions
JP2018043165A (en
Inventor
彰宏 池田
智祥 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP2016177265A priority Critical patent/JP7046479B2/en
Publication of JP2018043165A publication Critical patent/JP2018043165A/en
Application granted granted Critical
Publication of JP7046479B2 publication Critical patent/JP7046479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

特許法第30条第2項適用 平成28年3月17日に、テクノエクセル株式会社社が、森永乳業株式会社に本件出願の発明者が発明した混合器および電解水生成装置を販売した。Application of Article 30, Paragraph 2 of the Patent Act On March 17, 2016, Techno Excel Co., Ltd. sold the mixer and electrolyzed water generator invented by the inventor of the present application to Morinaga Dairy Co., Ltd.

本発明は、電解質水溶液の電気分解によって生成された電解生成物と源水とを混合させて電解水を生成する混合器、およびそのような混合器と電解槽とを備えて構成された電解水生成装置に関するものである。 The present invention comprises a mixer for producing electrolyzed water by mixing an electrolyzed product produced by electrolysis of an aqueous electrolyte solution with source water, and electrolyzed water provided with such a mixer and an electrolytic cell. It is about a generator.

例えば、下記の特許文献には、希塩酸タンクから電解槽に供給した希塩酸を電気分解して次亜塩素酸水を生成すると共に、生成した次亜塩素酸水と貯留タンク内の水とを混合させることで所望の濃度の次亜塩素酸水を生成する次亜塩素酸水生成用電解装置(以下、単に「電解装置」ともいう)の発明が開示されている。この場合、この電解装置では、貯留タンクに接続された循環管路の中間部位に電解槽が接続されている。また、この電解装置では、電解槽において生成した次亜塩素酸水を、混入管路を介して循環管路内の水に混入させることにより、循環管路における混入管路との接続部位を「混合器」として機能させて次亜塩素酸水と水とを混合させる構成が採用されている。 For example, in the following patent documents, dilute hydrochloric acid supplied from a dilute hydrochloric acid tank to an electrolytic cell is electrolyzed to generate hypochlorite water, and the generated hypochlorite water is mixed with water in a storage tank. As a result, the invention of an electrolyzer for producing hypochlorite water (hereinafter, also simply referred to as “electrolyzer”) that produces a hypochlorite water having a desired concentration is disclosed. In this case, in this electrolytic cell, the electrolytic cell is connected to the intermediate portion of the circulation pipeline connected to the storage tank. Further, in this electrolyzer, the hypochlorite water generated in the electrolytic cell is mixed with the water in the circulation pipe through the mixing pipe, so that the connection portion with the mixing pipe in the circulation pipe is "". A configuration is adopted in which the hypochlorite water and water are mixed by functioning as a "mixer".

特開2012-115749号公報(第3-5頁、第1-3図)Japanese Unexamined Patent Publication No. 2012-115479 (Page 3-5, Fig. 1-3)

ところが、上記特許文献に開示されている電解装置には、以下の問題点が存在する。すなわち、上記の電解装置では、電解槽において生成した次亜塩素酸水を循環管路内の水に混入させることにより、次亜塩素酸水と水とを混合させて所望の濃度の次亜塩素酸水を生成する構成が採用されている。この場合、この電解装置では、電解槽内(電解処理空間)と循環管路内とが混入管路を介して常時連通した状態となっている。したがって、この電解装置では、貯留タンクから水を圧送するために循環ポンプによって加えられている循環管路内の圧力が混入管路内にも直接的に作用することとなる。したがって、この電解装置では、循環ポンプによって循環管路内に圧送された水の一部が混入管路を介して電解槽内(電解処理空間)に侵入するおそれがある。 However, the electrolytic apparatus disclosed in the above patent document has the following problems. That is, in the above-mentioned electrolyzer, the hypochlorite water generated in the electrolytic cell is mixed with the water in the circulation pipe to mix the hypochlorite water and water to obtain a desired concentration of hypochlorite. A configuration that produces acid water is adopted. In this case, in this electrolyzer, the inside of the electrolytic cell (electrolysis treatment space) and the inside of the circulation pipe are always in communication with each other via the mixing pipe. Therefore, in this electrolyzer, the pressure in the circulation pipe applied by the circulation pump to pump water from the storage tank directly acts in the mixing pipe. Therefore, in this electrolyzer, a part of the water pumped into the circulation pipe by the circulation pump may enter the inside of the electrolytic cell (electrolysis treatment space) through the mixing pipe.

このような場合には、混入管路内に水が浸入する(混入管路内を液体が逆流する)ことに起因して、電解槽において生成した次亜塩素酸の循環管路への供給量が減少し、所望の濃度の次亜塩素酸を生成するのが困難となる。また、希塩酸タンクから電解槽内に供給された希塩酸が、混入管路を介して電解槽内に侵入した水によって希釈される結果、電解槽内における電気分解効率が低下して、循環管路内において水と混合させるべき次亜塩素酸水の単位時間あたりにおける生成量が減少したり、生成される次亜塩素酸水の濃度が低下したりする。このため、上記特許文献に開示の電解装置には、所望の濃度の次亜塩素酸水を生成するのに長時間を要すると共に、電力消費量が増加しているという問題点がある。 In such a case, the amount of hypochlorous acid generated in the electrolytic cell supplied to the circulation pipe due to the infiltration of water into the mixing pipe (the liquid flows back in the mixing pipe). Decreases, making it difficult to produce the desired concentration of hypochlorous acid. Further, as a result of diluting the dilute hydrochloric acid supplied from the dilute hydrochloric acid tank into the electrolytic cell by the water that has entered the electrolytic cell through the mixing pipeline, the electrolysis efficiency in the electrolytic cell is lowered, and the inside of the circulation conduit is reduced. In, the amount of hypochlorite water to be mixed with water per unit time decreases, or the concentration of hypochlorite water produced decreases. Therefore, the electrolytic apparatus disclosed in the above patent document has a problem that it takes a long time to generate a hypochlorite water having a desired concentration and the power consumption is increased.

本発明は、かかる問題点に鑑みてなされたものであり、電力消費量を低減しつつ短時間で電解水を生成可能な電解水生成装置を製造し得る混合器、およびそのような混合器を備えて構成された電解水生成装置を提供することを主目的とする。 The present invention has been made in view of the above problems, and is a mixer capable of producing an electrolyzed water generator capable of producing electrolyzed water in a short time while reducing power consumption, and such a mixer. The main purpose is to provide an electrolyzed water generator configured to be provided.

上記目的を達成すべく、請求項1記載の混合器は、電解槽に接続されると共に当該電解槽における電解質水溶液の電気分解によって生成された電解生成物と源水とを混合させて電解水を生成する混合器であって、前記源水を導入する第1導入口、前記電解生成物を導入する第2導入口、および前記電解水を排出する排出口が設けられた容器体と、前記容器体内に配設されて当該容器体の内部空間を前記第1導入口側の上流側空間および前記排出口側の下流側空間に仕切ると共に当該上流側空間および当該下流側空間を相互に連通させる連通孔が設けられた仕切部とを備え、前記第2導入口は、前記電解槽から供給される前記電解生成物を前記下流側空間に導入可能に開口されている。 In order to achieve the above object, the mixer according to claim 1 is connected to an electrolytic tank, and the electrolytic product produced by electrolysis of the aqueous electrolyte in the electrolytic tank is mixed with the source water to produce electrolytic water. A container body provided with a first introduction port for introducing the source water, a second introduction port for introducing the electrolytic product, and a discharge port for discharging the electrolytic water, and the container. Communication that is disposed inside the body and divides the internal space of the container body into the upstream space on the first introduction port side and the downstream space on the discharge port side, and communicates the upstream space and the downstream space with each other. The second introduction port is provided with a partition portion provided with a hole, and the second introduction port is opened so that the electrolysis product supplied from the electrolysis tank can be introduced into the downstream space.

また、請求項2記載の混合器は、請求項1記載の混合器において、前記仕切部には、前記連通孔が複数形成されている。 Further, in the mixer according to claim 2, the mixer according to claim 1 has a plurality of communication holes formed in the partition portion.

また、請求項3記載の電解水生成装置は、請求項1または2記載の混合器と、前記電解槽とを備えて前記電解水を生成可能に構成されている。 Further, the electrolyzed water generator according to claim 3 is configured to include the mixer according to claim 1 or 2 and the electrolytic cell so as to be able to generate the electrolyzed water.

さらに、請求項4記載の電解水生成装置は、請求項3記載の電解水生成装置において、前記混合器における前記容器体と前記電解槽における処理槽とが一体形成されている。 Further, in the electrolyzed water generator according to claim 4, in the electrolyzed water generator according to claim 3, the container body in the mixer and the treatment tank in the electrolytic cell are integrally formed.

請求項1記載の混合器では、源水を導入する第1導入口、電解生成物を導入する第2導入口、および電解水を排出する排出口が設けられた容器体と、容器体の内部空間を第1導入口側の上流側空間および排出口側の下流側空間に仕切ると共に上流側空間および下流側空間を相互に連通させる連通孔が設けられた仕切部とを備え、第2導入口が、電解槽から供給される電解生成物を下流側空間に導入可能に開口されている。また、請求項3記載の電解水生成装置では、上記の混合器と、電解槽とを備えて電解水を生成可能に構成されている。 In the mixer according to claim 1, the container body provided with the first introduction port for introducing the source water, the second introduction port for introducing the electrolytic product, and the discharge port for discharging the electrolyzed water, and the inside of the container body. The space is divided into the upstream space on the first inlet side and the downstream space on the discharge port side, and the second inlet is provided with a partition portion provided with a communication hole for communicating the upstream space and the downstream space with each other. However, the electrolytic product supplied from the electrolytic tank is opened so as to be introduced into the downstream space. Further, the electrolyzed water generator according to claim 3 is provided with the above-mentioned mixer and an electrolytic cell so as to be able to generate electrolyzed water.

したがって、請求項1記載の混合器、および請求項3記載の電解水生成装置によれば、連通孔を設けた仕切部の存在により、第1導入口から源水が導入される上流側空間よりも、電解槽からの電解生成物が導入される下流側空間内の圧力を十分に低くすることができるため、第2導入口を介して電解槽に源水が侵入する事態を好適に回避することができる。これにより、この混合器および電解水生成装置によれば、電解槽内の電解質水溶液が源水によって希釈される事態を回避できるため、電解槽内における電解質水溶液の電気分解効率を十分に向上させることができ、電気分解に必要な電力量を十分に低減することができる。また、混合器から電解槽への源水の浸入が回避されることにより、電解槽において生成された電解生成物を電解槽から混合器に効率よく供給することができるため、所望の濃度の電解水を短時間で効率よく生成することができる。 Therefore, according to the mixer according to claim 1 and the electrolyzed water generator according to claim 3, due to the presence of the partition portion provided with the communication hole, the source water is introduced from the first introduction port from the upstream space. However, since the pressure in the space on the downstream side where the electrolytic product from the electrolytic cell is introduced can be sufficiently lowered, the situation where the source water invades the electrolytic cell through the second introduction port is suitably avoided. be able to. As a result, according to this mixer and the electrolytic cell generator, it is possible to avoid the situation where the electrolytic cell aqueous solution in the electrolytic cell is diluted by the source water, so that the electrolysis efficiency of the electrolytic cell aqueous solution in the electrolytic cell is sufficiently improved. It is possible to sufficiently reduce the amount of electric power required for electrolysis. Further, by avoiding the infiltration of the source water from the mixer into the electrolytic cell, the electrolytic product produced in the electrolytic cell can be efficiently supplied from the electrolytic cell to the mixer, so that the electrolysis at a desired concentration can be performed. Water can be efficiently generated in a short time.

また、請求項2記載の混合器、およびそのような混合器を備えた電解水生成装置によれば、混合器の仕切部に連通孔を複数形成したことにより、各連通孔からの源水の噴流によって下流側空間内において源水と電解生成物とを好適に攪拌して両者を好適に混合させることができる。 Further, according to the mixer according to claim 2 and the electrolyzed water generator provided with such a mixer, the source water from each communication hole is formed by forming a plurality of communication holes in the partition portion of the mixer. The jet can suitably stir the source water and the electrolytic product in the downstream space and mix them appropriately.

また、請求項4記載の電解水生成装置によれば、混合器における容器体と電解槽における処理槽とを一体形成したことにより、電解槽と混合器とを別体に形成してネジ止め等によって一体化させた構成と比較して、電解槽および混合器の設置に要するスペースを十分に小さくすることができると共に、電解槽および混合器の接合部分をシールするためのシーリングが不要となるため、電解水生成装置の製造コストを十分に低減することができる。 Further, according to the electrolytic water generator according to claim 4, by integrally forming the container body in the mixer and the treatment tank in the electrolytic cell, the electrolytic cell and the mixer are formed as separate bodies and screwed or the like. Compared with the configuration integrated by, the space required for installing the electrolytic cell and the mixer can be sufficiently reduced, and sealing for sealing the joint portion of the electrolytic cell and the mixer is not required. , The manufacturing cost of the electrolyzed water generator can be sufficiently reduced.

上水道、被電解水タンク2および電解水タンク3を接続した状態の電解水生成装置1の構成図である。It is a block diagram of the electrolyzed water generation apparatus 1 in the state which the water supply, the electrolyzed water tank 2 and the electrolyzed water tank 3 are connected. 電解槽10の外観斜視図である。It is an external perspective view of the electrolytic cell 10. 電解槽10の分解斜視図である。It is an exploded perspective view of the electrolytic cell 10. 接続用導体24の部位において垂直方向に切断した電解槽10の断面図である。It is sectional drawing of the electrolytic cell 10 cut in the vertical direction at the part of the connecting conductor 24. 接続用導体24の部位において水平方向に切断した電解槽10の断面図である。It is sectional drawing of the electrolytic cell 10 cut in the horizontal direction at the part of the connecting conductor 24. 排出口36の側から見た電解槽10の外観図である。It is an external view of the electrolytic cell 10 seen from the side of the discharge port 36. 図6におけるA-A線断面図ある。FIG. 6 is a cross-sectional view taken along the line AA in FIG.

以下、本発明に係る混合器および電解水生成装置の実施の形態について、添付図面を参照して説明する。 Hereinafter, embodiments of the mixer and the electrolyzed water generator according to the present invention will be described with reference to the accompanying drawings.

図1に示す電解水生成装置1は、「電解水生成装置」に相当し、一例として、被電解水タンク2から供給される「電解質水溶液(被電解水)」を電気分解して「電解生成物」を生成し、生成した「電解生成物」を「源水」と混合させることで「電解水」を生成して電解水タンク3に貯留することができるように構成されている。なお、本例の電解水生成装置1では、一例として、「電解質水溶液(被電解水)」としての水、食塩水および希塩酸などを電気分解して生成した「電解生成物」を「源水」としての水道水と混合させることで「電解水」としての次亜塩素酸水を生成することができるように構成されている。 The electrolyzed water generating device 1 shown in FIG. 1 corresponds to the "electrolyzed water generating device", and as an example, "electrolyzed generation" is performed by electrolyzing the "electrolyzed water solution (electrolyzed water)" supplied from the electrolyzed water tank 2. It is configured so that "electrolyzed water" can be generated and stored in the electrolyzed water tank 3 by generating "objects" and mixing the generated "electrolyzed products" with "source water". In the electrolytic water generation device 1 of this example, as an example, the "electrolytic product" generated by electrolyzing water as the "electrolyte aqueous solution (water to be electrolyzed)", saline solution, dilute hydrochloric acid, etc. is used as the "source water". It is configured so that hypochlorite water as "electrolyzed water" can be produced by mixing with tap water as "electrolyzed water".

この電解水生成装置1は、電解槽10、定量ポンプ11、逆止弁12、電源部13、電磁弁14、流量センサ15およびコントローラ16を備えている。電解槽10は、電解槽本体10a(「電解槽」の一例である「複極式電解槽」)と、電解槽本体10aにおいて生成された「電解生成物」を水道水に混合させて次亜塩素酸水を生成する混合部10b(「混合器」の一例)とが一体的に形成されている。具体的には、図2,3に示すように、電解槽10は、容器体21および蓋体22と、複数の電極板23と、一対の接続用導体24と、複数の電極保持具25とを備えて構成されている。 The electrolyzed water generating device 1 includes an electrolytic cell 10, a metering pump 11, a check valve 12, a power supply unit 13, a solenoid valve 14, a flow rate sensor 15, and a controller 16. The electrolytic cell 10 is made by mixing an electrolytic cell body 10a (a "bipolar electrolytic cell" which is an example of an "electrolyzing tank") and an "electrolysis product" generated in the electrolytic cell body 10a with tap water. A mixing portion 10b (an example of a "mixer") that produces chlorinated water is integrally formed. Specifically, as shown in FIGS. 2 and 3, the electrolytic cell 10 includes a container body 21, a lid body 22, a plurality of electrode plates 23, a pair of connecting conductors 24, and a plurality of electrode holders 25. It is configured with.

なお、この種の装置による希塩酸の電気分解に際しては、塩素、水素および酸素等の「気体成分」と、水(希塩酸の生成に際して塩化水素の希釈に用いられた水:電気分解せずに残留した塩化水素を含む極く低濃度の希塩酸)等の「液体成分」との「混合流体」が「電解生成物」として生成される。また、上記の「気体成分」を構成する塩素の一部は、上記の「液体成分」としての水と反応し、これにより、電解槽内において次亜塩素酸水が生成される。 In the electrolysis of dilute hydrochloric acid by this type of device, "gas components" such as chlorine, hydrogen and oxygen and water (water used to dilute hydrogen chloride in the production of dilute hydrochloric acid: remained without electrolysis. A "mixed fluid" with a "liquid component" such as (extremely low concentration dilute hydrochloric acid containing hydrogen chloride) is produced as an "electrolytic product". Further, a part of chlorine constituting the above-mentioned "gas component" reacts with water as the above-mentioned "liquid component", whereby hypochlorite water is generated in the electrolytic cell.

しかしながら、電気分解によって生成される「電解生成物」、すなわち、電解槽から排出される「混合流体」については、「電解質水溶液(被電解液)」として用いる希塩酸の濃度や、電解処理条件(単位時間あたりに電解槽に供給する希塩酸の供給量、および電解槽内の電極に印加する直流電圧の電圧値等)によって、「液体成分」としての次亜塩素酸水の濃度(電気分解によって発生した塩素のうちのどの程度の量が電解槽内において水と反応するか)や、「気体成分」に占める塩素等の割合などが相違する。したがって、本例では、電解水生成装置1の構成についての理解を容易とするために、上記の「混合流体」からなる「電解生成物」に含まれる塩素、水素および酸素を区別せずに「気体成分」と称し、「電解生成物」に含まれる次亜塩素酸水を「液体成分」と称して以下に説明する。 However, for the "electrolytic product" generated by electrolysis, that is, the "mixed fluid" discharged from the electrolytic cell, the concentration of dilute hydrochloric acid used as the "electrolyte aqueous solution (electrolyzed solution)" and the electrolytic treatment conditions (unit). The concentration of hypochlorite water as a "liquid component" (generated by electrolysis) depends on the amount of dilute hydrochloric acid supplied to the electrolytic cell per hour and the voltage value of the DC voltage applied to the electrodes in the electrolytic cell. How much of chlorine reacts with water in the electrolytic cell) and the ratio of chlorine etc. to the "gas component" are different. Therefore, in this example, in order to facilitate the understanding of the configuration of the electrolyzed water generator 1, chlorine, hydrogen and oxygen contained in the "electrolyzed product" composed of the above "mixed fluid" are not distinguished. The hypochlorite water contained in the "electrolyzed product", which is referred to as "gas component", is referred to as "liquid component" and will be described below.

容器体21は、処理槽側容器体21a、混合部側容器体21bおよび仕切部21c(図4参照)が樹脂材料(一例として、塩化ビニル)によって一体形成されている。処理槽側容器体21aは、一面が開口された箱状の容器体であって、蓋体22と相俟って電解槽本体10aの「処理槽」を構成し、電極板23や電極保持具25などを収容可能な電解処理空間S1(図4,5参照)を形成する。この処理槽側容器体21aには、後述するように電解処理空間S1内において生成される「電解生成物」を混合部10b(混合部側容器体21b内)に供給する複数の供給用孔31(図4,6,7参照)と、電解処理空間S1内に収容された電極板23に接続されている接続用導体24を挿通可能な挿通用孔32(図4,5参照)とが形成されている。 In the container body 21, the processing tank side container body 21a, the mixing portion side container body 21b, and the partition portion 21c (see FIG. 4) are integrally formed of a resin material (as an example, vinyl chloride). The container body 21a on the processing tank side is a box-shaped container body having one side opened, and together with the lid body 22, constitutes a "treatment tank" of the electrolytic cell body 10a, and includes an electrode plate 23 and an electrode holder. An electrolytic processing space S1 (see FIGS. 4 and 5) capable of accommodating 25 and the like is formed. In the processing tank side container body 21a, as will be described later, a plurality of supply holes 31 for supplying the "electrolysis product" generated in the electrolytic treatment space S1 to the mixing unit 10b (inside the mixing unit side container body 21b). (See FIGS. 4, 6 and 7) and an insertion hole 32 (see FIGS. 4 and 5) through which the connection conductor 24 connected to the electrode plate 23 housed in the electrolytic treatment space S1 can be inserted are formed. Has been done.

混合部側容器体21bは、「容器体」の一例であって、図2,3,7に示すように、円筒状に形成されて混合部10bの混合処理空間S4(図4,6,7参照)を形成する。この混合部側容器体21bには、一端部側の導入口35(「第1導入口」の一例)を上水道に接続するためのフランジ35aと、他端部側の排出口36(「排出口」の一例)を電解水タンク3に接続するためのフランジ36aとがそれぞれ形成されている。なお、本例の電解槽10(混合部10b)では、処理槽側容器体21aから混合部側容器体21bに連通形成された各供給用孔31における混合部側容器体21b側の開口部が「第2導入口」に相当する。 The container body 21b on the mixing portion side is an example of the “container body” and is formed in a cylindrical shape as shown in FIGS. See). The container body 21b on the mixing portion side has a flange 35a for connecting the introduction port 35 on the one end side (an example of the "first introduction port") to the water supply, and the discharge port 36 on the other end side ("outlet port"). An example) is formed with a flange 36a for connecting the electrolyzed water tank 3 to the electrolytic water tank 3. In the electrolytic cell 10 (mixing section 10b) of this example, the opening on the mixing section side container body 21b side in each supply hole 31 communicated with the processing tank side container body 21a to the mixing section side container body 21b is formed. Corresponds to the "second introduction port".

仕切部21cは、「仕切部」の一例であって、図4,7に示すように、混合部側容器体21bの混合処理空間S4を、導入口35から水道水が導入される上流側空間S4a(「上流側空間」の一例)と、次亜塩素酸水を排出する排出口36側の下流側空間S4b(「下流側空間」の一例)とに仕切るように混合部側容器体21bと一体形成されている。この仕切部21cには、図6,7に示すように、上流側空間S4aおよび下流側空間S4bを相互に連通させる連通孔37(「連通孔」の一例)が設けられ、これにより、上流側空間S4aから下流側空間S4bへの水道水の通過が許容されている。この場合、本例の電解槽10(混合部10b)では、図6に示すように、4つの連通孔37が仕切部21cに開口されている。 The partition portion 21c is an example of the “partition portion”, and as shown in FIGS. A container body 21b on the mixing portion side so as to partition S4a (an example of an "upstream space") and a downstream space S4b (an example of an "downstream space") on the discharge port 36 side for discharging hypochlorite water. It is integrally formed. As shown in FIGS. 6 and 7, the partition portion 21c is provided with a communication hole 37 (an example of a “communication hole”) for communicating the upstream space S4a and the downstream space S4b with each other, whereby the upstream side is provided. The passage of tap water from the space S4a to the downstream space S4b is allowed. In this case, in the electrolytic cell 10 (mixing section 10b) of this example, as shown in FIG. 6, four communication holes 37 are opened in the partition section 21c.

また、本例の電解槽10(混合部10b)では、図7に示すように、電解槽本体10aにおいて生成された「電解生成物」を混合部10bの混合処理空間S4に導入するための各供給用孔31が下流側空間S4bにそれぞれ開口されている。これにより、本例の電解槽10(混合部10b)では、電解槽本体10aから供給される「電解生成物」が混合処理空間S4における下流側空間S4b内に導入される。 Further, in the electrolytic cell 10 (mixing unit 10b) of this example, as shown in FIG. 7, each of the "electrolyzed products" generated in the electrolytic cell body 10a is introduced into the mixing processing space S4 of the mixing unit 10b. The supply holes 31 are opened in the downstream space S4b, respectively. As a result, in the electrolytic cell 10 (mixing unit 10b) of this example, the "electrolysis product" supplied from the electrolytic cell body 10a is introduced into the downstream space S4b in the mixing processing space S4.

蓋体22は、容器体21における処理槽側容器体21aの開口部を閉塞して処理槽側容器体21aと相俟って電解処理空間S1を形成する部材であって、図2~5に示すように、電解水タンク3から供給される希塩酸を電解処理空間S1内に導入する導入用孔33と、電解処理空間S1内に収容された電極板23に接続されている接続用導体24を挿通可能な挿通用孔34とが形成されている。この場合、本例の電解槽10(電解槽本体10a)では、電極板23や接続用導体24を収容した処理槽側容器体21aに対して蓋体22を装着した状態において処理槽側容器体21aと蓋体22との接触部位を超音波溶着することによって両者が一体化されている。 The lid 22 is a member that closes the opening of the container 21a on the processing tank side in the container 21 to form the electrolytic treatment space S1 together with the container 21a on the processing tank side, and is shown in FIGS. 2 to 5. As shown, an introduction hole 33 for introducing dilute hydrochloric acid supplied from the electrolyzed water tank 3 into the electrolysis treatment space S1 and a connection conductor 24 connected to the electrode plate 23 housed in the electrolysis treatment space S1. An insertable hole 34 is formed. In this case, in the electrolytic cell 10 (electrolytic cell body 10a) of this example, the processing tank side container body is provided with the lid 22 attached to the processing tank side container body 21a accommodating the electrode plate 23 and the connecting conductor 24. The contact portion between the 21a and the lid 22 is ultrasonically welded to integrate the two.

電極板23は、図3に示すように、塩酸等に対する耐食性が高い金属材料(一例として、白金やルテニウム等の貴金属酸化物でコーティングされたチタン板)によって平面視矩形状に形成されている。なお、図3においては、電解槽10の構成要素の形状等に関する理解を容易とするために、電解槽10が備えている7枚の電極板23のうちの3枚だけを図示している。この場合、本例の電解槽10(電解槽本体10a)では、図4,5に示すように、各電極板23が電解処理空間S1内に立設された状態で収容されている。 As shown in FIG. 3, the electrode plate 23 is formed in a rectangular shape in a plan view by a metal material having high corrosion resistance to hydrochloric acid or the like (for example, a titanium plate coated with a noble metal oxide such as platinum or ruthenium). Note that FIG. 3 illustrates only three of the seven electrode plates 23 included in the electrolytic cell 10 in order to facilitate understanding of the shapes and the like of the components of the electrolytic cell 10. In this case, in the electrolytic cell 10 (electrolytic cell main body 10a) of this example, as shown in FIGS. 4 and 5, each electrode plate 23 is housed in an upright state in the electrolytic cell processing space S1.

接続用導体24は、電解処理空間S1内に収容された7枚の電極板23のうちの両端部側に配置された2枚の電極板23を電源部13に接続するための導体であって、図3に示すように、一例として、チタン等の金属材料によって円柱状に形成されると共に、電極板23の中央部に立設された状態で電極板23に溶接されている。 The connecting conductor 24 is a conductor for connecting the two electrode plates 23 arranged on both end sides of the seven electrode plates 23 housed in the electrolytic processing space S1 to the power supply unit 13. As shown in FIG. 3, as an example, it is formed in a columnar shape by a metal material such as titanium, and is welded to the electrode plate 23 in a state of being erected in the center of the electrode plate 23.

電極保持具25は、図4,5に示すように、隣り合う一対の電極板23,23の間に配設されて両電極板23,23を電解処理空間S1内において相互に離間させた状態で保持可能に構成されている。具体的には、電極保持具25は、枠状保持部41と、複数の仕切部42とが樹脂材料(一例として、塩化ビニル)によって一体形成されている。この場合、本例の電極保持具25では、図3に示すように、枠状保持部41が容器体21における処理槽側容器体21aおよび電極板23の形状に合わせて四角枠状に形成されている。なお、同図においては、電解槽10の構成要素の形状等に関する理解を容易とするために、電解槽10が備えている6枚の電極保持具25のうちの2枚だけを図示している。 As shown in FIGS. It is configured to be receivable. Specifically, in the electrode holder 25, the frame-shaped holding portion 41 and the plurality of partition portions 42 are integrally formed of a resin material (for example, vinyl chloride). In this case, in the electrode holder 25 of this example, as shown in FIG. 3, the frame-shaped holding portion 41 is formed in a square frame shape in accordance with the shapes of the processing tank side container body 21a and the electrode plate 23 in the container body 21. ing. In the figure, only two of the six electrode holders 25 included in the electrolytic cell 10 are shown in order to facilitate understanding of the shapes and the like of the components of the electrolytic cell 10. ..

また、本例の電極保持具25では、図4,5に示すように各電極板23と共に電極保持具25が電解処理空間S1内に収容された状態において、隣り合う両電極板23,23の外縁部に枠状保持部41が接して両電極板23,23を保持する構成が採用されている。この場合、枠状保持部41には、電極板23の外側形状よりもやや小さい矩形状の開口部41aが設けられており、この開口部41aの内側空間S2に等間隔で配置された各仕切部42によって内側空間S2が保持対象の電極板23の幅方向で隣り合う複数の単位空間S3に仕切られている。 Further, in the electrode holder 25 of this example, as shown in FIGS. A configuration is adopted in which the frame-shaped holding portion 41 is in contact with the outer edge portion to hold both the electrode plates 23 and 23. In this case, the frame-shaped holding portion 41 is provided with a rectangular opening 41a slightly smaller than the outer shape of the electrode plate 23, and each partition arranged at equal intervals in the inner space S2 of the opening 41a. The inner space S2 is partitioned by the portion 42 into a plurality of unit spaces S3 adjacent to each other in the width direction of the electrode plate 23 to be held.

また、図4に示すように、本例の電極保持具25では、導入用孔33から電解処理空間S1内に導入される希塩酸を蓋体22の近傍から処理槽側容器体21aにおける蓋体22との対向面側に流動可能とする複数の凹部45と、各凹部45を介して流動している希塩酸を内側空間S2(各単位空間S3)内に流動可能とする複数の凹部46とが枠状保持部41における下側の梁部にそれぞれ形成されている。さらに、本例の電極保持具25では、各単位空間S3内において発生した「電解生成物」の進入が可能な複数の凹部47と、各凹部47内に進入した「電解生成物」を各供給用孔31に案内する複数の孔48とが枠状保持部41における上側の梁部にそれぞれ形成されている。 Further, as shown in FIG. 4, in the electrode holder 25 of this example, the dilute hydrochloric acid introduced into the electrolytic treatment space S1 from the introduction hole 33 is introduced from the vicinity of the lid 22 to the lid 22 in the container 21a on the treatment tank side. The frame consists of a plurality of recesses 45 that allow flow to face the opposite surface side, and a plurality of recesses 46 that allow dilute hydrochloric acid flowing through each recess 45 to flow into the inner space S2 (each unit space S3). It is formed on each of the lower beam portions of the shape holding portion 41. Further, in the electrode holder 25 of this example, a plurality of recesses 47 in which the "electrolyzed product" generated in each unit space S3 can enter, and the "electrolyzed product" that has entered each of the recesses 47 are supplied. A plurality of holes 48 for guiding to the holes 31 are formed in the upper beam portion of the frame-shaped holding portion 41, respectively.

なお、枠状保持部41の内側空間S2が9本の仕切部42によって10個の単位空間S3に仕切られている本例の電極保持具25では、上記の凹部45~47および孔48が各単位空間S3に対応してそれぞれ10個ずつ設けられている。また、図7に示すように、容器体21には、各孔48の位置に対応して前述した供給用孔31が10箇所設けられている。 In the electrode holder 25 of this example in which the inner space S2 of the frame-shaped holding portion 41 is divided into 10 unit spaces S3 by nine partitioning portions 42, the recesses 45 to 47 and the holes 48 are respectively. Ten of each are provided corresponding to the unit space S3. Further, as shown in FIG. 7, the container body 21 is provided with the above-mentioned 10 supply holes 31 corresponding to the positions of the holes 48.

この場合、本例の電解槽10(電解槽本体10a)では、図4,5に示すように、7枚の電極板23のうちの両端部側の2枚(接続用導体24がそれぞれ接続されている電極板23)の一方が、6枚の電極保持具25のうちの1枚と蓋体22との間に挟み込まれるようにして電解処理空間S1内に保持され、2枚の電極板23のうちの他方が、6枚の電極保持具25のうちの他の1枚と処理槽側容器体21aにおける供給用孔31の形成面との間に挟み込まれるようにして電解処理空間S1内に保持されている。 In this case, in the electrolytic cell 10 (electrolytic cell body 10a) of this example, as shown in FIGS. 4 and 5, two of the seven electrode plates 23 on both ends (connecting conductors 24 are connected to each other). One of the electrode plates 23) is held in the electrolytic processing space S1 so as to be sandwiched between one of the six electrode holders 25 and the lid 22, and the two electrode plates 23 are held. The other of the six electrode holders 25 is sandwiched between the other one of the six electrode holders 25 and the forming surface of the supply hole 31 in the processing tank side container body 21a so as to be sandwiched in the electrolytic cell processing space S1. It is being held.

また、本例の電解槽10(電解槽本体10a)では、各電極保持具25の枠状保持部41が互いに接した状態で電解処理空間S1内に収容されると共に、隣り合う2つの電極保持具25,25における枠状保持部41,41の間に外縁部が挟み込まれるようにして7枚の電極板23のうちの上記の2枚を除く5枚がそれぞれ電解処理空間S1内に保持されている。 Further, in the electrolytic cell 10 (electrolytic cell main body 10a) of this example, the frame-shaped holding portions 41 of the electrode holders 25 are housed in the electrolytic processing space S1 in a state of being in contact with each other, and two adjacent electrodes are held. Five of the seven electrode plates 23, excluding the above two, are held in the electrolytic processing space S1 so that the outer edge portion is sandwiched between the frame-shaped holding portions 41, 41 in the tools 25, 25. ing.

一方、定量ポンプ11は、一例としてチューブポンプで構成され、コントローラ16の制御に従って被電解水タンク2から電解槽10(電解槽本体10a)に希塩酸を供給する。逆止弁12は、図1に示すように、定量ポンプ11と電解槽10(電解槽本体10aの導入用孔33)とを接続する接続用配管に配設されて定量ポンプ11(被電解水タンク2)から電解槽10に向かう向きでの希塩酸の通過を許容すると共に、電解槽10から定量ポンプ11に向かう向きでの希塩酸の通過を規制する。電源部13は、コントローラ16の制御に従い、両接続用導体24を介して電極板23,23の間に電解処理用の直流電圧を印加する。 On the other hand, the metering pump 11 is composed of a tube pump as an example, and supplies dilute hydrochloric acid from the electrolyzed water tank 2 to the electrolytic cell 10 (electrolyzed tank main body 10a) according to the control of the controller 16. As shown in FIG. 1, the check valve 12 is arranged in a connection pipe connecting the metering pump 11 and the electrolytic cell 10 (introduction hole 33 of the electrolytic cell body 10a), and the metering pump 11 (water to be electrolyzed). The passage of dilute hydrochloric acid from the tank 2) toward the electrolytic cell 10 is permitted, and the passage of dilute hydrochloric acid from the electrolytic cell 10 toward the metering pump 11 is restricted. The power supply unit 13 applies a DC voltage for electrolytic processing between the electrode plates 23 and 23 via both connecting conductors 24 under the control of the controller 16.

電磁弁14は、上水道と電解槽10(混合部10bの導入口35)との間に配設され、コントローラ16の制御に従い、上水道から電解槽10への水道水の供給を許容/規制する。流量センサ15は、電磁弁14(上水道)と電解槽10との間に配設されて、電磁弁14を通過して電解槽10(混合部10b)に供給される水道水の流量を検出してセンサ信号を出力する。 The electromagnetic valve 14 is arranged between the water supply and the electrolytic cell 10 (introduction port 35 of the mixing section 10b), and allows / regulates the supply of tap water from the water supply to the electrolytic cell 10 according to the control of the controller 16. The flow sensor 15 is disposed between the electromagnetic valve 14 (water supply) and the electrolytic cell 10, and detects the flow rate of tap water that passes through the electromagnetic valve 14 and is supplied to the electrolytic cell 10 (mixing section 10b). And outputs the sensor signal.

コントローラ16は、電解水生成装置1を総括的に制御する。具体的には、コントローラ16は、定量ポンプ11を制御して被電解水タンク2から電解槽10(電解槽本体10a)に希塩酸を供給させ、かつ電源部13を制御して電解槽10(電解槽本体10aの各電極板23)に直流電圧を印加させると共に、流量センサ15からのセンサ信号に応じて電磁弁14を制御して規定量の水道水を電解槽10(混合部10b)に供給させる。 The controller 16 comprehensively controls the electrolyzed water generator 1. Specifically, the controller 16 controls the metering pump 11 to supply dilute hydrochloric acid from the electrolyzed water tank 2 to the electrolytic cell 10 (electrolysis tank main body 10a), and controls the power supply unit 13 to electrolyze the electrolytic cell 10 (electrolysis). A DC voltage is applied to each electrode plate 23) of the tank body 10a, and the electromagnetic valve 14 is controlled according to the sensor signal from the flow sensor 15 to supply a specified amount of tap water to the electrolytic cell 10 (mixing unit 10b). Let me.

この電解水生成装置1では、図示しない操作部が操作されて次亜塩素酸水の生成開始を指示されたときに、コントローラ16が、定量ポンプ11を制御して被電解水タンク2から電解槽10(電解槽本体10a)に希塩酸を供給させると共に、電源部13を制御して電極板23,23間への直流電圧の印加を開始させる。この際に、定量ポンプ11によって供給された希塩酸は、導入用孔33から電解槽10(電解槽本体10a)の電解処理空間S1内に導入されて各電極保持具25に設けられた各凹部45を通過して電解処理空間S1における底部の全域に流動させられる。 In the electrolyzed water generation device 1, when an operation unit (not shown) is operated to instruct the start of generation of hypochlorite water, the controller 16 controls the metering pump 11 to electrolyze the electrolyzed water tank 2 from the electrolyzed water tank 2. Dilute hydrochloric acid is supplied to 10 (electrolyzed water tank main body 10a), and the power supply unit 13 is controlled to start applying a DC voltage between the electrode plates 23 and 23. At this time, the dilute hydrochloric acid supplied by the metering pump 11 is introduced into the electrolytic processing space S1 of the electrolytic cell 10 (electrolytic cell main body 10a) from the introduction hole 33, and each recess 45 provided in each electrode holder 25. Is flowed over the entire bottom of the electrolytic cell treatment space S1.

また、定量ポンプ11によってさらに希塩酸が供給されたときには、各凹部45内の希塩酸が各凹部46を介して各単位空間S3内に流動し、電極保持具25を挟んで対向させられている各電極板23に希塩酸が接した状態となる。これにより、電極板23に接した希塩酸が電気分解されて「気体成分」および「液体成分」の「混合流体」からなる「電解生成物」が生成される。 Further, when the dilute hydrochloric acid is further supplied by the metering pump 11, the dilute hydrochloric acid in each recess 45 flows into each unit space S3 through each recess 46, and each electrode facing the electrode holder 25 is interposed therebetween. The plate 23 is in contact with dilute hydrochloric acid. As a result, the dilute hydrochloric acid in contact with the electrode plate 23 is electrolyzed to generate an "electrolytic product" composed of a "mixed fluid" of a "gas component" and a "liquid component".

一方、各単位空間S3内において発生した「気体成分」は、気体の発生に伴う単位空間S3内の圧力の上昇、および定量ポンプ11によって希塩酸が順次供給されることで生じる電解処理空間S1内(各単位空間S3内)の圧力の上昇により、電極保持具25における各凹部47を介して各孔48内に進入し、各供給用孔31を介して混合部10bにおける混合処理空間S4(下流側空間S4b)に供給される。 On the other hand, the "gas component" generated in each unit space S3 is generated in the electrolytic treatment space S1 generated by the increase in pressure in the unit space S3 due to the generation of gas and the sequential supply of dilute hydrochloric acid by the metering pump 11. Due to the increase in pressure in each unit space S3), it enters each hole 48 through each recess 47 in the electrode holder 25, and enters the mixing processing space S4 (downstream side) in the mixing portion 10b through each supply hole 31. It is supplied to the space S4b).

また、コントローラ16は、定量ポンプ11による電解槽10(電解槽本体10a)への希塩酸の供給、および電源部13による電極板23,23間への直流電圧の印加についての上記の制御と並行して、流量センサ15からのセンサ信号を監視しつつ、電磁弁14を制御して電解槽10(混合部10b)への水道水の供給を開始させる。これにより、導入口35から混合部10bの混合処理空間S4(上流側空間S4a)内に規定量の水道水が供給される。 Further, the controller 16 is in parallel with the above-mentioned control regarding the supply of dilute hydrochloric acid to the electrolytic cell 10 (electrolytic cell main body 10a) by the metering pump 11 and the application of the DC voltage between the electrode plates 23 and 23 by the power supply unit 13. Then, while monitoring the sensor signal from the flow sensor 15, the electromagnetic valve 14 is controlled to start supplying tap water to the electrolytic cell 10 (mixing unit 10b). As a result, a specified amount of tap water is supplied from the introduction port 35 into the mixing processing space S4 (upstream side space S4a) of the mixing unit 10b.

この場合、本例の電解槽10(混合部10b)では、水道水が導入される導入口35側の上流側空間S4aと、電解槽本体10aからの「電解生成物」が導入される下流側空間S4bとが仕切部21cによって仕切られ、仕切部21cに設けられた小さな連通孔37を介して上流側空間S4aおよび下流側空間S4bが連通させられている。したがって、コントローラ16によって電磁弁14が開弁されて上水道から混合部10b(導入口35)に水道水が供給されたときには、導入口35から上流側空間S4a内に導入された水道水の水圧によって上流側空間S4a内がある程度高い圧力となり、上流側空間S4aから下流側空間S4bに各連通孔37を介して水道水が流入する。 In this case, in the electrolytic cell 10 (mixing section 10b) of this example, the upstream space S4a on the introduction port 35 side where tap water is introduced and the downstream side where the "electrolysis product" from the electrolytic cell body 10a is introduced. The space S4b is partitioned by the partition portion 21c, and the upstream space S4a and the downstream space S4b are communicated with each other through a small communication hole 37 provided in the partition portion 21c. Therefore, when the electromagnetic valve 14 is opened by the controller 16 and tap water is supplied from the water supply to the mixing portion 10b (introduction port 35), the water pressure of the tap water introduced into the upstream space S4a from the introduction port 35 causes. The pressure inside the upstream space S4a becomes high to some extent, and tap water flows from the upstream space S4a into the downstream space S4b through the communication holes 37.

この際に、下流側空間S4b内に流入した水道水の水圧は、各連通孔37の通過に際して生じる圧力損失によって上流側空間S4aよりも十分に低い圧力となる。このため、本例の混合部10bでは、下流側空間S4b内に流入した水道水が各供給用孔31から電解槽本体10a内(電解処理空間S1内)に侵入する事態を招くことなく、各供給用孔31を介して供給されている「電解生成物」と、連通孔37を介して下流側空間S4bに流入した水道水とが下流側空間S4b内において好適に混合されて次亜塩素酸水が生成される。 At this time, the water pressure of the tap water flowing into the downstream space S4b becomes sufficiently lower than that of the upstream space S4a due to the pressure loss generated when passing through each communication hole 37. Therefore, in the mixing section 10b of this example, tap water flowing into the downstream space S4b does not invade the inside of the electrolytic cell main body 10a (inside the electrolysis treatment space S1) from each supply hole 31. The "electrolyzed product" supplied through the supply hole 31 and the tap water flowing into the downstream space S4b via the communication hole 37 are suitably mixed in the downstream space S4b to form hypochlorite. Water is produced.

この場合、「液体成分」としての極く低濃度の次亜塩素酸水と「気体成分」として十分な量の塩素とを含む「電解生成物(混合流体)」が各供給用孔31を介して電解槽本体10aから供給されているときには、「気体成分」としての塩素が下流側空間S4b内において水道水と混合されることで所望の濃度の次亜塩素酸水が生成され、「液体成分」として高濃度の次亜塩素酸水を含む「電解生成物(混合流体)」が各供給用孔31を介して電解槽本体10aから供給されているときには、この次亜塩素酸水が下流側空間S4b内において水道水と混合されて希釈されることで所望の濃度の次亜塩素酸水が生成される。 In this case, an "electrolyzed product (mixed fluid)" containing extremely low-concentration hypochlorite water as a "liquid component" and a sufficient amount of chlorine as a "gas component" passes through each supply hole 31. When the water is supplied from the main body 10a of the electrolytic tank, chlorine as a "gas component" is mixed with tap water in the downstream space S4b to generate hypochlorite water having a desired concentration, and the "liquid component" is produced. When the "electrolyzed product (mixed fluid)" containing a high concentration of hypochlorite water is supplied from the electrolytic tank main body 10a through each supply hole 31, this hypochlorite water is on the downstream side. By mixing with tap water and diluting in the space S4b, hypochlorite water having a desired concentration is produced.

また、本例の混合部10bでは、上流側空間S4aと下流側空間S4bとを仕切る仕切部21cに複数(本例では4つ)の連通孔37を設けている。この場合、4つの連通孔37に代えて、各連通孔37の合計開口面積と等しい開口面積の1つの「連通孔」を仕切部21cに設けた構成を採用した場合においても、水道水がその「連通孔」を通過する際に生じる圧力損失の大きさが、上記の4つの連通孔37を水道水が通過する際に生じる圧力損失の大きさと同程度となる。このため、4つの連通孔37に代えて1つの「連通孔」を仕切部21cに設けた構成においても、本例の混合部10bと同様にして下流側空間S4bを上流側空間S4aよりも低い圧力とすることができる。 Further, in the mixing portion 10b of this example, a plurality of (four in this example) communication holes 37 are provided in the partition portion 21c that partitions the upstream side space S4a and the downstream side space S4b. In this case, even when a configuration is adopted in which one "communication hole" having an opening area equal to the total opening area of each communication hole 37 is provided in the partition portion 21c instead of the four communication holes 37, the tap water is the same. The magnitude of the pressure loss that occurs when passing through the "communication holes" is about the same as the magnitude of the pressure loss that occurs when tap water passes through the above four communication holes 37. Therefore, even in a configuration in which one "communication hole" is provided in the partition portion 21c instead of the four communication holes 37, the downstream space S4b is lower than the upstream space S4a in the same manner as the mixing portion 10b of this example. Can be pressure.

しかしながら、仕切部21cに設けた「連通孔」が1つだけの構成では、上流側空間S4aから下流側空間S4bに流入する水道水の噴流が1つだけとなるため、既に下流側空間S4bに流入している水道水(または、「電解生成物」と水道水とが混合された次亜塩素酸水)と「連通孔」から下流側空間S4b内に新たに流入する水道水とが下流側空間S4b内において好適に攪拌されずに排出口36から排出されるおそれがある。 However, in the configuration where only one "communication hole" is provided in the partition portion 21c, only one tap water flows into the downstream space S4b from the upstream space S4a, so that the downstream space S4b is already provided. The inflowing tap water (or hypochlorite water in which "electrolytic product" and tap water are mixed) and the tap water newly flowing into the downstream space S4b from the "communication hole" are on the downstream side. There is a possibility that the water is discharged from the discharge port 36 without being suitably stirred in the space S4b.

これに対して、複数の連通孔37を仕切部21cに設けた本例の混合部10bでは、上流側空間S4a内の水道水が下流側空間S4b内の水道水(または、次亜塩素酸水)内に各連通孔37からそれぞれ噴射されることで、下流側空間S4b内の水道水(または、次亜塩素酸水)が各連通孔37からの水道水の複数の噴流によって好適に攪拌される。これにより、「電解生成物」と水道水(または、次亜塩素酸水)とが好適に混合される。この後、下流側空間S4bにおいて生成された次亜塩素酸水は、排出口36から排出されて電解水タンク3に貯留される。 On the other hand, in the mixing portion 10b of this example in which a plurality of communication holes 37 are provided in the partition portion 21c, the tap water in the upstream space S4a is tap water (or hypochlorite water) in the downstream space S4b. ), The tap water (or hypochlorite water) in the downstream space S4b is suitably agitated by a plurality of jets of tap water from each communication hole 37. To. As a result, the "electrolyzed product" and tap water (or hypochlorite water) are suitably mixed. After that, the hypochlorite water generated in the downstream space S4b is discharged from the discharge port 36 and stored in the electrolyzed water tank 3.

このように、この混合部10bでは、「源水(本例では、水道水)」を導入する導入口35、「電解生成物」を導入する供給用孔31、および「電解水(本例では、次亜塩素酸水)」を排出する排出口36が設けられた混合部側容器体21bと、混合部側容器体21b内(混合処理空間S4)を導入口35側の上流側空間S4aおよび排出口36側の下流側空間S4bに仕切ると共に両空間S4a,S4bを相互に連通させる連通孔37が設けられた仕切部21cとを備えると共に、供給用孔31が、電解槽本体10aから供給される「電解生成物」を下流側空間S4bに導入可能に開口されている。また、この電解水生成装置1では、上記の混合部10および電解槽本体10aを備えて「電解水」を生成可能に構成されている。 As described above, in the mixing unit 10b, the introduction port 35 for introducing "source water (tap water in this example)", the supply hole 31 for introducing "electrolyzed product", and "electrolyzed water (in this example)". , Hypochlorite water) ”is provided in the mixing section side container body 21b provided with the discharge port 36, and the inside of the mixing section side container body 21b (mixing processing space S4) is the upstream side space S4a on the introduction port 35 side and It is provided with a partition portion 21c provided with a communication hole 37 for partitioning the downstream space S4b on the discharge port 36 side and for communicating the two spaces S4a and S4b with each other, and the supply hole 31 is supplied from the electrolytic cell body 10a. The "electrolyzed product" is open so that it can be introduced into the downstream space S4b. Further, the electrolyzed water generating device 1 includes the above-mentioned mixing unit 10 and the electrolytic cell main body 10a, and is configured to be able to generate "electrolyzed water".

したがって、この混合部10bおよび電解水生成装置1によれば、連通孔37を設けた仕切部21cの存在により、導入口35から水道水が導入される上流側空間S4aよりも、電解槽本体10aからの「電解生成物」が導入される下流側空間S4b内の圧力を十分に低くすることができるため、供給用孔31を介して電解槽本体10aに水道水が侵入する事態を好適に回避することができる。これにより、この混合部10bおよび電解水生成装置1によれば、電解槽本体10a内の希塩酸が水道水によって希釈される事態を回避できるため、電解槽本体10a内における希塩酸の電気分解効率を十分に向上させることができ、電気分解に必要な電力量を十分に低減することができる。また、混合部10bから電解槽本体10aへの水道水の浸入が回避されることにより、電解槽本体10aにおいて生成された「電解生成物」を電解槽本体10aから混合部10bに効率よく供給することができるため、所望の濃度の次亜塩素酸水を短時間で効率よく生成することができる。 Therefore, according to the mixing unit 10b and the electrolyzed water generator 1, the presence of the partition portion 21c provided with the communication hole 37 causes the electrolytic cell body 10a to be more than the upstream space S4a into which tap water is introduced from the introduction port 35. Since the pressure in the downstream space S4b into which the "electrolysis product" from the above is introduced can be sufficiently lowered, the situation where tap water invades the electrolytic cell body 10a through the supply hole 31 is suitably avoided. can do. As a result, according to the mixing unit 10b and the electrolytic cell generation device 1, it is possible to avoid the situation where the dilute hydrochloric acid in the electrolytic cell body 10a is diluted with tap water, so that the electrolysis efficiency of the dilute hydrochloric acid in the electrolytic cell body 10a is sufficient. The amount of electric power required for electrolysis can be sufficiently reduced. Further, by avoiding the infiltration of tap water from the mixing section 10b into the electrolytic cell body 10a, the "electrolyzed product" generated in the electrolytic cell body 10a is efficiently supplied from the electrolytic cell body 10a to the mixing section 10b. Therefore, it is possible to efficiently generate hypochlorite water having a desired concentration in a short time.

また、この混合部10bおよび電解水生成装置1によれば、混合部10bの仕切部21cに連通孔37を複数(本例では、4つ)形成したことにより、各連通孔37からの水道水の噴流によって下流側空間S4b内において水道水と「電解生成物」とを好適に攪拌して両者を好適に混合させることができる。 Further, according to the mixing unit 10b and the electrolyzed water generator 1, tap water from each communication hole 37 is formed by forming a plurality of communication holes 37 (four in this example) in the partition portion 21c of the mixing unit 10b. The tap water and the "electrolyzed product" can be suitably stirred in the downstream space S4b by the jet flow of the above, and both can be suitably mixed.

また、この電解水生成装置1によれば、混合部10bにおける混合部側容器体21bと電解槽本体10aにおける処理槽側容器体21aとを一体形成したことにより、「電解槽」と「混合器」とを別体に形成してネジ止め等によって一体化させた構成と比較して、「電解槽」および「混合器」の設置に要するスペースを十分に小さくすることができると共に、「電解槽」および「混合器」の接合部分をシールするためのシーリングが不要となるため、電解水生成装置1の製造コストを十分に低減することができる。 Further, according to the electrolytic cell generator 1, the "electrolyzer tank" and the "mixer" are formed by integrally forming the mixing section side container body 21b in the mixing section 10b and the treatment tank side container body 21a in the electrolytic cell body 10a. Compared to the configuration in which "" is formed as a separate body and integrated by screwing, etc., the space required for installing the "electrolyzer tank" and "mixer" can be sufficiently reduced, and the "electrolyzer tank" can be sufficiently reduced. ] And the sealing for sealing the joint portion of the “mixer” are not required, so that the manufacturing cost of the electrolytic cell generator 1 can be sufficiently reduced.

なお、「混合器」および「電解水生成装置」の構成は、上記の電解槽10(混合部10b)および電解水生成装置1の構成の例に限定されない。例えば、4つの連通孔37を設けた仕切部21cを有する混合部10bを例に挙げて説明したが、「仕切部」に設ける[連通孔」の数はこれに限定されず、1つ以上の任意の数に規定することができる。また、「連通孔」の形状についても連通孔37のような丸孔に限定されず、楕円孔、三角形孔、矩形孔および多角形孔などの任意の形状に規定することができる。加えて、「電解槽」に相当する電解槽本体10aと「混合器」に相当する混合部10bとを一体的に形成した構成を例に挙げて説明したが、「電解槽」および「混合器」を別体に形成することもできる。 The configurations of the "mixer" and the "electrolyzed water generator" are not limited to the examples of the configurations of the electrolytic cell 10 (mixing unit 10b) and the electrolyzed water generator 1 described above. For example, a mixing portion 10b having a partition portion 21c provided with four communication holes 37 has been described as an example, but the number of [communication holes] provided in the “partition portion” is not limited to this, and one or more. It can be specified in any number. Further, the shape of the "communication hole" is not limited to a round hole such as the communication hole 37, and can be defined as any shape such as an elliptical hole, a triangular hole, a rectangular hole, and a polygonal hole. In addition, the configuration in which the electrolytic cell main body 10a corresponding to the "electrolytic cell" and the mixing section 10b corresponding to the "mixer" are integrally formed has been described as an example, but the "electrolytic cell" and the "mixer" have been described. Can also be formed as a separate body.

1 電解水生成装置
10 電解槽
10a 電解槽本体
10b 混合部
21 容器体
21a 処理槽側容器体
21b 混合部側容器体
21c 仕切部
22 蓋体
31 供給用孔
35 導入口
35a,36a フランジ
36 排出口
37 連通孔
S1 電解処理空間
S4 混合処理空間
S4a 上流側空間
S4b 下流側空間
1 Electrolyzed water generator 10 Electrolyzed water generator 10 Electrolytic cell body 10b Mixing part 21 Container body 21a Processing tank side container body 21b Mixing part side container body 21c Partition 22 Lid 31 Supply hole 35 Introduction port 35a, 36a Flange 36 Outlet 37 Communication hole S1 Electrolysis treatment space S4 Mixing treatment space S4a Upstream side space S4b Downstream side space

Claims (4)

複数の電極板を備え該複数の電極板のうち隣り合う一対の電極板の間の内部空間が仕切部材によって前記電極板の幅方向で隣り合う複数の単位空間に仕切られた電解槽に供給用孔を介して接続されると共に当該電解槽における電解質水溶液の電気分解によって生成された電解生成物と源水とを混合させて電解水を生成する混合器であって、
前記源水を導入する第1導入口、前記電解生成物を導入する第2導入口、および前記電解水を排出する排出口が設けられた容器体と、
前記容器体内に配設されて当該容器体の内部空間を前記第1導入口側の上流側空間および前記排出口側の下流側空間に仕切ると共に当該上流側空間および当該下流側空間を相互に連通させる連通孔が設けられた仕切部とを備え、
前記第2導入口は、前記複数の単位空間に対応して複数設けられた前記供給用孔の開口であって、前記電解槽から供給される前記電解生成物を前記下流側空間に導入可能に開口されている混合器。
A supply hole is provided in an electrolytic tank provided with a plurality of electrode plates and the internal space between a pair of adjacent electrode plates among the plurality of electrode plates is partitioned into a plurality of unit spaces adjacent to each other in the width direction of the electrode plates by a partition member. It is a mixer that is connected via and mixes the electrolytic product produced by the electrolysis of the aqueous electrolyte solution in the electrolytic tank with the source water to generate electrolytic water.
A container body provided with a first introduction port for introducing the source water, a second introduction port for introducing the electrolytic product, and a discharge port for discharging the electrolytic water.
Disposed inside the container, the internal space of the container is partitioned into the upstream space on the first introduction port side and the downstream space on the discharge port side, and the upstream space and the downstream space are communicated with each other. Equipped with a partition provided with a communication hole to allow
The second introduction port is an opening of a plurality of supply holes provided corresponding to the plurality of unit spaces, and the electrolysis product supplied from the electrolytic cell can be introduced into the downstream space. Mixer that is open.
前記仕切部には、前記連通孔が複数形成されている請求項1記載の混合器。 The mixer according to claim 1, wherein a plurality of the communication holes are formed in the partition portion. 請求項1または2記載の混合器と、前記電解槽とを備えて前記電解水を生成可能に構成されている電解水生成装置。 An electrolyzed water generator comprising the mixer according to claim 1 or 2 and the electrolytic cell so as to be able to generate the electrolyzed water. 前記混合器における前記容器体と前記電解槽における処理槽とが一体形成されている請求項3記載の電解水生成装置。 The electrolyzed water generator according to claim 3, wherein the container body in the mixer and the treatment tank in the electrolytic cell are integrally formed.
JP2016177265A 2016-09-12 2016-09-12 Mixer and electrolyzed water generator Active JP7046479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016177265A JP7046479B2 (en) 2016-09-12 2016-09-12 Mixer and electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177265A JP7046479B2 (en) 2016-09-12 2016-09-12 Mixer and electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2018043165A JP2018043165A (en) 2018-03-22
JP7046479B2 true JP7046479B2 (en) 2022-04-04

Family

ID=61692329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177265A Active JP7046479B2 (en) 2016-09-12 2016-09-12 Mixer and electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP7046479B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246279A (en) 2004-03-05 2005-09-15 Denkai Giken:Kk Electrochemical water treatment method and apparatus
JP2007301540A (en) 2006-05-09 2007-11-22 Hokuetsu:Kk Slightly acidic electrolyzed water generation apparatus
JP2009028671A (en) 2007-07-29 2009-02-12 Toyohiko Doi Apparatus for producing bactericide
JP2013544630A (en) 2010-09-28 2013-12-19 シオンテック カンパニー リミテッド Sterilized electrolyzed water production apparatus, and sterilized electrolyzed water production system and method including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2587731B2 (en) * 1991-03-29 1997-03-05 株式会社オムコ Electrolytic reaction unit for sterile water production
JPH0713430U (en) * 1993-08-06 1995-03-07 敏 元野 Mixing dilution stirrer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246279A (en) 2004-03-05 2005-09-15 Denkai Giken:Kk Electrochemical water treatment method and apparatus
JP2007301540A (en) 2006-05-09 2007-11-22 Hokuetsu:Kk Slightly acidic electrolyzed water generation apparatus
JP2009028671A (en) 2007-07-29 2009-02-12 Toyohiko Doi Apparatus for producing bactericide
JP2013544630A (en) 2010-09-28 2013-12-19 シオンテック カンパニー リミテッド Sterilized electrolyzed water production apparatus, and sterilized electrolyzed water production system and method including the same

Also Published As

Publication number Publication date
JP2018043165A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
BR112017026680B1 (en) HIGH VOLUME WATER ELECTROLYSIS SYSTEM AND METHOD OF USE
KR20160124873A (en) Method for electrochemically producing electrolyzed water
JP5173683B2 (en) Bipolar electrolytic cell and spacer used therefor
US10829858B2 (en) Electrode arrangement for electrochemically treating a liquid
EP1969159B1 (en) Membrane electrolytic reactors system with four chambers
JP5789900B2 (en) Sterilized electrolyzed water production apparatus, and sterilized electrolyzed water production system and method including the same
JP6937475B2 (en) Electrolytic liquid generator
JP7046479B2 (en) Mixer and electrolyzed water generator
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP4838705B2 (en) Ozone water generator
JP6913446B2 (en) Electrode holder, multi-pole electrolytic cell and electrolyzed water generator
JP6132234B2 (en) Electrolyzed water generator
JP4056623B2 (en) Electrolytic tank of electrolysis neutral water generator
JP5868630B2 (en) Electrolyzed water production apparatus and electrolyzed water production method
JP6630984B2 (en) Electrolyzed water generator
KR102054624B1 (en) Electrolysis Device for Producing Acidic Hypochlorous Acid Water
WO2017119073A1 (en) Electrolyzed water-producing apparatus and electrolyzed water-producing method
JP2018076579A (en) Water electrolysis apparatus and method for producing functional water
KR101054266B1 (en) A equipment of electrolytic sterilizing water, manufacturing system and method thereof
JP2006198562A (en) Electrode device and electrolytic cell
JP5044228B2 (en) Ozone water generator
KR20190051348A (en) Electrolysis Reactor Having Radial Flow Structure, And Generating System Having The Same
KR102061454B1 (en) Check Valve and Electrolysis Device for Producing Acidic Hypochlorous Acid Water Having the Same
KR102008987B1 (en) Electrolyzer for producing slight acidic hypochlorous acid water apparatus for producing slight acidic hypochlorous acid water with the same
KR102534556B1 (en) A faucet capable of Sterilization and supplies Hydrogen

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220323

R150 Certificate of patent or registration of utility model

Ref document number: 7046479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350