JP7046059B2 - 切れ刃の撓みの推定 - Google Patents

切れ刃の撓みの推定 Download PDF

Info

Publication number
JP7046059B2
JP7046059B2 JP2019513358A JP2019513358A JP7046059B2 JP 7046059 B2 JP7046059 B2 JP 7046059B2 JP 2019513358 A JP2019513358 A JP 2019513358A JP 2019513358 A JP2019513358 A JP 2019513358A JP 7046059 B2 JP7046059 B2 JP 7046059B2
Authority
JP
Japan
Prior art keywords
cutting
tool
cutting edge
strain
accelerometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019513358A
Other languages
English (en)
Other versions
JP2019534795A (ja
Inventor
ダン オストリング,
トルモド イェンセン,
マティアス チョムスランド,
オドヴァル スタンダール,
オレ ヘンリク ヨハンセン,
アーント エリク レインスバック,
Original Assignee
サンドビック インテレクチュアル プロパティー アクティエボラーグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンドビック インテレクチュアル プロパティー アクティエボラーグ filed Critical サンドビック インテレクチュアル プロパティー アクティエボラーグ
Publication of JP2019534795A publication Critical patent/JP2019534795A/ja
Application granted granted Critical
Publication of JP7046059B2 publication Critical patent/JP7046059B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/007Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor for internal turning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/06Measuring, gauging, or adjusting equipment on turning-machines for setting-on, feeding, controlling, or monitoring the cutting tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/12Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/128Sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2717/00Arrangements for indicating or measuring
    • B23Q2717/003Arrangements for indicating or measuring in lathes

Description

本開示は、概して、ターニングにおいて使用するための切削工具に関し、とりわけ、そのような切削工具の切れ刃の撓みの推定に関する。
金属切削のためのマシン、たとえば、工作機械など、特に、旋盤などのような、ターニングマシンにおいて、典型的に、ワークピースを回転させることによって、ならびに、接線方向および/または半径方向にワークピースに向けて切削工具を移動させることによって、材料が、ワークピースの外部表面または内部表面から除去される(または、切削される)。切削工具の切れ刃によって提供される切削作用が、ワークピースの内部表面の上に(すなわち、ワークピースの孔部の内側から)実施されるケースは、ボーリングと称される場合がある。切削工具の切れ刃の位置および配向の知識は、高精度の機械加工を提供するために重要である。いくつかのケースでは、切れ刃の位置または配向における小さい偏差でも、機械加工精度を許容可能なレベルの下へ低減させることが可能である。機械加工の間に、切れ刃は、撓ませられ得る。したがって、機械加工が開始される前に切れ刃の位置が既知である場合でも、機械加工の間の切れ刃の現実の位置は、未知である可能性がある。これは、ターニングマシンの精度を低減させる可能性がある。切れ刃の撓みは、静的な(または、ゆっくりと変化する)成分および振動成分の両方を含む可能性がある。切れ刃とワークピースとの相互作用は、切れ刃が振動することを引き起こす可能性がある。これらの振動の振幅および/または周波数に応じて、切れ刃の耐久性または性能が影響を与えられる可能性がある。たとえば、振動は、ワークピースにおいて提供される表面品質を低減させる可能性がある。少なくとも上に説明されている理由のために、ターニングマシンの動作の間に切れ刃の撓みを推定することが望ましいこととなる。
上述の問題のうちの少なくとも1つをより良好に対処するために、独立請求項に定義されている特徴を有する切削工具および方法が提供される。好ましい実施形態が、従属請求項に定義されている。
したがって、第1の態様によれば、ターニングにおいて使用するための切削工具が提供される。切削工具は、工具バーと、切削ヘッドと、歪みゲージと、加速度計とを含む。切削ヘッドは、工具バーに位置付けされており(または、位置決めされている)、切れ刃を有している。歪みゲージは、工具バーにおける歪みを測定するように配置されている。加速度計は、工具バーまたは切削ヘッドにおける加速度を測定するように配置されている。加速度計は、歪みゲージよりも切れ刃の近くに配置されている。
歪みゲージは、切削工具における歪みを測定するために用いられ得、測定された歪みは、切れ刃の撓みを推定するために用いられ得る。切れ刃の撓みは、たとえば、歪みが相対的に大きい、工具バーに沿った位置において(マシンインターフェースの近くにおいて、または、下で説明されているように、工具バーの剛性が変化する、工具バーに沿った位置の近くなどにおいて)測定される歪みに基づいて推定され得る。時間の経過とともに周期的に戻る歪みは、たとえば、工具バーが往復してスイングしているということ、および、したがって、切れ刃が振動しているということを示すことが可能である。しかし、切れ刃の素早い運動、または、高周波数振動は、歪みゲージを介して正確に検出することが困難である可能性がある。切削工具の動力学および多くの振動モードの存在に起因して、撓みと歪みとの間に簡単な関係は存在していない可能性がある。そのうえ、歪み測定の感度は、より高い周波数において存在し得る小さい振動を検出する(または、区別する)には低過ぎる可能性がある。信号対雑音比は、高い周波数に関して、単に低過ぎる可能性がある。したがって、歪みゲージのみに基づいて切れ刃の合計撓みを推定することは困難である可能性がある。
加速度計は、切れ刃の高周波数振動を推定するために用いられ得る。加速度計が切れ刃に近ければ近いほど(たとえば、歪みゲージよりも切れ刃に近いなど)、推定が正確になる可能性がある。しかし、静的な撓み、または、相対的に遅い加速度(たとえば、低周波数振動など)によって引き起こされる撓みは、加速度計を介してモニタリングすることが困難である可能性がある。したがって、加速度計のみに基づいて切れ刃の合計撓みを推定することが困難である可能性がある。
歪みゲージによって測定される歪み、および、加速度計によって測定される加速度は、互いに補完し、切れ刃の撓みのより正確なまたは完全な推定を提供するために一緒に用いられ得るということを、本発明者は認識した。
歪みゲージおよび加速度計からの出力は、たとえば、ターニングマシンの動作の間に切れ刃が移動するときに、切れ刃の位置を推定するために用いられ得、または、切れ刃の振動のスペクトルを推定するために用いられ得る。そのような振動のスペクトルは、切れ刃がワークピースにおける所望の表面構造(または、精度)を提供することができるかどうかということを示すことが可能である。
本開示の全体を通して、「ターニング」という語句は、ワークピースが回転させられる機械加工プロセスを表しており、その機械加工プロセスでは、回転しない切れ刃によってワークピースから材料が切削される。そのような機械加工プロセスの間に、切れ刃は、たとえば、回転しているワークピースに向けて並進させられ、切削作用を実施することが可能であり、または、回転しているワークピースが、切れ刃に向けて並進させられ得る。
ターニングは、たとえば、切れ刃とワークピースの外部表面との相互作用を介して実施され得、または、切れ刃とワークピースの内部表面との相互作用を介して実施され得る(ボーリングと称される場合もある)ということが認識されることとなる。
切削工具(または、ターニング工具)は、たとえば、ターニングマシンにおいて使用するのに適切であり得る。
切削ヘッドは、たとえば、工具バーに装着され得、または、工具バーの一体化されたパーツであることが可能である。
切れ刃は、たとえば、切削ヘッドに装着される切削インサートの切れ刃であることが可能である。
歪みゲージは、たとえば、工具バーに沿って配置され得る。歪みゲージは、たとえば、工具バーの内部の中に配置され得(または、工具バーの中に一体化され得る)、機械加工の間にワークピースから切除される材料の切屑から保護されるようになっている。歪みゲージは、たとえば、工具バーの外部表面に配置され得る。
加速度計は、たとえば、工具バーまたは切削ヘッドに配置され得る。加速度計は、たとえば、工具バーまたは切削ヘッドの中に一体化され得る。加速度計は、たとえば、工具バーまたは切削ヘッドの内部に配置され得、機械加工の間にワークピースから切除される材料の切屑から保護されるようになっている。
歪みゲージから切れ刃への距離は、たとえば、加速度計から切れ刃への距離の少なくとも2倍、3倍、4倍、5倍、10倍、20倍、または100倍の長さであることが可能である。
いくつかの実施形態によれば、工具バーの軸線方向に沿った工具バーの特定の部分は、最大の歪みを受けやすくなっていることが可能である。歪みゲージは、特定の部分に配置され得る。
切削工具がターニングの間に用いられているときに、工具バーは歪みを受ける。特定の部分は、工具バーの他の部分よりも大きい歪みを受ける。したがって、歪みは、特定の領域においてより容易に検出され、および/または、切れ刃がどれくらい撓ませられているかということをより明確に示す。たとえば、信号対雑音比は、歪みゲージが特定の位置に配置されている場合には、歪みゲージに関してより高くなることが可能である。所与の歪みに関して切れ刃がどれくらい撓ませられているかということは、たとえば、切削工具が製造される工場において、または、切削工具がターニングマシンの中に装着されたときに、測定され得る(または、決定され得る)。切れ刃の撓みの推定は、たとえば、ターニングの前に実施されるそのような測定からのデータに基づくことが可能である。
いくつかの実施形態によれば、切削工具は、ターニングマシンに切削工具を装着するためのマシンインターフェースを含むことが可能である。歪みゲージから切れ刃への距離は、歪みゲージからマシンインターフェースへの距離よりも大きくなっていることが可能である。換言すれば、歪みゲージは、切れ刃の近くよりも、マシンインターフェースの近くにあることが可能である。
歪みは、通常、切削工具に沿った他の位置においてよりも、マシンインターフェースの近くで大きくなっている。したがって、切れ刃の撓みは、マシンインターフェースの近くで測定される歪みに基づいて、より容易に正確に推定することが可能である。
歪みゲージから切れ刃への距離は、たとえば、歪みゲージからマシンインターフェースへの距離の少なくとも2倍、3倍、4倍、または5倍の大きさであることが可能である。
いくつかの実施形態によれば、工具バーは、工具バーに沿った特定の場所において、より低い値とより高い値との間で移行する剛性を有することが可能である。歪みゲージから切れ刃への距離は、歪みゲージから特定の場所への距離よりも大きくなっていることが可能である。
歪みは、通常、切削工具に沿った他の位置においてよりも、工具バーの剛性が変化する場所(たとえば、工具バーの直径が変化する場所、または、工具バーの材料が変化する場所など)の近くにおいて大きくなっている。したがって、切れ刃の撓みは、そのような場所において測定される歪みに基づいて、より容易に正確に推定することが可能である。
歪みゲージから切れ刃への距離は、たとえば、歪みゲージから特定の場所への距離の少なくとも2倍、3倍、4倍、または5倍の長さであることが可能である。
いくつかの実施形態によれば、切削工具は、ターニングマシンに切削工具を装着するためのマシンインターフェースを含むことが可能である。加速度計からマシンインターフェースへの距離は、加速度計から切れ刃への距離よりも大きくなっていることが可能である。換言すれば、加速度計は、マシンインターフェースの近くよりも、切れ刃の近くにあることが可能である。
切れ刃の近くにおいて加速度を測定することは、切れ刃の運動(および、それによって、撓みの少なくともいくらかの成分)が、切れ刃からより遠く離れた加速度を測定することと比較して、より正確に推定されることを可能にする。
加速度計からマシンインターフェースへの距離は、たとえば、加速度計から切れ刃への距離の少なくとも2倍、3倍、4倍、5倍、10倍、20倍、または100倍の長さであることが可能である。
いくつかの実施形態によれば、加速度計からマシンインターフェースへの距離は、加速度計から切れ刃への距離の少なくとも4倍の長さであることが可能である。歪みゲージから切れ刃への距離は、歪みゲージからマシンインターフェースへの距離の少なくとも4倍の大きさであることが可能である。
歪みゲージは、たとえば、工具バーの後方端部に(または、その近くに)配置され得る。切削ヘッドは、たとえば、工具バーの前方端部に位置付けされ得る。加速度計は、たとえば、切削ヘッドに、または、工具バーの前方端部に(もしくは、その近くに)配置され得る。
いくつかの実施形態によれば、歪みゲージは、ワークピースに対する半径方向の工具バーの曲げを示す歪みを測定するように適合されており、または、ワークピースに対する接線方向の工具バーの曲げを示す歪みを測定するように適合され得る。
ワークピースに対する半径方向は、切削工具が内部ターニングに関して用いられるかまたは外部ターニングに関して用いられるかに応じて、ワークピースの中心に向けての方向であるか、または、ワークピースの中心から離れる方向であることが可能である。ワークピースに対する接線方向は、切れ刃と接触しているときに、切れ刃と相互作用するワークピースの表面がターニングの間に移動している方向であることが可能である(すなわち、ターニングの間のワークピースの回転運動に対して接線方向の方向)。切削工具がまだターニングマシンの中に装着されていない場合には、ワークピースに対する半径方向および接線方向は、たとえば、どこに切れ刃が配置されるかということ、および、どのように切れ刃が配向されるかということをチェックすることによって、識別され得る。たとえば、切れ刃は、ターニングの間に、特定の方向(または、ワークピースに対する配向)に、ワークピースと相互作用するように適合され得る。
特定の方向の工具バーの曲げは、工具バーがそこから離れるように曲がっている、工具バーの側部(または、表面)において、歪みを引き起こすことが可能である。歪みゲージは、たとえば、その側部(または、表面)に配置され得る。
歪みゲージは、たとえば、ターニングの間に工具バーが曲がることとなる半径方向の反対側の工具バーの側部に配置され得る。歪みゲージは、たとえば、ターニングの間に工具バーが曲がることとなる接線方向の反対側の工具バーの側部に配置され得る。
半径方向の曲げを示す歪みは、たとえば、(たとえば、半径方向の加速度と組み合わせて)半径方向の切れ刃の撓みを推定するために用いられ得る。接線方向の工具バーの曲げを示す歪みは、たとえば、(たとえば、接線方向の加速度と組み合わせて)接線方向の切れ刃の撓みを推定するために用いられ得る。
いくつかの実施形態によれば、切削工具は、それぞれの方向の工具バーの曲げを示す、工具バーにおける歪みを測定するように配置されている歪みゲージを含むことが可能である。切削工具は、それぞれの方向の工具バーまたは切削ヘッドにおける加速度を測定するように配置されている加速度計を含むことが可能である。加速度計は、歪みゲージよりも切れ刃の近くに配置され得る。
加速度が測定される方向は、たとえば、歪みゲージによって測定される歪みを介してモニタリングされる工具バーの曲げ方向と一致することが可能である。それぞれの方向の切れ刃の撓みは、たとえば、互いに独立して推定され得る。
加速度計および歪みゲージによってモニタリングされる方向が一致しないケースでは、測定される加速度は、たとえば、(たとえば、三角法の計算を介して)歪みゲージによってモニタリングされる工具バーの曲げ方向の加速度に変換され得る。
第2の態様によれば、ターニングマシンが提供される。ターニングマシンは、第1の態様の実施形態のいずれかに定義されているような切削工具を含む。
ターニングマシンは、たとえば、旋盤であることが可能である。
ターニングマシンは、たとえば、ワークピースを回転させるように配置され得る。ターニングマシンは、たとえば、ワークピースを回転させるためのスピンドルを含むことが可能である。
いくつかの実施形態によれば、ターニングマシンは、歪みゲージおよび加速度計からの出力に基づいて、切れ刃の撓みを推定するように構成されている処理セクション(または、プロセッサー)を含むことが可能である。
処理セクションは、たとえば、1つもしくは複数の方向の撓み、および/または、撓みの全体的なサイズ/大きさを推定することが可能である。
処理セクションは、たとえば、時間間隔の間の平均撓み(それは、たとえば、撓みの静的な成分と称され得る)、および/または、時間間隔の間の最大撓みを推定することが可能である。
処理セクションによって推定された撓みは、たとえば、振動成分を含むことが可能である。
処理セクションは、たとえば、切れ刃の振動のスペクトルを推定することが可能である。
処理セクションは、たとえば、切れ刃の位置(すなわち、切れ刃が撓ませられているときの現実の位置)を推定することが可能である。
処理セクションは、たとえば、切削工具の中に一体化され得、または、切削工具から遠隔の場所に配置され得る。
第3の態様によれば、切削ヘッドの切れ刃の撓みを推定するための方法が提供される。方法は、切削工具を含むターニングマシンを提供することを含む。切削工具は、工具バーおよび切削ヘッドを含む。切削ヘッドは、工具バーに位置付けされている。方法は、ターニングの間に、工具バーにおける歪みを測定することを含む。方法は、ターニングの間に、工具バーおよび/または切削ヘッドにおける加速度を測定することを含む。方法は、測定された歪みおよび測定された加速度に基づいて、切れ刃の撓みを推定することを含む。
第1の態様による切削工具の特徴および、第2の態様によるターニングマシンの特徴に関して上で提示されている利点は、全体的に、第3の態様による方法の対応する特徴に関して有効であり得る。
撓みの推定は、たとえば、リアルタイムで(すなわち、ターニングの間に)実施され得、または、いくらか後の時点において実施され得る。
いくつかの実施形態によれば、切れ刃から歪みが測定される位置への距離は、切れ刃から加速度が測定される位置への距離よりも長くなっていることが可能である。
いくつかの実施形態によれば、撓みを推定することは、測定された歪みに基づいて、第1の周波数範囲における切れ刃の撓みを推定することを含むことが可能である。第1の周波数範囲は、静的な撓み、および、第1の周波数までの周波数を有する振動を含むことが可能である。撓みを推定することは、測定された加速度に基づいて、第2の周波数範囲における切れ刃の撓みを推定することを含むことが可能である。第2の周波数範囲は、第1の周波数と少なくとも同程度の高さの第2の周波数を上回る周波数を有する振動を含むことが可能である。
上に説明されているように、歪みゲージからの出力は、静的な撓みおよび低周波数振動(すなわち、第1の周波数範囲)を推定するのにより良好に適しており、一方、加速度計からの出力は、高周波数振動(すなわち、第2の周波数範囲)を推定するのにより良好に適している。一緒になって、第1および第2の周波数範囲における切れ刃の推定された撓み成分は、切れ刃の全体的な撓みのより完全な像を提供する。そのような全体的な撓みは、たとえば、ターニングの間にモニタリングされ、機械加工プロセスのパラメーターをいつ修正する(たとえば、切削の深さを補償し、回転の速度を調節し、および/または、送り速度を調節する)べきかということを検出することが可能であり、または、ターニングが完了した後に分析され、(たとえば、マシンコントローラーの上でプログラムされるような)所望の直径と実現された直径との間の偏差を検出することが可能であり、および/または、(たとえば、高過ぎる振幅を有する特定の周波数範囲の振動に起因して)欠陥またはより低い表面品質の領域が位置付けされる可能性が最も高いワークピースの部分を検出することが可能である。
加速度および歪みが、たとえば、同時に測定され得るということ、および、これらの測定から収集されたデータが、次いで、上に説明されているように、それぞれの推定を実施するために用いられ得るということが認識されることとなる。
いくつかの実施形態によれば、撓みを推定することは、測定された歪みおよび測定された加速度に基づいて、第3の周波数範囲における撓みを推定することを含むことが可能である。第3の周波数範囲は、第1の周波数と第2の周波数との間の周波数を有する振動を含むことが可能である。
測定された歪みおよび測定された加速度の両方が、第1の周波数と第2の周波数との間の周波数を有する振動についてのいくらかの情報を提供するが、そのような振動は、これらの2つのタイプの測定のうちの1つのみに基づいて正確に推定することが困難である可能性がある。測定される歪みおよび測定される加速度は、第3の周波数範囲において互いに補完し、その周波数範囲における撓みが、より正確におよび/またはよりロバストに推定され得るようになっている。測定ノイズの影響が、たとえば低減され得る。
いくつかの実施形態によれば、方法は、ターニングの前に切削工具における加速度を測定することを含むことが可能である。方法は、ターニングの前に測定された加速度に基づいて、切削工具の配向を推定することを含むことが可能である。少なくとも1つの加速度計は、ターニングの前およびターニングの間の両方における加速度を測定するために用いられ得る。換言すれば、同じ加速度計が、2つの異なるタイプの推定、すなわち、配向の推定および撓みの推定のために用いられ得る。
切れ刃の配向における小さい偏差でも、機械加工精度を許容可能なレベルの下へ低減させることが可能である。切れ刃の配向は、たとえば、切削工具の配向の知識を介して決定され得る。いくつかの切削工具は、平面的な表面を有しており、切削工具が正しい配向に装着されたことをチェックするために、水準器がその上に設置され得る。ターニングの間の切れ刃の撓みを推定するために用いられるものと同じ加速度計の使用は、適正な配向に切削工具を装着または配向させることを促進させる。
加速度計は、たとえば、工具バーまたは切削ヘッドの中に一体化され得、ターニングの間の切れ刃とワークピースとの相互作用の間に生成される切屑から保護されるようになっている。
ターニングの前に、工具バーが撓ませられていないときに、工具バーは、たとえば、軸線に沿って延在することが可能である。工具バーが真っ直ぐになっていない可能性がある場合でも、工具バーのメイン部分は、たとえば、軸線に沿って少なくとも実質的に延在することが可能である。処理セクションは、たとえば、ターニングの前に測定された加速度に基づいて、軸線に関する切削工具の回転配向を推定するように配置され得る。軸線は、たとえば、水平方向になっていることが可能である。軸線は、たとえば、ターニングマシンによって回転させられることとなるワークピースの回転の軸線に対して平行になっている(または、直交している)ことが可能である。
本開示の実施形態は、特許請求の範囲に記載されている特徴のすべての可能な組み合わせに関するということが留意される。さらに、第1の態様による切削工具、または、第2の態様によるターニングマシンに関して説明されているさまざまな実施形態は、第3の態様による方法の実施形態とすべて組み合わせ可能であるということが認識されることとなる。
以下では、例示的な実施形態が、より詳細に添付の図面を参照して説明されることとなる。
実施形態による切削工具の斜視図である。 実施形態による、図1に示されている切削工具を含むターニングマシンの斜視図である。 図1に示されている切削工具が受け得る歪みを示す図である。 実施形態による、切れ刃の撓みを推定する方法のフローチャートである。 切れ刃の撓みを推定するために用いられる処理ステップの概観である。 異なるセンサータイプが切れ刃の撓みを推定するために用いられ得る周波数範囲を示す図である。 図1に示されている切削工具の線A-A’に沿った断面図である。
すべての図は、概略的なものであり、一般的に、それぞれの実施形態を解明するために必要なパーツのみを示しており、一方、他のパーツは、省略されているかまたは単に示唆されている可能性がある。
図1は、実施形態による切削工具100の斜視図である。切削工具100は、ターニングと呼ばれる周知の機械加工プロセスに適合された切削工具である。切削工具100は、工具バー110(それは、ターニングバー110とも称され得る)、切削ヘッド120、歪みゲージ130、および加速度計140を含む。切削ヘッド120は、工具バー110に位置付けされており、切れ刃121を有している。歪みゲージ130は、工具バー110における歪みを測定するように配置されている。加速度計140は、工具バー110における加速度、または、切削ヘッド120における加速度を測定するように配置されている。加速度計140は、歪みゲージ130よりも切れ刃121の近くに配置されている。下に説明されることとなるように、切削工具100は、たとえば、複数の歪みゲージ130~133および複数の加速度計140を含むことが可能である。
工具バー110は、細長いエレメントまたは細長い部材である。本実施形態では、工具バー110は、(工具バー110が切削力に起因して曲げられていないときには)軸線111に沿って延在する円筒形状のエレメントである。切削ヘッド120は、工具バー110の一方の端部に配置または装着されている。また、切削ヘッド120が、工具バー110の端部の近く、たとえば、ダンパー(図1には示されていない)の後ろに配置されているという実施形態も想定され得る。また、工具バー110のメイン部分(または、メインパーツ)が、軸線111に沿って延在しているが、一方、工具バー110の他の部分(またはパーツ)が、湾曲しているか、または、軸線に対して所定の角度に配置されているという実施形態も想定され得る。
本実施形態では、マシンインターフェース150は、切削ヘッド120の反対側にある工具バー110の端部に配置されており、ターニングマシンの中に切削工具100を装着するように適合されている。切れ刃121は、切削ヘッド120に装着されているインサート(または、切削インサート)の中に位置付けされている。切れ刃121は、ワークピースから材料(たとえば、金属)を切除するように適合されている。
切削工具100は、外部ターニングのために用いられ得、外部ターニングでは、ワークピースの外部表面から材料が除去される。切削ヘッド120は工具バー110の端部に位置付けされているので、切削工具100は、内部ターニングのために用いられることも可能であり、内部ターニングでは、ワークピースの内部表面(たとえば、ワークピースの孔部の中)から、材料が除去される。内部ターニングは、ボーリングと呼ばれる場合もある。また、工具バー110が両端部にマシンインターフェース150を有しており、切削ヘッド120が、工具バー110に沿って、たとえば、工具バー110の中間に位置付けされているという実施形態も想定され得る。しかし、切削ヘッド120が工具バー110の端部の近くに設置されていないというそのような実施形態は、図1を参照して説明されている実施形態ほど、内部ターニングに関して適切でない可能性がある。いくつかの実施形態では、切削ヘッド120は、工具バー110に装着されている(または、取り付けられている)というよりもむしろ、工具バー110と一体化され得る。換言すれば、切削ヘッド120は、工具バー110の一体化されたパーツであることが可能である。
工具バー110は、たとえば、スチールなどのような金属、炭素繊維、および/または超硬合金を含むことが可能である。切削ヘッド120は、たとえば、スチール、チタン、および/またはアルミニウムなどのような、金属を含むことが可能である。切れ刃121は、たとえば、超硬合金を含むことが可能である。切削工具100、工具バー110、切削ヘッド120、および/または切れ刃121は、たとえば、金属切削に適合され得る。
本実施形態では、工具バー110は、比較的に長く、ワークピースの比較的に深い孔部の中のターニングを実施することができるようになっている。工具バー110は、たとえば、長さLを有することが可能であり、長さLは、工具バー110の直径Dの少なくとも5倍、10倍、15倍、または20倍になっている。工具バー110がそのように長いので、工具バー110は、より短い工具バーよりもターニングの間に容易に曲がる。工具バー110が曲がるときには、切れ刃121がその静止位置から撓ませられる。したがって、高精度のターニングを提供するために、切れ刃121の撓みを推定することが望ましい可能性がある。下に説明されることとなるように、歪みゲージ130および加速度計140は、この撓みを推定するために用いられ得る。
歪みゲージ130は、たとえば、歪みゲージ抵抗器、圧電センサー、または力変換器に基づくことが可能である。歪みゲージ130は、たとえば、光学的な歪みゲージ、または弾性表面波(SAW)歪みセンサーであることが可能である。
加速度計140は、たとえば、アナログまたはデジタル加速度計であることが可能である。運動を推定するために用いられ得る他のタイプのセンサーと比較して、切削工具100の中での使用に適切なサイズおよび耐久性を備えた加速度計は、比較的に製造しやすい可能性がある。
本実施形態では、加速度計140は、工具バー110の内部に位置付けされている。したがって、加速度計140は、機械加工の間に生成される金属切屑から保護されている。また、加速度計140が、工具バー110の外部表面に沿って、または、切削ヘッド120の内部に位置付けされているという実施形態も想定され得る。
本実施形態では、歪みゲージ130は、工具バー110の外部表面の上に位置付けされている。また、歪みゲージ130が工具バー110の内部に位置付けされているという実施形態も想定され得る。工具バー110は、たとえば、超硬合金のリングによって取り囲まれている中心に位置付けされた金属ロッド(たとえば、スチールを含む)を含むことが可能である。超硬合金は、比較的に低い引張強度を有することが可能であるので、金属ロッドは、超硬合金のリングを軸線方向111に圧縮するために用いられ得る。歪みゲージ130は、たとえば、リングの内部表面もしくは外部表面に、または、金属ロッドの外部表面に配置され得る。
加速度計140からの出力は、たとえば、ワイヤレスに、または、ワイヤー160を介して、処理セクション170へ送信され得る。処理セクション170は、たとえば、(たとえば、マシンインターフェース150において、または、加速度計140の近くに)切削工具100自身の中に位置付けされ得るか、または、切削工具100の外側のどこかの場所に位置付けされ得る。同様に、歪みゲージ130からの出力は、たとえば、ワイヤレスに、または、ワイヤー180を介して、処理セクション170へ送信され得る。
切削工具100は、たとえば、加速度計140、歪みゲージ130、および処理セクション170に給電するためのバッテリー(図示せず)または何らかの他の内部電源を含むことが可能である。切削工具100は、たとえば、加速度計140、歪みゲージ130、および処理セクション170に給電するための外部電源に接続されるように適合され得る。
図2は、実施形態による、図1を参照して説明されている切削工具100を含むターニングマシン200の斜視図である。切削工具100は、軸線111が水平方向になるように装着されている。ターニングマシン200は、歪みゲージ130および加速度計140によって提供される出力に基づいて、切れ刃121の撓みを推定するように適合されている。ターニングマシン200は、たとえば、処理セクション210を含むことが可能であり、処理セクション210は、歪みゲージ130および加速度計140によって提供される出力に基づいて、切れ刃121の撓みを推定するように構成されている。処理セクション210は、たとえば、切削工具100の中に位置付けされ得るか(処理セクション210は、たとえば、図1を参照して説明されている処理セクション170と一致することが可能である)、または、ターニングマシン200の何らかの他のパーツの中に位置付けされ得る。
ターニングマシン200は、ワークピース230を回転させるためのスピンドル220を含む。切削工具100は、マシンインターフェース150を介して装着されており、ワークピース230が回転するときにワークピース230から材料を切除するために、切削工具100がワークピース230に向けて移動させられ得る(または、並進させられる)ようになっている。工具バー110および切れ刃121は、ターニングマシン200の動作の間に回転しない。本実施形態では、ワークピース230は、孔部231を有しており、切削工具100は、孔部231を拡張するために材料を切除することが可能である。
ターニングマシン200は、通信インターフェース240を含むことが可能であり、通信インターフェース240は、推定された撓みを示す信号伝達を提供するように構成されている。通信インターフェース240によって提供される信号伝達は、ワイヤード信号またはワイヤレス信号を介して(たとえば、Bluetoothを介して)、遠隔に位置付けされているデバイス250へ提供され得、デバイス250は、推定された撓みをユーザーに示すためのユーザーインターフェースを有している。推定された撓みは、たとえば、リアルタイムでスクリーンの上に示され得る。デバイス250は、たとえば、機械加工の間の撓みを処理または分析することが可能であり、また、機械加工の後に、機械加工の間に起こった撓みの概観を提示することが可能である。たとえば、デバイス250は、機械加工された表面が通常よりも低い品質または低い精度のものとなることが、振動によって引き起こされた可能性のある、ワークピース230の領域を示すことが可能である。デバイス250は、たとえば、パーソナルコンピューターまたはハンドヘルド式デバイス、たとえば、モバイルフォンまたはタブレットコンピューターなどであることが可能である。
通信インターフェース240は、ワイヤレスに、または、ワイヤード接続を介して、処理セクション210と通信することが可能である。いくつかの実施形態では、処理セクション210および/または通信インターフェース240は、切削工具100の中に位置付けされ得る(または、一体化され得る)。
ターニングマシン220は、ユーザーインターフェース260を含むことが可能であり、ユーザーインターフェース260は、推定された撓みをユーザーに示すように構成されている。ユーザーインターフェース260は、たとえば、推定された撓みをユーザーに視覚的に伝えるように配置されたスクリーンであるか、または、撓みが高過ぎる(たとえば、許容レベルよりも高い)ときに音を介して信号伝達するためのオーディオインターフェースであることが可能である。ユーザーインターフェース260は、たとえば、切削工具100の振動(または、びびり)が高過ぎる振幅を有しているときをユーザーに示し、また、切削工具100の送り速度またはワークピース230の回転速度が修正されるべきであるということをユーザーに示すことが可能である。
ターニングマシン200は、たとえば、歪みゲージ130および/または加速度計140からの出力、および/または、推定された撓みを記憶するためのメモリーまたはデータストレージ(図示せず)を含むことが可能であり、このデータのその後の分析を可能にするようになっている。そのようなデータは、代替的に、クラウドストレージなどのようなリモートデータストレージの中に記憶され得る。
また、歪みゲージ130および加速度計140からの出力が、通信インターフェース240によって外部デバイス250へ提供されるという実施形態も想定され得る。外部デバイス250は、たとえば、受信されたセンサー出力に基づいて、切れ刃121の撓みを推定することが可能である。そのような実施形態では、ターニングマシン200が歪みゲージ130および加速度計140によって提供される出力を処理する必要がなく、または、切れ刃121の撓みを推定する必要がない可能性がある。
図3は、図1を参照して説明されている切削工具100が機械加工の間に受け得る接線方向の歪み(すなわち、1つの方向のみの歪み)を示している。簡単にするために、切削工具100の工具バー110における歪みのみが、図3に示されている。図3では、より濃い色は、より高い歪みを意味している。歪みは、工具バー110の一方の側において引っ張りの形態であり、工具バー110の反対側において圧縮の形態であることとなる。
本実施形態では、ワークピース230は、ターニングマシン200の中で時計回りに回転させられる。切れ刃121が、回転しているワークピース230と相互作用するときに、切れ刃121は、接線方向に下向きに方向付けられた力、および、ワークピース230の回転の中心に向けて半径方向に方向付けられた力を受ける。接線方向の力は、工具バー110がわずかに下向きに曲がることを引き起こし、切れ刃121が下向きに撓ませられるようになっている。この下向きの曲げによって引き起こされる歪みが、図3に示されている。切削力の半径方向の成分は、バーが半径方向に曲がることを引き起こす。切削力は、接線方向の撓みおよび半径方向の撓みの両方を発生させる。
工具バー110の異なる部分は、他の部分よりも多く曲がる。したがって、歪みは、そのような部分において、より大きくなっている。歪みが大きい部分は、より少ない歪みを受ける部分よりも、切れ刃121の撓みの推定に適切である。その理由は、そこでは、信号対雑音比がより高いからである。換言すれば、歪みゲージ130は、最大の歪みを受けやすい工具バー110の特定の部分に位置付けされ得る。どのように切れ刃121の撓みが歪みに依存するかということは、それぞれの切削工具100に関して、および、工具バー110に沿ったそれぞれの位置に関して、特有である可能性がある。下に説明されているように、この依存性は、切削工具100がターニングマシン200の中に装着されたときに決定され得る。
マシンインターフェース150の近くに位置付けされている工具バー110の部分112は、とりわけ高い歪みを受ける。したがって、歪みゲージ130は、その部分112に設置され得る。換言すれば、歪みゲージ130は、マシンインターフェース150の近くの工具バー110の後端部に設置され得る。歪みゲージ130のこの設置によって、歪みゲージ130から切れ刃121への距離D1は、歪みゲージ130からマシンインターフェース150への距離D2よりも大きくなっている。実際に、歪みゲージ130から切れ刃121への距離D1は、歪みゲージ130からマシンインターフェース150への距離D2よりも、2倍、3倍、4倍、5倍、または10倍長くなっていることが可能である。
工具バー110は、均質である必要はない。工具バー110の半径、および/または、工具バー110の材料は、工具バー110に沿って変化することが可能である。これは、工具バー110の剛性が変化することを引き起こすことが可能である。本実施形態では、ダンパー(図示せず)が、振動を緩和するために、マシンインターフェース150の最も近くに位置付けされている工具バー110の半分の位置に配置されている。工具バー110に沿って特定の場所114(または、境界114)が存在しており、そこで、ダンパーが終了し、工具バー110のより硬い部分が開始する。換言すれば、その場所114において、より低い剛性とより高い剛性との間の移行が存在している。(剛性がより低い側における)境界114の近くの領域113は、比較的に高い歪みを受けている。したがって、歪みゲージ131が、歪みゲージ130を補足するものとして、または、歪みゲージ130の代わりに、その領域113に設置され得る。領域113における歪みゲージ131のこの設置によって、歪みゲージ131から切れ刃121への距離D3は、歪みゲージ131から境界114への距離D4よりも長くなっており、境界114において、工具バー100の剛性は、より低い値からより高い値へ移行している。実際に、歪みゲージ131から切れ刃121への距離D3は、歪みゲージ131から境界114への距離D4の2倍、3倍、4倍、5倍、または10倍の長さであることが可能である。
本実施形態では、加速度計140は、切れ刃121の近くの工具バー110の前方端部に配置されている。加速度計140のこの設置によって、加速度計140からマシンインターフェース150への距離D5は、加速度計140から切れ刃121への距離D6よりも長くなっている。実際に、加速度計140からマシンインターフェース150への距離D5は、加速度計140から切れ刃121への距離D6の2倍、3倍、4倍、5倍、10倍、20倍、または100倍の大きさであることが可能である。また、推定された撓みの正確性を改善するために、加速度は切れ刃の近くで測定されることが好ましいが、加速度計140が切れ刃121からさらに離れるように位置付けされるという実施形態も想定され得る。
本実施形態では、加速度計140は、切削ヘッド120の近くの位置において、工具バー110の中に一体化されている。また、加速度計が切削ヘッド120の中に(たとえば、切れ刃121が提供されているインサートの中に)一体化されているという実施形態も想定され得る。
下向きの(すなわち、ワークピース230に対して接線方向の)切れ刃121の撓みを推定するために、歪みゲージ130および131は、工具バー110の上部に配置されており、そこでの表面における歪みを測定するようになっている。換言すれば、歪みゲージ130および131は、ワークピース230に対する接線方向の工具バー110の曲げを示す歪みを測定するように適合されている。そのような歪みゲージ130および131からの測定は、接線方向の、すなわち、下向きの切れ刃の撓みを推定するために、接線方向に測定される加速度とともに用いられ得る。
同様に、歪みゲージ132および133は、工具バー110の側部に配置され得、ワークピース230の半径方向(このケースでは、水平方向である)の切れ刃の撓みを推定するようになっている。換言すれば、歪みゲージ132および133は、ワークピース230に対する半径方向の工具バー110の曲げを示す歪みを測定するように適合されている。そのような歪みゲージ132および133からの測定は、半径方向の、すなわち、水平方向の切れ刃の撓みを推定するために、同じ半径方向に測定される加速度とともに用いられ得る。
また、工具バー110が曲がるときに伸ばされる工具バー110の表面の上の歪み、および、工具バー110が曲がるときに圧縮される表面の上の歪みの両方を測定するために、歪みゲージが工具バー110の4つの側部に配置されているという実施形態も想定され得る。
図7を参照して下に説明されることとなるように、加速度は、必ずしも、半径方向および接線方向に測定されることが必要であるわけではない。加速度が2つの異なる方向に測定される限りにおいて(2つの方向が、互いからおよび軸線111から線形に独立している必要があり、2つの方向の間の角度が、既知である必要がある)、半径方向および接線方向の加速度は、三角法を介してコンピューター計算され得る。
撓みが半径方向および接線方向の両方に推定されるべきである場合には、加速度および歪みの両方が、少なくとも2つの方向に測定される必要がある。
図4は、実施形態による、切れ刃121の撓みを推定するための方法400のフローチャートである。方法400は、ターニングマシン200を提供すること410と、ターニングの間の工具バー110における歪みを測定すること420と、ターニングの間の工具バー110における加速度または切削ヘッド120における加速度を測定すること430とを含むことが可能である。また、方法400は、測定された歪みおよび測定された加速度に基づいて、切れ刃121の撓みを推定すること440を含む。どのように撓みが推定されるかということが、ここで、図5および図6を参照して下に説明されることとなる。
ターニングマシン200の動作の間に、切削力は、工具バー110(および、それによって、切れ刃121)が半径方向および接線方向に撓むことを引き起こす。切削力は、ワークピース230の材料の変形、および、材料の切屑の形成によって引き起こされる、大きい準定常の(または、ゆっくりと変化する)パーツを有している。これは、工具バー110(および、したがって、切れ刃121も)が半径方向および接線方向(x方向およびy方向とも称される)に撓むことを引き起こす。長い工具バー110は、長手方向の中心軸線111(z軸とも称される)から離れるように数ミリメートル撓むことが可能である。それに加えて、切削力は、切屑分断、材料の不均質性などに起因して、時間とともに変化するが、この変化は、主切削力と比較して小さい。時間的に変化する小さい切削力は、工具バー110(および、それによって、切れ刃121)が、定常の撓みと比較して小さい振幅を伴って振動することを引き起こすこととなる。定常の(または、ゆっくりと変化する)撓みは、機械加工される孔部231の中に形態誤差を引き起こす可能性があり、一方、振動は、表面品質およびテクスチャーに影響を与える可能性がある。
切れ刃121の合計撓み(または、切れ刃121の位置)を推定するために、小さい振動が、大きい定常の撓みに加えて測定される。これを行うために、2つの異なるタイプの測定が用いられ、そのそれぞれは、異なる利点および測定レジメを有している。測定タイプは、両方とも不利点を有しており、それは、測定のタイプのうちの1つのみによって、必要とされる情報を取り出すことを困難にする。
第1のタイプの測定は、大きい撓みおよびゆっくりと変化する切削力をターゲットにしており、歪みゲージ130~133を使用し、工具バー110における撓みにより誘発される歪みを測定する。第2のタイプの測定は、切削工具100の前方端部に装着されている加速度計140を用い、加速度を測定する。次いで、撓ませられた中央位置からの時間的に変化する偏差が、測定された加速度に基づいて計算される。
切削力に起因する工具バー110の応答は、その周波数応答によって説明され得る。周波数応答は、工具バー110の動的特性(すなわち、どのように、工具バー110が異なる周波数の切削力に応答するかということ)を説明し、剛性、質量分布、内部ダンピングなどに依存する。静的な力に関して、および、ゆっくりと変化する力に関して、工具バー110の撓みδおよび工具バー110の表面の歪みε(たとえば、歪みゲージ130が配置されている場所における歪み)の両方は、印加される力に直接的に比例しており、したがって、また、以下の関係にしたがって互いに比例している。
δ=kδε
比例定数kδは、工具バー110に力を印加することによって、および、結果として生じる撓みδを歪みゲージ130からの信号と比較することによって決定され得る。比例定数kδは、たとえば、切削工具100がターニングマシン200に装着された後に決定され得る。その理由は、定数kδが、どのように切削工具100が特定のターニングマシン200に装着されているかということに依存し得るからである。
歪み信号εは、通常、非常に小さく、歪み信号εは、典型的に、電子機器からのノイズおよび熱影響などを含有することとなり、ノイズおよび熱影響などは、最小の検出可能な歪み、または、歪み感度を制限する。したがって、ローパスフィルタリングが、意図される用途に関して所望の正確性を取得するために(すなわち、切れ刃121の撓みを推定するために)必要である。
より高い周波数において、歪み信号εは、あまり有用ではなく、これに関して、少なくとも2つの理由が存在する。1つの理由は、切削工具100の動力学、および、多くの振動モードの存在に起因して、撓みと歪みとの間に簡単な関係が存在しないからである。別の理由は、歪み測定の感度があまりに低いため、より高い周波数において存在している小さい振動を検出する(または、区別する)ことができないということである。信号対雑音比は、高い周波数に関して、単に低過ぎる。その代わりに、切削工具100の前方パーツの加速度が測定され、これから、振動(たとえば、振動振幅)が、より高い周波数において推定され得る。加速度を使用して変位を推定することは、フィルタリングおよび積分の両方を伴う。低周波数ノイズおよびドリフトが信号を支配し、分解能を制限することとなるので、ハイパスフィルタリングが必要である。したがって、加速度計140からの出力のみに基づいて、切れ刃121の静的でゆっくりと変化する撓みを見出すことは困難であることとなる。
図5は、切れ刃121の撓みを推定するために、どのように2つのタイプの測定が組み合わせられ得るかということの概観を示している。加速度計140からの出力501は、2つの積分502および503を受け、ハイパスフィルタリング504がそれに続く。歪みゲージ130からの出力505は、比例定数kδを掛けられ506、ローパスフィルタリング507を受ける。ローパスフィルタリング507は、比例定数kδによる乗算506の前または後に実施され得るということが認識されることとなる。同様に、ハイパスフィルタリング504は、たとえば、積分502および503の前もしくは後に実施され得、または、2つの段階に分割され、それぞれの積分502および503の後に1つが実施され得る。次いで、2つのフィルタリングされた信号508および509が、組み合わせられ510、全体的な撓みの推定511を提供する。フィルタリングされた信号508および509は、たとえば、加算によって、すなわち、信号を合計することによって、組み合わせられ得る510。ハイパスフィルタリング504およびローパスフィルタリング507は、たとえば、加算510の前に、信号の重み付けを提供するために用いられ得る。
ハイパスフィルター504およびローパスフィルター507のカットオフ周波数および周波数ロールオフ性質は、推定される撓みの正確性が可能な限り良くなるように選ばれる。とりわけ、多くの内部ターニング動作において(すなわち、切れ刃121がワークピース230の内部表面から材料を切削することを、ターニングマシン200が引き起こすとき)魅力的な選択は、フィルター504および507に関するカットオフ周波数をワークピース320の回転速度と同期させるということである。このケースでは、中央撓み(または、定常の撓み)、ワークピース320コニシティー(conicity)および楕円率が、歪み信号505から推定され、一方、びびり、切屑の詰まりからの衝撃、および、他の工具振動が、加速度計信号501から推定される。
センサー出力が異なる周波数範囲において重み付けされることを、どのようにハイパスフィルタリング504およびローパスフィルタリング507が引き起こすことができるかということの例が、図6に示されている。図6では、垂直軸は、重みWを示しており、水平軸は、周波数をHzで示している。
第1の周波数範囲における切れ刃121の撓みは、測定された歪み505に基づいて推定され得る。第1の周波数範囲は、静的な(または、中央の)撓み、および、第1の周波数f1までの周波数を有する振動を含む。歪みデータのローパスフィルタリング507は、曲線601によって図6に図示されている。
第2の周波数範囲における切れ刃の撓みは、測定された加速度501に基づいて推定され得る。第2の周波数範囲は、第1の周波数f1と少なくとも同程度の高さの第2の周波数f2を上回る周波数を有する振動を含む。加速度計データ501を使用して取得されるデータのハイパスフィルタリング504は、曲線602によって図6に図示されている。
第3の周波数範囲における切れ刃121の撓みは、測定された歪み505および測定された加速度501の両方に基づいて推定され得る。第3の周波数範囲は、第1の周波数f1と第2の周波数f2との間の周波数を有する振動を含む。曲線601および602によって示されているように、ハイパスフィルター504およびローパスフィルター507は、この領域において重なり合い、この第3の周波数範囲における推定された撓みが、2つのフィルタリングされた信号508および509の総和の形態の重み付けされた組み合わせとなるようになっている。
本例では、第1の周波数f1は7Hzであり、一方、第2の周波数f2は30Hzである。第1および第2の周波数f1およびf2は、たとえば、ワークピース320の回転の速度に基づいて選ばれ得る。たとえば、ワークピースが毎秒10回転の速度(すなわち、10Hz)で回転する場合には、第1の周波数f1が、10Hzの上方に選ばれ得、ワークピース320の回転と同じ周波数範囲における撓み成分が、加速度計140からの出力の代わりに、歪みゲージ130からの出力に基づいて推定されるようになっている。
歪みゲージ130~133によって測定される歪みは、たとえば、範囲0~20Hzにおける撓みの推定に関して用いられ得、一方、加速度計140によって測定される加速度は、たとえば、範囲10~100Hzにおける撓みの推定に関して用いられ得る。両方のタイプの測定が、たとえば、重なり合う周波数領域において用いられ、測定誤差の影響を低減させることが可能である。
加速度計140は、たとえば、1600Hz程度の速さでサンプリングされ得る。歪みゲージ130~133のサンプルレートは、より低くてもよいが、たとえば、ワークピース320の回転の周波数の2倍にあることが可能であり、ワークピース320における楕円率偏差を検出することができるようになっている。
推定された全体的な撓みは、たとえば、異なる周波数における振動の振幅および平均撓みを含む、撓みスペクトルの形態で提供され得る。特定の時点における切れ刃121の位置は、推定するのが困難であり得るとしても、全体的な撓みは、切れ刃121の中央撓みを示すことが可能であり、また、振動によって、切れ刃121が中央撓みからどれくらい遠くに移動させられるかということを示すことが可能である。
特定のレベルを上回る振動振幅が検出されるか、または、特定の周波数バンドにある振動エネルギー/影響が検出される場合には、これは、たとえば、ワークピース320の表面品質が通常よりも低くなっている可能性があるということ、または、切れ刃121がその推奨される動作条件のウィンドウの外側で用いられているということを示している可能性がある。撓みがリアルタイムで推定される場合には、切削工具100の送り速度、または、ワークピース320の回転の速度が、次いで、振動を低減させるように修正され得る。
切れ刃121の撓みがリアルタイムでモニタリングされる場合には、切削工具100の位置は、(たとえば、CNCインターフェースへのフィードバックを介して)マシン200によって調節され、静的な(または、平均)撓みを補償することが可能である。
切削プロセスは、ワークピース320の孔部231の内側で実施される場合には、視界から隠される可能性がある。したがって、オペレーターが切れ刃121の上で起こっていることを見分けることは困難である可能性がある。推定された撓みは、たとえば、いつ切削プロセスが実際に起こるかということ、すなわち、いつ切れ刃121がワークピース320に接触しており、材料を切除することができるかということを検出するために用いられ得る。
いくつかの実施形態では、撓みは、機械加工プロセスが完了した後に推定され得る。推定された撓みは、ワークピース320の異なる領域において取得された表面品質を推定するために用いられ得る。
図1を参照して説明されている実施形態では、加速度計140は、アクセラレーターチップ140の形態で提供される。加速度計チップ140は、それぞれの方向の加速度を測定するために、1つまたは複数の加速度計(または、アクセラレーター回路)を含むことが可能である。
加速度計チップ140は、切削工具100(または、インサート121)から配向が偏位している可能性があるので、方法400は、ターニングの前に加速度計チップ140をキャリブレートするためのステップを含むことが可能である。キャリブレーションステップは、たとえば、切削工具100の製造または組み立ての間に実施され得る。キャリブレーションステップは、図7を参照して説明されることとなり、図7は、図1に示されている切削工具の線A-A’に沿った断面図である。
キャリブレーションの初期ステップとして、方法400は、軸線111に関して基準回転配向φrefに切削工具100を配置することを含むことが可能である。換言すれば、切削工具100は、重力場gに関して、十分に定義された既知の配向φrefに設置されており、好ましくは、インサート121が水平方向の状態になっており、切削工具100のマイナスのx方向に(すなわち、半径方向136において、φref=0に)向いている。
本実施形態では、加速度計チップ140は、2つの方向141および142の加速度を測定し、2つの方向141および142は、互いに対して、および、軸線111に対して垂直になっている。方向141および142は、それぞれ、チップ140のy軸141およびx軸142と称され得る。チップ140が切削工具100の中に装着されているので、2つの方向141および142は、切削工具100に対して固定されている。加速度計チップ140は、好ましくは、図7に示されているように、x軸142が切削工具100のx軸144に近い状態で、および、y軸141が切削工具100のy軸143に近い状態で、切削工具100の中に配置され得る。
方法400は、チップ140によって提供される2つの方向141および142に基準加速度を測定することによって継続することが可能である。測定される加速度AxrefおよびAyrefは、
xref=g sin(φref-φ
yref=g cos(φref-φ
として表現され得、ここで、φは、切削工具100の中のチップ140の装着角度である。換言すれば、φは、加速度計x軸142と工具x軸144との間の角度である。これらの定義によって、工具軸線111は、マシン軸線と一致し、一方、半径方向146は、ここで、マイナスのx方向になっている。使用するときには、インサート121は、水平方向に関して方向φradに向いている。フラットベッド旋盤などのようなターニングマシンにおいて、φrad=0を有することが望ましいことが多いが、一方、他のターニングマシンでは、φrad=240度(または、4p/3ラジアン)を有することが望ましい可能性もある。
方法400は、測定される基準加速度に基づいて、切削工具100に対する加速度計チップ140の装着角度φを示すパラメーター値をコンピューター計算することによって継続することが可能である。たとえば、装着角度φ自身は、次いで、以下を介して取得され得る。
Figure 0007046059000001
方法400は、軸線111に関して新しい回転配向に切削工具100を配置することによって継続することが可能である。これは、ターニングマシン200を提供するステップ410に対応している。
切れ刃121の撓みを推定440する上に説明されているステップは、また、パラメーター値φに基づくことが可能である。より正確には、半径方向136(水平方向)の加速度Arad、および、接線方向(垂直方向)の加速度Atanが、以下の式を介してコンピューター計算される。
rad=-Acosφ+Asinφ
tan=-Asinφ-Acosφ
ここで、Aは、チップ140のx軸に沿った加速度であり(方向142に対応している)、Aは、チップ140のy軸に沿った加速度である(方向141に対応している)。装着角度φが、キャリブレーション手順において決定されているので、式
Figure 0007046059000002
が、切削工具100の回転配向φradを見出すために使用され得る。半径方向の切れ刃121の撓みは、対応する加速度Arad、および、その方向に測定された歪みに基づいて推定され得る。同様に、接線方向の切削ヘッド121の撓みは、対応する加速度Atan、および、その方向に測定された歪みに基づいて推定され得る。
切削工具100の据え付けの間に、切削工具100の所望の配向が、切削工具100に関する現在の配向の角度φradと所望の配向の角度との間の差をプロットすることによって取得され得る。切削工具100は、所望の配向が取得されるまで回転させられ得る。
歪みゲージ130~133は、接線方向および半径方向の歪みを測定するために、切削工具100の製造の間に配置されていてもよい。歪みゲージ130~133の適正な位置決めおよび配向は、たとえば、切削工具100が顧客に送達される前に、手動でキャリブレートされていてもよい。歪みゲージ130~133が、半径方向および接線方向とそれほど整合させられていない場合には、このミスアライメントは、たとえば、どのように歪みゲージ130~133からの出力が解釈されるかということのキャリブレーションを介して、補償され得る。
図7を参照して説明されている実施形態では、方向141および142は、互いに対して垂直になっている。また、方向141および142が、互いに横断方向(または、非平行)になっているが、互いに対して垂直になっていないという実施形態も想定され得る。当業者は良く知っているように、互いに対して垂直になっていない2つの方向に測定される加速度は、2つの元の方向の間の角度が既知である限りにおいて、標準的な三角法の関係を使用して、互いに対して垂直の2つの方向の加速度に変換され得る。したがって、上に説明されているものと同様の計算が、そのような設定においても使用され得る。
また、方向141および142が、軸線111に対して横断方向(または、非平行)になっているが、必ずしも、軸線111に対して垂直になっているわけではないという実施形態も想定され得る。方向141および142が軸線111に対して垂直でない場合には、加速度は、半径方向および接線方向の加速度を推定するために、1つまたは複数の追加的な方向にも測定され得る。チップ140は、たとえば、互いに対して垂直になっている3つの方向に加速度を測定することが可能である。
本発明は、決して、上に説明されている好適な実施形態に限定されないということを当業者は認識する。対照的に、多くの修正および変形が、添付の特許請求の範囲の中で可能である。たとえば、切削工具100は、複数の加速度計140を含むことが可能であり、複数の加速度計140は、たとえば、複数の加速度計チップの形態で提供され得る。切削工具100の上(および/または、内側)に分配されている複数の加速度計140および歪みゲージ130が、たとえば、切れ刃121の撓みを推定するために用いられ得るということが認識されることとなる。
追加的に、開示されている実施形態に対する変形例が、図面、本開示、および添付の特許請求の範囲を検討することから、特許請求されている発明を実践する際に、当業者によって理解および実現され得る。特許請求の範囲において、「含む(comprising)」という語句は、他のエレメントまたはステップを除外せず、不定冠詞「a」または「an」は、複数を除外しない。特定の対策が相互に異なる従属請求項に記載されているという単なる事実は、これらの対策の組み合わせが利益をもたらすように使用されることができないということを示しているのではない。特許請求の範囲の中の任意の参照記号は、範囲を限定するものとして解釈されるべきではない。

Claims (13)

  1. ターニングにおいて使用するための切削工具(100)であって、前記切削工具は、
    工具バー(110)と、
    切削ヘッド(120)と、
    歪みゲージ(31133)と、
    加速度計(140)と
    を含み、
    前記切削ヘッドは、前記工具バーに位置付けされており、切れ刃(121)を有しており、前記歪みゲージは、前記工具バーにおける歪みを測定するように配置されており、前記加速度計は、前記工具バーまたは前記切削ヘッドにおける加速度を測定するように配置されており、前記加速度計は、前記歪みゲージよりも前記切れ刃の近くに配置されており、
    前記工具バーは、前記工具バーに沿った特定の場所(114)において、より低い値とより高い値との間で移行する剛性を有しており、前記歪みゲージ(131、133)から前記切れ刃への距離(D3)が、前記歪みゲージから前記特定の場所への距離(D4)よりも大きくなっている、切削工具(100)。
  2. 前記工具バーの軸線方向に沿った前記工具バーの特定の部分(112、113)は、最大の歪みを受けやすく、前記歪みゲージは、前記特定の部分に配置されている、請求項1に記載の切削工具。
  3. 前記切削工具は、ターニングマシン(200)に前記切削工具を装着するためのマシンインターフェース(150)及び第2の歪みゲージ(130)をさらに含み、前記第2の歪みゲージ(130)から前記切れ刃への距離(D1)が、前記第2の歪みゲージから前記マシンインターフェースへの距離(D2)よりも大きくなっている、請求項1または2に記載の切削工具。
  4. 前記切削工具は、ターニングマシン(200)に前記切削工具を装着するためのマシンインターフェース(150)を含み、前記加速度計から前記マシンインターフェースへの距離(D5)が、前記加速度計から前記切れ刃への距離(D6)よりも大きくなっている、請求項1からのいずれか一項に記載の切削工具。
  5. 前記加速度計から前記マシンインターフェースへの前記距離は、前記加速度計から前記切れ刃への前記距離の少なくとも4倍の長さになっており、前記第2の歪みゲージ(130)から前記切れ刃への距離(D1)は、前記第2の歪みゲージから前記マシンインターフェースへの距離(D2)の少なくとも4倍の大きさになっている、請求項3を引用する請求項4に記載の切削工具。
  6. 前記歪みゲージは、ワークピースに対する半径方向の前記工具バーの曲げを示す歪みを測定するように適合されており、または、前記ワークピースに対する接線方向の前記工具バーの曲げを示す歪みを測定するように適合されている、請求項1からのいずれか一項に記載の切削工具。
  7. 前記切削工具は、
    それぞれの方向の前記工具バーの曲げを示す、前記工具バーにおける歪みを測定するように配置されている歪みゲージ(130、132)と、
    それぞれの方向(141、142)の前記工具バーまたは前記切削ヘッドにおける加速度を測定するように配置されている加速度計(140)であって、前記加速度計は、前記歪みゲージよりも前記切れ刃の近くに配置されている、加速度計(140)と
    を含む、請求項1からのいずれか一項に記載の切削工具。
  8. 請求項1からのいずれか一項に記載の切削工具を含むターニングマシン(200)。
  9. 前記歪みゲージおよび前記加速度計からの出力に基づいて、前記切れ刃の変位を推定するように構成されている処理セクション(210)を含む、請求項に記載のターニングマシン。
  10. 切削ヘッド(120)の切れ刃(121)の変位を推定するための方法(400)であって、前記方法は、
    切削工具(100)を含むターニングマシン(200)を提供すること(410)であって、前記切削工具は、工具バー(110)および前記切削ヘッド(120)を含み、前記切削ヘッドは、前記工具バーに位置付けされている、前記ターニングマシン(200)を提供すること(410)と、
    ターニングの間に、前記工具バーにおける歪みを測定すること(420)と、
    ターニングの間に、前記工具バーまたは前記切削ヘッドにおける加速度を測定すること(430)と、
    測定された前記歪みおよび測定された前記加速度に基づいて、前記切れ刃の変位を推定すること(440)と
    を含み、
    前記変位を推定することは、
    測定された前記歪みに基づいて、第1の周波数範囲における前記切れ刃の変位を推定することであって、前記第1の周波数範囲は、静的な変位、および、第1の周波数(f1)までの周波数を有する振動を含む、前記切れ刃の変位を推定することと、
    測定された前記加速度に基づいて、第2の周波数範囲における前記切れ刃の変位を推定することであって、前記第2の周波数範囲は、前記第1の周波数と少なくとも同程度の高さの第2の周波数(f2)を上回る周波数を有する振動を含む、前記切れ刃の変位を推定することと
    を含む、方法。
  11. 前記切れ刃から前記歪みが測定される位置への距離(D1)は、前記切れ刃から前記加速度が測定される位置への距離(D6)よりも長くなっている、請求項10に記載の方法。
  12. 前記変位を推定することは、
    測定された前記歪みおよび測定された前記加速度に基づいて、第3の周波数範囲における変位を推定することであって、前記第3の周波数範囲は、前記第1の周波数と前記第2の周波数との間の周波数を有する振動を含む、前記第3の周波数範囲における変位を推定すること
    を含む、請求項10に記載の方法。
  13. 前記方法は、
    ターニングの前に前記切削工具における加速度を測定することと、
    ターニングの前に測定された前記加速度に基づいて、前記切削工具の回転角度を推定することと
    をさらに含み、
    少なくとも1つの加速度計(140)は、ターニングの前およびターニングの間の両方における加速度を測定するために用いられる、請求項10から12のいずれか一項に記載の方法。
JP2019513358A 2016-09-09 2017-08-24 切れ刃の撓みの推定 Active JP7046059B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16188133.9A EP3292930B1 (en) 2016-09-09 2016-09-09 Cutting tool and method for estimation of deflection of the cutting edge
EP16188133.9 2016-09-09
PCT/EP2017/071272 WO2018046304A1 (en) 2016-09-09 2017-08-24 Estimation of deflection of a cutting edge

Publications (2)

Publication Number Publication Date
JP2019534795A JP2019534795A (ja) 2019-12-05
JP7046059B2 true JP7046059B2 (ja) 2022-04-01

Family

ID=56893880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019513358A Active JP7046059B2 (ja) 2016-09-09 2017-08-24 切れ刃の撓みの推定

Country Status (8)

Country Link
US (1) US11285543B2 (ja)
EP (1) EP3292930B1 (ja)
JP (1) JP7046059B2 (ja)
CN (1) CN109715321B (ja)
CA (1) CA3035279A1 (ja)
MX (1) MX2019002693A (ja)
RU (1) RU2019110261A (ja)
WO (1) WO2018046304A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7032244B2 (ja) * 2018-06-04 2022-03-08 株式会社日立製作所 切削加工システム、及び情報処理装置
JP7049978B2 (ja) * 2018-12-03 2022-04-07 株式会社日立製作所 切削加工システム、加工誤差測定方法、および加工誤差測定装置
US20200331080A1 (en) * 2019-04-16 2020-10-22 United Technologies Corporation Lockout for deep reach machining tool
JP6948025B2 (ja) * 2019-08-09 2021-10-13 住友電気工業株式会社 切削工具、切削工具用ホルダ、工具システム、通信方法および旋削用工具
US20220281019A1 (en) 2019-08-09 2022-09-08 Sumitomo Electric Industries, Ltd. Rotating tool, module, cutting system, processing method, and processing program
CN110614384B (zh) * 2019-09-17 2020-12-29 牛强 一种卧式车床用刀具
DE102020127509A1 (de) * 2020-10-19 2022-04-21 Haimer Gmbh Werkzeughalter mit Messvorrichtung
JP7168124B2 (ja) * 2020-11-30 2022-11-09 住友電気工業株式会社 切削工具および切削システム
WO2022123739A1 (ja) 2020-12-10 2022-06-16 住友電気工業株式会社 切削工具
EP4011528A1 (en) 2020-12-14 2022-06-15 AB Sandvik Coromant Calibration of a cutting tool and determination of diameter deviation of a machined hole
IT202000031043A1 (it) * 2020-12-16 2022-06-16 Nuovo Pignone Tecnologie Srl Utensile piezoelettrico attivo, dispositivo piezoelettrico attivo e metodo di funzionamento dell’utensile piezoelettrico attivo.
WO2022230148A1 (ja) 2021-04-28 2022-11-03 住友電気工業株式会社 切削工具
CN116963860A (zh) 2021-04-28 2023-10-27 住友电气工业株式会社 切削工具
WO2024052979A1 (ja) * 2022-09-06 2024-03-14 住友電気工業株式会社 切削システムおよび転削工具の状態判定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091277A (ja) 2010-10-27 2012-05-17 Mitsubishi Heavy Ind Ltd 切削品質維持方法
JP2012206230A (ja) 2011-03-30 2012-10-25 Brother Industries Ltd 加工びびり振動検出装置、及び工作機械
JP2013526417A (ja) 2010-05-10 2013-06-24 テーネス アルメン アクスイェ セルスカプ 複数の節に切削ビットを取り付けるためのロッド状の工具ホルダ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967515A (en) * 1974-05-13 1976-07-06 Purdue Research Foundation Apparatus for controlling vibrational chatter in a machine-tool utilizing an updated synthesis circuit
DE2626270A1 (de) * 1975-06-13 1976-12-30 Purdue Research Foundation Verfahren und vorrichtung zur steuerung der vibrationsbeanspruchung bei maschineller werkstueckbearbeitung
US4555955A (en) * 1984-01-27 1985-12-03 Eaton Corporation Combination loading transducer
SU1234049A1 (ru) * 1984-08-15 1986-05-30 Костромской Ордена Трудового Красного Знамени Технологический Институт Устройство дл определени составл ющих удельной силы резани
US4554495A (en) * 1984-08-29 1985-11-19 Ormand R. Austin Datum reference for tool touch probe system
WO1989001193A1 (en) * 1987-07-25 1989-02-09 Francis Malcolm John Nickols Apparatus and methods for automatically determining the radius described by a tool tip mounted for a rotary machining operation
US4831365A (en) * 1988-02-05 1989-05-16 General Electric Company Cutting tool wear detection apparatus and method
US5816122A (en) * 1996-04-30 1998-10-06 General Dynamics Advanced Technology Systems, Inc. Apparatus and method for adaptive suppression of vibrations in mechanical systems
US5810528A (en) * 1996-06-17 1998-09-22 The United States Of America As Represented By The Secretary Of The Army Automatically tuneable anti-vibration boring system
JPH10109204A (ja) * 1996-09-30 1998-04-28 Fukuoka Pref Gov 切削工具
US6058816A (en) * 1997-02-28 2000-05-09 General Dynamics Advanced Technology Systems Actively controllable support device for a cantilever beam
US5913955A (en) * 1998-02-12 1999-06-22 Sandia Corporation Vibration damping method and apparatus
SE514525E (sv) * 1998-10-22 2006-02-22 Staffansboda Cie Ab Anordning och metod för styrning av vibrationer samt verktygshållare
SE517878C2 (sv) * 2000-12-08 2002-07-30 Sandvik Ab Förfarande och anordning för vibrationsdämpning av metalliska verktyg för spånavskiljande bearbetning samt verktyg innefattande en dylik anordning
NO327968B1 (no) * 2003-10-31 2009-11-02 Teeness Asa Anordning for demping av vibrasjoner og utboyning av verktoy og/eller arbeidsstykker
JP5001870B2 (ja) * 2008-02-07 2012-08-15 三菱重工業株式会社 工作機械
CN102699362B (zh) * 2012-06-26 2013-10-16 哈尔滨工业大学 具有实时感知监测系统的智能金刚石刀具及其配对刀体
CN102873353B (zh) * 2012-10-15 2015-02-18 哈尔滨工业大学 具有微小三向切削力测量系统的智能刀具
FR3003486B1 (fr) * 2013-03-25 2015-05-22 Ct Tech De L Ind Du Decolletage Porte-plaquette pour machine-outil
CN103707131B (zh) * 2013-12-30 2016-02-24 中北大学 一种嵌入薄膜应变片传感器的切削力在线测量刀具系统
EP3292929B1 (en) * 2016-09-09 2022-11-16 Sandvik Intellectual Property AB Estimation of orientation of a cutting tool
CN106270592B (zh) * 2016-09-21 2018-05-25 哈尔滨理工大学 一种智能减振镗杆及其减振控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526417A (ja) 2010-05-10 2013-06-24 テーネス アルメン アクスイェ セルスカプ 複数の節に切削ビットを取り付けるためのロッド状の工具ホルダ
JP2012091277A (ja) 2010-10-27 2012-05-17 Mitsubishi Heavy Ind Ltd 切削品質維持方法
JP2012206230A (ja) 2011-03-30 2012-10-25 Brother Industries Ltd 加工びびり振動検出装置、及び工作機械

Also Published As

Publication number Publication date
RU2019110261A (ru) 2020-10-09
CN109715321B (zh) 2021-05-28
EP3292930A1 (en) 2018-03-14
EP3292930B1 (en) 2023-03-01
JP2019534795A (ja) 2019-12-05
WO2018046304A1 (en) 2018-03-15
US20190232377A1 (en) 2019-08-01
CN109715321A (zh) 2019-05-03
US11285543B2 (en) 2022-03-29
MX2019002693A (es) 2019-05-20
CA3035279A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP7046059B2 (ja) 切れ刃の撓みの推定
Totis et al. Development of a dynamometer for measuring individual cutting edge forces in face milling
Totis et al. Development of a modular dynamometer for triaxial cutting force measurement in turning
US8950507B2 (en) Device for preventing vibrations in a tool spindle
CN101310921B (zh) 机床的振动抑制装置和振动抑制方法
JP7139315B2 (ja) 切削工具の配向の推定
JP7053526B2 (ja) 主軸振動測定システム、主軸振動測定方法、およびプログラム
US10591268B2 (en) Feeler for workpieces being machined
US7536924B2 (en) Flexure-based dynamometer for determining cutting force
ITMI20081704A1 (it) Procedimento e dispositivo sensore dell'appoggio per una misurazione dell'appoggio in una macchina utensile
Ma et al. PVDF sensor-based monitoring of milling torque
JP5357541B2 (ja) 方向変化検出手段を有する接触プローブ
Takacs et al. Ball shooting tests for identification of modal parameter variation in rotating main spindles
EP3575768B1 (en) System and method for determining structural characteristics of a machine tool
KR20220071540A (ko) 공작기계의 공구 상태 판정 장치
JP5862381B2 (ja) 工作機械の機械剛性測定用起振ツール及び工作機械の機械剛性測定方法
González et al. MEMS accelerometer-based system for inexpensive online CNC milling process chatter detection
US8626458B2 (en) Method and system for measuring the dynamic response of a structure during a machining process
Harmon et al. Calibration and characterization of a low-cost wireless sensor for applications in CNC end milling
EP4300223A1 (en) Method and system for determining a position of a point on a surface
KR20050100451A (ko) 두 센서를 이용한 회전체의 흔들림 오차 측정 방법 및 장치
JP2024055168A (ja) センサシステム及び工作機械
UA122686U (uk) Пристрій для дослідження регенеративних автоколивань при точінні

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220322

R150 Certificate of patent or registration of utility model

Ref document number: 7046059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150