JP7046023B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP7046023B2
JP7046023B2 JP2019026175A JP2019026175A JP7046023B2 JP 7046023 B2 JP7046023 B2 JP 7046023B2 JP 2019026175 A JP2019026175 A JP 2019026175A JP 2019026175 A JP2019026175 A JP 2019026175A JP 7046023 B2 JP7046023 B2 JP 7046023B2
Authority
JP
Japan
Prior art keywords
chamber
switching
mode
temperature
switching chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019026175A
Other languages
Japanese (ja)
Other versions
JP2020133969A (en
Inventor
拳司 伊藤
慎一郎 岡留
直之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2019026175A priority Critical patent/JP7046023B2/en
Publication of JP2020133969A publication Critical patent/JP2020133969A/en
Application granted granted Critical
Publication of JP7046023B2 publication Critical patent/JP7046023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Description

本発明は冷蔵庫に関する。 The present invention relates to a refrigerator.

一般に冷蔵庫は、氷点下以下の冷却器と庫内の空気が熱交換することで、貯蔵室を所望の温度に冷却する機器であり、冷却器の表面には霜が成長する。霜の成長は熱抵抗や通風抵抗の増加をもたらすため、霜が成長するにつれて熱交換性能が低下する。よって、熱交換性能を回復するために霜を融解して除去する除霜運転が行われる。 Generally, a refrigerator is a device that cools a storage chamber to a desired temperature by exchanging heat between a cooler below freezing point and the air in the refrigerator, and frost grows on the surface of the cooler. Since the growth of frost causes an increase in thermal resistance and ventilation resistance, the heat exchange performance deteriorates as the frost grows. Therefore, in order to restore the heat exchange performance, a defrosting operation for melting and removing frost is performed.

特許文献1に記載の冷蔵庫は、「冷凍室の他に、冷凍温度帯及び冷蔵温度帯を含む複数段階の設定温度に切替可能な切替室を備え、前記冷凍室及び切替室に冷気を供給するための冷却器の強制的な除霜運転を予め決められた周期で行うようにした冷蔵庫において、前記切替室の設定温度が冷凍温度帯に切り替えられた状態時には前記除霜運転周期を延長するという除霜周期変更制御を行う制御手段を備えたことを特徴」とした冷蔵庫が記載されている(特許文献1の請求項1)。 The refrigerator described in Patent Document 1 is provided with a switching chamber capable of switching to a set temperature of a plurality of stages including a freezing temperature zone and a refrigerating temperature zone in addition to the freezing chamber, and supplies cold air to the freezing chamber and the switching chamber. In a refrigerator in which the forced defrosting operation of the cooler is performed at a predetermined cycle, the defrosting operation cycle is extended when the set temperature of the switching chamber is switched to the refrigerating temperature zone. A refrigerator provided with a control means for controlling the defrosting cycle change ”is described (claim 1 of Patent Document 1).

特開2000-146411号公報Japanese Unexamined Patent Publication No. 2000-146411

しかしながら、特許文献1の除霜制御では、除霜運転を実施した後に固定された所定時間が経過しない限り、除霜運転が開始されないため、冷蔵庫の扉の開時間が長く、圧縮機の運転時間も長いなど、冷却器への霜の付着が多い場合であっても、冷却器に多量の霜が付着したまま運転が継続されてしまい、十分な冷却性能を発揮できなくなるという問題があった。 However, in the defrosting control of Patent Document 1, since the defrosting operation is not started unless a fixed predetermined time elapses after the defrosting operation is performed, the opening time of the refrigerator door is long and the operating time of the compressor is long. Even if there is a lot of frost adhering to the cooler, such as for a long time, the operation is continued with a large amount of frost adhering to the cooler, and there is a problem that sufficient cooling performance cannot be exhibited.

また所定の除霜運転周期が経過した場合に必ず除霜運転を実行するため、冷蔵庫の扉の開時間が短く、圧縮機の運転時間も短いなど、冷却器への霜の付着が少なく、除霜運転が不要な場合であっても除霜運転が実施されため、除霜の頻度が多くなってしてしまう。除霜の頻度が多くなることで、除霜ヒータの通電時間も増加し、そのため消費電力量が増加するという問題があった。 In addition, since the defrosting operation is always executed when the predetermined defrosting operation cycle has elapsed, the opening time of the refrigerator door is short, the operating time of the compressor is short, and the adhesion of frost to the cooler is small. Even when the frost operation is unnecessary, the defrosting operation is carried out, so that the frequency of defrosting increases. As the frequency of defrosting increases, the energizing time of the defrosting heater also increases, which causes a problem that the power consumption increases.

本発明は上記の課題を解決するもので、除霜運転の頻度を適切に制御することによって、冷却性能の低下を抑制し、消費電力量の増加を抑制することができる冷蔵庫を提供することを目的とする。 The present invention solves the above-mentioned problems, and provides a refrigerator capable of suppressing a decrease in cooling performance and an increase in power consumption by appropriately controlling the frequency of defrosting operation. The purpose.

上記事情に鑑みてなされた本発明は、冷蔵温度帯と冷凍温度帯に設定可能な切替室と、前記切替室の前方に設けられた扉と、圧縮機と冷却器を有する冷凍サイクルと、前記冷却器に付着した霜を溶かすための除霜制御を行う制御基板と、を備え、冷蔵庫の動作条件の変数によって、最短除霜間隔から最長除霜間隔までの範囲で自動で除霜間隔を調整する冷蔵庫において、前記切替室が冷蔵温度帯に設定されている場合には、冷凍温度帯に設定されている場合と比べて、前記最短除霜間隔または前記最長除霜間隔を短くする。 The present invention made in view of the above circumstances includes a switching chamber that can be set to a refrigerating temperature zone and a refrigerating temperature zone, a door provided in front of the switching chamber, a refrigerating cycle having a compressor and a cooler, and the above. It is equipped with a control board that controls defrosting to melt the frost adhering to the cooler, and automatically adjusts the defrosting interval in the range from the shortest defrosting interval to the longest defrosting interval according to the variables of the operating conditions of the refrigerator. When the switching chamber is set to the refrigerating temperature zone, the shortest defrosting interval or the longest defrosting interval is shortened as compared with the case where the switching chamber is set to the refrigerating temperature zone .

本発明によれば、除霜運転の頻度を適切に制御することによって、冷却性能の低下を抑制し、消費電力量の増加を抑制した冷蔵庫を提供できる。 According to the present invention, it is possible to provide a refrigerator in which a decrease in cooling performance is suppressed and an increase in power consumption is suppressed by appropriately controlling the frequency of defrosting operation.

実施例に係わる冷蔵庫の正面図Front view of the refrigerator according to the embodiment 図1のA-A断面図AA sectional view of FIG. (a)は図1のドア、容器、吐出口を外した状態の正面図,(b)は図1のドア、容器を外した状態の正面図(A) is a front view with the door, container, and discharge port of FIG. 1 removed, and (b) is a front view with the door, container, and container of FIG. 1 removed. 実施例に係る製氷室、冷凍室、第一切替室、及び第二切替室の冷気の流れを示す風路構造の概略図Schematic diagram of the air passage structure showing the flow of cold air in the ice making chamber, the freezing chamber, the first switching chamber, and the second switching chamber according to the embodiment. 図2の断熱仕切壁より下の拡大図Enlarged view below the heat insulating partition wall in FIG. 図3(b)の断熱仕切壁より下の拡大図Enlarged view below the heat insulating partition wall of FIG. 3 (b) ダンパ及びそのダンパに設けるダンパヒータDamper and damper heater installed in the damper 実施例に係る冷蔵庫の冷凍サイクルの構成図Configuration diagram of the refrigerating cycle of the refrigerator according to the embodiment (a)は操作盤の各大図,(b)は表示盤の各大図(A) is a large diagram of the operation panel, and (b) is each large diagram of the display panel. 実施例に係る冷蔵庫の基本温度制御フローチャートBasic temperature control flowchart of the refrigerator according to the embodiment 実施例に係る冷蔵庫の基本温度制御フローチャートBasic temperature control flowchart of the refrigerator according to the embodiment 本実施例の基本的な冷却制御を示す経時温度変化の例Example of temperature change over time showing the basic cooling control of this example 実施例に係る冷蔵庫の除霜運転制御フローチャートRefrigerator defrosting operation control flowchart according to the embodiment 実施例1に係る冷蔵庫における第一切替室のモード切り替え制御フローチャートMode switching control flowchart of the first switching room in the refrigerator according to the first embodiment 本実施例に係る冷蔵庫のブロック図Block diagram of the refrigerator according to this embodiment 圧縮機運転時間、ドア開時間から算出した積算値が所定の閾値に達したかどうかで除霜運転を行うかどうかを判定することを示タイムチャートTime chart showing whether to perform defrosting operation is determined based on whether the integrated value calculated from the compressor operation time and door opening time reaches a predetermined threshold value. 霜の付着が多くなり、積算値が所定の閾値に達したタイミングで除霜運転を行う例を示すタイムチャートA time chart showing an example of performing defrosting operation at the timing when the accumulated value reaches a predetermined threshold value due to a large amount of frost adhering. 最短除霜間隔のタイミングで除霜運転を行う例を示すタイムチャートTime chart showing an example of defrosting operation at the timing of the shortest defrosting interval 最長除霜間隔のタイミングで除霜運転を行う例を示すタイムチャートTime chart showing an example of defrosting operation at the timing of the longest defrosting interval 除霜運転の実行判定を示すフローチャートFlow chart showing execution judgment of defrosting operation 実施例2に係わる冷蔵庫の正面図Front view of the refrigerator according to the second embodiment 実施例2に係わる操作表示盤Operation display panel according to the second embodiment 実施例2に係わる他の形態例の操作表示盤Operation display panel of another embodiment according to the second embodiment

以下、本発明の実施形態である。本発明に関する冷蔵庫の実施例について説明する。
なお、本発明の実施形態(実施例)は、最短除霜間隔から最長除霜間隔までの範囲で自動で除霜間隔を調整する冷蔵庫において、切替室が冷蔵温度帯に設定されている場合には、冷凍温度帯に設定されている場合と比べて、最短除霜間隔または最長除霜間隔を短くするものである。
The following is an embodiment of the present invention. Examples of the refrigerator according to the present invention will be described.
In the embodiment (Example) of the present invention, in a refrigerator that automatically adjusts the defrosting interval in the range from the shortest defrosting interval to the longest defrosting interval, the switching chamber is set to the refrigerating temperature zone. Is to shorten the shortest defrosting interval or the longest defrosting interval as compared with the case where it is set in the freezing temperature zone.

(実施例1)
図1は実施例1に係わる冷蔵庫の正面図、図2は図1のA-A断面図である。
(Example 1)
FIG. 1 is a front view of the refrigerator according to the first embodiment, and FIG. 2 is a sectional view taken along the line AA of FIG.

図1に示すように、冷蔵庫1の箱体10は、上方から冷蔵室2、左右に併設された製氷室3と冷凍室4、第一切替室5、第二切替室6の順番で貯蔵室を有している。冷蔵庫1はそれぞれの貯蔵室の開口を開閉するドアを備えている。これらのドアは、冷蔵室2の開口を開閉する、左右に分割された回転式の冷蔵室ドア2a、2bと、製氷室3、冷凍室4、第一切替室5、第二切替室6の開口をそれぞれ開閉する引き出し式の製氷室ドア3a、冷凍室ドア4a、第一切替室ドア5a、第二切替室ドア6aである。これら複数のドアの内部材料は主にウレタンで構成されている。 As shown in FIG. 1, the box body 10 of the refrigerator 1 has a storage chamber in the order of a refrigerating chamber 2, an ice making chamber 3 and a freezing chamber 4 arranged on the left and right, a first switching chamber 5, and a second switching chamber 6 from above. have. Refrigerator 1 is provided with a door that opens and closes the opening of each storage room. These doors are a rotary refrigerating room door 2a and 2b divided into left and right, which opens and closes the opening of the refrigerating room 2, and an ice making room 3, a freezing room 4, a first switching room 5, and a second switching room 6. A pull-out type ice making chamber door 3a, a freezing chamber door 4a, a first switching chamber door 5a, and a second switching chamber door 6a that open and close the openings, respectively. The internal material of these multiple doors is mainly composed of urethane.

ドア2aには図8(b)にて後述する表示盤201を設けている。ドア2a、2bを冷蔵庫1に固定するために、ドアヒンジ(図示せず)が冷蔵室2上部及び下部に設けてあり、上部のドアヒンジはドアヒンジカバー16で覆われている。 The door 2a is provided with a display board 201, which will be described later in FIG. 8B. In order to fix the doors 2a and 2b to the refrigerator 1, door hinges (not shown) are provided at the upper and lower parts of the refrigerator compartment 2, and the upper door hinges are covered with the door hinge cover 16.

製氷室3及び冷凍室4は、庫内を冷凍温度帯(0℃未満)の例えば平均的に-18℃程度にした冷凍貯蔵室であり、冷蔵室2は庫内を冷蔵温度帯(0℃以上)の例えば平均的に4℃程度にした冷蔵貯蔵室である。第一切替室5、及び第二切替室6は冷凍温度帯もしくは冷蔵温度帯に設定可能な切替貯蔵室で、例えば、平均的に4℃程度にする冷蔵モードと、平均的に-20℃程度にする冷凍モードとを切り替えられる。本実施例の冷蔵庫1では、さらに冷蔵モードと冷凍モードの間の温度となる強冷蔵モードや弱冷凍モード、また冷蔵モードよりも高温にする弱冷蔵モード、冷凍モードよりも低温にする強冷凍モードといった、複数の運転モードを設けており、これらの運転モードは,冷蔵室2内に設けた操作部200を操作することで選択できる。なお,本実施例の冷蔵庫1では,製氷室3及び冷凍室4はツースター性能(-12℃以下),冷凍モードの第一切替室5、及び第二切替室6はフォースター性能(-18℃以下)としており,製氷室3及び冷凍室4よりも冷凍モードの第一切替室5、及び第二切替室6の方が低温にしている。また,本実施例の冷蔵庫1では,野菜室(セラー室)としての使用は弱冷蔵モードで代用するが,冷蔵モードと独立して野菜モードを設けてもよい。 The ice making chamber 3 and the freezing chamber 4 are freezing storage chambers in which the inside of the refrigerator is set to a freezing temperature zone (less than 0 ° C.), for example, about -18 ° C on average, and the refrigerating chamber 2 is a refrigerating temperature zone (0 ° C.). The above), for example, is a refrigerated storage room whose average temperature is about 4 ° C. The first switching chamber 5 and the second switching chamber 6 are switching storage chambers that can be set in the freezing temperature zone or the refrigerating temperature zone. You can switch between the freezing mode and the freezing mode. In the refrigerator 1 of the present embodiment, there are a strong refrigerating mode and a weak freezing mode in which the temperature is between the refrigerating mode and the freezing mode, a weak refrigerating mode in which the temperature is higher than the refrigerating mode, and a strong freezing mode in which the temperature is lower than the freezing mode. A plurality of operation modes are provided, and these operation modes can be selected by operating the operation unit 200 provided in the refrigerating chamber 2. In the refrigerator 1 of this embodiment, the ice making chamber 3 and the freezing chamber 4 have two-star performance (-12 ° C or lower), and the first switching chamber 5 and the second switching chamber 6 in the freezing mode have Forster performance (-18 ° C). The temperature is lower in the first switching chamber 5 and the second switching chamber 6 in the freezing mode than in the ice making chamber 3 and the freezing chamber 4. Further, in the refrigerator 1 of the present embodiment, the use as a vegetable room (cellar room) is substituted by the weak refrigeration mode, but the vegetable mode may be provided independently of the refrigeration mode.

図2に示すように、冷蔵庫1は、鋼板製の外箱10aと合成樹脂製の内箱10bとの間に発泡断熱材(例えば発泡ウレタン)を充填して形成される箱体10により、庫外と庫内は隔てられて構成されている。箱体10には発泡断熱材に加えて、比較的熱伝導率の低い真空断熱材25を外箱10aと内箱10bとの間に実装することで、食品収納容積を低下させることなく断熱性能を高めている。ここで、真空断熱材は、グラスウールやウレタン等の芯材を、外包材で包んで構成される。外包材はガスバリア性を確保するために金属層(例えばアルミニウム)を含む。また、真空断熱材は製造性から一般的に各面形状が平面で形成される。 As shown in FIG. 2, the refrigerator 1 is housed in a box body 10 formed by filling a foam insulating material (for example, urethane foam) between an outer box 10a made of a steel plate and an inner box 10b made of a synthetic resin. The outside and the inside of the refrigerator are separated from each other. In addition to the foam heat insulating material, the vacuum heat insulating material 25 having a relatively low thermal conductivity is mounted on the box body 10 between the outer box 10a and the inner box 10b, so that the heat insulating performance is not reduced without reducing the food storage volume. Is increasing. Here, the vacuum heat insulating material is configured by wrapping a core material such as glass wool or urethane with an outer packaging material. The outer packaging material contains a metal layer (for example, aluminum) to ensure gas barrier properties. Further, in the vacuum heat insulating material, each surface shape is generally formed as a flat surface due to manufacturability.

本実施例では、箱体10の背面と下部に真空断熱材25e、25fを、箱体10の両側部に真空断熱材25g(図示せず)を設けることで、冷蔵庫1の断熱性能を高めている。 In this embodiment, the vacuum heat insulating materials 25e and 25f are provided on the back surface and the lower portion of the box body 10, and the vacuum heat insulating materials 25 g (not shown) are provided on both sides of the box body 10 to improve the heat insulating performance of the refrigerator 1. There is.

同様に、本実施例では、第一切替室ドア5a、第二切替室ドア6aに真空断熱材25c、25dを設けることで、冷蔵庫1の断熱性能を高めている。上記の断熱構成は、特に各切替室5、6を冷凍モードとし、庫外と切替室5、6との温度差が大きく、外気から侵入する熱量が多い場合に、省エネルギー性能を大きく向上できる。 Similarly, in this embodiment, the heat insulating performance of the refrigerator 1 is enhanced by providing the vacuum heat insulating materials 25c and 25d on the first switching chamber door 5a and the second switching chamber door 6a. In the above heat insulating configuration, especially when each switching chamber 5 or 6 is set to a freezing mode, the temperature difference between the outside of the refrigerator and the switching chambers 5 and 6 is large, and the amount of heat invading from the outside air is large, the energy saving performance can be greatly improved.

冷蔵室2と、製氷室3及び冷蔵室4は断熱仕切壁28によって隔てられている。また、製氷室3及び冷凍室4と、第一切替室5は断熱仕切壁29によって隔てられ、第一切替室5と第二切替室6は断熱仕切壁30によって隔てられている。また,第一切替室5の後方には後述するF蒸発器14b及びその周辺風路(F蒸発器室8b、冷凍室風路12、及び冷凍室戻り風路12d)が設けられ,第一切替室5とF蒸発器14b及びその周辺風路の間には断熱仕切壁27が設けられている。 The refrigerating chamber 2, the ice making chamber 3 and the refrigerating chamber 4 are separated by a heat insulating partition wall 28. Further, the ice making chamber 3 and the freezing chamber 4 and the first switching chamber 5 are separated by a heat insulating partition wall 29, and the first switching chamber 5 and the second switching chamber 6 are separated by a heat insulating partition wall 30. Further, behind the first switching chamber 5, an F evaporator 14b and its peripheral air passages (F evaporator chamber 8b, a freezing chamber air passage 12, and a freezing chamber return air passage 12d), which will be described later, are provided, and the first switching is performed. A heat insulating partition wall 27 is provided between the chamber 5 and the F evaporator 14b and the surrounding air passage.

冷蔵室ドア2a、2bの庫内側には複数のドアポケット33a、33b、33cを設け、また棚34a、34b、34c、34dを設けることで、冷蔵室2内は複数の貯蔵スペースに区画されている。製氷室ドア3a、冷凍室ドア4a、第一切替室ドア5a、第二切替室ドア6aには、一体に引き出される製氷室容器3b、冷凍室容器4b、第一切替室容器5b、第二切替室容器6bを備えている。 By providing a plurality of door pockets 33a, 33b, 33c inside the refrigerator compartment doors 2a and 2b, and by providing shelves 34a, 34b, 34c, 34d, the inside of the refrigerator compartment 2 is divided into a plurality of storage spaces. There is. The ice making chamber door 3a, the freezing chamber door 4a, the first switching chamber door 5a, and the second switching chamber door 6a are integrally pulled out from the ice making chamber container 3b, the freezing chamber container 4b, the first switching chamber container 5b, and the second switching chamber. It is provided with a chamber container 6b.

冷蔵室2、冷凍室4、第一切替室5、第二切替室6の庫内背面側には、それぞれ冷蔵室温度センサ41、冷凍室温度センサ42、第一切替室温度センサ43(図3(b)に図示)、第二切替室温度センサ44(図3(b)に図示)を設け、R蒸発器14aの上部にはR蒸発器温度センサ40a、F蒸発器14bの上部にはF蒸発器温度センサ40bを設け、これらのセンサにより、冷蔵室2、冷凍室4、第一切替室5、第二切替室6、R蒸発器14a、及びF蒸発器14bの温度を検知している。また、冷蔵庫1の天井部のドアヒンジカバー16の内部には、外気温度センサ46と外気湿度センサ47を設け、外気(庫外空気)の温度と湿度を検知している。その他にも、ドアセンサ(図示せず)を設けることで、ドア2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知している。 A refrigerating room temperature sensor 41, a freezing room temperature sensor 42, and a first switching room temperature sensor 43 (FIG. 3) are located on the rear side of the refrigerator chamber 2, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6, respectively. A second switching chamber temperature sensor 44 (shown in FIG. 3B) is provided (shown in (b)), an R evaporator temperature sensor 40a is provided above the R evaporator 14a, and an F is provided above the F evaporator 14b. An evaporator temperature sensor 40b is provided, and the temperatures of the refrigerating chamber 2, the freezing chamber 4, the first switching chamber 5, the second switching chamber 6, the R evaporator 14a, and the F evaporator 14b are detected by these sensors. .. Further, an outside air temperature sensor 46 and an outside air humidity sensor 47 are provided inside the door hinge cover 16 on the ceiling of the refrigerator 1 to detect the temperature and humidity of the outside air (outside air). In addition, by providing a door sensor (not shown), the open / closed state of the doors 2a, 2b, 3a, 4a, 5a, and 6a is detected, respectively.

冷蔵庫1の上部には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。また、制御基板31は、外気温度センサ46、外気湿度センサ47、冷蔵室温度センサ41、冷凍室温度センサ42、第一切替室温度センサ43、第二切替室温度センサ44、R蒸発器温度センサ40a、F蒸発器温度センサ40b等と電気配線(図示せず)で接続されている。 A control board 31 on which a CPU, a memory such as a ROM or RAM, an interface circuit, or the like, which is a part of the control device, is mounted is arranged on the upper part of the refrigerator 1. Further, the control board 31 includes an outside air temperature sensor 46, an outside air humidity sensor 47, a refrigerating room temperature sensor 41, a freezing room temperature sensor 42, a first switching room temperature sensor 43, a second switching room temperature sensor 44, and an R evaporator temperature sensor. It is connected to 40a, the F evaporator temperature sensor 40b, etc. by electrical wiring (not shown).

制御基板31では、各センサの出力値や操作盤200の設定、ROMに予め記録されたプログラム等を基に、後述する圧縮機58やRファン9a、Fファン9b、ダンパ101a、101b、102a、102b、冷媒制御弁52,表示盤201の制御を行っている。 In the control board 31, the compressor 58, the R fan 9a, the F fan 9b, the damper 101a, 101b, 102a, which will be described later, are based on the output value of each sensor, the setting of the operation panel 200, the program recorded in advance in the ROM, and the like. The 102b, the refrigerant control valve 52, and the display panel 201 are controlled.

加えて,本実施例の冷蔵庫1では外部機器と接続できる通信基盤(図示なし)を設けており,冷蔵庫1の情報をスマートフォン等のモバイルデバイスやパーソナルコンピュータ等に提供できるようにしている。以下でこの機能は外部通信機能とする。 In addition, the refrigerator 1 of the present embodiment is provided with a communication platform (not shown) that can be connected to an external device so that the information of the refrigerator 1 can be provided to a mobile device such as a smartphone, a personal computer, or the like. In the following, this function will be referred to as an external communication function.

図3(a)は、図1のドア、容器、後述する吐出口を外した(省略した)状態の正面図である。図3(b)は、図1のドア及び容器を外した状態の正面図である。 FIG. 3A is a front view showing a state in which the door, the container, and the discharge port described later of FIG. 1 are removed (omitted). FIG. 3B is a front view of FIG. 1 with the door and the container removed.

図2および図3(a)に示すように、冷蔵用蒸発器であるR蒸発器14aは、冷蔵室2の背部にあるR蒸発器室8aの内部に設けてある。R蒸発器14aと熱交換して低温になった空気(冷気)は、R蒸発器14aの上方に設けた冷蔵用ファンであるRファン9aにより、冷蔵室風路11、冷蔵室吐出口11aを介して冷蔵室2に送風され、冷蔵室2内を冷却する。ここで、Rファン9aの形態は、遠心型ファンであるターボファンとしている。冷蔵室2に送風された空気は冷蔵室戻り口15a(図2参照)及び冷蔵室戻り口15b(図3(a)参照)からR蒸発器室8aへと戻り、再びR蒸発器14aにより冷却される。 As shown in FIGS. 2 and 3A, the R evaporator 14a, which is a refrigerating evaporator, is provided inside the R evaporator chamber 8a on the back of the refrigerating chamber 2. The air (cold air) that has become cold due to heat exchange with the R evaporator 14a is subjected to the refrigerating chamber air passage 11 and the refrigerating chamber discharge port 11a by the R fan 9a, which is a refrigerating fan provided above the R evaporator 14a. The air is blown to the refrigerating chamber 2 through the refrigerator to cool the inside of the refrigerating chamber 2. Here, the form of the R fan 9a is a turbo fan which is a centrifugal fan. The air blown to the refrigerating chamber 2 returns to the R evaporator chamber 8a from the refrigerating chamber return port 15a (see FIG. 2) and the refrigerating chamber return port 15b (see FIG. 3A), and is cooled again by the R evaporator 14a. Will be done.

冷蔵室2の冷蔵室吐出口11aは冷蔵室2の上部に設けており、本実施例では最上段の棚34aと二段目の棚34bの上方に空気が吐出するように設けている。また冷蔵室戻り口15a、15bは冷蔵室2の下部に設けており、本実施例では冷蔵室戻り口15bは冷蔵室2の下から2番目の段(棚34cと棚34dの間)に設け、冷蔵室戻り口15aは冷蔵室2の最下段(棚34dと断熱仕切壁28の間)で後述する第二間接冷却室36の略背部に設けている。 The refrigerating chamber discharge port 11a of the refrigerating chamber 2 is provided in the upper part of the refrigerating chamber 2, and in this embodiment, it is provided so that air is discharged above the uppermost shelf 34a and the second stage shelf 34b. Further, the refrigerating room return ports 15a and 15b are provided at the lower part of the refrigerating room 2, and in this embodiment, the refrigerating room return port 15b is provided at the second stage from the bottom of the refrigerating room 2 (between the shelves 34c and the shelves 34d). The refrigerating chamber return port 15a is provided at the lowermost stage of the refrigerating chamber 2 (between the shelf 34d and the heat insulating partition wall 28) at substantially the back of the second indirect cooling chamber 36, which will be described later.

図3(b)に示すように、冷蔵室2内にある棚34dの上方には第一間接冷却室35を設けている。第一間接冷却室35は、ケース35aを備えており、また、第一間接冷却室35に冷気を直接送風する吐出口を設けていない。すなわち、第一間接冷却室35は、R蒸発器14aで生成した低温低湿な冷気が直接入らないようにした間接冷却構造となっており、第一間接冷却室35内に設けた食品の乾燥が抑制され、野菜等の乾燥に弱い食品の保存性を向上できる。 As shown in FIG. 3B, a first indirect cooling chamber 35 is provided above the shelf 34d in the refrigerating chamber 2. The first indirect cooling chamber 35 is provided with a case 35a, and the first indirect cooling chamber 35 is not provided with a discharge port for directly blowing cold air. That is, the first indirect cooling chamber 35 has an indirect cooling structure that prevents the low-temperature, low-humidity cold air generated by the R evaporator 14a from directly entering, and the food provided in the first indirect cooling chamber 35 can be dried. It is suppressed and can improve the preservability of foods that are vulnerable to drying such as vegetables.

また,冷蔵室2の内部である、断熱仕切壁28の上方には第二間接冷却室36を設けている。第二間接冷却室36は、ドア36aと収納部36bを接触させた略密閉構造としている。これにより、低温低湿な空気が第二間接冷却室36内の食品に直接入らないようにして、第二間接冷却室36内の食品の乾燥を抑制している。 Further, a second indirect cooling chamber 36 is provided above the heat insulating partition wall 28 inside the refrigerating chamber 2. The second indirect cooling chamber 36 has a substantially sealed structure in which the door 36a and the storage portion 36b are in contact with each other. As a result, low-temperature and low-humidity air is prevented from directly entering the food in the second indirect cooling chamber 36, and the drying of the food in the second indirect cooling chamber 36 is suppressed.

図4は、実施例に係る製氷室3、冷凍室4、第一切替室5、及び第二切替室6の冷気の流れを示す風路構造の概略図である。図2,図3(a),および図4を用いて、冷蔵室2以外の庫内の風路構成と、冷気の流れを説明する。 FIG. 4 is a schematic diagram of an air passage structure showing the flow of cold air in the ice making chamber 3, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 according to the embodiment. The composition of the air passage in the refrigerator other than the refrigerator compartment 2 and the flow of cold air will be described with reference to FIGS. 2, 3 (a), and 4A.

図2および図4に示すように、冷凍用蒸発器であるF蒸発器14bは第一切替室5、第二切替室6の背部のF蒸発器室8b内に設けてある。F蒸発器14bと熱交換して低温になった空気(冷気)は、F蒸発器14bの上方に設けた冷凍用ファンであるFファン9bにより、冷凍室風路12、冷凍室吐出口12a、12bを介して製氷室3及び冷凍室4に送風され、製氷室3の製氷皿3c内の水、容器3b内の氷、冷凍室4の容器4b内の食品等を冷却する。なお,製氷皿3cへの水は,図3(b)に示す製氷タンク37から製氷ポンプ(図示せず)により供給される。ここで、Fファン9bの形態も、省スペース化のため,遠心型ファンであるターボファンとしている。製氷室3及び冷凍室4を冷却した空気は、冷凍室戻り口12cより冷凍室戻り風路12dを介して、F蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。 As shown in FIGS. 2 and 4, the F evaporator 14b, which is a freezing evaporator, is provided in the F evaporator chamber 8b at the back of the first switching chamber 5 and the second switching chamber 6. The air (cold air) that has become cold due to heat exchange with the F evaporator 14b is collected by the F fan 9b, which is a refrigerating fan provided above the F evaporator 14b, in the freezer chamber air passage 12, the freezer chamber discharge port 12a, and so on. It is blown to the ice making chamber 3 and the freezing chamber 4 through 12b to cool the water in the ice making tray 3c of the ice making chamber 3, the ice in the container 3b, the food in the container 4b of the freezing chamber 4, and the like. The water to the ice tray 3c is supplied from the ice making tank 37 shown in FIG. 3 (b) by an ice making pump (not shown). Here, the form of the F fan 9b is also a turbo fan, which is a centrifugal fan, in order to save space. The air that has cooled the ice making chamber 3 and the freezing chamber 4 returns to the F evaporator chamber 8b from the freezing chamber return port 12c via the freezing chamber return air passage 12d, and is cooled again by the F evaporator 14b.

本実施例の冷蔵庫1では、第一切替室5、及び第二切替室6もF蒸発器14bで低温にした空気(冷気)で冷却する。第一切替室5及び第二切替室6への冷気の送風は、送風制御部であるダンパ101a、101b、102a、及び102bにより制御する。 In the refrigerator 1 of this embodiment, the first switching chamber 5 and the second switching chamber 6 are also cooled by the air (cold air) cooled by the F evaporator 14b. The blowing of cold air to the first switching chamber 5 and the second switching chamber 6 is controlled by the dampers 101a, 101b, 102a, and 102b, which are blower control units.

まず、第一切替室5への冷気の流れを説明する。第一切替室5の冷気の流れは、冷凍モードと冷蔵モードとで異なる。第一切替室5が冷凍モードの際は、ダンパ101aを開けて、ダンパ101bを閉じる。F蒸発器14bで冷却された空気は、Fファン9b、冷凍室風路12、ダンパ101a、そして第一切替室5の直接冷却用吐出口である第一切替室吐出口111aを介して、第一切替室5に設けた第一切替室容器5b内に送風され、第一切替室容器5b内の食品を冷却する。冷気は第一切替室容器5b内の食品を直接冷却するため、比較的短時間で第一切替室容器5b内の食品を冷却できる。 First, the flow of cold air to the first switching chamber 5 will be described. The flow of cold air in the first switching chamber 5 differs between the freezing mode and the refrigerating mode. When the first switching chamber 5 is in the freezing mode, the damper 101a is opened and the damper 101b is closed. The air cooled by the F evaporator 14b passes through the F fan 9b, the freezer chamber air passage 12, the damper 101a, and the first switching chamber discharge port 111a, which is the direct cooling discharge port of the first switching chamber 5. Air is blown into the first switching chamber container 5b provided in the first switching chamber 5 to cool the food in the first switching chamber container 5b. Since the cold air directly cools the food in the first switching chamber container 5b, the food in the first switching chamber container 5b can be cooled in a relatively short time.

第一切替室5が冷蔵モードの際は、ダンパ101aを閉じて、ダンパ101bを開ける。F蒸発器14bで冷却された空気は、Fファン9b、冷凍室風路12、ダンパ101b、そして第一切替室5の間接冷却用吐出口である第一切替室吐出口111bを介して、第一切替室容器5bの外側(外周)に送風される。冷気は第一切替室容器5b内の食品に直接到達し難くなり、すなわち食品は第一切替室容器5bを介して間接冷却されるため、食品の乾燥を抑えつつ冷却できる。第一切替室吐出口111a、又は第一切替室吐出口111bより吐出し、第一切替室5内を冷却した空気は、第一切替室戻り口111cより冷凍室戻り風路12dを介してF蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。 When the first switching chamber 5 is in the refrigerating mode, the damper 101a is closed and the damper 101b is opened. The air cooled by the F evaporator 14b passes through the F fan 9b, the freezing chamber air passage 12, the damper 101b, and the first switching chamber discharge port 111b, which is the indirect cooling discharge port of the first switching chamber 5. (1) Air is blown to the outside (outer circumference) of the switching chamber container 5b. It becomes difficult for the cold air to reach the food in the first switching chamber container 5b directly, that is, the food is indirectly cooled through the first switching chamber container 5b, so that the food can be cooled while suppressing the drying of the food. The air discharged from the first switching chamber discharge port 111a or the first switching chamber discharge port 111b and cooled in the first switching chamber 5 is F from the first switching chamber return port 111c through the freezing chamber return air passage 12d. It returns to the evaporator chamber 8b and is cooled again by the F evaporator 14b.

次に、第二切替室6への冷気の流れを説明する。第二切替室6の構成は、第一切替室5と同様で、運転モードによってダンパの開閉を変更している。第二切替室6が冷凍モードの際は、ダンパ102aを開け、ダンパ102bを閉じる。F蒸発器14bで冷却された空気(冷気)は、Fファン9b、冷凍室風路12、ダンパ102a、そして第二切替室6の直接冷却用吐出口である第二切替室吐出口112aを介して、第二切替室容器6b内に送風され、第二切替室容器6b上の食品を冷却する。冷気は第二切替室容器5bの食品を直接冷却するため、比較的短時間で第二切替室容器6b内の食品を冷却できる。 Next, the flow of cold air to the second switching chamber 6 will be described. The configuration of the second switching chamber 6 is the same as that of the first switching chamber 5, and the opening and closing of the damper is changed depending on the operation mode. When the second switching chamber 6 is in the freezing mode, the damper 102a is opened and the damper 102b is closed. The air (cold air) cooled by the F evaporator 14b passes through the F fan 9b, the freezing chamber air passage 12, the damper 102a, and the second switching chamber discharge port 112a, which is the direct cooling discharge port of the second switching chamber 6. Then, air is blown into the second switching chamber container 6b to cool the food on the second switching chamber container 6b. Since the cold air directly cools the food in the second switching chamber container 5b, the food in the second switching chamber container 6b can be cooled in a relatively short time.

第二切替室6が冷蔵モードの際は、ダンパ102bを開け、ダンパ102aを閉じる。F蒸発器14bで冷却された空気は、Fファン9b、冷凍室風路12、ダンパ102b、そして第二切替室6の間接冷却用吐出口である第二切替室吐出口111bを介して、第二切替室容器6bの外側(外周)に送風し、間接冷却として、食品の乾燥を抑えつつ冷却する。第二切替室6内を冷却した空気は、第二切替室戻り口112cより冷凍室戻り風路12dを介してF蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。 When the second switching chamber 6 is in the refrigerating mode, the damper 102b is opened and the damper 102a is closed. The air cooled by the F evaporator 14b passes through the F fan 9b, the freezing chamber air passage 12, the damper 102b, and the second switching chamber discharge port 111b, which is the indirect cooling discharge port of the second switching chamber 6. (Ii) Air is blown to the outside (outer circumference) of the switching chamber container 6b to cool the food while suppressing the drying of the food as indirect cooling. The air cooled in the second switching chamber 6 returns from the second switching chamber return port 112c to the F evaporator chamber 8b via the freezing chamber return air passage 12d, and is cooled again by the F evaporator 14b.

なお,本実施例の冷蔵庫では,冷蔵モードにおいても,庫内の温度が所定値よりも高い場合(例えば基準温度よりも10℃以上高い場合)にはダンパ101a,102aを開けるようにしている。これにより,直接冷却により容器内の食品を短時間で冷却し,食品が高温の時間を抑え,食品の鮮度保持性能を高めることができる。 In the refrigerator of this embodiment, even in the refrigerating mode, the dampers 101a and 102a are opened when the temperature inside the refrigerator is higher than a predetermined value (for example, when the temperature is higher than the reference temperature by 10 ° C. or more). As a result, the food in the container can be cooled in a short time by direct cooling, the time when the food is hot can be suppressed, and the freshness retention performance of the food can be improved.

また,冷蔵モードのうち,野菜室としての使用を想定した弱冷蔵モード(図8に示す操作盤200で「弱」に設定)にダンパ101b,102bを使用し,通常の冷蔵モード(図8に示す操作盤200で「中」設定),または強冷蔵モード時(図8に示す操作盤200で「強」設定)ではダンパ101a,102aを使用するようにしてもよい。これにより,野菜を想定した場合は間接冷却で食品の乾燥を抑え,袋に入った食品や缶やペットボトルに入った飲料など,乾燥の心配の比較的少ないものを貯蔵する際は早く冷やすことを優先することができる。 Further, among the refrigerating modes, the dampers 101b and 102b are used in the weak refrigerating mode (set to "weak" in the operation panel 200 shown in FIG. 8) assuming the use as a vegetable room, and the normal refrigerating mode (see FIG. 8). The dampers 101a and 102a may be used in the operation panel 200 shown ("medium" setting) or in the strong refrigerating mode ("strong" setting in the operation panel 200 shown in FIG. 8). As a result, when assuming vegetables, indirect cooling suppresses the drying of food, and when storing foods in bags, cans, beverages in PET bottles, etc., which are relatively less likely to dry, cool quickly. Can be prioritized.

図5は、実施例に係る第一切替室5、及び第二切替室6の冷蔵温度を実現するための構成を示す図であり,図5(a)は図2の断熱仕切壁28より下の拡大図,図5(b)は図3(b)の断熱仕切壁28より下の拡大図である。 FIG. 5 is a diagram showing a configuration for realizing the refrigerating temperature of the first switching chamber 5 and the second switching chamber 6 according to the embodiment, and FIG. 5A is a diagram below the heat insulating partition wall 28 of FIG. 5 (b) is an enlarged view below the heat insulating partition wall 28 of FIG. 3 (b).

本冷蔵庫1では,第一切替室5を加熱するため,第一切替室5の背面側(断熱仕切壁27の前方)に第一切替室背面ヒータ60,底面側(断熱仕切壁29の上部)に第一切替室下面ヒータ61を設けている。同様に,第二切替室6を加熱するため,第二切替室6の上面側(断熱仕切壁29の下部)に第二切替室上面ヒータ62,背面側に第二切替室背面ヒータ63を設けている。 In this refrigerator 1, in order to heat the first switching chamber 5, the rear heater 60 of the first switching chamber is on the back side (in front of the heat insulating partition wall 27) of the first switching chamber 5, and the bottom side (upper part of the heat insulating partition wall 29). Is provided with a heater 61 on the lower surface of the first switching chamber. Similarly, in order to heat the second switching chamber 6, a second switching chamber upper surface heater 62 is provided on the upper surface side (lower part of the heat insulating partition wall 29) of the second switching chamber 6, and a second switching chamber rear heater 63 is provided on the rear surface side. ing.

また,本実施例の冷蔵庫1では断熱仕切壁29の内部に真空断熱材25aを設け、断熱仕切壁30内部にも真空断熱材25bを設け,断熱仕切壁27には例えば発泡ポリスチレンの発泡断熱材24を設けている。これらにより,冷蔵庫1の各貯蔵室間の熱移動,及びF蒸発器14b及びその周辺風路(F蒸発器室8b、冷凍室風路12、及び冷凍室戻り風路12d)と第一切替室5との間の熱移動を抑えている。 Further, in the refrigerator 1 of the present embodiment, the vacuum heat insulating material 25a is provided inside the heat insulating partition wall 29, the vacuum heat insulating material 25b is also provided inside the heat insulating partition wall 30, and the heat insulating partition wall 27 is provided with, for example, a foamed polystyrene foam heat insulating material. 24 is provided. As a result, heat transfer between each storage chamber of the refrigerator 1 and the F evaporator 14b and its surrounding air passages (F evaporator chamber 8b, freezing chamber air passage 12, and freezing chamber return air passage 12d) and the first switching chamber The heat transfer between 5 and 5 is suppressed.

上記の構成により、特に第一切替室5を冷蔵モードとし、第二切替室6を冷凍モードとした場合の冷蔵庫1の省エネルギー性能を向上できる。冷蔵温度帯の第一切替室5は、隣接する部屋が冷凍温度帯である上面(断熱仕切壁29)、背面(断熱仕切壁27)、さらに底面(断熱仕切壁30)から吸熱され、第一切替室5が低温になり易いが,断熱仕切壁27、29,30に発泡断熱材24または真空断熱材25を設けることで,上面、背面、底面からの吸熱を抑え,ヒータを用いない,またはヒータの電力を抑えて所定の温度対に維持できるようにしている。ヒータに用いる電力を抑えられるため,省エネルギー性能を高めている。一方,外気が低温の場合は,外気による加熱が抑制される,或いは外気からも冷却されることがあり,上記のように庫内間の吸熱を抑えるだけでは不十分になるため,第一切替室5を加熱するための第一切替室背面ヒータ60と第一切替室下面ヒータ61,また第二切替室6を加熱するための第二切替室上面ヒータ62と第二切替室背面ヒータ63を設け,これらを適切に加熱することで,冷蔵温度帯に設定した第一切替室5及び第二切替室6を所定の温度に維持できるようにしている。また,これらのヒータはモード切替制御を短時間で行うために用いても良い。すなわち,冷凍モードから冷蔵モードへ切り替える際に,これらのヒータで加熱し,短時間で冷蔵温度にさせる制御を行ってもよい。 With the above configuration, the energy saving performance of the refrigerator 1 can be improved especially when the first switching chamber 5 is set to the refrigerating mode and the second switching chamber 6 is set to the freezing mode. In the first switching chamber 5 of the refrigerating temperature zone, heat is absorbed from the upper surface (heat insulating partition wall 29), the back surface (heat insulating partition wall 27), and the bottom surface (heat insulating partition wall 30) in which the adjacent room is the freezing temperature zone, and the first The temperature of the switching chamber 5 tends to be low, but by providing the foam heat insulating material 24 or the vacuum heat insulating material 25 on the heat insulating partition walls 27, 29, 30, heat absorption from the top surface, the back surface, and the bottom surface is suppressed, and a heater is not used, or The power of the heater is suppressed so that the temperature can be maintained at a predetermined temperature pair. Since the power used for the heater can be reduced, the energy saving performance is improved. On the other hand, when the outside air is at a low temperature, heating by the outside air may be suppressed or cooled from the outside air, and it is not enough to suppress the endotherm between the refrigerators as described above. The first switching chamber rear heater 60 and the first switching chamber lower surface heater 61 for heating the chamber 5, and the second switching chamber upper surface heater 62 and the second switching chamber rear heater 63 for heating the second switching chamber 6 are provided. By providing them and heating them appropriately, the first switching chamber 5 and the second switching chamber 6 set in the refrigerating temperature zone can be maintained at a predetermined temperature. Further, these heaters may be used to perform mode switching control in a short time. That is, when switching from the freezing mode to the refrigerating mode, it may be controlled to heat with these heaters and bring the refrigerating temperature to the refrigerating temperature in a short time.

なお,断熱仕切壁27内部に真空断熱材25でなく,発泡断熱材24としたのは,真空断熱材25に比べて形状の設計自由度が高く,複雑な形状にでき,また,それ自体で風路を形成できるためである。すなわち,断熱仕切壁27は,F蒸発器室8b、冷凍室風路12、及び冷凍室戻り風路12dを形成し,またF蒸発器14b,Fファン9b、ダンパ101a,101b,102a,102b等を設けるが,発泡断熱材24を用いることで,これらを配設しながら,断熱性能を高め,また比較的通風抵抗の少ない風路を形成することができる。 In addition, the foam heat insulating material 24 instead of the vacuum heat insulating material 25 inside the heat insulating partition wall 27 has a higher degree of freedom in designing the shape than the vacuum heat insulating material 25, and can be made into a complicated shape, and also by itself. This is because the air passage can be formed. That is, the heat insulating partition wall 27 forms an F evaporator chamber 8b, a freezing chamber air passage 12, and a freezing chamber return air passage 12d, and also has an F evaporator 14b, an F fan 9b, dampers 101a, 101b, 102a, 102b, etc. However, by using the foamed heat insulating material 24, it is possible to improve the heat insulating performance and form an air passage having relatively low ventilation resistance while arranging them.

一方,断熱仕切壁29,30は略直方体形状と比較的形状が単純であるため,真空断熱材25を用いることで比較的薄い厚さで高い断熱性能を得られ,貯蔵室間の熱移動を抑えつつ,食品を収納する各貯蔵室の内容積を大きくすることに有効である。 On the other hand, since the heat insulating partition walls 29 and 30 have a substantially rectangular parallelepiped shape and a relatively simple shape, high heat insulating performance can be obtained with a relatively thin thickness by using the vacuum heat insulating material 25, and heat transfer between storage chambers can be obtained. It is effective in increasing the internal volume of each storage chamber that stores food while suppressing it.

なお,第一切替室5内は自然対流により上部が高温,下部が低温になり易く,さらに第二切替室6が冷凍モードの際には下面も冷却されるため,第一切替室5は低温になり易い下面にヒータを設けている。一方,第二切替室6は,下面が外気と接するために加熱され,上面は第一切替室5が冷凍モードでは冷却されるため,上面側にヒータを設けている。 In the first switching chamber 5, the upper part tends to be high temperature and the lower part tends to be low temperature due to natural convection, and the lower surface is also cooled when the second switching chamber 6 is in the freezing mode, so that the first switching chamber 5 has a low temperature. A heater is provided on the lower surface where it is easy to become. On the other hand, the second switching chamber 6 is heated because the lower surface is in contact with the outside air, and the upper surface is provided with a heater on the upper surface side because the first switching chamber 5 is cooled in the freezing mode.

また,第二切替室6は,最大(第一切替室5が冷凍モード,第二切替室6が冷凍モード時)で,上面と背面上部が,冷凍温度帯の他室から断熱仕切壁を介して冷却されるのに対し,第一切替室5は,最大(第一切替室5が冷凍モード,第二切替室6が冷凍モード時)で,上面,背面,下面が,冷凍温度帯の他室から断熱仕切壁を介して冷却されるため,冷却される面積の大きい第一切替室5の方が,ヒータの最大加熱量を多くしている。すなわち,第一切替室5を加熱するための第一切替室背面ヒータ60と第一切替室下面ヒータ61の合計の最大消費電力は,第二切替室6を加熱するための第二切替室上面ヒータ62と第二切替室背面ヒータ63の合計の最大消費電力よりも多くし,冷却されて低温になりやすい第一切替室5も適切な温度に制御できるようにしている。 Further, the second switching chamber 6 is the maximum (when the first switching chamber 5 is in the freezing mode and the second switching chamber 6 is in the freezing mode), and the upper surface and the upper part of the back surface are separated from other chambers in the freezing temperature zone via a heat insulating partition wall. The first switching chamber 5 is cooled at the maximum (when the first switching chamber 5 is in the freezing mode and the second switching chamber 6 is in the freezing mode), and the upper surface, the back surface, and the lower surface are in the freezing temperature zone and others. Since the room is cooled through the heat insulating partition wall, the maximum heating amount of the heater is larger in the first switching room 5 having a larger cooling area. That is, the total maximum power consumption of the first switching chamber rear heater 60 for heating the first switching chamber 5 and the first switching chamber lower surface heater 61 is the upper surface of the second switching chamber for heating the second switching chamber 6. The maximum power consumption is larger than the total maximum power consumption of the heater 62 and the rear heater 63 of the second switching chamber, and the first switching chamber 5, which tends to be cooled to a low temperature, can also be controlled to an appropriate temperature.

図6は、ダンパ101a,101b,102a,102b及びそのダンパに設けるダンパヒータ64である。各ダンパ本実施例の冷蔵庫1では,ダンパ101aはダンパ構成部111,ダンパ102aはダンパ構成部112,ダンパ101bと102bはダンパ構成部113に内装されており,それぞれダンパ構成部111,112,113に同じく内装したモータ(図示なし)により,各ダンパ101a,101b,102a,102bを駆動させる。なお,ダンパ構成部113は,1つのモータで2つのダンパ101b,102bを駆動させるツインダンパとしており,これによりモータ数を低減し,省スペース化と低コスト化を行っている。 FIG. 6 shows dampers 101a, 101b, 102a, 102b and a damper heater 64 provided on the damper. Each damper In the refrigerator 1 of this embodiment, the damper 101a is housed in the damper component 111, the damper 102a is housed in the damper component 112, and the dampers 101b and 102b are housed in the damper component 113, respectively. The dampers 101a, 101b, 102a, 102b are driven by a motor (not shown) also installed in the same. The damper component 113 is a twin damper that drives two dampers 101b and 102b with one motor, thereby reducing the number of motors, saving space and reducing costs.

本ダンパ構成部111,112,113の外周部にはそれぞれダンパヒータ64を設けている。これにより,各ダンパに霜・氷が付着し凍結してしまっても,ヒータにより加熱して,この霜・氷を融解することで,ダンパ101a,101b,102a,102bが動作しなくなることを抑制している。なお,本実施例では,配設しやすいことからダンパ構成部111,112,113の外周部にヒータを設けているが,ダンパ101a,101b,102a,102b(開閉する駆動部)にヒータを設けてもよい。この場合,ダンパ101a,101b,102a,102bを直接加熱できるため,各ダンパに付着した霜・氷を融解し易く,より少ないエネルギーで各ダンパが動作しなくなることを抑制することができる。 Damper heaters 64 are provided on the outer peripheral portions of the damper components 111, 112, and 113, respectively. As a result, even if frost / ice adheres to each damper and freezes, the dampers 101a, 101b, 102a, 102b are prevented from operating by heating with a heater and melting the frost / ice. is doing. In this embodiment, heaters are provided on the outer peripheral portions of the damper components 111, 112, 113 because they are easy to dispose of, but heaters are provided on the dampers 101a, 101b, 102a, 102b (driving units that open and close). You may. In this case, since the dampers 101a, 101b, 102a, and 102b can be directly heated, the frost and ice adhering to each damper can be easily melted, and it is possible to suppress that each damper does not operate with less energy.

図7は、本実施例の冷蔵庫1の冷凍サイクルの構成図である。本実施例の冷蔵庫1では、圧縮機58、冷媒の放熱を行う放熱手段である庫外放熱器50aと壁面放熱配管50b、仕切り壁28、29、30の前面部への結露を抑制する結露防止配管50c、冷媒を減圧させる減圧手段である冷蔵用キャピラリチューブ53aと冷凍用キャピラリチューブ53b、冷媒と庫内の空気を熱交換させて、庫内の熱を吸熱するR蒸発器14aとF蒸発器14bを備え、これらにより庫内を冷却している。また、冷凍サイクル中の水分を除去するドライヤ51と、液冷媒が圧縮機58に流入するのを防止する気液分離器54a、54bを備え、さらに冷媒流路を制御する三方弁52、逆止弁56、冷媒流を接続する冷媒合流部55も備えており、これらを冷媒配管59により接続することで冷凍サイクルを構成している。 FIG. 7 is a block diagram of the refrigerating cycle of the refrigerator 1 of this embodiment. In the refrigerator 1 of the present embodiment, dew condensation prevention that suppresses dew condensation on the front portions of the compressor 58, the external radiator 50a that is a heat radiating means for radiating the refrigerant, the wall surface radiating pipe 50b, and the partition walls 28, 29, 30 is suppressed. The pipe 50c, the cooling capillary tube 53a and the refrigerating capillary tube 53b, which are depressurizing means for reducing the pressure of the refrigerant, the R evaporator 14a and the F evaporator that exchange heat between the refrigerant and the air inside the refrigerator to absorb the heat inside the refrigerator. 14b is provided, and the inside of the refrigerator is cooled by these. Further, a dryer 51 for removing water during the refrigeration cycle, gas-liquid separators 54a and 54b for preventing the liquid refrigerant from flowing into the compressor 58, a three-way valve 52 for controlling the refrigerant flow path, and a check valve are provided. A valve 56 and a refrigerant merging portion 55 for connecting the refrigerant flow are also provided, and these are connected by a refrigerant pipe 59 to form a refrigerating cycle.

なお本実施例の冷蔵庫1は、冷媒にイソブタンを用いている。また、本実施例の圧縮機58はインバータを備えて回転速度を変えることができる。 The refrigerator 1 of this embodiment uses isobutane as a refrigerant. Further, the compressor 58 of this embodiment is provided with an inverter and can change the rotation speed.

三方弁52は、52a、52bで示す2つの流出口を備え、流出口52a側に冷媒を流す冷蔵モードと、流出口52b側に冷媒を流す冷凍モードを備え、これらを切換えることができる部材である。また、本実施例の三方弁52は、流出口52aと流出口52bの何れも冷媒が流れないようにする全閉、また何れも冷媒が流れるようにする全開のモードも備え、これらにも切換え可能である。 The three-way valve 52 has two outlets shown by 52a and 52b, and has a refrigerating mode in which the refrigerant flows on the outlet 52a side and a refrigerating mode in which the refrigerant flows on the outlet 52b side, and these can be switched. be. Further, the three-way valve 52 of the present embodiment has a fully closed mode in which both the outlet 52a and the outlet 52b prevent the refrigerant from flowing, and a fully open mode in which the refrigerant flows in both of them. It is possible.

本実施例の冷蔵庫1では、冷媒は以下のように流れる。圧縮機58から吐出した冷媒は、庫外放熱器50a、庫外放熱器50b、結露防止配管50c、ドライヤ51の順に流れ、三方弁52に至る。三方弁52の流出口52aは冷媒配管を介して冷蔵用キャピラリチューブ53aと接続され、流出口52bは冷媒配管を介して冷凍用キャピラリチューブ53bと接続されている。 In the refrigerator 1 of this embodiment, the refrigerant flows as follows. The refrigerant discharged from the compressor 58 flows in the order of the outside radiator 50a, the outside radiator 50b, the dew condensation prevention pipe 50c, and the dryer 51, and reaches the three-way valve 52. The outlet 52a of the three-way valve 52 is connected to the refrigerating capillary tube 53a via the refrigerant pipe, and the outlet 52b is connected to the freezing capillary tube 53b via the refrigerant pipe.

冷蔵室2を冷却する場合は、三方弁52から流出口52a側に冷媒が流れるようにする。流出口52aから流出した冷媒は、冷蔵用キャピラリチューブ53a、R蒸発器14a、気液分離機54a、冷媒合流部55の順に流れた後、圧縮機58に戻る。冷蔵用キャピラリチューブ53aで低圧低温になった冷媒がR蒸発器14aを流れることでR蒸発器14aが低温となり、このR蒸発器14bにより冷却された空気をRファン9a(図2参照)で送風することで冷蔵室2を冷却する。 When cooling the refrigerating chamber 2, the refrigerant flows from the three-way valve 52 to the outlet 52a side. The refrigerant flowing out from the outlet 52a flows in the order of the refrigerating capillary tube 53a, the R evaporator 14a, the gas-liquid separator 54a, and the refrigerant confluence portion 55, and then returns to the compressor 58. The low-pressure and low-temperature refrigerant in the refrigerating capillary tube 53a flows through the R evaporator 14a, so that the R evaporator 14a becomes cold, and the air cooled by the R evaporator 14b is blown by the R fan 9a (see FIG. 2). By doing so, the refrigerating chamber 2 is cooled.

製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却する際は、三方弁52から流出口52b側に冷媒が流れるようにする。流出口52bから流出した冷媒は、冷凍用キャピラリチューブ53b、F蒸発器14b、気液分離機54b、逆止弁56、冷媒合流部55の順に流れた後、圧縮機58に戻る。逆止弁56は気液分離機54bから冷媒合流部55側には冷媒が流れ、冷媒合流部55から気液分離機54b側へは流れないように配設している。冷凍用キャピラリチューブ53bで低圧低温になった冷媒がF蒸発器14bを流れることでF蒸発器14bが低温となり、F蒸発器14bにより冷却された空気をFファン9b(図2参照)で送風することで製氷室3、冷蔵室4、第一切替室5、第二切替室6を冷却する。このように、本実施例の冷蔵庫では、冷蔵室2はR蒸発器14aを用いて冷却し、製氷室3、冷凍室4、第一切替室5、第二切替室6はF蒸発器14bを用いて冷却する構成としている。 When cooling the ice making chamber 3, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6, the refrigerant flows from the three-way valve 52 to the outlet 52b side. The refrigerant flowing out from the outlet 52b flows in the order of the refrigerating capillary tube 53b, the F evaporator 14b, the gas-liquid separator 54b, the check valve 56, and the refrigerant merging portion 55, and then returns to the compressor 58. The check valve 56 is arranged so that the refrigerant flows from the gas-liquid separator 54b to the refrigerant merging portion 55 side and does not flow from the refrigerant merging portion 55 to the gas-liquid separator 54b side. The low-pressure and low-temperature refrigerant in the refrigerating capillary tube 53b flows through the F-evaporator 14b, so that the F-evaporator 14b becomes low-temperature, and the air cooled by the F-evaporator 14b is blown by the F fan 9b (see FIG. 2). This cools the ice making chamber 3, the refrigerating chamber 4, the first switching chamber 5, and the second switching chamber 6. As described above, in the refrigerator of the present embodiment, the refrigerating chamber 2 is cooled by using the R evaporator 14a, and the ice making chamber 3, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 use the F evaporator 14b. It is configured to be used for cooling.

ここで、冷凍温度帯である、又は冷凍温度帯に設定可能な製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却するF蒸発器14bに冷媒を流す際は、これらの貯蔵室よりも低温な蒸発器温度(例えば-25℃)とする。一方、冷蔵温度帯の冷蔵室2を冷却するR蒸発器14aに冷媒を流す際は、冷媒の蒸発器温度を比較的高くする(例えば-10℃)。一般的に、蒸発器の温度が高いほど、冷凍サイクルの冷却効率を高めることができ、省エネルギー性能向上に有効である。また、蒸発器の温度が高いほど、空気が蒸発器を通過する際の空気中の水分の着霜が抑えられ、すなわち空気の除湿が抑えられ、庫内を高湿に保つことができる。従って、R蒸発器14aの温度が高い状態で冷蔵室2を冷却することで、冷凍温度帯の貯蔵室と共通の蒸発器で冷却する場合に比べ、冷蔵室2冷却時の省エネルギー性能を高められるとともに、冷蔵室2内を高湿に保つことができる。 Here, when the refrigerant is passed through the F evaporator 14b that cools the ice making chamber 3, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 which are in the freezing temperature zone or can be set in the freezing temperature zone, The temperature of the evaporator is lower than those of these storage chambers (for example, -25 ° C). On the other hand, when the refrigerant is passed through the R evaporator 14a that cools the refrigerating chamber 2 in the refrigerating temperature zone, the evaporator temperature of the refrigerant is relatively high (for example, −10 ° C.). Generally, the higher the temperature of the evaporator, the higher the cooling efficiency of the refrigeration cycle, which is effective in improving the energy saving performance. Further, the higher the temperature of the evaporator, the more the frost formation of the moisture in the air when the air passes through the evaporator is suppressed, that is, the dehumidification of the air is suppressed, and the inside of the refrigerator can be kept at a high humidity. Therefore, by cooling the refrigerating chamber 2 in a state where the temperature of the R evaporator 14a is high, the energy saving performance at the time of cooling the refrigerating chamber 2 can be improved as compared with the case of cooling with the same evaporator as the storage chamber in the freezing temperature zone. At the same time, the inside of the refrigerator compartment 2 can be kept at a high humidity.

また、冷蔵室2のみを冷却するR蒸発器14aと、その他の貯蔵室を冷却するF蒸発器14bとを分けることで、R蒸発器14aの除霜方式をオフサイクル除霜とし、さらなる省エネルギー性能向上と、冷蔵室2の高湿化を図っている。 Further, by separating the R evaporator 14a that cools only the refrigerating chamber 2 and the F evaporator 14b that cools the other storage chambers, the defrosting method of the R evaporator 14a is set to off-cycle defrosting, and further energy saving performance is achieved. We are trying to improve and increase the humidity of the refrigerating room 2.

まず図2及び図3を用いてF蒸発器14bの主な除霜方式について説明する。F蒸発器14bの下部には、F蒸発器14bを加熱する除霜ヒータ21を設けている。除霜ヒータ21は、例えば50W~200Wの電気ヒータで、本実施例では150Wのラジアントヒータとしている。F蒸発器14bの除霜時に発生した除霜水(融解水)はF蒸発器室8bの下部のFトイ23bからF排水管26を介して圧縮機58の上部に設けたF蒸発皿32に排出される。 First, the main defrosting method of the F evaporator 14b will be described with reference to FIGS. 2 and 3. A defrost heater 21 for heating the F evaporator 14b is provided below the F evaporator 14b. The defrost heater 21 is, for example, an electric heater of 50 W to 200 W, and in this embodiment, it is a radiant heater of 150 W. The defrosted water (melted water) generated during the defrosting of the F evaporator 14b is transferred from the F toy 23b at the lower part of the F evaporator chamber 8b to the F evaporating dish 32 provided at the upper part of the compressor 58 via the F drain pipe 26. It is discharged.

一方、R蒸発器14aの除霜にはオフサイクル除霜方式を採用しており、R蒸発器14aに冷媒を流さない状態で、Rファン9aを駆動させる。Rファン9aにより、冷蔵室2の空気が冷蔵室戻り口15a、15bを介してR蒸発器14aに流れ(図2、図3(a)参照)、霜の融点よりも高温の冷蔵温度(0℃以上)の冷蔵室2の空気によりR蒸発器14aの霜を加熱して除霜する。R蒸発器14aの除霜時に発生した除霜水は、R蒸発器室8aの下部に設けたRトイ23a(図2参照)から、図示しないR排水管を介して機械室39に設けた図示しないR蒸発皿に排出される。 On the other hand, an off-cycle defrosting method is adopted for defrosting the R evaporator 14a, and the R fan 9a is driven in a state where the refrigerant does not flow through the R evaporator 14a. The R fan 9a causes the air in the refrigerating chamber 2 to flow to the R evaporator 14a via the refrigerating chamber return ports 15a and 15b (see FIGS. 2 and 3A), and the refrigerating temperature (0) higher than the melting point of frost. The frost in the R evaporator 14a is heated and defrosted by the air in the refrigerating chamber 2 (° C. or higher). The defrosted water generated during the defrosting of the R evaporator 14a is shown in the machine room 39 from the R toy 23a (see FIG. 2) provided in the lower part of the R evaporator chamber 8a via an R drain pipe (not shown). Not discharged into the R evaporating dish.

オフサイクル除霜方式を用いると、電気ヒータ(約150W)を用いることなくファン(0.5~3W)のみでR蒸発器14aの除霜が行えるため、電気ヒータを用いる除霜方式に比べ消費電力を抑えられる。また、オフサイクル除霜中に通過する空気(約4℃)は、低温なR蒸発器14a及びR蒸発器14aに付着した霜(約0℃)により冷却されるため、R蒸発器14aを除霜すると同時に、冷蔵室2を冷却できる。従って省エネルギー性能の高い除霜方式である。さらに、オフサイクル除霜中はR蒸発器14aの温度が高いため、R蒸発器14aを通過する空気の除湿が抑えられ、或いは加湿されるため、冷蔵室2を高湿に保つ効果をさらに高めることができる。 When the off-cycle defrosting method is used, the R evaporator 14a can be defrosted only with a fan (0.5 to 3W) without using an electric heater (about 150W), so it consumes more than the defrosting method using an electric heater. Power can be suppressed. Further, since the air (about 4 ° C.) passing during the off-cycle defrosting is cooled by the frost (about 0 ° C.) adhering to the low-temperature R evaporator 14a and the R evaporator 14a, the R evaporator 14a is removed. At the same time as frosting, the refrigerator compartment 2 can be cooled. Therefore, it is a defrosting method with high energy saving performance. Further, since the temperature of the R evaporator 14a is high during the off-cycle dehumidification, the dehumidification of the air passing through the R evaporator 14a is suppressed or humidified, so that the effect of keeping the refrigerating chamber 2 at a high humidity is further enhanced. be able to.

図8(a)は操作盤200,図8(b)は表示盤201の拡大図である。冷蔵室2内に設けた図8(a)に示す操作盤200では,各操作部を押すことで,自動製氷や節電機能,外部通信機能等の付加機能のON,OFFと,冷蔵室2,第一切替室5,第二切替室6の温度調整が可能である。温度調整とは,冷蔵室2及び冷蔵モードの第一切替室5,第二切替室6では,前述の弱冷蔵モード,強冷蔵モードへの変更,冷凍モードの第一切替室5,第二切替室6では,前述の弱冷凍モード,強冷凍モードへの変更を行うもので,例えば2℃程度目標温度を変えるものである。この温度調整に加えて,本実施例の冷蔵庫1では,温度調整の操作部とは別に,第一切替室5の冷蔵モードと冷凍モードを切り替えるモード切替操作部200aと,第二切替室6の冷蔵モードと冷凍モードを切り替えるモード切替操作部200bを設けている。他の操作部は押した直後に設定が変更されるが,モード切替操作部200a,200bは,例えば3秒長押しすることで設定が変更されるようにしている。また,本実施例の冷蔵庫1では,何れの操作部を操作した際も操作盤200に設けたブザーにより操作の受け付けを音で知らせるようにしているが,モード切替操作部200a,200bを長押しし,モード切り替えの実行を受け付けると,他の操作を受け付けた際とは異なる音で受け付けを知らせるようにしている。 FIG. 8A is an enlarged view of the operation panel 200, and FIG. 8B is an enlarged view of the display panel 201. In the operation panel 200 shown in FIG. 8A provided in the refrigerating chamber 2, by pressing each operation unit, additional functions such as automatic ice making, power saving function, and external communication function can be turned on and off, and the refrigerating chamber 2 and 2 The temperature of the first switching chamber 5 and the second switching chamber 6 can be adjusted. The temperature adjustment is the change to the above-mentioned weak refrigeration mode and strong refrigeration mode, and the first switching chamber 5 and second switching of the freezing mode in the refrigerating room 2 and the first switching room 5 and the second switching room 6 of the refrigerating mode. In the chamber 6, the above-mentioned weak refrigeration mode and strong refrigeration mode are changed, and the target temperature is changed by, for example, about 2 ° C. In addition to this temperature adjustment, in the refrigerator 1 of the present embodiment, apart from the temperature adjustment operation unit, the mode switching operation unit 200a for switching between the refrigerating mode and the freezing mode of the first switching chamber 5 and the second switching chamber 6 A mode switching operation unit 200b for switching between the refrigerating mode and the freezing mode is provided. The settings of the other operation units are changed immediately after they are pressed, but the settings of the mode switching operation units 200a and 200b are changed by pressing and holding for 3 seconds, for example. Further, in the refrigerator 1 of the present embodiment, when any operation unit is operated, the buzzer provided on the operation panel 200 notifies the acceptance of the operation by sound, but the mode switching operation units 200a and 200b are pressed and held. However, when the mode switching execution is accepted, the acceptance is notified with a different sound than when other operations are accepted.

また,本実施例1の冷蔵庫1では,操作盤200を冷蔵室2内に設けていることから,冷蔵室ドア2a,2bを開けずに冷蔵庫1からの情報を把握できるよう,図8(b)に示す冷蔵室ドア2aに表示盤201を設けている。表示盤201は,ユーザーの使用状態が省エネ性に優れていることを示す「eco」サインや,製氷タンク37の状態を示す「給水」サインに加え,第一切替室5がモード切り替え中であることを表示するモード切替中表示201aと,第二切替室6がモード切り替え中であることを表示するモード切替中表示201bを設けている。 Further, in the refrigerator 1 of the first embodiment, since the operation panel 200 is provided in the refrigerating chamber 2, the information from the refrigerator 1 can be grasped without opening the refrigerating chamber doors 2a and 2b. ) Is provided with a display panel 201 on the refrigerator compartment door 2a. In the display board 201, in addition to the "eco" sign indicating that the user's usage state is excellent in energy saving and the "water supply" sign indicating the state of the ice making tank 37, the first switching room 5 is switching modes. A mode switching display 201a for displaying that the mode is being switched and a mode switching display 201b for displaying that the second switching chamber 6 is switching the mode are provided.

以上で示した本構成は,ユーザーによる冷蔵モードと冷凍モードの誤動作に配慮している。冷蔵モードと冷凍モードを誤って切り替えると,例えば冷蔵モードで収納していた野菜が凍結することや,冷凍モードで収納していた冷凍食品が解凍されてしまうといった不具合を生じてしまう。従って,温度調整等の操作を行うつもりで意図せず温度帯が変わってしまうことや,意図しない操作(操作部に意図せず触れてしまう等)で温度帯が変わってしまうことがないよう配慮する必要がある。 This configuration shown above takes into consideration the malfunction of the refrigerating mode and the freezing mode by the user. If the refrigerated mode and the frozen mode are mistakenly switched, for example, the vegetables stored in the refrigerated mode may be frozen, or the frozen food stored in the frozen mode may be thawed. Therefore, care should be taken to prevent the temperature zone from changing unintentionally with the intention of performing operations such as temperature adjustment, or by unintentional operation (such as unintentionally touching the operation unit). There is a need to.

これに対し,本実施例の冷蔵庫1では,温度調整用の操作部とモード切替操作部200a,200bを独立させ,誤ったモード変更を抑制している。また,モード切替操作部200a,200bを備えた操作盤200を冷蔵室2内に設けており,これにより,冷蔵室ドア2a,2bが閉まっている状態では操作部に意図せず触れることがなくなるようにしている。 On the other hand, in the refrigerator 1 of the present embodiment, the operation unit for temperature adjustment and the mode switching operation units 200a and 200b are made independent to suppress erroneous mode change. Further, an operation panel 200 provided with mode switching operation units 200a and 200b is provided in the refrigerating chamber 2, whereby the operation unit is not unintentionally touched when the refrigerating chamber doors 2a and 2b are closed. I am doing it.

さらに,冷蔵モードと冷凍モードの切り替えを実行するための操作を,長押しとすることで,操作部に意図せず触れてしまうことでの誤動作をより確実に抑えている。なお,本実施例では誤動作抑制方法として長押しとしたが,例えば複数の操作部を同時に押した場合にモード変更するようにしてもよい。この場合は長押しする時間が必要ないため早くモード切り替えの指示を送ることができる。一方,本実施例1のように1つの操作だが長押しとすることで,比較的操作を簡単にすることができる。 Furthermore, by pressing and holding the operation for switching between the refrigerating mode and the freezing mode, malfunctions caused by unintentionally touching the operation unit are suppressed more reliably. In this embodiment, long press is used as a method of suppressing malfunction, but for example, the mode may be changed when a plurality of operation units are pressed at the same time. In this case, it is not necessary to press and hold it for a long time, so it is possible to send a mode switching instruction as soon as possible. On the other hand, although it is one operation as in the first embodiment, it can be relatively easy to operate by pressing and holding it for a long time.

加えて,モード切り替えの実行を受け付けると,他の操作を受け付けた際とは異なるブザー音を鳴らすことで,誤って操作してしまった際に気づき易くしている。また,表示盤201に,第一切替室5がモード切り替え中であることを表示するモード切替中表示201aと,第二切替室6がモード切り替え中であることを表示するモード切替中表示201bを設けることで,ドアを開けずにモード切り替えが実行されていることを確認でき,誤って操作してしまった際に気づき易くしている。これにより,すぐにユーザーがモード切り替えを中止(モードを元に戻す)して,意図しない凍結及び解凍を抑制できるようにしている。なお,ドアを開けずに確認できる表示201に,モード切替中表示201a,201bを設けることで,複数のユーザーがいる家庭において,別のユーザーによりモードが切り替えられたことに気づく易くなり,必要に応じてモード切り替えを早期に中止できるようにしている。特に小さい子供がいる家庭の場合,子供のいたずらによりモード切り替えが行われてしまうリスクが考えられることから,本機能は有効である。 In addition, when the mode switching execution is accepted, a buzzer sounds different from that when other operations are accepted, making it easier to notice if the operation is mistaken. Further, on the display panel 201, a mode switching display 201a indicating that the first switching chamber 5 is switching modes and a mode switching displaying 201b indicating that the second switching chamber 6 is switching modes are displayed. By providing it, it is possible to confirm that the mode switching is being executed without opening the door, making it easier to notice if the operation is mistaken. As a result, the user can immediately stop the mode switching (return the mode to the original mode) and suppress unintended freezing and thawing. By providing the mode switching displays 201a and 201b in the display 201 that can be confirmed without opening the door, it becomes easier to notice that the mode has been switched by another user in a home with multiple users, which is necessary. Mode switching can be stopped early accordingly. This function is effective especially in households with small children, because there is a risk that the mode will be switched due to mischief by the children.

また,本実施例の冷蔵庫1では,外部通信機能により,ユーザーが指定したモバイルデバイス等に,モード切り替えが開始されたことをポップアップ表示できるようにしており,これにより,別のユーザーによりモードが切り替えられたことを,より気づく易くしている。 Further, in the refrigerator 1 of the present embodiment, the mode switching is started to be displayed in a pop-up on the mobile device or the like specified by the user by the external communication function, whereby the mode is switched by another user. It makes it easier to notice what was done.

なお,例えば指紋認証やパスワードなどでモード切り替えの操作に制限を設けることや,外部通信機能を用い,メインユーザー以外が通常使用しないモバイルデバイスからのみ,モード切り替えが行えるようにするなどで,予めメインユーザー以外によるモード切り替えが行われないようにしてもよい。 In addition, for example, by setting restrictions on mode switching operations such as fingerprint authentication and passwords, and by using an external communication function, mode switching can be performed only from mobile devices that are not normally used by anyone other than the main user. The mode may not be switched by anyone other than the user.

以上が本実施例の冷蔵庫1の基本的な構成である。以下で冷蔵庫1の具体的な制御について説明していく。 The above is the basic configuration of the refrigerator 1 of this embodiment. The specific control of the refrigerator 1 will be described below.

図9,図10は本実施例の基本的な冷却制御フローチャートである。圧縮機58がOFF(停止)状態の制御S1-1から説明を始める。本実施例では,冷凍温度帯の貯蔵室を備えるF蒸発器14bにより冷却される貯蔵室について,冷却が必要か判断する。まず制御S1-2において,冷凍室温度センサ42により検知する冷凍室4の温度T_Fが例えば-15℃の所定温度T_F-ONより低いか否か,すなわち冷凍室4の冷却が必要かを判断する。T_FがT_F-ON以上の場合(S1-2:No)は,制御S1-12,S1-13へ移行し,F蒸発器14bを用いた冷却運転,すなわちF蒸発器14bに冷媒を流し,低温になったF蒸発器14b周辺の空気をFファン9bにより各貯蔵室に送風する運転になる。冷凍室4の温度T_Fが所定温度T_F-ON(例えば-15℃)より低い場合(S1-2:Yes)は,第一切替室5の冷却が必要かを判断する。この時,第一切替室5が冷蔵モードか冷凍モードかにより,冷却が必要かを判断する温度が異なり,冷凍モードの際(制御S1-3:Yes)は例えば-18℃のT_S1F-ON,冷蔵モードの際(制御S1-3:No)は例えば6℃のT_S1R-ONを基準とする。第一切替室温度センサ43により検知する第一切替室5の温度T_S1が,T_S1F-ON,またはT_S1R-ON以上(制御S1-4またはS1-5:No)であれば,制御S1-12,S1-13のF蒸発器14bを用いた冷却運転になる。同様に第二切替室6についても,冷凍モードの際(制御S1-6:Yes)は例えば-19℃のT_S2F-ON,冷蔵モードの際(制御S1-6:No)は例えば7℃のT_S2R-ONを基準とし,第二切替室温度センサ44により検知する第一切替室6の温度T_S2がこれらの温度以上(制御S1-7又はS1-8:No)であれば,制御S1-12,S1-13のF蒸発器14bを用いた冷却運転になる。この運転の終了条件は図10を用いて後述する。 9 and 10 are basic cooling control flowcharts of this embodiment. The description starts from the control S1-1 in the OFF (stopped) state of the compressor 58. In this embodiment, it is determined whether cooling is necessary for the storage chamber cooled by the F evaporator 14b provided with the storage chamber in the freezing temperature zone. First, in the control S1-2, it is determined whether or not the temperature T_F of the freezing chamber 4 detected by the freezing chamber temperature sensor 42 is lower than the predetermined temperature T_F-ON of, for example, −15 ° C., that is, whether the freezing chamber 4 needs to be cooled. .. When T_F is T_F-ON or more (S1-2: No), the process shifts to controls S1-12 and S1-13, and the cooling operation using the F evaporator 14b, that is, the refrigerant is passed through the F evaporator 14b to lower the temperature. The operation is such that the air around the F evaporator 14b has been blown to each storage chamber by the F fan 9b. When the temperature T_F of the freezing chamber 4 is lower than the predetermined temperature T_F-ON (for example, −15 ° C.) (S1-2: Yes), it is determined whether the first switching chamber 5 needs to be cooled. At this time, the temperature for determining whether cooling is necessary differs depending on whether the first switching chamber 5 is in the refrigerating mode or the freezing mode. In the freezing mode (control S1-3: Yes), for example, T_S1F-ON at -18 ° C. In the refrigerating mode (control S1-3: No), for example, T_S1R-ON at 6 ° C. is used as a reference. If the temperature T_S1 of the first switching chamber 5 detected by the first switching chamber temperature sensor 43 is T_S1F-ON or T_S1R-ON or higher (control S1-4 or S1-5: No), control S1-12, The cooling operation is performed using the F evaporator 14b of S1-13. Similarly, for the second switching chamber 6, for example, T_S2F-ON at -19 ° C. in the freezing mode (control S1-6: Yes) and T_S2R at 7 ° C. in the refrigerating mode (control S1-6: No). If the temperature T_S2 of the first switching chamber 6 detected by the second switching chamber temperature sensor 44 is equal to or higher than these temperatures (control S1-7 or S1-8: No) with -ON as a reference, control S1-12, The cooling operation is performed using the F evaporator 14b of S1-13. The conditions for ending this operation will be described later with reference to FIG.

制御S1-2からS1-8までの判断により,冷凍室4,第一切替室5,第二切替室6の冷却が不要と判断された場合,また図10で示すF蒸発器14bを用いた冷却運転が終了した場合(制御S1-14),冷蔵室2の冷却が必要かを判断する。冷蔵室温度センサ41により検知する冷蔵室2の温度T_Rが,例えば6℃の所定温度T_R-ON以上の場合(制御S1-9:No)は,R蒸発器14aを用いた冷却運転(制御S1-10)になる。R蒸発器14aを用いた冷却運転は,冷蔵室2の温度T_Rが例えば2℃のT_R-OFF以下になる(制御S1-11:Yes)と,R蒸発器14aを用いた冷却運転を終了し,再びF蒸発器14bを用いた冷却運転の要否を判断する制御S1-2に戻る。また,制御S1-9に到達しつつ,冷蔵室2の温度T_Rが,T_R-ON未満であった場合(制御S1-9:Yes)は,何れの冷却も必要ないと判断し,圧縮機58を停止する(制御S1-1)。 When it was determined that cooling of the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 was unnecessary based on the judgments of the controls S1-2 to S1-8, the F evaporator 14b shown in FIG. 10 was used. When the cooling operation is completed (control S1-14), it is determined whether the cooling chamber 2 needs to be cooled. When the temperature T_R of the refrigerating chamber 2 detected by the refrigerating chamber temperature sensor 41 is, for example, a predetermined temperature T_R-ON of 6 ° C. or higher (control S1-9: No), the cooling operation using the R evaporator 14a (control S1). -10). In the cooling operation using the R evaporator 14a, when the temperature T_R of the refrigerating chamber 2 becomes T_R-OFF or less of, for example, 2 ° C. (control S1-11: Yes), the cooling operation using the R evaporator 14a is terminated. , Return to the control S1-2 for determining the necessity of the cooling operation using the F evaporator 14b again. Further, when the temperature T_R of the refrigerating chamber 2 is lower than T_R-ON while reaching the control S1-9 (control S1-9: Yes), it is determined that no cooling is necessary, and the compressor 58 is determined. Is stopped (control S1-1).

次に,図10を用いてF蒸発器14bを用いた冷却運転中の制御について説明する。図9の制御S1-13は図10の制御S2-1と同一である。本実施例の冷蔵庫1では,第一切替室5に関する制御と,第二切替室6に関する制御,また冷凍室4に関する制御を平行して行う。 Next, control during the cooling operation using the F evaporator 14b will be described with reference to FIG. The control S1-13 in FIG. 9 is the same as the control S2-1 in FIG. In the refrigerator 1 of this embodiment, the control regarding the first switching chamber 5, the control regarding the second switching chamber 6, and the control regarding the freezing chamber 4 are performed in parallel.

まず,第一切替室5に関する制御について説明する。第一切替室5が冷凍モードに設定している場合(制御S2-3:Yes),直接冷却用のダンパ101aを開け(制御S2-4),第一切替室5の温度T_S1が例えば-22℃のT_S1F-OFF以下になるまで冷却する(制御S2-5)。第一切替室5が冷蔵モードに設定している場合(制御S2-3:No)は,間接冷却用のダンパ101bを開け(制御S2-6),第一切替室5の温度T_S1が例えば2℃のT_S1R-OFF以下になるまで冷却する(制御S2-7)。これらの制御が終わると,冷やし過ぎによる消費電力量の増加,及び冷蔵モード時の食品凍結を防止するため,ダンパ101a,101bを閉め(制御S2-8),第一切替室5が冷却中であることを示す制御S2-2で1としていたCheck_S1を0とする(制御S2-9)。 First, the control related to the first switching chamber 5 will be described. When the first switching chamber 5 is set to the freezing mode (control S2-3: Yes), when the damper 101a for direct cooling is opened (control S2-4), the temperature T_S1 of the first switching chamber 5 is, for example, -22. Cool until the temperature becomes T_S1F-OFF or less (control S2-5). When the first switching chamber 5 is set to the refrigerating mode (control S2-3: No), the damper 101b for indirect cooling is opened (control S2-6), and the temperature T_S1 of the first switching chamber 5 is, for example, 2. Cool until the temperature becomes T_S1R-OFF or less (control S2-7). When these controls are completed, the dampers 101a and 101b are closed (control S2-8) to prevent an increase in power consumption due to overcooling and food freezing in the refrigerating mode, and the first switching chamber 5 is being cooled. Check_S1 which was set to 1 in the control S2-2 indicating the existence is set to 0 (control S2-9).

なお,他の冷凍室4,第二切替室6の冷却制御が完了(制御S2-25に到達)するまで,第一切替室5の温度が高くなりすぎるのを防止するため,第一切替室5を冷凍モードに設定している場合(制御S2-10:Yes)は第一切替室5の温度T_S1が例えば-20℃のT_S1F-ON2以上(制御S2-11:Yes),冷蔵モードに設定している場合(制御S2-10:No)は第一切替室5の温度T_S1が例えば4℃のT_S1R-ON2以上になる(制御S2-12:Yes)と,再びダンパを開ける(制御S2-4,S2-6)。その後,T_S1がT_S1F-OFFまたはT_S1R-OFFより再び低温になると再びダンパを閉める(制御S2-5,S2-7,S2-8)。 The first switching chamber 5 is to prevent the temperature of the first switching chamber 5 from becoming too high until the cooling control of the other freezing chambers 4 and 2 is completed (control S2-25 is reached). When 5 is set to the refrigerating mode (control S2-10: Yes), the temperature T_S1 of the first switching chamber 5 is set to the refrigerating mode, for example, T_S1F-ON2 or higher at -20 ° C (control S2-11: Yes). When this is done (control S2-10: No), when the temperature T_S1 of the first switching chamber 5 becomes, for example, T_S1R-ON2 or higher at 4 ° C. (control S2-12: Yes), the damper is opened again (control S2-). 4, S2-6). After that, when the temperature of T_S1 becomes lower than T_S1F-OFF or T_S1R-OFF again, the damper is closed again (controls S2-5, S2-7, S2-8).

次に,第二切替室6に関する制御を説明するが,基本的に第一切替室5と同様である。第二切替室6が冷凍モードに設定している場合(制御S2-13:Yes),直接冷却用のダンパ102aを開け(制御S2-14),第二切替室6の温度T_S2が例えば-23℃のT_S2F-OFF以下になるまで冷却する(制御S2-15)。第二切替室6が冷蔵モードに設定している場合(制御S2-13:No)は,間接冷却用のダンパ102bを開け(制御S2-16),第二切替室6の温度T_S2が例えば3℃のT_S2R-OFF以下になるまで冷却する(制御S2-17)。これらの制御が終わると,ダンパ102a,102bを閉め(制御S2-18),第二切替室6が冷却中であることを示す制御S2-2で1としていたCheck_S2を0とする(制御S2-19)。その後,冷凍室4,第一切替室5の冷却制御が完了(制御S2-25に到達)するまで,第二切替室6が冷凍モードに設定されている場合(制御S2-20:Yes)は第二切替室6の温度T_S2が例えば-21℃のT_S2F-ON2以上(制御S2-21),冷蔵モードに設定されている場合(制御S2-20:No)は第二切替室5の温度T_S2が例えば5℃のT_S1R-ON2以上になる(制御S2-22)と,再びダンパを開け(制御S2-14,S2-16),T_S2がT_S2F-OFFまたはT_S2R-OFF以下になると再びダンパを閉める(制御S2-15,S2-17,S2-18)。 Next, the control regarding the second switching chamber 6 will be described, but it is basically the same as that of the first switching chamber 5. When the second switching chamber 6 is set to the freezing mode (control S2-13: Yes), when the damper 102a for direct cooling is opened (control S2-14), the temperature T_S2 of the second switching chamber 6 is, for example, -23. Cool until the temperature becomes T_S2F-OFF or less (control S2-15). When the second switching chamber 6 is set to the refrigerating mode (control S2-13: No), the damper 102b for indirect cooling is opened (control S2-16), and the temperature T_S2 of the second switching chamber 6 is, for example, 3. Cool until the temperature becomes T_S2R-OFF or less (control S2-17). When these controls are completed, the dampers 102a and 102b are closed (control S2-18), and Check_S2, which was set to 1 in the control S2-2 indicating that the second switching chamber 6 is being cooled, is set to 0 (control S2-). 19). After that, when the second switching chamber 6 is set to the freezing mode (control S2-20: Yes) until the cooling control of the freezing chamber 4 and the first switching chamber 5 is completed (control S2-25 is reached). When the temperature T_S2 of the second switching chamber 6 is, for example, T_S2F-ON2 or higher at -21 ° C. (control S2-21) and the refrigerating mode is set (control S2-20: No), the temperature T_S2 of the second switching chamber 5 For example, when the temperature becomes T_S1R-ON2 or higher at 5 ° C. (control S2-22), the damper is opened again (controls S2-14, S2-16), and when T_S2 becomes T_S2F-OFF or T_S2R-OFF or lower, the damper is closed again. (Controls S2-15, S2-17, S2-18).

最後に冷凍室4に関する制御について説明する。冷凍室4は温度制御を行うダンパを備えていないため,冷凍室4の温度T_Fが例えば-20℃のT_F-OFF以下であることを判定する(制御S2-23:Yes)と,冷凍室4の冷却制御は終了となる。 Finally, the control regarding the freezing chamber 4 will be described. Since the freezing chamber 4 does not have a damper for controlling the temperature, it is determined that the temperature T_F of the freezing chamber 4 is, for example, T_F-OFF or less at −20 ° C. (control S2-23: Yes), and the freezing chamber 4 is determined. Cooling control is finished.

冷凍室4の冷却が終了し(制御S2-23:Yes),Check_S1,S2により第一切替室5と第二切替室6の冷却制御が終了していると判断する(制御S2-24:Yes)と,Fファン9bをOFFし(制御S2-25),F蒸発器14bを用いた冷却運転が終了(制御S2-26)となる。 It is determined that the cooling of the freezing chamber 4 is completed (control S2-23: Yes), and the cooling control of the first switching chamber 5 and the second switching chamber 6 is completed by Check_S1 and S2 (control S2-24: Yes). ), The F fan 9b is turned off (control S2-25), and the cooling operation using the F evaporator 14b ends (control S2-26).

以上のように,本実施例の冷蔵庫1では,冷凍室4,第一切替室5,第二切替室6の何れかがそれぞれの所定温度以上の場合にはF蒸発器14bを用いた冷却運転に移行(図9の制御S1-2からS1-8)し,また,F蒸発器14bを用いた冷却運転中は,冷凍室4,第一切替室5,第二切替室6の何れも少なくとも一度は所定温度以下になるまで必ず冷却するようにしている(図10)。これにより,何れか1つの貯蔵室の温度のみで制御する場合に比べ,何れの貯蔵室の温度も高くなり過ぎず,かつ低温になりすぎないようにすることができ,省エネルギー性能を高めながら食品の保存性能を高めることができる。 As described above, in the refrigerator 1 of the present embodiment, when any of the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 has a predetermined temperature or higher, the cooling operation using the F evaporator 14b is performed. (Controls S1-2 to S1-8 in FIG. 9), and during the cooling operation using the F evaporator 14b, at least any of the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 is performed. It is always cooled once until it falls below a predetermined temperature (Fig. 10). As a result, it is possible to prevent the temperature of any of the storage chambers from becoming too high and too low as compared with the case of controlling only by the temperature of any one storage chamber, and the food can be improved in energy saving performance. Can improve the storage performance of.

さらに,第一切替室5,第二切替室6の冷却制御では,所定温度に到達すると,冷やし過ぎを防止するためダンパを閉じ(制御S2-8,S2-18),冷却状態を解除するが(制御S2-9,S2-19),温度が高くなった場合は(制御S2-10からS2-12,またはS2-20からS2-22),再度ダンパを開けて冷却する。これにより,冷やし過ぎを防止しつつ,温度が高くなりすぎるのも防止し,省エネルギー性能を高めながら食品の保存性能を高めている。 Further, in the cooling control of the first switching chamber 5 and the second switching chamber 6, when the predetermined temperature is reached, the damper is closed (controls S2-8, S2-18) to prevent overcooling, and the cooling state is released. (Control S2-9, S2-19) If the temperature rises (controls S2-10 to S2-12, or S2-20 to S2-22), open the damper again to cool. This prevents the temperature from becoming too high while preventing overcooling, and improves the storage performance of food while improving the energy saving performance.

なお,制御S2-10からS2-12,またはS2-20からS2-22によるダンパ101a,101b,102a,102bを再度開ける制御を行う間,Check_S1,Check_S2は0のままとしている。これにより,Check_S1,Check_S2が交互に1の状態となってしまい,F蒸発器14bを用いた冷却運転が終了しないことを抑制している。本実施例の冷蔵庫1は複数の蒸発器を備え,R蒸発器14aを用いた冷却運転と,F蒸発器14bを用いた冷却運転を切り替えて冷却を行うため,F蒸発器14bを用いた冷却運転が終了してR蒸発器14aを用いた冷却運転に移行すると,暫くの間,F蒸発器14bを用いた冷却運転に移行できない。したがって,この再度ダンパを開ける制御に用いるT_S1F-ON2は図9に示したT_S1F-ONより低温であり,同様にT_S1R-ON2はT_S1R-ONより低温,T_S2F-ON2はT_S2F-ONより低温,T_S2R-ON2はT_S2R-ONより低温にしておき,比較的低温の状態でF蒸発器14bを用いた冷却運転が終了するようにしている。 While the controls S2-10 to S2-12 or S2-20 to S2-22 are used to control the dampers 101a, 101b, 102a, and 102b to be reopened, Check_S1 and Check_S2 remain 0. As a result, Check_S1 and Check_S2 are alternately in the state of 1, and it is suppressed that the cooling operation using the F evaporator 14b is not completed. The refrigerator 1 of this embodiment is provided with a plurality of evaporators, and cooling using the F evaporator 14b is performed in order to switch between the cooling operation using the R evaporator 14a and the cooling operation using the F evaporator 14b. When the operation is completed and the operation is shifted to the cooling operation using the R evaporator 14a, the cooling operation using the F evaporator 14b cannot be shifted to for a while. Therefore, T_S1F-ON2 used for the control of opening the damper again is lower temperature than T_S1F-ON shown in FIG. 9, similarly, T_S1R-ON2 is lower temperature than T_S1R-ON, T_S2F-ON2 is lower temperature than T_S2F-ON, and T_S2R. -ON2 is kept at a lower temperature than T_S2R-ON so that the cooling operation using the F evaporator 14b is completed in a relatively low temperature state.

図11は本実施例の基本的な冷却制御を示す経時温度変化の例である。図11は第一切替室5と第二切替室6の両方が冷凍モードの場合である。各制御番号は図9,図10に対応する。 FIG. 11 is an example of a temperature change over time showing the basic cooling control of this embodiment. FIG. 11 shows a case where both the first switching chamber 5 and the second switching chamber 6 are in the freezing mode. Each control number corresponds to FIGS. 9 and 10.

図11の第一切替室5と第二切替室6の両方が冷凍モードの場合について,時刻t0から説明する。時刻t0にて圧縮機58が停止した(制御S1-1)後,制御S1-2~S1-9の各判定が行われる。時刻t1において,第二切替室6の温度T_S2が,T_S2F-ON以上(制御S1-7:No)になり,F蒸発器14bによる冷却運転が開始される(制御S1-12,S1-13及びS2-1)。図11では,第一切替室5と第二切替室6の両方が冷凍モードのため,直接冷却用のダンパであるダンパ101aと102aが開く。時刻t2で第一切替室5の温度T_S1が,T_S1F-OFF以下になる(制御S2-5:Yes)と,ダンパ101aが閉じ(制御S2-8),第一切替室5が冷却中であることを示すCheck_S1を0(クリア)する(制御S2-9)。また,同様に時刻t3において,第二切替室6の温度T_S2が,T_S2F-OFF以下になる(制御S2-15:Yes)と,ダンパ102aが閉じ(制御S2-18),第二切替室6が冷却中であることを示すCheck_S2を0(クリア)する(制御S2-19)。その後,時刻t4において,冷凍室4の温度T_Fが,T_F-OFF以下になり,冷凍室4,第一切替室5,第二切替室6の何れも冷却が完了したと判断し(制御S2-23,S2-24),F蒸発器14bを用いた冷却運転を終了する(制御S2-25,S2-26及びS1-14)。なお,この間の時刻t6において,第一切替室5の温度がT_S1F-ON2よりも高くなったことから,ダンパ101aを再度開け(制御S2-11:Yes→制御S2-5),第一切替室5の温度上昇を抑えている。 The case where both the first switching chamber 5 and the second switching chamber 6 of FIG. 11 are in the freezing mode will be described from time t0. After the compressor 58 is stopped at time t0 (control S1-1), each determination of controls S1-2 to S1-9 is performed. At time t1, the temperature T_S2 of the second switching chamber 6 becomes T_S2F-ON or higher (control S1-7: No), and the cooling operation by the F evaporator 14b is started (controls S1-12, S1-13 and). S2-1). In FIG. 11, since both the first switching chamber 5 and the second switching chamber 6 are in the freezing mode, the dampers 101a and 102a for direct cooling are opened. When the temperature T_S1 of the first switching chamber 5 becomes T_S1F-OFF or less at time t2 (control S2-5: Yes), the damper 101a is closed (control S2-8), and the first switching chamber 5 is being cooled. Check_S1 indicating that is 0 (cleared) (control S2-9). Similarly, at time t3, when the temperature T_S2 of the second switching chamber 6 becomes T_S2F-OFF or less (control S2-15: Yes), the damper 102a closes (control S2-18), and the second switching chamber 6 Check_S2 indicating that is being cooled is 0 (cleared) (control S2-19). After that, at time t4, the temperature T_F of the freezing chamber 4 became T_F-OFF or less, and it was determined that cooling of all of the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 was completed (control S2-). 23, S2-24), the cooling operation using the F evaporator 14b is terminated (controls S2-25, S2-26 and S1-14). Since the temperature of the first switching chamber 5 became higher than that of T_S1F-ON2 at the time t6 during this period, the damper 101a was opened again (control S2-11: Yes → control S2-5), and the first switching chamber was opened. The temperature rise of 5 is suppressed.

F蒸発器14bを用いた冷却運転を終了した時刻t4において,冷蔵室2の温度T_Rが,T_R-ON以上になっている(制御S1-9:No)ことから,R蒸発器14aを用いた冷却運転に移行する(制御S1-10)。その後,時刻t5において,冷蔵室2の温度T_Rが,T_R-OFF以下になる(制御S1-11:Yes)と,R蒸発器14aを用いた冷却運転を終了し,再びF蒸発器14bを用いた冷却運転の必要可否を判断する(制御S1-2からS2-8)。図11の時刻t5では,F蒸発器14bを用いた冷却運転の必要がないと判断され,冷蔵室2の温度もT_R-ON未満(制御S1-9:Yes)のため,圧縮機58がOFFとなる(制御S1-1)。なお,この時に三方弁52を全閉とすることで,冷凍サイクルの高圧側の冷媒がR蒸発器14a,及びF蒸発器14bに流入し,R蒸発器14a,及びF蒸発器14bが温度上昇することを防ぐためである。 At the time t4 when the cooling operation using the F evaporator 14b was completed, the temperature T_R of the refrigerating chamber 2 was T_R-ON or higher (control S1-9: No), so that the R evaporator 14a was used. Shift to cooling operation (control S1-10). After that, at time t5, when the temperature T_R of the refrigerating chamber 2 becomes T_R-OFF or less (control S1-11: Yes), the cooling operation using the R evaporator 14a is terminated, and the F evaporator 14b is used again. It is determined whether or not the cooling operation is necessary (controls S1-2 to S2-8). At time t5 in FIG. 11, it was determined that the cooling operation using the F evaporator 14b was not necessary, and the temperature of the refrigerating chamber 2 was less than T_R-ON (control S1-9: Yes), so the compressor 58 was turned off. (Control S1-1). By fully closing the three-way valve 52 at this time, the refrigerant on the high pressure side of the refrigeration cycle flows into the R evaporator 14a and the F evaporator 14b, and the temperature of the R evaporator 14a and the F evaporator 14b rises. This is to prevent it from happening.

以後,同様の運転が繰り返される。 After that, the same operation is repeated.

図12は本実施例の基本的な除霜制御フローチャートである。本実施例の冷蔵庫1は,F蒸発器14bについた霜を除霜ヒータ21により解かす除霜運転を行う。 FIG. 12 is a basic defrost control flowchart of this embodiment. The refrigerator 1 of this embodiment performs a defrosting operation in which the frost attached to the F evaporator 14b is defrosted by the defrosting heater 21.

本実施例の冷蔵庫1では,図9,図10で示した冷却運転中に,前回の除霜運転からの時間,外気温度センサ46と外気湿度センサ47により検知する周囲の温度と湿度,圧縮機58の運転状態(回転数,運転時間),各ドアが開いている時間等により,着霜状態を予測し,所定の条件を満たす(制御S3-1:Yes)と除霜が必要と判断して除霜運転を開始する(制御S3-2)。なお,除霜運転の開始条件を満たした後(制御S3-1:Yes),除霜運転を開始する前に(制御S3-2),除霜運転での温度上昇を予測して予め庫内を通常よりも低温に冷やしておくプリクール運転を行っても良い。 In the refrigerator 1 of the present embodiment, during the cooling operation shown in FIGS. 9 and 10, the time since the previous defrosting operation, the ambient temperature and humidity detected by the outside air temperature sensor 46 and the outside air humidity sensor 47, and the compressor. The frost formation state is predicted based on the operation state (rotation speed, operation time) of 58, the time when each door is open, etc., and it is determined that defrosting is necessary when a predetermined condition is satisfied (control S3-1: Yes). And start the defrosting operation (control S3-2). After satisfying the start condition of the defrosting operation (control S3-1: Yes) and before starting the defrosting operation (control S3-2), the temperature rise in the defrosting operation is predicted and the inside of the refrigerator is stored in advance. You may perform a pre-cool operation in which the temperature is cooled to a lower temperature than usual.

除霜運転中(制御S3-2)は圧縮機58とファン9bをOFF,除霜ヒータ21をONし,またダンパヒータ64もONにする。ダンパ101a,101b,102a,102bはF蒸発器14bを用いた冷却運転を行っている間,冷凍温度の空気により冷却されるが,第一切替室5または第二切替室6が冷蔵モードで,特に野菜などを貯蔵している場合,庫内からの高湿な空気がダンパ101a,101b,102a,102bに到達し,着霜することがあるため,除霜運転中にダンパヒータ64もONにし,ダンパ101a,101b,102a,102bの除霜も行う。なお,第一切替室5用のダンパ101a,101bと,第二切替室6用のダンパ102a,102bのヒータを別個に設け,冷蔵モードにしている切替室に関わるダンパ側のヒータのみONにして,ヒータ電力を抑えて省エネルギー性能を高めてもよい。 During the defrosting operation (control S3-2), the compressor 58 and the fan 9b are turned off, the defrosting heater 21 is turned on, and the damper heater 64 is also turned on. The dampers 101a, 101b, 102a, 102b are cooled by the air at the freezing temperature during the cooling operation using the F evaporator 14b, but the first switching chamber 5 or the second switching chamber 6 is in the refrigerating mode. Especially when storing vegetables, etc., the humid air from the inside of the refrigerator may reach the dampers 101a, 101b, 102a, 102b and frost, so turn on the damper heater 64 during the defrosting operation. Defrosting of the dampers 101a, 101b, 102a, 102b is also performed. The dampers 101a and 101b for the first switching chamber 5 and the dampers 102a and 102b for the second switching chamber 6 are separately provided, and only the heater on the damper side related to the switching chamber in the refrigerating mode is turned on. , The heater power may be suppressed to improve the energy saving performance.

除霜運転を行い,F蒸発器温度センサ44bにより検知するF蒸発器14bの温度T_eが例えば8℃のT_e-def以上になる(制御S3-3)と除霜運転を終了(制御S3-4,S3-5)し,図9の冷却制御に戻る(図9中の制御S1-15)。 The defrosting operation is performed, and when the temperature T_e of the F evaporator 14b detected by the F evaporator temperature sensor 44b becomes, for example, T_e-def or higher at 8 ° C. (control S3-3), the defrosting operation is terminated (control S3-4). , S3-5), and return to the cooling control in FIG. 9 (control S1-15 in FIG. 9).

図13は本実施例の冷蔵庫1における第一切替室5のモード切り替え制御フローチャートである。なお,第二切替室6のモード切り替え制御は第一切替室5と同様のため省略する。本実施例の冷蔵庫1では,第一切替室5のモード切り替えが行われると,「温度制御」と「ダンパヒータ制御」と「切替中表示」の3つの制御を並列して行う。 FIG. 13 is a mode switching control flowchart of the first switching chamber 5 in the refrigerator 1 of this embodiment. Since the mode switching control of the second switching chamber 6 is the same as that of the first switching chamber 5, it is omitted. In the refrigerator 1 of the present embodiment, when the mode of the first switching chamber 5 is switched, three controls of "temperature control", "damper heater control", and "switching in progress display" are performed in parallel.

まず温度制御について説明する。モードの切り替えが行われると,第一切替室5に関する各基準温度設定値が変更される(例えば図9の制御S1-4(基準温度T_S2F-ON)を制御S1-5(基準温度T_S2R-ON)に変更)。また,短時間で所定の温度に到達させる,特に冷蔵モードから冷凍モードの切り替えの際に冷凍温度に到達させるため,圧縮機58の回転数及びFファン9bの回転数を高める。その後,その状態にて図9,図10に示した冷却制御を行う(制御S4-2)が,圧縮機58がOFFになる(制御S4-3)と,除霜運転に移行する(制御S4-5)。除霜運転が終了する(制御S4-6)と,図9,図10に示した通常の冷却制御に戻り,モード切り替え時特有の温度制御を終了する。除霜運転中の制御は図12に示したものと同様である。なお,本実施例では,冷凍モードから冷蔵モードへの切り替えの場合も,圧縮機58の回転数及びFファン9bの回転数を高めるようにしており,これは後述する除霜運転を早く開始させるため(制御S4-3:Yes→制御S4-5)と,制御の場合分けを少なくして制御プログラムを簡略化するためである。 First, temperature control will be described. When the mode is switched, each reference temperature set value for the first switching chamber 5 is changed (for example, control S1-4 (reference temperature T_S2F-ON) in FIG. 9 is controlled S1-5 (reference temperature T_S2R-ON). )change to). Further, in order to reach a predetermined temperature in a short time, particularly to reach the refrigerating temperature when switching from the refrigerating mode to the refrigerating mode, the rotation speed of the compressor 58 and the rotation speed of the F fan 9b are increased. After that, the cooling control shown in FIGS. 9 and 10 is performed in that state (control S4-2), but when the compressor 58 is turned off (control S4-3), the operation shifts to the defrosting operation (control S4). -5). When the defrosting operation is completed (control S4-6), the normal cooling control shown in FIGS. 9 and 10 is restored, and the temperature control peculiar to the mode switching is terminated. The control during the defrosting operation is the same as that shown in FIG. In this embodiment, the rotation speed of the compressor 58 and the rotation speed of the F fan 9b are increased even when switching from the freezing mode to the refrigerating mode, which causes the defrosting operation described later to start early. This is to simplify the control program by reducing the number of cases of control (control S4-3: Yes → control S4-5).

ここで,制御S4-3にて除霜運転に移行する理由について説明する。 Here, the reason for shifting to the defrosting operation in the control S4-3 will be described.

1つ目は,この除霜運転を行うことで,冷凍モードから冷蔵モードへの加熱を促進できる。除霜ヒータは約150Wと,本実施例の冷蔵庫の中で最大の発熱量を備えているため,これによりF蒸発器14b及びその周辺風路を加熱することで,第一切替室5及び第二切替室6も断熱仕切壁27を介して加熱され,比較的短い時間で冷凍温度帯から冷蔵温度帯に切り替えることができる。なお,例えば第一切替室5を冷凍モードから冷蔵モードにした場合,この除霜運転中は第一切替室5側のダンパ101aまたは101bを開けておき,F蒸発器14b周辺の風路を流れる暖気が第一切替室5に流れるようにすることで,この暖気により第一切替室5を加熱し,冷蔵温度帯に切り替える速度をさらに高めてもよい。 First, by performing this defrosting operation, heating from the freezing mode to the refrigerating mode can be promoted. Since the defrost heater has a calorific value of about 150 W, which is the largest in the refrigerator of this embodiment, the F evaporator 14b and its surrounding air passages are heated by this to heat the first switching chamber 5 and the first. (2) The switching chamber 6 is also heated via the heat insulating partition wall 27, and can switch from the freezing temperature zone to the refrigerating temperature zone in a relatively short time. For example, when the first switching chamber 5 is changed from the freezing mode to the refrigerating mode, the damper 101a or 101b on the first switching chamber 5 side is opened during this defrosting operation, and the air passage around the F evaporator 14b flows. By allowing the warm air to flow to the first switching chamber 5, the first switching chamber 5 may be heated by this warm air, and the speed of switching to the refrigerating temperature zone may be further increased.

2つ目は,モード毎に異なる着霜により,考慮し難い着霜状態が生じることを抑制するためである。例えばF蒸発器14bには,第一切替室5用のダンパ101aと第二切替室6用のダンパ102aの両方を開けている場合は冷凍室4と第一切替室5と第二切替室6の空気が流れ,ダンパ101aのみを開けている場合は冷凍室4と第一切替室5の空気が流れ,ダンパ102aのみを開けている場合は冷凍室4と第一切替室5の空気が流れ,また両方を閉じている場合は冷凍室4の空気が流れる。すなわち,ダンパの開閉状態によってF蒸発器14b周りの空気の流れが変わる。従って,冷蔵モードと冷凍モードでダンパ101a,101bの開閉時間が変わると,F蒸発器14b周りの空気の流れに対する影響が変わる。また,本実施例の冷蔵庫1では,冷凍モードと冷蔵モードでダンパ101a,101bと異なるダンパを開けているため,さらに冷凍モードと冷蔵モードでF蒸発器14b周りの空気の流れは複雑に変化する。空気の流れが変わるとF蒸発器14bに生じる着霜分布も変わる。加えて,冷蔵モードの貯蔵室から来る空気の方が基本的に高温で高湿(絶対湿度が高い)ため着霜もし易く,その点でもモードによって着霜分布が変わる。そのため,切替室が冷蔵モードと冷凍モードの両方が混ざった場合を考慮して着霜状態を予測することは難しい。試験において評価する場合も冷蔵モードと冷凍モードの時間割合を変えて各割合で着霜分布の評価する必要があり,膨大な試験時間が必要になり困難である。これは,特に本実施例1のように切替室の容量が比較的大きい(例えば切替室の幅方向の長さが、冷蔵庫1全体の幅方向と同じ)冷蔵庫や,複数の切替室を持っている冷蔵庫では影響が大きい。意図しない着霜分布になると,空気が意図しない箇所に流れ,さらに意図しない箇所へと霜が成長していくことが考えられる。これにより,例えば除霜ヒータ21等の熱が伝わり難い箇所に霜が成長し,除霜が適切に行えないことや,F蒸発器14bの冷気を送風するFファン9bの周りに霜が成長し,Fファン9bがロックしてしまい送風できない等の不具合を生じる恐れがある。 The second is to prevent the occurrence of frost formation that is difficult to consider due to frost formation that differs for each mode. For example, when both the damper 101a for the first switching chamber 5 and the damper 102a for the second switching chamber 6 are opened in the F evaporator 14b, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 are opened. When only the damper 101a is open, the air in the freezing chamber 4 and the first switching chamber 5 flows, and when only the damper 102a is open, the air in the freezing chamber 4 and the first switching chamber 5 flows. , Also, when both are closed, the air in the freezer chamber 4 flows. That is, the air flow around the F evaporator 14b changes depending on the open / closed state of the damper. Therefore, if the opening / closing time of the dampers 101a and 101b changes between the refrigerating mode and the freezing mode, the influence on the air flow around the F evaporator 14b changes. Further, in the refrigerator 1 of the present embodiment, since the dampers different from the dampers 101a and 101b are opened in the freezing mode and the refrigerating mode, the air flow around the F evaporator 14b changes in a complicated manner in the freezing mode and the refrigerating mode. .. When the air flow changes, the frost distribution generated in the F evaporator 14b also changes. In addition, the air coming from the storage room in the refrigerated mode is basically hotter and more humid (absolute humidity is higher), so it is easier to frost, and the frost distribution changes depending on the mode. Therefore, it is difficult to predict the frost formation state in consideration of the case where both the refrigerating mode and the freezing mode are mixed in the switching chamber. When evaluating in the test, it is necessary to evaluate the frost formation distribution at each ratio by changing the time ratio between the refrigerating mode and the freezing mode, which is difficult because a huge test time is required. This has a refrigerator having a relatively large capacity of the switching chamber (for example, the length in the width direction of the switching chamber is the same as the width direction of the entire refrigerator 1) as in the first embodiment, or a plurality of switching chambers. It has a big effect on the refrigerator. When an unintended frost distribution occurs, it is conceivable that air will flow to unintended locations and frost will grow to unintended locations. As a result, frost grows in places where heat is difficult to transfer, such as the defrost heater 21, and defrost cannot be performed properly, and frost grows around the F fan 9b that blows cold air from the F evaporator 14b. , F fan 9b may lock and cause problems such as inability to blow air.

そこで本実施例の冷蔵庫1では,モードを切り替えた後,比較的早い時間にて除霜運転を行うようしている。これにより,モードを切り替える前に生じていた霜の影響を抑え,このような不具合を抑制している。すなわち,信頼性の高い冷蔵庫としている。 Therefore, in the refrigerator 1 of this embodiment, after switching the mode, the defrosting operation is performed in a relatively early time. As a result, the influence of frost that occurred before switching the mode is suppressed, and such problems are suppressed. That is, it is a highly reliable refrigerator.

但し,前回の除霜運転終了から経過した時間(図13の制御S3-4よりタイマAにて計測)が例えば6時間以下と短い場合(制御S4-4:No),前のモード状態での着霜の影響は小さいと考え本除霜制御は省略し,図9,図10に示した通常の冷却制御に戻り,モード切り替え時特有の温度制御を終了する。これにより高い信頼性を保ちながら,除霜運転による消費電力量の増加を抑え,省エネルギー性能を高めている。 However, if the time elapsed from the end of the previous defrosting operation (measured by timer A from control S3-4 in FIG. 13) is as short as 6 hours or less (control S4-4: No), in the previous mode state. Considering that the influence of frost formation is small, this defrosting control is omitted, the normal cooling control shown in FIGS. 9 and 10 is restored, and the temperature control peculiar to the mode switching is terminated. As a result, while maintaining high reliability, the increase in power consumption due to defrosting operation is suppressed and energy saving performance is improved.

次に,ダンパヒータ制御について説明する。本制御は冷蔵モードから冷凍モードに切り替えた際に行われる(制御S4-8:Yes)。図12の除霜運転制御でも示したが,ダンパ101a,101bはF蒸発器14bを用いた冷却運転を行っている間,冷凍温度の空気により冷却されるが,第一切替室5が冷蔵モードで,特に野菜などを貯蔵している場合,庫内からの高湿な空気がダンパ101a,101bに到達し,着霜することがある。そこで,本実施例の冷蔵庫1では,冷蔵モードから冷凍モードに切り替えると,タイマBが20分以上になるまでダンパヒータ64をONにする(制御S4-9からS4-11)。これにより,冷蔵モードを実施している間にダンパ101a,101bが凍結しても,冷凍モードでは確実にダンパ101a,101bが正常に動作できるようにしている。特に,本実施例の冷蔵庫1では,第一切替室5のダンパを複数備え,冷蔵モードの場合,基本的にダンパ101aは開かないようにしているため,本制御が重要となる。冷蔵モードの状態でダンパ101aが長時間に渡って動作しないと,通常の除霜運転中に霜を溶かしていても,ダンパ101aに除霜水が残って氷結してしまい,正常に動作できない状態になってしまう可能性がある。一方,冷凍モードになるとダンパ101aを主に開閉させるため,冷蔵モードから冷凍モードに切り替えた際にダンパヒータ64によりダンパ101aを加熱し,確実にダンパ101aが動作するようにしている。 Next, damper heater control will be described. This control is performed when the refrigerating mode is switched to the freezing mode (control S4-8: Yes). As shown in the defrosting operation control of FIG. 12, the dampers 101a and 101b are cooled by the air at the freezing temperature while the cooling operation using the F evaporator 14b is performed, but the first switching chamber 5 is in the refrigerating mode. In particular, when vegetables and the like are stored, high-humidity air from the refrigerator may reach the dampers 101a and 101b and cause frost formation. Therefore, in the refrigerator 1 of the present embodiment, when the refrigerating mode is switched to the freezing mode, the damper heater 64 is turned on until the timer B reaches 20 minutes or more (controls S4-9 to S4-11). As a result, even if the dampers 101a and 101b freeze during the refrigerating mode, the dampers 101a and 101b can be reliably operated normally in the freezing mode. In particular, the refrigerator 1 of the present embodiment is provided with a plurality of dampers of the first switching chamber 5, and the damper 101a is basically not opened in the refrigerating mode, so that this control is important. If the damper 101a does not operate for a long time in the refrigerated mode, even if the frost is melted during the normal defrosting operation, the defrosted water remains on the damper 101a and freezes, and it cannot operate normally. There is a possibility that it will become. On the other hand, since the damper 101a is mainly opened and closed in the freezing mode, the damper 101a is heated by the damper heater 64 when the refrigerating mode is switched to the freezing mode, so that the damper 101a operates reliably.

次に,切替中表示制御について説明する。本実施例の冷蔵庫1では,第一切替室5のモードを切り替えると,モード切替中表示201a(図8(b)参照)がON(点灯)する(制御S4-13)。このモード切替中表示201aは,冷蔵モードから冷凍モードへの切り替えの際(制御S4-14:Yes)は,第一切替室5の温度T_S1が例えば-15℃のF切替完了判定温度になるとOFF(制御S4-17)し,冷凍モードから冷蔵モードへの切り替えの際(制御S4-14:No)は,第一切替室5の温度T_S1が例えば0℃以上のR切替完了判定温度になるとOFF(制御S4-17)する。これにより,消灯してから食品を入れるようにすることで,冷蔵モードから冷凍モードへの切り替えの際は,冷凍食品が誤って解凍されることを抑えられ,冷凍モードから冷蔵モードへの切り替えの際は,食品が誤って凍結することを抑えられるようにしている。冷蔵モードに切り替える際は水の融点温度(0℃)付近であるのに対し,冷凍モードに切り替える際は-15℃と融点温度よりも10℃以上低温にしているのは,例えばアイスクリームなどの融点が低いものに配慮しているとともに,食品を入れる際のドア開閉による温度上昇を考慮したものである。なお,冷凍モードから冷蔵モードへの切り替えの際は,モード切替中表示201aの表示をOFFする温度条件として,下限に加え上限を設け,例えば0℃以上10℃以下になるとモード切替中表示201aの表示をOFFするようにしてもよい。このようにすると,食品の凍結を抑えるのみでなく,庫内が適正温度になったことをユーザーに知らせることができる。これは特に,冷蔵庫の電源投入直後など,庫内の温度が高い状態でモードを切り替えた際に有効である。 Next, the display control during switching will be described. In the refrigerator 1 of the present embodiment, when the mode of the first switching chamber 5 is switched, the mode switching display 201a (see FIG. 8B) is turned ON (lights up) (control S4-13). This mode switching display 201a is OFF when the temperature T_S1 of the first switching chamber 5 reaches, for example, -15 ° C., when the temperature T_S1 of the first switching chamber 5 reaches the F switching completion determination temperature when switching from the refrigerating mode to the freezing mode (control S4-14: Yes). (Control S4-17) When switching from the freezing mode to the refrigerating mode (control S4-14: No), the temperature T_S1 of the first switching chamber 5 becomes OFF when, for example, the R switching completion determination temperature of 0 ° C. or higher is reached. (Control S4-17). This prevents the frozen food from being accidentally thawed when switching from the refrigerated mode to the frozen mode by putting the food in after the lights are turned off, and switching from the frozen mode to the refrigerated mode. At that time, we try to prevent food from accidentally freezing. When switching to the refrigerating mode, the temperature is near the melting point temperature (0 ° C) of water, while when switching to the freezing mode, the temperature is -15 ° C, which is 10 ° C or more lower than the melting point temperature, for example, ice cream. In addition to considering the ones with a low melting point, the temperature rise due to opening and closing the door when putting food is taken into consideration. When switching from the freezing mode to the refrigerating mode, an upper limit is set in addition to the lower limit as a temperature condition for turning off the display of the mode switching display 201a. The display may be turned off. By doing so, it is possible not only to suppress the freezing of food, but also to inform the user that the temperature inside the refrigerator has reached an appropriate temperature. This is especially effective when the mode is switched when the temperature inside the refrigerator is high, such as immediately after the refrigerator is turned on.

なお,上記の切替中表示のOFFに合せ,本実施例の冷蔵庫1では,専用のブザー音を所定の時間鳴らし,また,ユーザーがモバイルデバイスやパーソナルコンピュータを登録していると,外部通信機能により,そのデバイスに切替完了をポップアップで通知するようにしている(制御S4-17)。これによりモード切り替えを行っても,食品の意図しない凍結及び解凍を抑えながら,比較的早いタイミングで食品を入れられるようにしている。 In addition, in accordance with the above-mentioned OFF of the switching display, the refrigerator 1 of this embodiment sounds a dedicated buzzer sound for a predetermined time, and when the user has registered a mobile device or a personal computer, the external communication function is used. , The device is notified of the completion of switching by a pop-up (control S4-17). As a result, even if the mode is switched, food can be added at a relatively early timing while suppressing unintended freezing and thawing of food.

なお,図8(b)でも前述したように,本実施例の冷蔵庫1では,デバイスを登録しておくと,モード切り替えが開始されたこともポップアップ表示する(制御S4-13)ようにしており,これにより,別のユーザーによりモードが切り替えられたことを気づき易くしている。 As described above in FIG. 8B, in the refrigerator 1 of this embodiment, when the device is registered, the mode switching is also started by pop-up display (control S4-13). , This makes it easier to notice that the mode has been switched by another user.

図14は冷蔵庫1の制御ブロック図である。冷蔵室ドア2a、2bの開閉状態を検知する冷蔵室ドアセンサ201、製氷室ドア3aの開閉状態を検知する製氷室ドアセンサ202、冷凍室ドア4aの開閉状態を検知する冷凍室ドアセンサ203、第一切替室ドア5aの開閉状態を検知する第一切替室ドアセンサ204、第二切替室ドア6aの開閉状態を検知する第二切替室ドアセンサ205、R蒸発器温度センサ40a、F蒸発器温度センサ40b、外気温度センサ37、外気湿度センサ38、制御部206、マイコン207、メモリ208を備えている。マイコン207は冷蔵庫1の全体を制御しており、マイコン207はドア2a、2b、3a、4a、5a、6a、の開時間、圧縮機24の運転時間、冷蔵庫の周囲温度、冷蔵庫の周囲湿度などを把握し、それらを内蔵するメモリ208に記憶する。 FIG. 14 is a control block diagram of the refrigerator 1. The refrigerating room door sensor 201 for detecting the open / closed state of the refrigerating room doors 2a and 2b, the ice making room door sensor 202 for detecting the open / closed state of the ice making room door 3a, the freezing room door sensor 203 for detecting the open / closed state of the freezing room door 4a, and the first switching. The first switching chamber door sensor 204 that detects the open / closed state of the chamber door 5a, the second switching chamber door sensor 205 that detects the open / closed state of the second switching chamber door 6a, the R evaporator temperature sensor 40a, the F evaporator temperature sensor 40b, and the outside air. It includes a temperature sensor 37, an outside air humidity sensor 38, a control unit 206, a microcomputer 207, and a memory 208. The microcomputer 207 controls the entire refrigerator 1, and the microcomputer 207 controls the opening time of the doors 2a, 2b, 3a, 4a, 5a, 6a, the operating time of the compressor 24, the ambient temperature of the refrigerator, the ambient humidity of the refrigerator, and the like. Are grasped and stored in the built-in memory 208.

これらは所定時間毎にまとめられ、圧縮機運転時間、ドア開時間としてメモリ208に記憶される。また、マイコン207は、圧縮機運転時間、ドア開時間から算出した積算値に所定の係数をかけたものを、図15(a)(b)に示す圧縮機運転時間から算出した積算値と、ドア開時間から算出した積算値としてメモリ208に記憶する。図15(a)に示す、圧縮機運転時間から算出した積算値は、所定時間内の圧縮機運転時間が長いほど大きくなる。図15(b)に示す、ドア開時間から算出した積算値は、所定時間内のドア開時間が長いほど大きくなる。さらに、これらの積算値の合計を図15(c)に示す総積算値としてメモリ208に記憶する。 These are collected at predetermined time intervals and stored in the memory 208 as the compressor operating time and the door opening time. Further, the microcomputer 207 is obtained by multiplying the integrated value calculated from the compressor operating time and the door opening time by a predetermined coefficient, and using the integrated value calculated from the compressor operating time shown in FIGS. 15 (a) and 15 (b). It is stored in the memory 208 as an integrated value calculated from the door opening time. The integrated value calculated from the compressor operating time shown in FIG. 15A increases as the compressor operating time within a predetermined time becomes longer. The integrated value calculated from the door opening time shown in FIG. 15B increases as the door opening time within a predetermined time becomes longer. Further, the total of these integrated values is stored in the memory 208 as the total integrated value shown in FIG. 15 (c).

積算値にかける係数は、外気温度、外気湿度、ドアの大きさ、圧縮機の回転数などの状況に応じて、変更して良い。例えば、外気温度センサ37から得た外気温度が高い場合はドア開時間から算出した積算値にかける係数を大きくし、外気温度が低い場合はドア開時間から算出した積算値にかける係数を小さくする、などである。 The coefficient to be applied to the integrated value may be changed according to the conditions such as the outside air temperature, the outside air humidity, the size of the door, and the rotation speed of the compressor. For example, when the outside air temperature obtained from the outside air temperature sensor 37 is high, the coefficient applied to the integrated value calculated from the door opening time is increased, and when the outside air temperature is low, the coefficient applied to the integrated value calculated from the door opening time is decreased. , And so on.

本実施例の冷蔵庫1では、例えば24時間間隔などの所定の除霜周期が用意されている。以下では、最初の除霜周期を「第一期間」と称し、これに続く除霜周期を「第二期間」、「第三期間」、「第四期間」などと称する。 In the refrigerator 1 of this embodiment, a predetermined defrosting cycle such as a 24-hour interval is prepared. Hereinafter, the first defrosting cycle is referred to as "first period", and the subsequent defrosting cycle is referred to as "second period", "third period", "fourth period" and the like.

基本的な除霜運転のタイミングは、総積算値が第一閾値に到達したとき、もしくは総積算値が、第一閾値より小さい第二閾値に到達した除霜周期の最終時間帯、のどちらかである。つまり、基本的には除霜のタイミングは総積算値によって判断される。 The timing of the basic defrosting operation is either when the total integrated value reaches the first threshold value or the final time zone of the defrosting cycle when the total integrated value reaches the second threshold value smaller than the first threshold value. Is. That is, basically, the timing of defrosting is determined by the total integrated value.

しかし例外として、総積算値が閾値に到達しても除霜制御を実施しない期間設け、この期間を「最短除霜間隔」と称する。また、総積算値が閾値に到達していなくても除霜制御を実施する期間を設け、この期間を「最長除霜間隔」と称する。 However, as an exception, a period during which defrosting control is not performed even when the total integrated value reaches the threshold value is provided, and this period is referred to as "shortest defrosting interval". Further, a period for performing defrost control is provided even if the total integrated value does not reach the threshold value, and this period is referred to as "longest defrost interval".

図15の例では、第一期間中は総積算値が第一閾値に達しておらず、最終時間帯で第一閾値よりも小さい第二閾値にも達していないため、第一期間中には除霜運転が実施されない。図15(d)では当該期間中に除霜運転が実施されなかったことを「×」で示している。第一期間に続く第二期間では、第二期間の最終時間帯には総積算値が第二閾値にも達しないため、第二期間中には除霜運転が実施されない。一方、第三期間の最終時間帯には総積算値が第二閾値に達するため、第三期間の最終時間帯に除霜運転が実施される。 In the example of FIG. 15, since the total integrated value has not reached the first threshold value during the first period and has not reached the second threshold value smaller than the first threshold value in the final time zone, the total integrated value has not reached the second threshold value during the first period. Defrosting operation is not carried out. In FIG. 15D, “x” indicates that the defrosting operation was not performed during the period. In the second period following the first period, the defrosting operation is not performed during the second period because the total accumulated value does not reach the second threshold value in the final time zone of the second period. On the other hand, since the total integrated value reaches the second threshold value in the final time zone of the third period, the defrosting operation is carried out in the final time zone of the third period.

除霜運転が実施されると、次の期間は第一期間となり、それぞれの積算値がゼロにリセットされる。 When the defrosting operation is carried out, the next period becomes the first period, and each integrated value is reset to zero.

なお、ここで実施される除霜運転とは、単に圧縮機24を停止してラジアントヒータ21に通電することに限定されるものでなく、除霜前のプリクール運転を含んでも良い。 The defrosting operation performed here is not limited to simply stopping the compressor 24 and energizing the radiant heater 21, and may include a precooling operation before defrosting.

以上で説明した図15に示す除霜運転制御によれば、圧縮機運転時間が短い場合や、ドア開時間が短い時間など、霜の付着が少なく除霜運転の必要がないと判断できる場合は、既定の除霜間隔毎の除霜運転をスキップすることで、除霜運転でのエネルギー消費を回避し、冷蔵庫1の消費エネルギーを抑制するとともに、続く除霜周期はより小さい閾値を用いて除霜要否を判断することで、長時間除霜制御が行われないという不具合を回避することができる。 According to the defrosting operation control shown in FIG. 15 described above, when it can be determined that the defrosting operation is not necessary due to less frost adhesion, such as when the compressor operating time is short or when the door opening time is short. By skipping the defrosting operation at each predetermined defrosting interval, the energy consumption in the defrosting operation is avoided, the energy consumption of the refrigerator 1 is suppressed, and the subsequent defrosting cycle is defrosted using a smaller threshold value. By determining the necessity of frost, it is possible to avoid the problem that the defrost control is not performed for a long time.

次に図16乃至図18を用いて、他の除霜運転制御を説明する。なお、図15と重複する説明は省略するものとする。図16でも第二除霜期間中の総積算値は第二閾値を超えていないため、第二期間の最終時間帯では除霜運転は行われない。一方、第三期間の途中から総積算値が第二閾値を超えるが、第二閾値は除霜周期の最終時間帯に除霜運転を実施するかの判断に用いるものであるため、この時点では除霜運転は実施されない。その後、ドアが長時間開放されるなどした結果、総積算値が第一閾値を超えると、除霜運転を開始し、除霜運転の終了後にそれぞれの積算値がゼロにリセットされるとともに、新たに第一期間を開始する。 Next, other defrosting operation controls will be described with reference to FIGS. 16 to 18. The description that overlaps with FIG. 15 will be omitted. Also in FIG. 16, since the total integrated value during the second defrosting period does not exceed the second threshold value, the defrosting operation is not performed in the final time zone of the second period. On the other hand, the total integrated value exceeds the second threshold value from the middle of the third period, but since the second threshold value is used to determine whether to carry out the defrosting operation in the final time zone of the defrosting cycle, at this point in time. No defrosting operation is carried out. After that, when the total accumulated value exceeds the first threshold value as a result of the door being opened for a long time, the defrosting operation is started, and after the defrosting operation is completed, each integrated value is reset to zero and newly. Start the first period.

このように図16の例では、総積算値が第一閾値を超え、霜が急激に付着していると判断された時には、直ちに除霜運転を実施することで、蒸発器14の冷却性能を適宜回復させることができる。 As described above, in the example of FIG. 16, when the total integrated value exceeds the first threshold value and it is determined that frost is rapidly adhering, the defrosting operation is immediately performed to improve the cooling performance of the evaporator 14. It can be recovered as appropriate.

図17では、第一除霜期間中の最短除霜間隔が経過する前に、ドアが長時間開放されるなどした結果、最短除霜間隔中に総積算値が第一閾値を越えている。しかし、除霜運転が実施された後は、最短除霜間隔が経過するまで次の除霜運転が実施されないため、この場合は最短除霜間隔を超過したタイミングで除霜運転が実施される。 In FIG. 17, as a result of the door being opened for a long time before the shortest defrosting interval during the first defrosting period elapses, the total integrated value exceeds the first threshold value during the shortest defrosting interval. However, after the defrosting operation is carried out, the next defrosting operation is not carried out until the shortest defrosting interval elapses. Therefore, in this case, the defrosting operation is carried out at the timing when the shortest defrosting interval is exceeded.

このように図17の例では、前回の除霜運転から一定時間は、総積算値が第一閾値を超えても、除霜運転が行われない。これは除霜運転直後の、貯蔵室温度が上昇している期間中に、再び除霜運転が実施されてしまうことで、貯蔵室を冷却する時間を十分に確保できなくなることを防ぐためである。一方、最短除霜間隔を長く設定しすぎてしまうと、蒸発器に霜が付着し冷却性能が低下しても、除霜運転が実施されなくなってしまうため、貯蔵室内を十分に冷却できなくなる危険性がある。そのため、蒸発器の耐着霜性能を考慮したうえで、十分に信頼性を確保できる時間に設定する必要がある。 As described above, in the example of FIG. 17, the defrosting operation is not performed for a certain period of time from the previous defrosting operation even if the total integrated value exceeds the first threshold value. This is to prevent the storage room from being unable to secure sufficient time for cooling due to the defrosting operation being performed again during the period when the storage room temperature is rising immediately after the defrosting operation. .. On the other hand, if the shortest defrosting interval is set too long, even if frost adheres to the evaporator and the cooling performance deteriorates, the defrosting operation will not be performed, so there is a risk that the storage room cannot be sufficiently cooled. There is sex. Therefore, it is necessary to set the time to ensure sufficient reliability in consideration of the frost resistance performance of the evaporator.

図18では、第四除霜期間中の総積算値が第二積算値を超えていないが、第四期間中に積算開始からの時間が最長除霜間隔に到達しているため、最長除霜間隔に到達するタイミングで除霜運転が行われる。 In FIG. 18, the total accumulated value during the fourth defrosting period does not exceed the second integrated value, but the longest defrosting interval is reached because the time from the start of integration has reached the longest defrosting interval during the fourth period. The defrosting operation is performed when the interval is reached.

このように図18の例では、総積算値が第二閾値を超えておらず、霜があまり付着していないと判断された時でも、最長除霜間隔が経過したら除霜運転が実施される。これは貯蔵室内に保存されている食品から発生した水分により、蒸発器に霜が付着することを考慮しているためである。本実施例の冷蔵庫1では積算値の算出を圧縮機運転時間とドア開時間により行っているため、例えば貯蔵室内に野菜などの、水分を多く含む食品が保存されている場合には、ドアが開放されずに運転をしていても、食品から発生した水分を含む空気が庫内を循環するため、蒸発器へ霜が付着していく。そのため最長除霜間隔を設けることで、積算値のみでは検出できない霜の付着を考慮して、除霜運転を実施することで、蒸発器の冷却性能を回復させることができる。一方、最長除霜間隔を短く設定しすぎてしまうと、蒸発器に付着している霜が少ない場合に除霜運転が行われてしまい、除霜運転によるエネルギー消費が生じてしまうため、蒸発器の耐着霜性能を考慮したうえで、十分に信頼性を確保しつつ、長めの期間に設定することで、省エネルギー性能の向上を図る必要がある。 As described above, in the example of FIG. 18, even when it is determined that the total integrated value does not exceed the second threshold value and frost does not adhere much, the defrosting operation is performed after the longest defrosting interval has elapsed. .. This is because it is considered that frost adheres to the evaporator due to the moisture generated from the food stored in the storage chamber. In the refrigerator 1 of this embodiment, the integrated value is calculated based on the compressor operating time and the door opening time. Therefore, when food containing a large amount of water such as vegetables is stored in the storage room, the door is opened. Even if the product is operated without being opened, the air containing water generated from the food circulates in the refrigerator, so that frost adheres to the evaporator. Therefore, by providing the longest defrosting interval, the cooling performance of the evaporator can be restored by performing the defrosting operation in consideration of the adhesion of frost that cannot be detected only by the integrated value. On the other hand, if the longest defrosting interval is set too short, the defrosting operation will be performed when there is little frost adhering to the evaporator, and energy will be consumed by the defrosting operation. It is necessary to improve the energy saving performance by setting a longer period while ensuring sufficient reliability in consideration of the frost resistance performance of.

本実施例の冷蔵庫1は、切替室の設定温度帯により、最短除霜間隔および最長除霜間隔が変更される。これは貯蔵室の温度帯によって、貯蔵される食品が異なるので、食品から発生する水分量が違い、庫内を循環する空気の湿度が違うことが想定されるためである。例えば、設定温度帯が冷蔵温度帯の場合に貯蔵される食品を想定すると、野菜は水分を多く含むため、切替室から蒸発器へ戻る空気の湿度が高くなる。一方、設定温度帯が冷凍温度帯の場合は、主に貯蔵されるのは冷凍食品であるため、切替室から蒸発器へ戻る空気の湿度が低くなる。 In the refrigerator 1 of this embodiment, the shortest defrosting interval and the longest defrosting interval are changed depending on the set temperature zone of the switching chamber. This is because the food to be stored differs depending on the temperature range of the storage chamber, so it is assumed that the amount of water generated from the food differs and the humidity of the air circulating in the refrigerator differs. For example, assuming that the food is stored when the set temperature zone is the refrigerated temperature zone, the humidity of the air returning from the switching chamber to the evaporator becomes high because the vegetables contain a large amount of water. On the other hand, when the set temperature zone is the freezing temperature zone, the humidity of the air returning from the switching chamber to the evaporator is low because the frozen food is mainly stored.

蒸発器に戻る空気の湿度が高くなるほど、冷却運転中の霜の付着量が多くなる。また、貯蔵室ドアの開閉が生じると、貯蔵室内の温度が上昇し、その貯蔵室に積極的に冷気を送風することになるため、蒸発器に高湿の空気が積極的に戻ることとなり、霜の付着量がさらに多くなる。 The higher the humidity of the air returning to the evaporator, the greater the amount of frost that adheres during the cooling operation. In addition, when the storage chamber door is opened and closed, the temperature inside the storage chamber rises, and cold air is actively blown to the storage chamber, so that high-humidity air is positively returned to the evaporator. The amount of frost attached will increase further.

また、貯蔵室ドアの開閉が生じると、冷蔵庫周囲の空気が貯蔵室内に侵入する。その際に元々の貯蔵室内の温度が高いほど、侵入する空気との温度差が小さくなるため、貯蔵室内の壁面や貯蔵容器に結露が生じにくい。そのため、元々の貯蔵室内の温度が高いほど、ドアの開閉時に周囲から侵入する空気に含まれる水分が、冷却器へ到達し易くなるため、霜の付着量が多くなる。 Further, when the storage room door is opened and closed, the air around the refrigerator invades the storage room. At that time, the higher the temperature in the original storage chamber, the smaller the temperature difference from the invading air, so that dew condensation is less likely to occur on the wall surface of the storage chamber or the storage container. Therefore, the higher the temperature in the original storage chamber, the easier it is for the moisture contained in the air that invades from the surroundings when the door is opened and closed to reach the cooler, and the more the amount of frost adhered.

よって、切替室が冷蔵温度帯に設定されている場合は、切替室が冷凍温度帯に設定されている場合よりも、霜の付着量が多くなることが想定される。 Therefore, when the switching chamber is set to the refrigerating temperature zone, it is expected that the amount of frost adhered will be larger than when the switching chamber is set to the freezing temperature zone.

そのため本実施例の冷蔵庫1においては、RRモードとFFモードで比較した場合に、庫内を循環する空気の湿度が高く、ドア開の頻度が多くなると想定される、RRモードのほうが、最短除霜間隔および最長除霜間隔を短く設定している。 Therefore, in the refrigerator 1 of the present embodiment, when the RR mode and the FF mode are compared, the RR mode, which is assumed to have a high humidity of the air circulating in the refrigerator and the frequency of opening the door, is the shortest. The frost interval and the longest defrost interval are set short.

また、切替室の設定温度帯により蒸発器に付着する霜の量が異なるため、圧縮機運転時間および、ドア開時間にかけるそれぞれの係数を、切替室の設定温度帯により変更している。 Further, since the amount of frost adhering to the evaporator differs depending on the set temperature zone of the switching chamber, the respective coefficients applied to the compressor operation time and the door opening time are changed according to the set temperature zone of the switching chamber.

切替室が冷蔵温度帯に設定されている場合は、切替室が冷凍温度帯に設定されている場合よりも、霜の付着量が多くなることが想定される。 When the switching chamber is set to the refrigerating temperature zone, it is expected that the amount of frost adhered will be larger than when the switching chamber is set to the freezing temperature zone.

そのため本実施例の冷蔵庫1においては、RRモードとFFモードで比較した場合に、RRモードのほうが、圧縮機運転時間から算出する積算値にかける係数と、ドア開時間から算出する積算値にかける係数を大きくしている。 Therefore, in the refrigerator 1 of the present embodiment, when the RR mode and the FF mode are compared, the RR mode is multiplied by the coefficient to be applied to the integrated value calculated from the compressor operating time and the integrated value calculated from the door opening time. The coefficient is increased.

これにより、霜の付着量が多くなると想定される、RRモードのほうが、積算値が第一閾値、第二閾値を超えやすくなり、除霜運転が実施されやすくなっている。 As a result, in the RR mode, in which the amount of frost adhering is expected to increase, the integrated value is more likely to exceed the first threshold value and the second threshold value, and the defrosting operation is more likely to be carried out.

なお、本実施例の冷蔵庫1では圧縮機運転時間および、ドア開時間にかけるそれぞれの係数を変更しているが、これらの係数を変更せずに、切替室の設定温度帯により、第一閾値および第二閾値を変更しても良い。例えば、RRモードとFFモードで比較した場合、霜の付着量が多くなるRRモードでの、第一閾値および第二閾値を、FFモードでの第一閾値および第二閾値より小さくすることで、除霜運転が実施されやすくすることも有効である。 In the refrigerator 1 of the present embodiment, the respective coefficients for the compressor operation time and the door opening time are changed, but the first threshold value is determined by the set temperature range of the switching chamber without changing these coefficients. And the second threshold may be changed. For example, when compared in the RR mode and the FF mode, the first threshold value and the second threshold value in the RR mode in which the amount of frost adhered is large can be made smaller than the first threshold value and the second threshold value in the FF mode. It is also effective to facilitate the defrosting operation.

図19は除霜運転の実行判定を示すフローチャートである。 FIG. 19 is a flowchart showing an execution determination of the defrosting operation.

圧縮機運転時間、扉開時間の積算を開始し(S2)、切替室の運転モードを判定する(S3、S4、S5、S6)。次に、運転中のモードで積算開始からの時間が、最短除霜間隔を経過するまで冷却運転を継続する(S7、S8、S9、S10)。最短除霜間隔が経過したら、積算値が第一閾値を超えているか判断し、第一閾値を超えている場合は、霜の付着量が多いと予想できるため、除霜運転を実行する(S11、S12、S13、S14の運転中のモードでYes)。 The integration of the compressor operation time and the door opening time is started (S2), and the operation mode of the switching chamber is determined (S3, S4, S5, S6). Next, the cooling operation is continued until the shortest defrosting interval elapses for the time from the start of integration in the operating mode (S7, S8, S9, S10). After the shortest defrosting interval has elapsed, it is determined whether the integrated value exceeds the first threshold value, and if it exceeds the first threshold value, it can be expected that the amount of frost adhered is large, so the defrosting operation is executed (S11). , S12, S13, S14 in the operating mode Yes).

一方、積算値が第一閾値を超えていない場合には、除霜運転を実行する必要性が低いと判断できるため、冷却運転を継続する。 On the other hand, if the integrated value does not exceed the first threshold value, it can be determined that the necessity of executing the defrosting operation is low, so that the cooling operation is continued.

しかしながら、貯蔵されている食品が水分を多量に含んでいる場合などでは、扉の開時間が短く積算値が少なくても、庫内を循環する空気の湿度が高く、霜の量が多い可能性がある。そのため、積算値が第一閾値を超えていなくても、積算開始からの運転時間が最長除霜間隔を経過したら、除霜運転を実行する(S15、S16、S17、S18の運転中のモードでYes)。 However, if the stored food contains a large amount of water, even if the door opening time is short and the integrated value is small, the humidity of the air circulating in the refrigerator is high and the amount of frost may be large. There is. Therefore, even if the integrated value does not exceed the first threshold value, the defrosting operation is executed after the longest defrosting interval has elapsed from the start of integration (in the operating mode of S15, S16, S17, S18). Yes).

積算値が第一閾値を超えておらず、最長除霜間隔も経過していない場合には、積算値が第一閾値よりも小さい第二閾値を超えているかを基準に、除霜運転を実施するか判定する(S19、S20、S21、S22)。積算値が第二閾値を超えている場合には、霜の付着量が多いと予測できるため、当該除霜周期の最終時間帯に除霜運転を実施する(S23、S24、S25、S26)。 If the integrated value does not exceed the first threshold value and the longest defrosting interval has not elapsed, the defrosting operation is performed based on whether the integrated value exceeds the second threshold value smaller than the first threshold value. It is determined whether or not to do so (S19, S20, S21, S22). If the integrated value exceeds the second threshold value, it can be predicted that the amount of frost adhered is large, so the defrosting operation is performed during the final time zone of the defrosting cycle (S23, S24, S25, S26).

また、積算値が第二閾値を超えてから、当該除霜周期の最終時間帯に到達するまでの間に、積算値が第一閾値を超えた場合には、霜の付着量が急増したと予測できるため、除霜運転を実施する。 In addition, if the integrated value exceeds the first threshold value between the time when the integrated value exceeds the second threshold value and the time when the final time zone of the defrosting cycle is reached, the amount of frost adhered is said to have increased sharply. Since it can be predicted, a defrosting operation will be carried out.

除霜運転の終了時に積算値をゼロにリセットし、再び積算を開始する。 At the end of the defrosting operation, the integrated value is reset to zero and the integrated value is started again.

なお、図19に示すフローチャートは、冷蔵庫1の除霜運転終了から次の除霜運転開始の間に、切替室の設定温度帯が変更されていない場合のものである。切替室の設定温度帯が変更された場合、切替室温度帯変更時の特別制御に移行する。この特別制御中は第一閾値、第二閾値、最短除霜間隔、最長除霜間隔を設けず、特別制御専用の閾値および除霜周期により除霜制御を実施する。これは、貯蔵室内の温度が大きく変化し、蒸発器への霜の付着量が変化するため、モード毎に適切になるように調整された積算値の算出方法では、霜の付着量を予測することが困難となるためである。よって、切替室温度帯変更時には信頼性を向上させるために、特別制御に移行し、温度帯変更終了後の除霜制御を実施した後、図19のS1に戻る。 The flowchart shown in FIG. 19 is for a case where the set temperature zone of the switching chamber is not changed between the end of the defrosting operation of the refrigerator 1 and the start of the next defrosting operation. When the set temperature zone of the switching chamber is changed, the control shifts to the special control when the temperature zone of the switching chamber is changed. During this special control, the first threshold value, the second threshold value, the shortest defrosting interval, and the longest defrosting interval are not provided, and the defrosting control is performed by the threshold value dedicated to the special control and the defrosting cycle. This is because the temperature in the storage room changes significantly and the amount of frost attached to the evaporator changes. Therefore, the integrated value calculation method adjusted to be appropriate for each mode predicts the amount of frost attached. This is because it becomes difficult. Therefore, in order to improve reliability when the temperature zone of the switching chamber is changed, the process shifts to special control, defrost control is performed after the temperature zone change is completed, and then the process returns to S1 in FIG.

以上で説明した本実施例の構成によれば、冷蔵庫1の使用状況に合わせて除霜運転を実施するので、蒸発器への霜の付着量過多による、冷却性能の低下を抑制することができる。また、蒸発器への霜の着霜量が過少時の、不要な除霜運転による、消費電力量の悪化を抑制することができる。 According to the configuration of the present embodiment described above, since the defrosting operation is performed according to the usage condition of the refrigerator 1, it is possible to suppress the deterioration of the cooling performance due to the excessive amount of frost adhering to the evaporator. .. In addition, when the amount of frost deposited on the evaporator is too small, it is possible to suppress deterioration of power consumption due to unnecessary defrosting operation.

(実施例2)
本実施例は,操作盤と表示盤を兼ねる操作表示盤202を備えた形態例である。操作盤200,表示盤201以外は実施例1と同様である。
(Example 2)
This embodiment is an example of a form including an operation display panel 202 that also serves as an operation panel and a display panel. The same applies to the first embodiment except for the operation panel 200 and the display panel 201.

図20は実施例2に係わる冷蔵庫の正面図,図21は実施例2に係わる操作表示盤202である。 FIG. 20 is a front view of the refrigerator according to the second embodiment, and FIG. 21 is an operation display panel 202 according to the second embodiment.

本実施例では,冷蔵室ドア2aに操作表示盤202を備えており,何れのドアも開けることなく,操作できるようにしている。これにより,操作性を向上させている。一方,操作表示盤202では,実施例1の操作盤201と同様,第一切替室5のモードを切り替える際はモード切替操作部202a,第二切替室6のモードを切り替える際はモード切替操作部202bを,例えば3秒長押しとする。本実施例では,何れのドアも開けることなく,通常のキッチン作業中にモード切替操作部202a,202bに触れてしまう恐れがあるが,長押しとすることで,意図せずモードが切り替わる誤操作を抑えることができる。 In this embodiment, the refrigerating room door 2a is provided with an operation display panel 202 so that the operation can be performed without opening any of the doors. This improves operability. On the other hand, in the operation display panel 202, as in the operation panel 201 of the first embodiment, the mode switching operation unit 202a is used when switching the mode of the first switching chamber 5, and the mode switching operation unit is used when switching the mode of the second switching chamber 6. Press and hold 202b for, for example, 3 seconds. In this embodiment, there is a risk of touching the mode switching operation units 202a and 202b during normal kitchen work without opening any of the doors. It can be suppressed.

本実施例では,実施例1の図8(b)で示したモード切替中表示201a,201bを,冷蔵モードか冷凍モードかを示す表示部202c,202dで兼ねる。ただし,実施例1においてモード切替中表示が点灯する条件(図13参照)では,本実施例では表示部202c,202dが点滅することで代用する。具体的には,例えばモード切替操作部202aを長押しし,冷蔵モードの第一切替室5を冷凍モードに切り替える指示が行われると,第一切替室5が低温になるまで表示部202cの冷凍側の照明を点滅させる。これにより,少ない照明でモードの状態表示と切替中表示を示すことができ,低コスト化できると共に,ドアを開けることなく,切り替え中であることと,切り替え後のモードが何になるかを合せて確認することができる。 In this embodiment, the mode switching display 201a and 201b shown in FIG. 8B of the first embodiment are also used by the display units 202c and 202d indicating whether the refrigerating mode or the freezing mode is used. However, under the condition that the mode switching display is lit in the first embodiment (see FIG. 13), the display units 202c and 202d are substituted by blinking in the present embodiment. Specifically, for example, when the mode switching operation unit 202a is pressed and held to instruct to switch the first switching chamber 5 in the refrigerating mode to the freezing mode, the display unit 202c is frozen until the temperature of the first switching chamber 5 becomes low. Blink the side lights. As a result, it is possible to show the mode status display and switching display with less lighting, and it is possible to reduce the cost, and at the same time, it is possible to combine the fact that switching is in progress without opening the door and what the mode will be after switching. Can be confirmed.

次に,類似の効果が得られる他の形態例を示す。 Next, other morphological examples that can obtain similar effects are shown.

図22は他の形態例の操作表示盤203である。(a)は全ての照明を点灯させた状態,(b)は操作している最中の表示の一例,(c)は無操作時の表示の一例,(d)はモード切替中の表示の一例である。 FIG. 22 is an operation display panel 203 of another embodiment. (A) is a state in which all the lights are turned on, (b) is an example of a display during operation, (c) is an example of a display when no operation is performed, and (d) is a display during mode switching. This is just one example.

実施例2と同様に,操作表示盤203は冷蔵室ドア2aに設けており,何れのドアも開けることなく,操作できる。本実施例の操作表示盤203は,冷蔵庫の形状を模した図を載せており,それぞれの貯蔵室の温度設定(図中の低め,標準,高め)と,各切替室5,6のモード状態(冷凍,冷蔵)を,その模した貯蔵室内に表示させる。各貯蔵室の横に,それぞれの温度調整の操作部と,モード切替操作部203a,203bを設けている。これにより,各貯蔵室の名前が分からないユーザーでも,状態が確認し易く,また操作し易くなっている。 Similar to the second embodiment, the operation display panel 203 is provided on the refrigerating room door 2a, and can be operated without opening any of the doors. The operation display panel 203 of this embodiment has a diagram imitating the shape of a refrigerator, and the temperature setting of each storage chamber (low, standard, high in the figure) and the mode state of each switching chamber 5 and 6 are set. (Frozen, refrigerated) is displayed in the imitated storage room. Next to each storage chamber, an operation unit for temperature adjustment and mode switching operation units 203a and 203b are provided. This makes it easy for users who do not know the name of each storage room to check the status and operate it.

本実施例では,いずれかの操作部に触れると,(b)に示すように,そのときの各貯蔵室の各状態を表示するが,数秒間操作がされないと,(c)に示すように,切替室5,6の冷凍モード,冷蔵モードの状態のみ,すなわち表示部203c,204dのみを表示するようにしている。なお,これは図21に示す例でも同様である。このように切替室5,6の冷凍モード,冷蔵モードの状態を常に点灯させて表示しておくことで,ユーザーによる冷凍食品と冷蔵食品の入れ間違えを抑制できる。なお,この効果は,操作部200,と表示部201を兼ねたものに限定されるものだけではなく,例えば表示部202に,それぞれのモードの状態を示す表示を設けても同様の効果が得られる。 In this embodiment, when any operation unit is touched, each state of each storage chamber at that time is displayed as shown in (b), but if the operation is not performed for several seconds, as shown in (c). , Only the states of the freezing mode and the refrigerating mode of the switching chambers 5 and 6, that is, only the display units 203c and 204d are displayed. This also applies to the example shown in FIG. By constantly lighting and displaying the states of the freezing mode and the refrigerating mode of the switching chambers 5 and 6 in this way, it is possible to prevent the user from mistakenly inserting the frozen food and the refrigerated food. It should be noted that this effect is not limited to the one that also serves as the operation unit 200 and the display unit 201, and the same effect can be obtained even if the display unit 202 is provided with a display indicating the state of each mode, for example. Will be.

図22の例では,モード切替中表示が点灯する条件(図20参照)では,表示部203c,203dを点滅させる。例えば,モード切替操作部202aを長押しし,冷蔵モードの第一切替室5を冷凍モードに切り替える指示が行われると,第一切替室5が低温になるまで表示部203cの冷凍の文字を点滅させる。これにより,図21に示した例と同様,少ない照明でモードの状態表示と切替中表示を示すことができ,低コスト化できると共に,ドアを開けることなく,切り替え中であることと,切り替え後のモードが何になるかを合せて確認することができる。 In the example of FIG. 22, under the condition that the mode switching display is lit (see FIG. 20), the display units 203c and 203d are blinked. For example, when the mode switching operation unit 202a is pressed and held to instruct to switch the first switching chamber 5 in the refrigerating mode to the freezing mode, the freezing characters on the display unit 203c blink until the temperature of the first switching chamber 5 becomes low. Let me. As a result, as in the example shown in FIG. 21, the mode status display and the switching display can be shown with less lighting, the cost can be reduced, the switching is being performed without opening the door, and the switching is performed. You can also check what the mode will be.

以上が、本実施の形態例を示す実施例である。なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The above is an example showing the embodiment of the present embodiment. The present invention is not limited to the above-mentioned examples, and includes various modifications. For example, the above-mentioned examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to add / delete / replace a part of the configuration of the embodiment with another configuration.

1 冷蔵庫
2 冷蔵室
2a、2b 冷蔵室ドア
3 製氷室
3a 製氷室ドア
3b 製氷室容器
3c 製氷皿
4 冷凍室
4a 冷凍室ドア
4b 冷凍室容器
5 第一切替室
5a 第一切替室ドア
5b 第一切替室容器
6 第二切替室
6a 第二切替室ドア
6b 第二切替室容器
8a R蒸発器室(冷蔵用蒸発器室)
8b F蒸発器室(冷凍用蒸発器室)
9a Rファン(冷蔵用ファン)
9b Fファン(冷凍用ファン)
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室風路
11a 冷蔵室吐出口
12 冷凍室風路
12a 製氷室吐出口
12b 冷凍室吐出口
12c 冷凍室戻り口
12d 冷凍室戻り風路
14a R蒸発器(冷蔵用蒸発器)
14b F蒸発器(冷凍用蒸発器)
15a、b 冷蔵室戻り口
16 ヒンジカバー
21 ラジアントヒータ
23a Rトイ
23b Fトイ
24 発泡断熱材
25,25a、25a、25b、25c、25d、25e、25f、25g 真空断熱材
26 F排水管
27、28、29、30 断熱仕切壁
31 制御基板
32a R蒸発皿
32b F蒸発皿
34a R棚最上段
34b R棚2段目
34c R棚3段目
34d R棚最下段
35 第一間接冷却室
36 第二間接冷却室
37 製氷タンク
39 機械室
40a R蒸発器温度センサ
40b F蒸発器温度センサ
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 第一切替室温度センサ
44 第二切替室温度センサ
45 トイ温度センサ
46 外気温度センサ
47 外気湿度センサ
50a、50b 放熱器
51 ドライヤ
52 三方弁(冷媒制御手段)
53a 冷蔵用キャピラリチューブ(減圧手段)
53b 冷凍用キャピラリチューブ(減圧手段)
54b 冷蔵用気液分離器
54b 冷凍用気液分離器
55 冷媒合流部
56 逆止弁
57a、57b 熱交換部
58 圧縮機
60 第一切替室背面ヒータ
61 第一切替室下面ヒータ
62 第一切替室上面ヒータ
63 第一切替室背面ヒータ
64 ダンパヒータ
101a、101b、102a、102b ダンパ(送風制御部)
111a、111b 第一切替室吐出口
111c 第一切替室戻り口
112a、112b 第二切替室吐出口
112c 第二切替室戻り口
200 操作部
1 Refrigerator 2 Refrigerator room 2a, 2b Refrigerator room door 3 Ice making room 3a Ice making room door 3b Ice making room container 3c Ice tray 4 Freezing room 4a Freezing room door 4b Freezing room container 5 First switching room 5a First switching room door 5b First Switching room container 6 Second switching room 6a Second switching room door 6b Second switching room container 8a R Evaporator room (refrigerator room)
8b F Evaporator room (freezing evaporator room)
9a R fan (refrigerator fan)
9b F fan (freezing fan)
10 Insulation box body 10a Outer box 10b Inner box 11 Refrigerator room air passage 11a Refrigerator room air passage 12 Freezer room air passage 12a Ice making room discharge port 12b Freezer room discharge port 12c Freezer room return port 12d Freezer room return air passage 14a R Evaporator (Evaporator for refrigeration)
14b F evaporator (freezing evaporator)
15a, b Refrigerator return port 16 Hinge cover 21 Radiant heater 23a R toy 23b F toy 24 Foam insulation 25, 25a, 25a, 25b, 25c, 25d, 25e, 25f, 25g Vacuum insulation 26 F Drain pipe 27, 28 , 29, 30 Insulation partition wall 31 Control board 32a R Evaporation tray 32b F Evaporation tray 34a R Shelf top 34b R Shelf 2nd 34c R Shelf 3rd 34d R Shelf bottom 35 1st indirect cooling room 36 2nd indirect Cooling room 37 Ice making tank 39 Machine room 40a R Evaporator temperature sensor 40b F Evaporator temperature sensor 41 Refrigerator room temperature sensor 42 Freezing room temperature sensor 43 First switching room temperature sensor 44 Second switching room temperature sensor 45 Toy temperature sensor 46 Outside air Temperature sensor 47 Outside air humidity sensor 50a, 50b Radiator 51 Dryer 52 Three-way valve (refrigerant control means)
53a Capillary tube for refrigeration (decompression means)
53b Capillary tube for freezing (decompression means)
54b Air-liquid separator for refrigeration 54b Air-liquid separator for refrigeration 55 Refrigerant confluence 56 Check valve 57a, 57b Heat exchange 58 Compressor 60 First switching chamber rear heater 61 First switching chamber bottom heater 62 First switching chamber Top heater 63 First switching chamber rear heater 64 Damper heaters 101a, 101b, 102a, 102b Damper (blower control unit)
111a, 111b First switching chamber discharge port 111c First switching chamber return port 112a, 112b Second switching chamber discharge port 112c Second switching chamber return port 200 Operation unit

Claims (1)

冷蔵温度帯と冷凍温度帯に設定可能な切替室と、
前記切替室の前方に設けられた扉と、
圧縮機と冷却器を有する冷凍サイクルと、
前記冷却器に付着した霜を溶かすための除霜制御を行う制御基板と、
を備え、冷蔵庫の動作条件の変数によって、最短除霜間隔から最長除霜間隔までの範囲で自動で除霜間隔を調整する冷蔵庫において、
前記切替室が冷蔵温度帯に設定されている場合には、冷凍温度帯に設定されている場合と比べて、前記最短除霜間隔または前記最長除霜間隔を短くすること、を特徴とする冷蔵庫。
A switching room that can be set to the refrigerating temperature zone and the freezing temperature zone,
The door provided in front of the switching room and
With a refrigeration cycle with a compressor and a cooler,
A control board that controls defrosting to melt the frost adhering to the cooler,
In a refrigerator that automatically adjusts the defrosting interval in the range from the shortest defrosting interval to the longest defrosting interval according to the variable of the operating condition of the refrigerator.
When the switching chamber is set to the refrigerating temperature zone, the refrigerator is characterized in that the shortest defrosting interval or the longest defrosting interval is shortened as compared with the case where the switching chamber is set to the refrigerating temperature zone. ..
JP2019026175A 2019-02-18 2019-02-18 refrigerator Active JP7046023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019026175A JP7046023B2 (en) 2019-02-18 2019-02-18 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019026175A JP7046023B2 (en) 2019-02-18 2019-02-18 refrigerator

Publications (2)

Publication Number Publication Date
JP2020133969A JP2020133969A (en) 2020-08-31
JP7046023B2 true JP7046023B2 (en) 2022-04-01

Family

ID=72278416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019026175A Active JP7046023B2 (en) 2019-02-18 2019-02-18 refrigerator

Country Status (1)

Country Link
JP (1) JP7046023B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646178B (en) * 2020-12-17 2023-09-15 青岛海尔生物医疗股份有限公司 Defrosting control method and refrigeration equipment
CN113237275B (en) * 2021-06-02 2022-04-22 北京科技大学 Air-cooled refrigerator defrosting control system and method supporting big data continuous optimization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180788A (en) 2003-12-19 2005-07-07 Sanyo Electric Co Ltd Defrosting controller for cold storage
JP2007139296A (en) 2005-11-18 2007-06-07 Sharp Corp Refrigerator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284281A (en) * 1985-10-09 1987-04-17 松下冷機株式会社 Freezing refrigerator
JPH11304333A (en) * 1998-04-27 1999-11-05 Toshiba Corp Control method for refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180788A (en) 2003-12-19 2005-07-07 Sanyo Electric Co Ltd Defrosting controller for cold storage
JP2007139296A (en) 2005-11-18 2007-06-07 Sharp Corp Refrigerator

Also Published As

Publication number Publication date
JP2020133969A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP5017340B2 (en) refrigerator
US7762102B2 (en) Soft freeze assembly for a freezer storage compartment
JP6993993B2 (en) refrigerator
JP2003121043A (en) Refrigerator
JP2015222131A (en) refrigerator
JP7046023B2 (en) refrigerator
JP2003075050A (en) Refrigerator
JP2001082850A (en) Refrigerator
JP2009085503A (en) Refrigerator
JP6709363B2 (en) refrigerator
JP2003090667A (en) Icemaking chamber constitution for refrigerator
JP2002022335A (en) Refrigerator
JP4982537B2 (en) refrigerator
JP6985308B2 (en) refrigerator
CN111473573A (en) Refrigerator with a door
CN111473575B (en) Refrigerator with a door
JP7090198B2 (en) refrigerator
KR100678777B1 (en) Refrigerator
JP5376796B2 (en) refrigerator
JP2021046984A (en) refrigerator
JP7454458B2 (en) refrigerator
JP6963044B2 (en) refrigerator
JP2023007618A (en) refrigerator
WO2022172483A1 (en) Refrigerator
JP2003287331A (en) Refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220322

R150 Certificate of patent or registration of utility model

Ref document number: 7046023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150