JP7045059B2 - Weight booster for low-calorie foods - Google Patents

Weight booster for low-calorie foods Download PDF

Info

Publication number
JP7045059B2
JP7045059B2 JP2018076789A JP2018076789A JP7045059B2 JP 7045059 B2 JP7045059 B2 JP 7045059B2 JP 2018076789 A JP2018076789 A JP 2018076789A JP 2018076789 A JP2018076789 A JP 2018076789A JP 7045059 B2 JP7045059 B2 JP 7045059B2
Authority
JP
Japan
Prior art keywords
sorbose
test
calorie
hours
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018076789A
Other languages
Japanese (ja)
Other versions
JP2019180311A (en
Inventor
真知子 南
創太郎 平木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsutani Chemical Industries Co Ltd
Original Assignee
Matsutani Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsutani Chemical Industries Co Ltd filed Critical Matsutani Chemical Industries Co Ltd
Priority to JP2018076789A priority Critical patent/JP7045059B2/en
Publication of JP2019180311A publication Critical patent/JP2019180311A/en
Application granted granted Critical
Publication of JP7045059B2 publication Critical patent/JP7045059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、D-ソルボースからなる、吸湿しにくい低カロリー食品用の増量材に関する。 The present invention relates to a bulking material for low-calorie foods, which comprises D-sorbose and is difficult to absorb moisture.

高甘味度甘味料など少量で味を呈する素材は、使用量がごく少量となるため、他の素材(増量材)と混合して使用することが一般的である。そして、その増量材としては、デキストリンが多く用いられている(例えば、特許文献1)。 Materials that exhibit a taste in a small amount, such as high-sweetness sweeteners, are generally used in combination with other materials (bulking materials) because the amount used is very small. Dextrin is often used as the bulking material (for example, Patent Document 1).

しかし、デキストリンは、難消化性デキストリンを除き、4kcal/gであって、増量材として低カロリー食品に使用すると、その食品のカロリー値が上昇し、低カロリーの目的は達成できなくなる。また、デキストリンは、その分解度によって溶解性に違いはあるものの、単分子である単糖や塩と比較すると溶解しづらいという難点もある。 However, dextrin is 4 kcal / g except for indigestible dextrin, and when it is used for a low-calorie food as a bulking material, the calorie value of the food increases and the purpose of low calorie cannot be achieved. In addition, although dextrin has different solubility depending on the degree of decomposition, it also has a drawback that it is difficult to dissolve as compared with monosaccharides and salts which are single molecules.

そこで、カロリー値がゼロとして知られる単糖のD-アルロース(D-プシコース)を低カロリー食品用の増量材として用いることが考えられる(特許文献2)。しかし、D-アルロースは水に溶解しやすいものの、吸湿性が高く、増量材として用いた場合に固結するという難点があった。 Therefore, it is conceivable to use the monosaccharide D-allulose (D-psicose), which is known to have a calorie value of zero, as a bulking material for low-calorie foods (Patent Document 2). However, although D-allulose is easily dissolved in water, it has a high hygroscopicity and has a drawback that it solidifies when used as a bulking material.

特開平05-176717号公報Japanese Unexamined Patent Publication No. 05-176717 WO2008/059623WO2008 / 059623

本発明が解決しようとする課題は、溶解性に優れるとともに、吸湿しにくい低カロリー食品用の増量材であって、カロリー値がゼロである増量材を提供することにある。 An object to be solved by the present invention is to provide a bulking material for low-calorie foods, which has excellent solubility and is hard to absorb moisture, and has a calorie value of zero.

そこで、本発明者らは、かかる課題を解決すべく種々検討したところ、意外にも、溶解性に優れる単糖のひとつであるD-ソルボースが、ヒトに代謝されず、カロリー値がゼロであることを見出すとともに、上記課題を解決できることを見出した。 Therefore, the present inventors have made various studies to solve such a problem, and surprisingly, D-sorbose, which is one of the monosaccharides having excellent solubility, is not metabolized by humans and has a calorie value of zero. We found that we could solve the above problems.

すなわち、本発明は上記に基づき完成されたものであり、以下から構成される。
[1]D-ソルボースからなる、低カロリー食品用の増量材。
[2]カロリー値がゼロである、請求項1記載の増量材。
[3]請求項1又は2記載の増量材を含んでなる食品。
That is, the present invention has been completed based on the above, and is composed of the following.
[1] A bulking material for low-calorie foods, consisting of D-sorbose.
[2] The bulking material according to claim 1, wherein the calorie value is zero.
[3] A food containing the bulking material according to claim 1 or 2.

D-ソルボースをカロリー値ゼロの増量材として、他の素材と組み合わせることにより、食品の味質や物性の調整に有利に利用できることとなる。 By using D-sorbose as an increasing material with zero calorie value and combining it with other materials, it can be advantageously used for adjusting the taste and physical properties of foods.

10g/200mlのフラクトオリゴ糖又はD-ソルボース飲料を摂取してから14時間までの水素ガス濃度変化量の曲線下面積値(△AUC、ppm/14時間)を示す(*印は有意差があったことを示す)。The area value under the curve (ΔAUC, ppm / 14 hours) of the amount of change in hydrogen gas concentration from ingestion of 10 g / 200 ml fructooligosaccharide or D-sorbose beverage to 14 hours is shown (* mark has a significant difference). Show that). 左から順に、D-フラクトース、D-プシコース、D-マンノース、D-ソルボースのタブレット各5個ずつを37℃・相対湿度80%の恒温恒湿器で18時間保存した後の様子。From left to right, 5 tablets each of D-fructose, D-psicose, D-mannose, and D-sorbose were stored for 18 hours in a constant temperature and humidity chamber at 37 ° C and 80% relative humidity.

本発明において「低カロリー食品」とは、日本食品標準成分表(7訂)記載の通常の食品のエネルギー値(kcal)より低いもの、又は、製品表示において、「カロリーオフ」、「低カロリー」、「糖質オフ」、「糖質カット」、「糖類ゼロ」、「糖類カット」など、通常の食品よりカロリー値が低いものであると消費者の認知を促す記載があるものをいう。 In the present invention, "low-calorie food" means food having a lower energy value (kcal) of ordinary foods listed in the Standard Tables of Food Composition in Japan (7th revision), or "calorie-off" or "low-calorie" in the product label. , "Sugar off", "sugar cut", "sugar zero", "sugar cut", etc., which have a description that encourages consumers to recognize that the calorie value is lower than that of ordinary foods.

一般に、「増量材」とは、食品における使用量が少量である素材(例えば、アミノ酸、ビタミン、高甘味度甘味料など)を粉体や液体に均一に分散させるための助材をいうが、そのような素材と組み合わせずとも、それ単独で食品に「コク」や「厚み」といった、五味以外の味質や構造を与えることができるものをいう。また、その形態は固体であることを要するが、粉状か顆粒状かの別は問わない。 In general, the "bulking material" is an auxiliary material for uniformly dispersing a material (for example, amino acids, vitamins, high-sweetness sweeteners, etc.) that is used in a small amount in foods in a powder or liquid. It refers to foods that can give foods a taste and structure other than the five flavors, such as "richness" and "thickness", without being combined with such ingredients. The form must be solid, but it does not matter whether it is powdery or granular.

本発明の増量剤が適する食品形態は限定されるものではないが、本発明の増量剤は、その結晶の形状が特徴的(四から六面体様の短状結晶)であることに加え、Dーフラクトース(4kcal/g)、Dーアルロース(0kcal/g)、Dータガトース(2kcal/g)などの他のケトースに比べると水への溶解性が低いという特徴があるため、これらの特徴を有意に利用できる食品形態、例えば、卓上甘味料、ミックス粉、タブレット(打錠品)、ガム、チョコレートといった固形状食品に適する。 The food form to which the bulking agent of the present invention is suitable is not limited, but the bulking agent of the present invention has a characteristic crystal shape (four to hexahedral short crystals) and D-fructose. Compared with other ketoses such as (4 kcal / g), D-allulose (0 kcal / g), and D-tagatos (2 kcal / g), they are characterized by low solubility in water, so these characteristics can be significantly utilized. Suitable for food forms such as tabletop sweeteners, mixed powders, tablets (tablet tablets), gums, chocolates and other solid foods.

本発明において「カロリー値がゼロ」とは、ヒト代謝試験において、カロリー値が1未満のものをいう。 In the present invention, "zero calorie value" means that the calorie value is less than 1 in the human metabolism test.

これ以降、実施例をもって本発明について詳細に説明するが、本発明はこれら実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples.

<ヒトにおけるD-ソルボース摂取時の吸収および発酵利用性の評価>
(被験物質)
呼気水素ガスおよび尿中排泄率の測定には、試験試料としてD-ソルボース(株式会社希少糖生産技術研究所製、純度96.3%)を用いた。
なお、呼気水素ガス測定では、比較対照として、小腸で消化吸収されずに大腸まで到達して大腸で完全発酵されるフラクトオリゴ糖(株式会社明治フードマテリア製、「メイオリゴP(粉末)」純度95%)を用い、ブランク(空試料)は水のみの摂取とした。試験試料及びフラクトオリゴ糖は、それぞれ固形分として10gを水で200mlに定容して用いた。
また、炭水化物代謝量の測定では、比較対照として、小腸で速やかに吸収され代謝されるグルコース(キシダ化学株式会社製、「特級」)を用い、ブランク(空試料)は水のみの摂取とした。試験試料及びグルコースは、それぞれ固形分として15gを水で200mlに定容して用いた。
<Evaluation of absorption and fermentation utilization when ingesting D-sorbose in humans>
(Test substance)
D-sorbose (manufactured by Rare Sugar Production Technology Laboratory Co., Ltd., purity 96.3%) was used as a test sample for measuring the exhaled hydrogen gas and the urinary excretion rate.
In the exhaled hydrogen gas measurement, as a comparative control, fructooligosaccharide (manufactured by Meiji Food Materia Co., Ltd., "Meioligo P (powder)" with a purity of 95% that reaches the large intestine without being digested and absorbed in the small intestine and is completely fermented in the large intestine. ) Was used, and the blank (empty sample) was ingested only with water. As the test sample and fructooligosaccharide, 10 g of each as a solid content was adjusted to 200 ml with water and used.
In the measurement of carbohydrate metabolism, glucose (“special grade” manufactured by Kishida Chemical Co., Ltd.), which is rapidly absorbed and metabolized in the small intestine, was used as a comparative control, and the blank (empty sample) was taken only with water. As the test sample and glucose, 15 g of each as a solid content was adjusted to 200 ml with water and used.

(被験者)
試験は、「ヘルシンキ宣言」(1964年承認,2013年追加)の精神に則り、「臨床研究に関する倫理指針」(厚生労働省告示 平成21年4月1日施行)に従って実施した。被験者は、消化器疾患及び呼吸器疾患を有しない、公募ボランティアの健常成人男女12名で開始した。ところが、1名が自己都合により試験を中止したため解析対象から除外して残り11名を解析対象者とした。
(subject)
The test was conducted in accordance with the spirit of the "Declaration of Helsinki" (approved in 1964, added in 2013) and in accordance with the "Ethical Guidelines for Clinical Research" (Notification of the Ministry of Health, Labor and Welfare, enforced on April 1, 2009). The subjects were 12 healthy adult males and females of publicly recruited volunteers who did not have gastrointestinal and respiratory diseases. However, one person stopped the test due to personal reasons, so the test was excluded from the analysis target and the remaining 11 people were included in the analysis target.

(呼気水素ガス、尿の採集)
被験者に、上述した被験物質(D-ソルボース)入り飲料、比較対照物質(フラクトオリゴ糖)入り飲料、空飲料(水)のそれぞれの試験飲料を1週間以上の休止期をあけて、ランダムにクロスオーバーで摂取させた。試験前日はアルコールの摂取を禁止し、指定の夕食(A)を21時までに摂取した以降は、水及び茶飲料以外の飲食を禁じた。夕食(A)は、食物繊維、乳酸菌、発酵性のある糖質など、腸内細菌が発酵に利用する可能性のある物質をほとんど含まないメニュー(カレー、親子丼、牛丼、中華丼など)から選択させて提供した。
試験当日は、朝食を摂らずに試験に参加させ、体調に問題のないことを確認し、9時に空腹時呼気をコレクションバッグに採集後、被験物質を摂取させた。被験物質摂取後14時間まで1時間ごとに呼気を採集し、これと並行して48時間後まで採尿を行った。呼気採集が終了する14時間後までは、指定の昼食、夕食(B)、水のみの摂取とした。
なお、昼食は、12時に水素ガスを産生しない食品、すなわち、ツナフレーク(1缶)、ゆで卵(1個)、ベビーチーズ(2個)を摂取させ、19時以降に夕食(B)(牛丼、親子丼、中華丼など)から選択させて提供した。最後の呼気(14時間後)を採集した後から採尿終了までの飲食は、通常通りとした。
試験中(採尿終了までの48時間)は、被験物質を含まない食事や飲料を摂取し、暴飲暴食をしないよう指導した。
採尿は、被験物質摂取前に排尿しておき、被験物質摂取後48時間までの尿を、容器(住友ベークライト株式会社製、「ユリンメートP」)に採集させ、(1)0~3時間、(2)3~7時間、(3)7~24時間、(4)24~48時間、に分けて採集した。採尿量は、(1)と(2)で全量を、(3)と(4)では採尿ごとに1/50量を取って蓄尿した。
(Collection of exhaled hydrogen gas and urine)
Random crossovers of the above-mentioned test beverages containing the test substance (D-sorbose), the comparative control substance (fructooligosaccharide), and the empty beverage (water) were given to the subjects with a rest period of one week or longer. It was ingested at. The day before the test, alcohol intake was prohibited, and after eating the designated supper (A) by 21:00, eating and drinking other than water and tea beverages was prohibited. Dinner (A) is a menu that contains almost no substances that intestinal bacteria may use for fermentation, such as dietary fiber, lactic acid bacteria, and fermentable sugar (curry, oyakodon, beef bowl, Chinese bowl, etc.) I was allowed to choose from and provided.
On the day of the test, the participants participated in the test without having breakfast, confirmed that there was no problem with their physical condition, collected fasting breath in a collection bag at 9 o'clock, and then ingested the test substance. Exhaled breath was collected every hour until 14 hours after ingestion of the test substance, and in parallel with this, urine was collected up to 48 hours later. Until 14 hours after the end of breath collection, only designated lunch, supper (B), and water were ingested.
For lunch, eat foods that do not produce hydrogen gas at 12:00, that is, tuna flakes (1 can), boiled eggs (1), and baby cheese (2), and have dinner (B) (gyudon) after 19:00. , Oyakodon, Chinese bowl, etc.) Eating and drinking from the time when the last exhaled breath (14 hours later) was collected until the end of urine collection was the same as usual.
During the test (48 hours until the end of urine collection), people were instructed to eat foods and beverages that did not contain the test substance and to avoid overdrinking.
For urine collection, urinate before ingesting the test substance, and collect urine up to 48 hours after ingestion of the test substance in a container (“Urinmate P” manufactured by Sumitomo Bakelite Co., Ltd.) for (1) 0 to 3 hours, (1) The collection was divided into 2) 3 to 7 hours, (3) 7 to 24 hours, and (4) 24 to 48 hours. As for the amount of urine collected, the total amount was taken in (1) and (2), and 1/50 amount was taken for each urine collected in (3) and (4) and stored.

(炭水化物代謝量の測定)
被験者に、それぞれの試験飲料を1週間以上の休止期をあけてランダムにクロスオーバーで摂取させた。試験前日はアルコールの摂取を禁止し、指定の夕食(A)を21時までに摂取させ、それ以降は水あるいは茶飲料以外の飲食を禁じた。試験当日は、朝食を摂取せずに試験に参加させ、体調に問題のないことを確認し、9時に空腹状態にてエアロモニターAE-310S(ミナト医科学株式会社製)で呼気を測定した後、試験飲料を摂取させた。試験飲料摂取3時間後まで30分ごとに呼気の測定を行った。呼気ガス測定は被験者にマスクを装着させ、イスに座らせた状態で6分間安静に呼吸させ、1分毎に呼気中のO消費量(VO;L/min)およびCO排泄量(VCO;L/min)を測定した。また,試験飲料摂取前に排尿させ、呼気採集中の尿を容器(ユリンメートP)に採尿ごとに1/50量を取り蓄尿した。
(Measurement of carbohydrate metabolism)
Subjects were allowed to randomly ingest each test beverage at a crossover with a rest period of one week or longer. The day before the test, alcohol intake was prohibited, the designated supper (A) was ingested by 21:00, and eating and drinking other than water or tea beverages was prohibited after that. On the day of the test, participants participated in the test without eating breakfast, confirmed that there was no problem with their physical condition, and measured their breath with the Aero Monitor AE-310S (manufactured by Minato Medical Science Co., Ltd.) on an empty stomach at 9 o'clock. , The test drink was ingested. Breath measurement was performed every 30 minutes until 3 hours after ingestion of the test drink. For exhaled gas measurement, the subject was made to wear a mask and breathed quietly for 6 minutes while sitting on a chair, and O 2 consumption (VO 2 ; L / min) and CO 2 excretion during exhalation (VO 2; L / min) and CO 2 excretion (VO 2; VCO 2 ; L / min) was measured. In addition, urination was performed before ingestion of the test drink, and 1/50 of the urine concentrated in exhaled breath was collected in a container (Urinmate P) for each urine collection and stored.

(大腸発酵率の算出)
呼気水素ガス濃度は、呼気水素・メタン分析装置BGA-1000D(株式会社呼気生化学栄養代謝研究所製)を用いて測定した。ブランクである水摂取時の値を補正した各被験物質の水素ガス濃度の変化量から曲線下面積(△AUC)を求め、フラクトオリゴ糖摂取時の△AUCを100%として大腸発酵率を算出した。
(Calculation of large intestine fermentation rate)
The breath hydrogen gas concentration was measured using a breath hydrogen / methane analyzer BGA-1000D (manufactured by Breath Biochemical Nutrition and Metabolism Laboratory Co., Ltd.). The area under the curve (ΔAUC) was obtained from the amount of change in the hydrogen gas concentration of each test substance corrected for the value at the time of ingesting blank water, and the colon fermentation rate was calculated with ΔAUC at the time of ingesting fructooligosaccharide as 100%.

(尿中排泄率の算出)
尿中の被験物質は、イオン交換樹脂(アンバーライトIRA-67とアンバーライト200CTを1:1で混合)にて脱塩処理後、濃縮して20mLに定容しフィルター(孔径 0.20μm)でろ過したものを検液とし、高速液体クロマトグラフィー(以下、「HPLC」という。)を用いて測定した。内部標準物質は0.4%スクロース(キシダ化学株式会社製)を用いた。HPLCの操作条件は、カラム:MCI GEL CK08EC(三菱化学株式会社製)、検出器:示差屈折計、カラム温度:80℃、流速:0.4mL/min、注入量:10μL、移動相:HPLC用蒸留水とした。HPLC測定で得られた尿中排泄量から摂取量当たりの割合を算出し、尿中排泄率とした。
(Calculation of urinary excretion rate)
The test substance in urine is desalted with an ion exchange resin (Amberlite IRA-67 and Amberlite 200CT mixed 1: 1), concentrated to 20 mL, and filtered (pore size 0.20 μm). The filtered solution was used as a test solution, and measurement was performed using high performance liquid chromatography (hereinafter referred to as "HPLC"). As the internal standard substance, 0.4% sucrose (manufactured by Kishida Chemical Co., Ltd.) was used. The operating conditions for HPLC are: column: MCI GEL CK08EC (manufactured by Mitsubishi Chemical Corporation), detector: differential refractometer, column temperature: 80 ° C., flow velocity: 0.4 mL / min, injection volume: 10 μL, mobile phase: for HPLC. Distilled water was used. The ratio per intake was calculated from the urinary excretion amount obtained by HPLC measurement, and used as the urinary excretion rate.

(炭水化物代謝量の算出)
消費量およびCO排泄量は6分間の呼気測定のうち、4~6分(3分間)の値を平均し計算に用いた。採集した尿は改良デュマ法に対応したSUMGRAPH NC-220F(株式会社住化分析センター)にて測定し、尿中窒素排泄量(Nu:g/min)を求めた。各測定値からElwynのエネルギー計算式を用い、体重(BW;kg)あたりの炭水化物代謝量(carbohydrate energy expenditure;CEE:kcal/min)を算出した。その計算式を下に示す。
(Calculation of carbohydrate metabolism)
The O 2 consumption and CO 2 excretion were calculated by averaging the values of 4 to 6 minutes (3 minutes) in the breath measurement for 6 minutes. The collected urine was measured by SUMGRAPH NC-220F (Sumika Chemical Analysis Service Co., Ltd.) corresponding to the improved Dumas method, and the urinary nitrogen excretion amount (Nu: g / min) was determined. From each measured value, the amount of carbohydrate metabolism per body weight (BW; kg) was calculated using the energy calculation formula of Elwin (CEE: kcal / min). The calculation formula is shown below.

Figure 0007045059000001
Figure 0007045059000001

(統計解析)
以上より得られた結果は、平均値±標準偏差で示した。有意差検定は、一元配置分散分析及び対照飲料との多重比較(Dunnett)を行い、両側検定で5%未満の危険率を有意とした。統計解析ソフトは、SPSS ver.13.0Jを用いた。
(Statistical analysis)
The results obtained from the above are shown by mean ± standard deviation. For the significance test, one-way ANOVA and multiple comparison with control beverages (Dunnett) were performed, and the risk rate of less than 5% was considered significant in the two-sided test. Statistical analysis software is available in SPSS ver. 13.0J was used.

(呼気水素ガス測定による発酵分解率の評価)
フラクトオリゴ糖摂取時の呼気水素ガス濃度は、摂取後5時間まで上昇し、その後徐々に減少した。D-ソルボース摂取後の呼気水素ガス濃度は、被験物質摂取前と比較してほとんど変化はみられなかったが、7時間以降でやや上昇した。ブランクである水摂取後の呼気水素ガス濃度は摂取前とほとんど変化がなく、8時間以降でやや上昇がみられた。水素ガス濃度の変化量から求めた△AUCは、フラクトオリゴ糖摂取時243ppm/14hr、D-ソルボース摂取時58ppm/14hrであった(図1)。フラクトオリゴ糖摂取時の△AUCを100%とした場合、D-ソルボースの大腸発酵率は23.9%であった。
(Evaluation of fermentation decomposition rate by breath hydrogen gas measurement)
The exhaled hydrogen gas concentration at the time of ingestion of fructooligosaccharide increased up to 5 hours after ingestion, and then gradually decreased. The exhaled hydrogen gas concentration after ingestion of D-sorbose showed almost no change as compared with that before ingestion of the test substance, but increased slightly after 7 hours. The exhaled hydrogen gas concentration after ingestion of the blank water was almost the same as that before ingestion, and a slight increase was observed after 8 hours. The ΔAUC determined from the amount of change in hydrogen gas concentration was 243 ppm / 14 hr when fructooligosaccharide was ingested and 58 ppm / 14 hr when D-sorbose was ingested (FIG. 1). When ΔAUC at the time of ingestion of fructooligosaccharide was 100%, the colon fermentation rate of D-sorbose was 23.9%.

(尿中への排泄率の評価)
D-ソルボースの48時間分の尿中排泄率は24.9%であった。
(Evaluation of excretion rate in urine)
The urinary excretion rate of D-sorbose for 48 hours was 24.9%.

(炭水化物代謝量(CEE)の評価)
対照であるグルコース摂取時のCEEは、摂取1時間後まで水摂取時と比較して有意に上昇した。D-ソルボース摂取後のCEEは、わずかな増減はあるものの水摂取時と比較して差異は認められなかった。
(Evaluation of carbohydrate metabolism (CEE))
As a control, CEE at the time of glucose intake was significantly increased up to 1 hour after the intake as compared with the time of water intake. The CEE after ingestion of D-sorbose did not show any difference as compared with the ingestion of water, although there was a slight increase or decrease.

(考察)
D-ソルボースの発酵分解率は24%、尿中排泄率は25%であり、炭水化物代謝の測定においてエネルギーとしての利用はなかった。このことから、残り51%のD-ソルボースは小腸での吸収を逃れ、大腸における発酵も受けず便中に排泄されたと推測された。自然界に存在量が少ないD-ソルボースの体内動態については、これまでにラットを用いた試験においても報告されていない。
なお、食品表示基準においてソルボースのエネルギー値は2とされているが、これは食品添加物や甘味料として用いられてきたL-ソルボースのエネルギー値である。これは、L-ソルボースはヒトの腸内細菌によって発酵されにくいことが報告されていることによる(松田 聡ら「L-ソルボースのヒトの腸内菌叢および短鎖脂肪酸生成に及ぼす影響」ビフィズス5: 41-49(1991) )。
よって、これらのことから、ソルボースはC-5位水酸基の立体配置の違いで異なる体内動態を有することが示唆された。
(Discussion)
The fermentative decomposition rate of D-sorbose was 24%, the urinary excretion rate was 25%, and it was not used as energy in the measurement of carbohydrate metabolism. From this, it was estimated that the remaining 51% of D-sorbose escaped absorption in the small intestine and was excreted in the feces without being fermented in the large intestine. The pharmacokinetics of D-sorbose, which is abundant in nature, has not been reported in studies using rats so far.
The energy value of sorbose is set to 2 in the food labeling standard, which is the energy value of L-sorbose that has been used as a food additive or a sweetener. This is because it has been reported that L-sorbose is difficult to be fermented by human gut bacteria (Satoshi Matsuda et al. "Effects of L-sorbose on human gut flora and short-chain fatty acid production" Bifizus 5 : 41-49 (1991)).
Therefore, these results suggest that sorbose has different pharmacokinetics depending on the configuration of the C-5-position hydroxyl group.

日本食物繊維学会は、エネルギー評価方法について、(1)消化吸収され代謝されるものは4kcal/g、(2)消化吸収され代謝されずに尿中に排泄されるものは0kcal/g、(3)発酵性が明らかなものはその発酵率に2kcal/gを乗じるとしている(奥恒行ら「ルミナコイド素材のエネルギー評価結果報告」日本食物繊維学会誌15:70-77(2011))。そこで、この算出方法を用い、本試験で得られた結果(表1)をもとにD-ソルボースのエネルギー値の推定を試みたところ、2kcal/g×0.24=0.48kcal/gと推定された。 Regarding the energy evaluation method, the Japan Dietary Fiber Society has (1) 4 kcal / g for those that are digested and absorbed and metabolized, and (2) 0 kcal / g for those that are digested and absorbed and excreted in the urine without being metabolized. ) Those with clear fermentability are said to multiply the fermentation rate by 2 kcal / g (Tsuneyuki Oku et al., "Report on Energy Evaluation Results of Luminacoid Materials," Journal of the Dietary Fiber Society of Japan, 15: 70-77 (2011)). Therefore, using this calculation method, an attempt was made to estimate the energy value of D-sorbose based on the results obtained in this test (Table 1), and the result was 2 kcal / g × 0.24 = 0.48 kcal / g. Estimated.

また、D-マンノースおよびD-アロースについてもD-ソルボースと同様に評価した結果、D-マンノースの発酵分解率は93%、尿中排泄率は0%であった。D-アロースの発酵分解率は6%、尿中排泄率は67%であり、炭水化物代謝の測定よりエネルギーとしての利用はなかったため、残り27%のD-アロースは便中に排泄されたと推察された。このことから、エネルギー値はD-マンノース2kcal/g×0.93+4kcal/g×0.7=2.14kcal/g、D-アロース2kcal/g×0.06=0.12kcal/gと推定された。 As a result of evaluating D-mannose and D-allose in the same manner as D-sorbose, the fermentative decomposition rate of D-mannose was 93% and the urinary excretion rate was 0%. The fermentative decomposition rate of D-allose was 6% and the urinary excretion rate was 67%, and since it was not used as energy from the measurement of carbohydrate metabolism, it is estimated that the remaining 27% of D-allose was excreted in the stool. rice field. From this, the energy values were estimated to be D-mannose 2 kcal / g × 0.93 + 4 kcal / g × 0.7 = 2.14 kcal / g and D-allose 2 kcal / g × 0.06 = 0.12 kcal / g. ..

Figure 0007045059000002
Figure 0007045059000002

(タブレット)
D-ソルボース、D-フラクトース、D-プシコース及びD-マンノースの各糖を主成分とするタブレットを作製し、吸湿性試験を行った。
まず、上記各糖をクッキングミキサーで粉砕後、100メッシュ(目開き150μm)の篩を通して各糖試料を得た。次に、この各糖試料97gにショ糖脂肪酸エステル(リョートーシュガーエステルS-570、三菱ケミカルフーズ株式会社製)3gを混合し、その2.0gをハンドプレスSSP-10A(島津製作所)を用いて55kNで打錠することにより、直径20mmタブレットを10個ずつ得た。そのうちの各5個(3個容の容器2つにそれぞれ3個と2個を入れたもの)を70℃で一晩減圧乾燥した後、37℃相対湿度80%に設定した恒温恒湿器(SH-242、エスペック株式会社製)内に18時間静置し、目視(図2)と次式による算出値(重量増加率(%)、表2)をもって、タブレットの吸湿性を評価した。
(Tablet)
Tablets containing D-sorbose, D-fructose, D-psicose and D-mannose as main components were prepared and hygroscopic tests were performed.
First, each of the above sugars was pulverized with a cooking mixer, and then each sugar sample was obtained through a sieve of 100 mesh (opening 150 μm). Next, 3 g of sucrose fatty acid ester (Ryoto Sugar Ester S-570, manufactured by Mitsubishi Chemical Foods Co., Ltd.) was mixed with 97 g of each sugar sample, and 2.0 g of the mixture was used with a hand press SSP-10A (Shimadzu Corporation). By tableting at 55 kN, 10 tablets having a diameter of 20 mm were obtained. Five of them (three and two in two three-volume containers) were dried under reduced pressure at 70 ° C. overnight, and then set to a constant temperature and humidity chamber at 37 ° C. and a relative humidity of 80%. The tablet was allowed to stand in SH-242 (manufactured by ESPEC CORPORATION) for 18 hours, and the hygroscopicity of the tablet was evaluated visually (FIG. 2) and the value calculated by the following formula (weight increase rate (%), Table 2).

Figure 0007045059000003
Figure 0007045059000003

Figure 0007045059000004
Figure 0007045059000004

図2の写真に示すとおり、D‐フラクトース、D‐プシコース、D‐マンノースの各タブレットはいずれも全5個ともが18時間後には潮解していた。一方、D-ソルボースのタブレットは5個ともが外観に変化が全く見られなかった。
また、表2に示とおり、重量増加率(%)の算出値は、D‐ソルボースを主成分とするタブレットにおいてもっとも低かった。
以上より、本発明のD-ソルボースからなる増量材は0kcal/gであることから、吸湿しにくい低カロリー用増量材として好適であるといえる。
As shown in the photograph of FIG. 2, all five tablets of D-fructose, D-psicose, and D-mannose were deliquescent after 18 hours. On the other hand, all five D-sorbose tablets showed no change in appearance.
Further, as shown in Table 2, the calculated value of the weight increase rate (%) was the lowest in the tablet containing D-sorbose as a main component.
From the above, since the bulking material made of D-sorbose of the present invention is 0 kcal / g, it can be said that it is suitable as a bulking material for low calories that does not easily absorb moisture.

Claims (3)

D-ソルボースからなる、低カロリー打錠食品用の固体状増量材。 A solid bulking material for low-calorie tableted foods consisting of D-sorbose. カロリー値がゼロである、請求項1記載の固体状増量材。 The solid extender according to claim 1, which has a calorie value of zero. 請求項1又は2記載の固体状増量材を含んでなる打錠食品。 A lockable food product comprising the solid bulking material according to claim 1 or 2.
JP2018076789A 2018-04-12 2018-04-12 Weight booster for low-calorie foods Active JP7045059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018076789A JP7045059B2 (en) 2018-04-12 2018-04-12 Weight booster for low-calorie foods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018076789A JP7045059B2 (en) 2018-04-12 2018-04-12 Weight booster for low-calorie foods

Publications (2)

Publication Number Publication Date
JP2019180311A JP2019180311A (en) 2019-10-24
JP7045059B2 true JP7045059B2 (en) 2022-03-31

Family

ID=68337599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018076789A Active JP7045059B2 (en) 2018-04-12 2018-04-12 Weight booster for low-calorie foods

Country Status (1)

Country Link
JP (1) JP7045059B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178683A (en) 2009-02-06 2010-08-19 Matsutani Chem Ind Ltd D-sorbose-containing functional sweetener having vital function-improving action, and food and drink product obtained by using the sweetener
JP2012232908A (en) 2011-04-28 2012-11-29 Matsutani Chem Ind Ltd Crystal glucide, method for producing the same, and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157357A (en) * 1987-12-14 1989-06-20 Asahi Chem Ind Co Ltd Iron-enriched sweet food having low calorific value

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178683A (en) 2009-02-06 2010-08-19 Matsutani Chem Ind Ltd D-sorbose-containing functional sweetener having vital function-improving action, and food and drink product obtained by using the sweetener
JP2012232908A (en) 2011-04-28 2012-11-29 Matsutani Chem Ind Ltd Crystal glucide, method for producing the same, and application thereof

Also Published As

Publication number Publication date
JP2019180311A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
Grembecka Natural sweeteners in a human diet
AU2005290262B2 (en) Compositions having body fat reducing function and food and drink containing the same
Iida et al. Failure of d-psicose absorbed in the small intestine to metabolize into energy and its low large intestinal fermentability in humans
EP3296284B1 (en) Non-therapeutical use of hydroxybutyrate ester
JP6581902B2 (en) Therapeutic and / or preventive agent or method for promoting energy consumption and / or reducing energy consumption function
JP5876205B2 (en) Method for improving deficiency of sweetness of D-sorbose in sweetener comprising D-sorbose and improving sweetness persistence
Oku et al. Evaluation of the relative available energy of several dietary fiber preparations using breath hydrogen evolution in healthy humans
Binns Sucralose–all sweetness and light
WO2007010976A1 (en) Body weight gain inhibitory composition comprising d-psicose and use thereof
CN110477352A (en) A kind of mogroside of suitable diabetes patient is for sugar and preparation method thereof
JP5240810B2 (en) Use of D-psicose to suppress an increase in blood D-fructose concentration
JPH04503159A (en) Low calorie D-aldohexose monosaccharide
JP5749880B2 (en) Body fat accumulation improving agent and metabolic syndrome improving agent comprising D-tagatose as an active ingredient
CN101313744A (en) Compound sweetener composition
CN108308590A (en) A kind of edible rare sugared combinations of sweeteners low in calories
JP7045059B2 (en) Weight booster for low-calorie foods
Spencer et al. Availability of fluoride from fish protein concentrate and from sodium fluoride in man
JP6960988B2 (en) Preventive or ameliorating agent for exacerbation of insulin resistance
JP2002193797A (en) Composition for ameliorating insulin resistance
JP4025992B2 (en) Honey-containing low-calorie free-flowing liquid sweetener composition
JP2000189109A (en) Liquid food
KR101749763B1 (en) Ketone accumulation inhibitor
JP2005263706A (en) Fat metabolism promotion composition and food and beverage containing the same
Wu Sugar Substitute: The Safety and Function of Artificial and Natural Sweeteners
KR101275725B1 (en) Sweetener Composition and Method for Producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220311

R150 Certificate of patent or registration of utility model

Ref document number: 7045059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150