JP7044227B2 - Rolled material - Google Patents

Rolled material Download PDF

Info

Publication number
JP7044227B2
JP7044227B2 JP2018153413A JP2018153413A JP7044227B2 JP 7044227 B2 JP7044227 B2 JP 7044227B2 JP 2018153413 A JP2018153413 A JP 2018153413A JP 2018153413 A JP2018153413 A JP 2018153413A JP 7044227 B2 JP7044227 B2 JP 7044227B2
Authority
JP
Japan
Prior art keywords
crystal orientation
copper alloy
silver
composite foil
alloy composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018153413A
Other languages
Japanese (ja)
Other versions
JP2020026566A (en
Inventor
裕之 永安
寛 木内
幸一 都丸
創 田島
直人 熊澤
歩 矢澤
直彦 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma Prefecture
Original Assignee
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma Prefecture filed Critical Gunma Prefecture
Priority to JP2018153413A priority Critical patent/JP7044227B2/en
Publication of JP2020026566A publication Critical patent/JP2020026566A/en
Application granted granted Critical
Publication of JP7044227B2 publication Critical patent/JP7044227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Contacts (AREA)
  • Metal Rolling (AREA)

Description

本発明は、強度、導電性、表面形状に優れた銅合金複合箔の圧延材、並びに該銅合金複合箔の圧延材の製造方法に関するものであり、例えば、スイッチやコネクタのような入り-切り操作における耐摩耗性に優れた特性を求められる用途に適した銅合金複合箔の圧延材を提供するものである。 The present invention relates to a rolled material of a copper alloy composite foil having excellent strength, conductivity, and surface shape, and a method for manufacturing the rolled material of the copper alloy composite foil, for example, on / off such as a switch or a connector. It is intended to provide a rolled material of a copper alloy composite foil suitable for an application in which excellent wear resistance in operation is required.

近年、輸送機器は、電子制御化が急速に進んでおり、従来の動力電流を直接遮断する直切方式の接点から、電気信号を切断する信号切方式の接点の搭載が増加している。また、ハイブリッド車や電気自動車に搭載される大電流、高電圧機器を接続する大電流、高電圧向けコネクタに銀めっき材が使用されている。このように、車載スイッチやコネクタには母材に銅及び銅合金材を使用した銀めっき接点が使用されている。 In recent years, electronic control is rapidly advancing in transportation equipment, and the number of signal-cutting contacts that cut off electrical signals is increasing from the conventional direct-cutting contacts that directly cut off power current. In addition, silver-plated materials are used for high-current and high-voltage connectors for connecting high-current and high-voltage devices installed in hybrid vehicles and electric vehicles. As described above, silver-plated contacts using copper and a copper alloy material as the base material are used for the in-vehicle switch and the connector.

これらスイッチ及びコネクタ端子に使用される銀めっきに求められる特性は、スイッチの繰り返し入り-切り操作による耐久性、摺動による膜の摩耗が少なく、削れにくいことである。 The characteristics required for silver plating used for these switches and connector terminals are durability due to repeated on-off operation of the switch, less wear of the film due to sliding, and resistance to scraping.

従来から銅合金複合箔として銀めっきを施した銅合金複合箔が製品化されているが、表面に凹凸があるため局所的な電気伝導度がばらついたり、耐摩耗性が低いなどが課題となっていた(例えば特許文献1や非特許文献1)。 Conventionally, silver-plated copper alloy composite foils have been commercialized as copper alloy composite foils, but problems such as local electrical conductivity variations and low wear resistance due to uneven surfaces have become issues. (For example, Patent Document 1 and Non-Patent Document 1).

特開2006-155899号公報Japanese Unexamined Patent Publication No. 2006-155899 「銀めっき膜の結晶配向制御に関する研究」2016年3月 宮澤寛"Study on Crystal Orientation Control of Silver Plated Film" March 2016 Hiroshi Miyazawa

本発明は上記近年の要望に鑑み、課題を解決すべく鋭意研究を行った結果なされたものであり、耐摩耗性に優れた高耐摩耗性と高導電性を併せ持つ銅合金複合箔の圧延材並びに圧延材の製造方法を提供するものである。 The present invention has been made as a result of diligent research to solve the above-mentioned demands in recent years, and is a rolled material of a copper alloy composite foil having excellent wear resistance and high wear resistance and high conductivity. In addition, it provides a method for manufacturing this rolled material .

本発明の基本的な考え方は、次のとおりである。即ち、銅合金複合箔の表面に導電性と耐摩耗性を併せ持つ銀の平滑層を圧延により施すことにより、耐摩耗性に優れた銅合金複合箔の圧延材を製造する方法及びこの方法を用いて作製した銅合金複合箔の圧延材を提供することである。 The basic idea of the present invention is as follows. That is, a method for producing a rolled material of a copper alloy composite foil having excellent wear resistance by rolling a silver smooth layer having both conductivity and abrasion resistance on the surface of the copper alloy composite foil, and this method are used. The present invention provides a rolled material of a copper alloy composite foil produced in the above-mentioned method.

本発明は、銅合金板の少なくとも片方の表面に銀の平滑層を設けた銅合金複合箔の圧延材であり、X線回折法による前記銀の平滑層表面の(220)結晶配向の強度と(111)結晶配向の強度との合計を100としたとき、(200)結晶配向の強度が34以上100以下であり且つ(111)結晶配向の強度を100としたとき、(220)結晶配向の強度が21.3以上10以下である銅合金複合箔の圧延材である。ここで結晶配向の強度とは、X線の回折強度ということもある。 The present invention is a rolled material of a copper alloy composite foil provided with a silver smooth layer on at least one surface of a copper alloy plate, and the strength of (220) crystal orientation of the silver smooth layer surface by X-ray diffractometry. When the total of (111) the intensity of crystal orientation is 100, (200) the intensity of crystal orientation is 34 or more and 100 or less , and (111) the intensity of crystal orientation is 100 , (220) crystal orientation. It is a rolled material of a copper alloy composite foil having a strength of 21.3 or more and 110 or less. Here, the intensity of crystal orientation may be the diffraction intensity of X-rays.

この発明の作用は、硬度が比較的低い(200)結晶配向の銀と硬度が比較的高い(111)結晶配向及び(220)結晶配向の銀の平滑層と、を設けることにより、柔軟性と硬度を兼ね備えた耐摩耗性の高い銅合金複合箔の圧延材である。また、比較的硬度が高い(111)結晶配向に対し、より硬度が高い(220)結晶配向の割合を増やすことにより耐摩耗性を高めることである。 The action of the present invention is flexible by providing (200) crystal-oriented silver having a relatively low hardness and (111) crystal-oriented and (220) crystal-oriented silver smooth layers having a relatively high hardness. It is a rolled material of a copper alloy composite foil with high wear resistance that has both hardness and hardness. Further, the wear resistance is enhanced by increasing the ratio of the crystal orientation having a higher hardness (220) to the crystal orientation having a relatively high hardness (111).

この第二の発明は銅合金板の少なくとも片方の表面にめっきにより銀の層を施す銀めっき工程と、
この銀めっき工程により作成した銅合金複合箔を圧延する圧延工程とを含む銅合金複合箔の圧延材の製造方法であって、
前記圧延工程後の銅合金複合箔の圧延材平滑層表面の銀がX線回折法において (220)結晶配向の強度と(111)結晶配向の強度との合計を100としたとき、(200)結晶配向の強度が34以上100以下であり、且つ(111)結晶配向の強度を100としたとき、(220)結晶配向の強度が21.3以上110以下となるように圧延して成る銅合金複合箔の圧延材の製造方法である
This second invention comprises a silver plating step of applying a silver layer by plating to at least one surface of a copper alloy plate.
It is a method of manufacturing a rolled material of a copper alloy composite foil including a rolling step of rolling a copper alloy composite foil produced by this silver plating step.
When the silver on the surface of the smooth layer of the rolled material of the copper alloy composite foil after the rolling step is 100 in the X-ray diffractometry, the sum of the strength of (220) crystal orientation and the strength of (111) crystal orientation is (200). ) Copper formed by rolling so that the strength of crystal orientation is 34 or more and 100 or less, and (111) the strength of crystal orientation is 100, and (220) the strength of crystal orientation is 21.3 or more and 110 or less. This is a method for manufacturing a rolled material of an alloy composite foil .

この発明の作用は、銅合金板とめっきの圧延率の割合を略1に制御した圧延工程により、銀めっきを施す際に発現しやすい結晶の配向である(111)結晶配向を圧延し再結晶化することにより、X線回折法による銀の(200)結晶配向の強度を選択的に高めて(111)結晶配向と(220)結晶配向の強度の合計を100としたとき、(200)結晶配向の強度を34以上100以下の範囲内で圧延前に比べ高くし、且つ比較的硬度が高い(111)結晶配向に対しより硬度が高い(220)結晶配向の割合を増やすことにより耐摩耗性に優れた銅合金複合箔の圧延材を製造することである。ここで銅合金板の圧延率に対する銀めっきの圧延率は、(銀めっきの圧延率)/(銅合金板の圧延率)から算出できる。また、ここで圧延率の割合の略1とは、0.98以上1.04以下の割合を示す。 The action of the present invention is the orientation of crystals that are likely to occur when silver plating is performed by a rolling process in which the ratio of the rolling ratio between the copper alloy plate and the silver plating layer is controlled to approximately 1. (111) Crystal orientation. When the intensity of (200) crystal orientation of silver by X-ray diffractometry is selectively increased by rolling and recrystallization, and the total of (111) crystal orientation and (220) crystal orientation intensity is set to 100 , (200) To increase the strength of crystal orientation in the range of 34 or more and 100 or less as compared with that before rolling, and to increase the ratio of (220) crystal orientation having higher hardness to (111) crystal orientation having relatively high hardness. This is to produce a rolled material of a copper alloy composite foil having excellent wear resistance. Here, the rolling ratio of silver plating with respect to the rolling ratio of the copper alloy plate can be calculated from (rolling ratio of silver plating) / (rolling ratio of copper alloy plate). Further, here, about 1 of the rolling ratio ratio means a ratio of 0.98 or more and 1.04 or less.

本発明によれば、耐摩耗性に優れた高耐摩耗性と高導電性とを併せ持つ銅合金複合箔の圧延材であり、この銅合金複合箔の圧延材を製造することができる。 According to the present invention, it is a rolled material of a copper alloy composite foil having both high wear resistance and high conductivity having excellent wear resistance, and a rolled material of this copper alloy composite foil can be manufactured.

X線回折装置により測定した本発明の銅合金複合箔の圧延材のX線回折結果である。It is the X-ray diffraction result of the rolled material of the copper alloy composite foil of this invention measured by the X-ray diffractometer. X線回折装置により測定した従来の銅合金複合箔のX線回折結果である。It is the X-ray diffraction result of the conventional copper alloy composite foil measured by the X-ray diffractometer. 本発明により作製した銅合金複合箔の圧延材の摺動による耐摩耗性試験の結果(摺動距離に対する動摩擦係数)の図である。It is a figure of the result (dynamic friction coefficient with respect to the sliding distance) of the wear resistance test by sliding of the rolled material of the copper alloy composite foil produced by this invention. 従来の銅合金複合箔の摺動による耐摩耗性試験の結果(摺動距離に対する動摩擦係数)の図である。It is a figure of the result (dynamic friction coefficient with respect to a sliding distance) of the wear resistance test by sliding of the conventional copper alloy composite foil. 本発明を説明するために実施した、実施例と比較例の結果を示す表である。It is a table which shows the result of an Example and a comparative example carried out for demonstrating the present invention.

以下、本発明の銅合金複合箔の圧延材についてより詳細に説明する。本発明の銅合金複合箔の圧延材は、銅合金板の少なくとも片方の表面に銀めっきを施す。この銀めっきの方法としては、特に限定されないが、アルカリ性シアン化銀めっき浴、アルカリ性非シアン浴を利用できる。また、密着不良の改善のため、銀ストライクめっきを施すこともできる。さらに、より密着性が良くなるニッケル浴によりニッケルめっきを銀めっきの前に施すこともできる。銀めっきの結晶配向は、X線回折装置により測定できる。この銀めっきの結晶配向は、(111)結晶配向と(220)結晶配向の強度の合計を100としたとき(200)結晶配向の強度が50以下であると好ましい。また、(111)結晶配向の強度を100としたとき(220)結晶配向の強度が20以下である銅合金複合箔であると好ましい。また、この銀めっきの結晶配向は、(111)結晶配向と(220)結晶配向の強度の合計を100としたとき(200)結晶配向の強度が10以上50以下であるとより好ましく、20以上50未満であると更に好ましい。この銀めっきの結晶配向は、(111)結晶配向と(220)結晶配向の強度の合計を100としたとき(200)結晶配向の強度が50より高くても利用できるが、この後の圧延工程により、この(200)結晶配向の強度が66よりも高くなる場合がある。
また、この銀めっきの結晶配向は、(111)結晶配向の強度を100としたとき(220)結晶配向の強度が20以下であると好ましく、3以上18以下であるとより好ましく、5以上16以下であると更に好ましい。(111)結晶配向の強度を100としたとき(220)結晶配向の強度が20より高いと圧延工程において適切な結晶が生じない場合がある。
Hereinafter, the rolled material of the copper alloy composite foil of the present invention will be described in more detail. In the rolled material of the copper alloy composite foil of the present invention, at least one surface of the copper alloy plate is silver-plated. The silver plating method is not particularly limited, but an alkaline cyanide silver plating bath and an alkaline non-cyanide bath can be used. In addition, silver strike plating can be applied to improve poor adhesion. Further, nickel plating can be applied before silver plating by a nickel bath having better adhesion. The crystal orientation of silver plating can be measured by an X-ray diffractometer. The crystal orientation of this silver plating is preferably such that the strength of (200) crystal orientation is 50 or less when the sum of the strength of (111) crystal orientation and (220) crystal orientation is 100. Further, it is preferable that the copper alloy composite foil has (111) a crystal orientation strength of 100 or less and (220) a crystal orientation strength of 20 or less. Further, the crystal orientation of this silver plating is more preferably 20 or more and 50 or less when the total of (111) crystal orientation and (220) crystal orientation strength is 100. It is more preferably less than 50. The crystal orientation of this silver plating can be used even if the strength of (200) crystal orientation is higher than 50 when the sum of the strengths of (111) crystal orientation and (220) crystal orientation is 100. Therefore , the intensity of this (200) crystal orientation may be higher than 66.
Further, the crystal orientation of this silver plating is preferably (111) when the intensity of crystal orientation is 100, (220) the intensity of crystal orientation is preferably 20 or less, more preferably 3 or more and 18 or less, and 5 or more 16 The following is more preferable. (111) When the intensity of crystal orientation is 100, (220) If the intensity of crystal orientation is higher than 20, appropriate crystals may not be produced in the rolling process.

この銀めっきを施した銅合金複合箔に圧延処理することにより、耐摩耗性に優れた銅合金複合箔の圧延材を効果的に得ることができる。この圧延した銅合金複合箔の圧延材の銀の結晶の配向は、X線回折装置により測定できる。この銅合金複合箔の圧延材の銀の結晶は、(111)結晶配向と(220)結晶配向の強度の合計を100としたとき(200)結晶配向の強度が34以上100以下であると好ましく、(111)結晶配向と(220)結晶配向の強度の合計を100としたとき(200)結晶配向の強度が38以上80以下であるとより好ましく、(111)結晶配向と(220)結晶配向の強度の合計を100としたとき(200)結晶配向の強度が40以上70以下であると更に好ましい。(200)結晶配向の強度が(111)結晶配向と(220)結晶配向の強度の合計を100としたとき34より低いと銀の耐摩耗性が劣る場合が有り、100より高いとやはり銀の摩耗量が増える場合がある。この銅合金複合箔の圧延材の銀の(111)結晶配向と(220)結晶配向と、の割合については、(111)結晶配向100に対し(220)結晶配向が21.3以上120以下であることが好ましく、(111)結晶配向の強度100に対し(220)結晶配向の強度が21.3以上100以下であることがより好ましく、最も好ましくは、(111)結晶配向の強度100に対し(220)結晶配向の強度が21.3以上80以下であることが好ましい。非特許文献1によると、銀の(111)結晶配向の硬度はビッカース硬度で約131、(220)結晶配向の硬度はビッカース硬度で約135、(200)結晶配向の硬度はビッカース硬度で約82であるため、ここで示した結晶配向の割合により、表面硬度を任意に設定することができる。 By rolling the silver-plated copper alloy composite foil, it is possible to effectively obtain a rolled material of the copper alloy composite foil having excellent wear resistance. The orientation of silver crystals in the rolled material of this rolled copper alloy composite foil can be measured by an X-ray diffractometer. The silver crystals of the rolled material of this copper alloy composite foil are said to have (200) crystal orientation strength of 34 or more and 100 or less when the total strength of (111) crystal orientation and (220) crystal orientation is 100. Preferably, when the sum of the strengths of (111) crystal orientation and (220) crystal orientation is 100, it is more preferable that the strength of (200) crystal orientation is 38 or more and 80 or less, and (111) crystal orientation and (220). When the total strength with the crystal orientation is 100, (200) the strength of the crystal orientation is more preferably 40 or more and 70 or less. When the strength of (200) crystal orientation is lower than 34 when the sum of the strengths of (111) crystal orientation and (220) crystal orientation is 100, the wear resistance of silver may be inferior, and when it is higher than 100, silver is also used. The amount of wear may increase. Regarding the ratio of the silver (111) crystal orientation and (220) crystal orientation of the rolled material of this copper alloy composite foil, the (220) crystal orientation is 21.3 or more and 120 or less with respect to the (111) crystal orientation 100. It is more preferable that the strength of (111) crystal orientation is 100 and the strength of (220) crystal orientation is 21.3 or more and 100 or less, and most preferably the strength of (111) crystal orientation is 100. On the other hand, (220) the intensity of crystal orientation is preferably 21.3 or more and 80 or less. According to Non-Patent Document 1, the hardness of (111) crystal orientation of silver is about 131 in Vickers hardness, the hardness of (220) crystal orientation is about 135 in Vickers hardness, and the hardness of (200) crystal orientation is about 82 in Vickers hardness. Therefore, the surface hardness can be arbitrarily set by the ratio of the crystal orientation shown here.

(111)結晶配向、(200)結晶配向及び(220)結晶配向の有無や割合は、それぞれX線回折装置によるこの銅合金複合箔のX線回折測定により得ることができる。(111)結晶配向は、回折角2θで37°(°は、度と記すこともある)~39°付近に得られ、(200)結晶配向は43°~46°付近に得られ、(220)結晶配向は63°~66°付近に認めることができる。それぞれの結晶配向のX線回折強度は、得られたX線回折のピーク強度やそれぞれの回折角領域のX線回折ピーク付近の強度の積分値より求めることができる。 The presence / absence and ratio of (111) crystal orientation, (200) crystal orientation, and (220) crystal orientation can be obtained by X-ray diffraction measurement of the copper alloy composite foil by an X-ray diffractometer, respectively. (111) Crystal orientation is obtained in the vicinity of 37 ° (° is sometimes referred to as degree) to 39 ° at a diffraction angle of 2θ, and (200) Crystal orientation is obtained in the vicinity of 43 ° to 46 °, (220). ) Crystal orientation can be observed in the vicinity of 63 ° to 66 °. The X-ray diffraction intensity of each crystal orientation can be obtained from the integrated value of the peak intensity of the obtained X-ray diffraction and the intensity near the X-ray diffraction peak in each diffraction angle region.

この発明の銅合金複合箔の圧延材において、耐摩耗性が高くなる理由については現時点では定かではないが、非特許文献1によると111結晶配向の銀めっきの表面硬さがビッカース硬度で約131、200結晶配向の銀めっきの表面硬さがビッカース硬度で約82、220結晶配向の銀めっきの表面硬さがビッカース硬度で約135であることから、比較的硬い111結晶配向と比較的柔らかい200結晶配向の割合及びこの3種の結晶配向において最も硬い220結晶配向の割合が高くなることが耐摩耗性の向上に寄与していると考えている。 The reason why the rolled material of the copper alloy composite foil of the present invention has high wear resistance is not clear at present, but according to Non-Patent Document 1, ( 111 ) the surface hardness of the crystal-oriented silver plating is the Vickers hardness. About 131, ( 200 ) The surface hardness of the crystal-oriented silver plating is about 82 in Vickers hardness, and ( 220 ) The surface hardness of the crystal-oriented silver plating is about 135 in Vickers hardness, so it is relatively hard ( 111). ) Crystal orientation and relatively soft ( 200 ) Crystal orientation ratio and the hardest ( 220 ) crystal orientation ratio among these three types of crystal orientation are considered to contribute to the improvement of wear resistance. ..

銅合金板に銀めっきを施した後の銅合金複合箔の圧延工程について説明する。銅合金複合箔に直接接する第一の圧延ロール、第一の圧延ロールに回転と圧延のための応力を伝える中間ロール、中間ロールに回転と圧延のための応力を与えるバックロールなどの各ロールを用いることが好ましい。これらロール形状は、圧延前の0.3mm厚の銅合金複合箔の厚みを75%程度の厚みまで圧延する場合には、第一の圧延ロールの直径として40mmから50mm、中間ロールの直径として90~120mm、バックロールとして250mm~350mm程度であると好ましく圧延でき、銅合金複合箔の圧延材の銀の結晶配向が好ましい割合となる。第一の圧延ロールの硬さについては、ロックウェル硬度(HRCと記す場合もある。)で55から70で好ましく圧延することができる。圧延の方向を制御するため、延ばしたい方向に引張応力を加えながら圧延することもできる。 The rolling process of the copper alloy composite foil after silver plating the copper alloy plate will be described. Each roll such as the first rolling roll that is in direct contact with the copper alloy composite foil, the intermediate roll that transmits the stress for rotation and rolling to the first rolling roll, and the back roll that applies the stress for rotation and rolling to the intermediate roll. It is preferable to use it. These roll shapes are 40 mm to 50 mm as the diameter of the first rolling roll and 90 as the diameter of the intermediate roll when the thickness of the copper alloy composite foil of 0.3 mm thickness before rolling is rolled to a thickness of about 75%. When it is about 120 mm and the back roll is about 250 mm to 350 mm, it can be preferably rolled, and the silver crystal orientation of the rolled material of the copper alloy composite foil is a preferable ratio. The hardness of the first rolling roll is preferably 55 to 70 in Rockwell hardness (sometimes referred to as HRC). In order to control the rolling direction, it is possible to roll while applying tensile stress in the desired stretching direction.

銀めっきの前にニッケルめっきを施す場合は、ニッケルめっきのバラツキにより圧延後銅合金複合箔の圧延材の銀めっきの結晶配向の割合が制御できなくなる。ニッケルめっきを銀めっきの前に施す場合には、ニッケルめっきが厚くなる場所を切断し、その後圧延することで、銀めっきの結晶配向を好ましく整えることができる。銅合金複合箔の両端に電極を配置するとこの銅合金複合箔の両端の一部を切断し圧延工程により連続的に圧延できるため、好ましい。めっき層を除いた銅合金の圧延率に対しめっき層の圧延率が98%以上1.04%以下のほぼ1となると銀めっきの結晶配向の割合が好ましくなるWhen nickel plating is applied before silver plating, the ratio of crystal orientation of silver plating in the rolled material of the rolled copper alloy composite foil after rolling cannot be controlled due to the variation in nickel plating. When the nickel plating is applied before the silver plating, the crystal orientation of the silver plating can be preferably adjusted by cutting the place where the nickel plating becomes thick and then rolling the nickel plating. Placing electrodes at both ends of the copper alloy composite foil is preferable because a part of both ends of the copper alloy composite foil can be cut and continuously rolled by the rolling process. When the rolling ratio of the silver plating layer is approximately 1 of 98 % or more and 1.04 % or less with respect to the rolling ratio of the copper alloy excluding the plating layer, the ratio of the crystal orientation of the silver plating is preferable .

なお、本発明は、上記構成に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変更することができる。 The present invention is not limited to the above configuration, and various modifications can be made without departing from the gist of the present invention.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は、下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

「実施例1~3」及び「比較例1~3」
<実験装置>
X線回折装置 株式会社島津製作所製 XRD-6000
摺動式摩耗試験装置 新東科学株式会社 HHS-2000 圧子:鋼球
走査型電子顕微鏡 日本電子株式会社 JSM-IT500HR
エネルギー分散型分析装置 Thermo Fisher Scientific 株式会社 NORAN System7
"Examples 1 to 3" and "Comparative examples 1 to 3"
<Experimental equipment>
X-ray diffractometer XRD-6000 manufactured by Shimadzu Corporation
Sliding wear test device Shinto Kagaku Co., Ltd. HHS-2000 Indenter: Steel ball scanning electron microscope JEOL Ltd. JSM-IT500HR
Energy Dispersive Analyzer Thermo Fisher Scientific Co., Ltd. NORAN System7

(実施例1)
本発明の結晶配向となるように調整した銅合金複合箔の圧延材を作製した。こ銅合金複合箔の圧延材の銀めっき面をX線回折装置により測定した。測定結果の一部を図1に示す。このときの結晶配向は、(111)結晶配向の強度と(220)結晶配向の強度の合計100に対し、(200)結晶配向の強度が42.6だった。また、(111)結晶配向の強度100に対する(220)結晶配向の強度は、52.5だった。この試料に対し、摺動式摩耗試験装置により1N(ニュートンと示すこともある)の荷重をかけて摩耗試験を行った結果を図3に示す。摩耗試験の結果、摺動距離に対する摩擦係数にバラツキの少ない良好な結果が得られた。また、1000回の往復摩耗試験後の試験部及び未実施部の成分分析を行った結果、1000回の往復摩耗試験を行った試験部の銀の含有率は96.70%であり、同一表面の試験を行っていない未実施部の銀の含有率は97.63%だった。これらから算出したこの試験による銀の含有量の低下率は0.95%であり、良好な結果だった。スイッチの荷重を0.1N、接触面積を10倍とした場合、往復摺動回数1000回×試験荷重10倍×接触面積10倍÷銀の低下率(%)としたときに算出されるこの銅合金複合箔の圧延材の耐久性は、10.5万回と算出され、基準値である5万回を上回った。
(Example 1)
A rolled material of a copper alloy composite foil adjusted to have the crystal orientation of the present invention was produced. The silver-plated surface of the rolled material of this copper alloy composite foil was measured by an X-ray diffractometer. Figure 1 shows a part of the measurement results. As for the crystal orientation at this time, the strength of (200) crystal orientation was 42.6 with respect to the total of 100 of (111) strength of crystal orientation and (220) strength of crystal orientation. Further, the intensity of (220) crystal orientation with respect to the intensity of (111) crystal orientation 100 was 52.5. FIG. 3 shows the results of performing a wear test on this sample by applying a load of 1N (sometimes referred to as Newton) to this sample using a sliding wear test device. As a result of the wear test, good results were obtained with little variation in the coefficient of friction with respect to the sliding distance. Further, as a result of component analysis of the test part and the unimplemented part after 1000 times of reciprocating wear test, the silver content of the test part after 1000 times of reciprocating wear test was 96.70%, and the same surface. The silver content of the untested part was 97.63%. The reduction rate of the silver content by this test calculated from these was 0.95%, which was a good result. When the load of the switch is 0.1N and the contact area is 10 times, this copper is calculated when the number of reciprocating slides is 1000 times x test load 10 times x contact area 10 times ÷ silver reduction rate (%). The durability of the rolled material of the alloy composite foil was calculated to be 105,000 times, which exceeded the standard value of 50,000 times.

(実施例2)
本発明の結晶配向となるように調整した銅合金複合箔の圧延材を作製した。この銅合金複合箔の銀めっき面の結晶配向は、(111)結晶配向の強度と(220)結晶配向の強度の合計100に対し、(200)結晶配向の強度が100だった。また、(111)結晶配向の強度100に対する(220)結晶配向の強度は、25だった。この試料に対し、摺動式摩耗試験装置により1N(ニュートンと示すこともある)の荷重をかけて摩耗試験を行った結果、摺動距離に対する摩擦係数にバラツキの少ない良好な結果が得られた。また、1000回の往復摩耗試験後の試験部及び未実施部の成分分析を行った結果、1000回の往復摩耗試験を行った試験部の銀の含有率は96.0%であり、同一表面の摩耗試験を行っていない箇所の銀の含有率は97.53%だった。これらから算出したこの試験による銀の含有量の低下率は1.57%であり、良好な結果だった。スイッチの荷重を0.1N、接触面積を10倍とした場合、往復摺動回数1000回×試験荷重10倍×接触面積10倍÷銀の低下率(%)としたとき算出されるこの銅合金複合箔の耐久性は、6.3万回と算出され、基準値である5万回を上回った。
(Example 2)
A rolled material of a copper alloy composite foil adjusted to have the crystal orientation of the present invention was produced. The crystal orientation of the silver-plated surface of this copper alloy composite foil was 100 for the total of (111) the strength of the crystal orientation and (220) the strength of the crystal orientation, whereas the strength of the (200) crystal orientation was 100. Further, the intensity of (220) crystal orientation with respect to the intensity of (111) crystal orientation 100 was 25. As a result of performing a wear test on this sample by applying a load of 1N (sometimes referred to as Newton) with a sliding wear tester, good results with little variation in the coefficient of friction with respect to the sliding distance were obtained. .. Further, as a result of component analysis of the test part and the unimplemented part after 1000 times of reciprocating wear test, the silver content of the test part after 1000 times of reciprocating wear test was 96.0%, and the same surface. The silver content in the areas not subjected to the wear test was 97.53%. The reduction rate of the silver content by this test calculated from these was 1.57%, which was a good result. When the load of the switch is 0.1N and the contact area is 10 times, this copper alloy is calculated when the number of reciprocating slides is 1000 times x test load 10 times x contact area 10 times ÷ silver reduction rate (%). The durability of the composite foil was calculated to be 63,000 times, which exceeded the standard value of 50,000 times.

(実施例3)
本発明の結晶配向となるように調整した銅合金複合箔の圧延材を作製した。この銅合金複合箔の圧延材は、銅合金板と銀めっきの間にニッケルめっきを施した。こ銅合金複合箔の圧延材をX線回折装置により測定した。この銅合金複合箔の圧延材の銀めっき面の結晶配向は、(111)結晶配向の強度と(220)結晶配向の強度の合計100に対し、(200)結晶配向の強度が68だった。また、(111)結晶配向の強度100に対する(220)結晶配向の強度は、21.3だった。この試料に対し、摺動式摩耗試験装置により1Nの荷重をかけて摩耗試験を行った結果、摺動距離に対する摩擦係数にバラツキの少ない良好な結果が得られた。また、1000回の往復摩耗試験後の試験部及び未実施部の成分分析を行った結果、1000回の往復摩耗試験を行った試験部の銀の含有率は、97.05%であり、同一表面の摩耗試験を行っていない箇所の銀の含有率は、97.13%だった。これらから算出したこの試験による銀の含有量の低下率は0.08%であり、良好な結果だった。スイッチの荷重を0.1N、接触面積を10倍とした場合、往復摺動回数1000回×試験荷重10倍×接触面積10倍÷銀の低下率(%)としたとき算出されるこの銅合金複合箔の耐久性は、125万回と算出され、基準値である5万回を上回った。
(Example 3)
A rolled material of a copper alloy composite foil adjusted to have the crystal orientation of the present invention was produced. The rolled material of this copper alloy composite foil was nickel-plated between the copper alloy plate and the silver plating. The rolled material of this copper alloy composite foil was measured by an X-ray diffractometer. The crystal orientation of the silver-plated surface of the rolled material of this copper alloy composite foil was (200) the strength of the crystal orientation was 68, while the total of (111) the strength of the crystal orientation and (220) the strength of the crystal orientation was 100. .. Further, the intensity of (220) crystal orientation with respect to the intensity of (111) crystal orientation 100 was 21.3. As a result of applying a load of 1N to this sample with a sliding wear tester and performing a wear test, good results with little variation in the coefficient of friction with respect to the sliding distance were obtained. Further, as a result of component analysis of the test part and the unimplemented part after 1000 times of reciprocating wear test, the silver content of the test part after 1000 times of reciprocating wear test was 97.05%, which is the same. The silver content at the site where the surface wear test was not performed was 97.13%. The reduction rate of the silver content by this test calculated from these was 0.08%, which was a good result. When the load of the switch is 0.1N and the contact area is 10 times, this copper alloy is calculated when the number of reciprocating slides is 1000 times x test load 10 times x contact area 10 times ÷ silver reduction rate (%). The durability of the composite foil was calculated to be 1.25 million times, which exceeded the standard value of 50,000 times.

(実施例4)
本発明の結晶配向となるように調整した銅合金複合箔の圧延材を作製した。この銅合金複合箔をX線回折装置により測定した。この銅合金複合箔の銀めっき面の結晶配向は、(111)結晶配向の強度と(220)結晶配向の強度の合計100に対し、(200)結晶配向の強度が34だった。また、(111)結晶配向の強度100に対する(220)結晶配向の強度は、110だった。この試料に対し、摺動式摩耗試験装置により1Nの荷重をかけて摩耗試験を行った結果、摺動距離に対する摩擦係数にバラツキの少ない良好な結果が得られた。また、1000回の往復摩耗試験後の試験部及び未実施部の成分分析を行った結果、1000回の往復摩耗試験を行った箇所の銀の含有率は96.10%であり、同一表面の試験を行っていない箇所の銀の含有率は97.42%だった。これらから算出したこの試験による銀の含有量の低下率は1.35%であり、良好な結果だった。スイッチの荷重を0.1N、接触面積を10倍とした場合、往復摺動回数1000回×試験荷重10倍×接触面積10倍÷銀の低下率(%)としたとき算出されるこの銅合金複合箔の耐久性は、7.4万回と算出され、基準値である5万回を上回った。
(Example 4)
A rolled material of a copper alloy composite foil adjusted to have the crystal orientation of the present invention was produced. This copper alloy composite foil was measured by an X-ray diffractometer. As for the crystal orientation of the silver-plated surface of this copper alloy composite foil, the strength of (200) crystal orientation was 34, while the total of (111) strength of crystal orientation and (220) strength of crystal orientation was 100. Further, the intensity of (220) crystal orientation with respect to the intensity of (111) crystal orientation 100 was 110. As a result of applying a load of 1N to this sample with a sliding wear tester and performing a wear test, good results with little variation in the coefficient of friction with respect to the sliding distance were obtained. In addition, as a result of component analysis of the test part and the unimplemented part after 1000 times of reciprocating wear test, the silver content of the part where 1000 times of reciprocating wear test was performed was 96.10%, and the same surface. The silver content in the untested area was 97.42%. The rate of decrease in silver content calculated from these was 1.35%, which was a good result. When the load of the switch is 0.1N and the contact area is 10 times, this copper alloy is calculated when the number of reciprocating slides is 1000 times x test load 10 times x contact area 10 times ÷ silver reduction rate (%). The durability of the composite foil was calculated to be 74,000 times, which exceeded the standard value of 50,000 times.

(比較例1)
銅合金複合箔を作製した。この銅合金複合箔に対し、このときの銅合金複合箔の銀めっき面の結晶配向は、(111)結晶配向の強度と(220)結晶配向の強度の合計を100としたとき、(200)結晶配向の強度は21.9だった。また、(111)結晶配向の強度100に対する(220)結晶配向の強度は、6.7だった。この銅合金複合箔のX線回折の結果を図2に示す。この試料に対し、摺動式摩耗試験装置により1N(ニュートンと示すこともある)の荷重をかけて摩耗試験を行った結果を図4に示す。摩耗試験の結果、摺動距離に対する摩擦係数にバラツキが多い結果となった。また、1000回の往復摩耗試験後の試験部及び未実施部の成分分析を行った結果、1000回の往復摩耗試験を行った箇所の銀の含有率は94.7%であり、同一表面の試験を行っていない箇所の銀の含有率は97.32%だった。これらから算出したこの試験による銀の含有量の低下率は2.7%だった。スイッチの荷重を0.1N、接触面積を10倍とした場合、往復摺動回数1000回×試験荷重10倍×接触面積10倍÷銀の低下率(%)とした場合に算出されるこの銅合金複合箔の耐久性は、3.7万回と算出され、基準値である5万回を下回った。
(Comparative Example 1)
A copper alloy composite foil was produced. With respect to this copper alloy composite foil, the crystal orientation of the silver-plated surface of the copper alloy composite foil at this time is (200) when the sum of the strength of (111) crystal orientation and the strength of (220) crystal orientation is 100. ) The intensity of crystal orientation was 21.9. Further, the intensity of (220) crystal orientation with respect to the intensity of (111) crystal orientation 100 was 6.7. The result of X-ray diffraction of this copper alloy composite foil is shown in FIG. FIG. 4 shows the results of performing a wear test on this sample by applying a load of 1N (sometimes referred to as Newton) to this sample using a sliding wear test device. As a result of the wear test, the coefficient of friction with respect to the sliding distance varied widely. Further, as a result of component analysis of the test part and the unimplemented part after 1000 times of reciprocating wear test, the silver content of the part where 1000 times of reciprocating wear test was performed was 94.7%, and the same surface. The silver content in the untested area was 97.32%. The rate of decrease in silver content in this test calculated from these was 2.7%. When the load of the switch is 0.1N and the contact area is 10 times, this copper is calculated when the number of reciprocating slides is 1000 times x test load 10 times x contact area 10 times ÷ silver reduction rate (%). The durability of the alloy composite foil was calculated to be 37,000 times, which was below the standard value of 50,000 times.

(比較例2)
銅合金複合箔を作製した。この銅合金複合箔に対し、X線回折法による銀めっき面の結晶配向の分析を行った。この銀めっき面の結晶配向は、(111)結晶配向の強度と(220)結晶配向の強度の合計を100としたとき、(200)結晶配向の強度は120だった。また、(111)結晶配向の強度100に対する(220)結晶配向の強度は15だった。この試料に対し、摺動式摩耗試験装置により1Nの荷重をかけて摩耗試験を行った結果、摺動距離に対する摩擦係数にバラツキが多い結果となった。また、1000回の往復摩耗試験後の試験部及び未実施部の成分分析を行った結果、1000回の往復摩耗試験を行った箇所の銀の含有率は93.5%であり、同一表面の試験を行っていない箇所の銀の含有率は97.27%だった。これらから算出したこの試験による銀の含有量の低下率は3.88%だった。スイッチの荷重を0.1N、接触面積を10倍とした場合、往復摺動回数1000回×試験荷重10倍×接触面積10倍÷銀の低下率(%)としたとき算出されるこの銅合金複合箔の耐久性は、2.6万回と算出され、基準値である5万回を下回った。
(Comparative Example 2)
A copper alloy composite foil was produced. For this copper alloy composite foil, the crystal orientation of the silver-plated surface was analyzed by the X-ray diffraction method. The crystal orientation of the silver-plated surface was 120 when the sum of the strength of (111) crystal orientation and the strength of (220) crystal orientation was 100. Further, the intensity of (220) crystal orientation was 15 with respect to the intensity of (111) crystal orientation 100. As a result of performing a wear test on this sample by applying a load of 1N with a sliding wear test device, the result was that the coefficient of friction with respect to the sliding distance varied widely. In addition, as a result of component analysis of the test part and the unimplemented part after 1000 times of reciprocating wear test, the silver content of the part where 1000 times of reciprocating wear test was performed was 93.5%, and the same surface. The silver content in the untested area was 97.27%. The rate of decrease in silver content in this test calculated from these was 3.88%. When the load of the switch is 0.1N and the contact area is 10 times, this copper alloy is calculated when the number of reciprocating slides is 1000 times x test load 10 times x contact area 10 times ÷ silver reduction rate (%). The durability of the composite foil was calculated to be 26,000 times, which was below the standard value of 50,000 times.

(実施例5)
(圧延前の銅合金複合箔として比較例1の銅合金複合箔を圧延して実施例1に用いた銅合金複合箔の圧延材を製造する方法)
銅合金板の表面にめっきにより銀の層を施す銀めっき工程と、この銀めっき工程により作成した銅合金複合箔を圧延する圧延工程とを行い、銅合金複合箔の圧延材を作製した。銀めっき工程によりめっきした銀のX線回折法による(200)結晶配向の強度は、(220)結晶配向の強度と(111)結晶配向の強度の合計を100としたとき21.9であり、(220)結晶配向の強度が(111)結晶配向の強度を100としたとき6.7だった。
((圧延前のさ)-(圧延後のさ))×100/(圧延前のさ)で算出する圧延工程による銅合金複合箔の圧延率は、銅合金板が23.4%だった。また、この圧延工程による銀めっきの圧延率は24.3%であり、この結晶配向の銅合金複合箔をこの圧延工程により圧延する際、銅合金板の圧延率に対する銀めっきの圧延率は1.0だった。
この圧延した銅合金複合箔のX線回折法により得られた (111)結晶配向の強度と(220)結晶配向の強度の合計100に対する(200)結晶配向の強度は42.6だった。また、(111)結晶配向の強度100に対する(220)結晶配向の強度は52.5だった。この銅合金複合箔の圧延材は、実施例1に用いた銅合金複合箔の圧延材であり、実施例1に示したように良好な結果であった。
(Example 5)
(A method of rolling a copper alloy composite foil of Comparative Example 1 as a copper alloy composite foil before rolling to produce a rolled material of the copper alloy composite foil used in Example 1).
A silver plating step of applying a silver layer to the surface of the copper alloy plate by plating and a rolling step of rolling the copper alloy composite foil produced by this silver plating step were performed to prepare a rolled material of the copper alloy composite foil . The intensity of (200) crystal orientation by the X-ray diffraction method of silver plated by the silver plating step is 21.9 when the sum of the intensity of (220) crystal orientation and the intensity of (111) crystal orientation is 100. The intensity of (220) crystal orientation was 6.7 when the intensity of (111) crystal orientation was 100.
The rolling ratio of the copper alloy composite foil by the rolling process calculated by (( thickness before rolling)-( thickness after rolling)) x 100 / ( thickness before rolling) is 23.4% for the copper alloy plate. was. Further, the rolling ratio of silver plating by this rolling process is 24.3%, and when the copper alloy composite foil having this crystal orientation is rolled by this rolling process, the rolling ratio of silver plating to the rolling ratio of the copper alloy plate is 1. It was 0.04 .
The strength of (200) crystal orientation was 42.6 with respect to the total of (111) strength of crystal orientation and (220) strength of crystal orientation obtained by the X-ray diffraction method of the rolled copper alloy composite foil. Further, the intensity of (220) crystal orientation was 52.5 with respect to the intensity of (111) crystal orientation 100. The rolled material of the copper alloy composite foil was the rolled material of the copper alloy composite foil used in Example 1, and the results were good as shown in Example 1.

(実施例6)
(圧延前のニッケルめっき有り銅合金複合箔を圧延して実施例3の銅合金複合箔の圧延材を製造する方法)
銅合金板の表面にめっきによりニッケルめっきと銀の層を施す銀めっき工程と、この銀めっき工程により作成した銅合金複合箔を圧延する圧延工程とを行い、銅合金複合箔の圧延材を作製した
銀めっき工程によりめっきした銀のX線回折法による (200)結晶配向の強度は(220)結晶配向の強度と(111)結晶配向の強度の合計を100としたとき48であり、(220)結晶配向の強度は(111)結晶配向の強度を100としたとき14だった。
((圧延前の厚さ)-(圧延後の厚さ))×100/(圧延前の厚さ)で算出する圧延工程による銅合金複合箔の圧延率は、銅合金板が20.2%だった。また、銀めっきの圧延工程による圧延率は19.8%だった。この結晶配向の銅合金複合箔を当該圧延工程により圧延する際、銅合金板の圧延率に対する銀めっきの圧延率は0.98だった。
この圧延した銅合金複合箔のX線回折法により得られた 111結晶配向の強度と、(220結晶配向の強度の合計100に対し、200結晶配向の強度は68だった。また、111結晶配向の強度100に対する220結晶配向の強度は、21.3だった。
この銅合金複合箔の圧延材は、実施例3に用いた銅合金複合箔の圧延材であり、実施例3に示したように良好な結果であった。
(Example 6)
(Method of rolling a copper alloy composite foil with nickel plating before rolling to produce a rolled material of the copper alloy composite foil of Example 3)
A silver plating process in which nickel plating and a silver layer are applied to the surface of a copper alloy plate by plating and a rolling process in which the copper alloy composite foil produced by this silver plating process is rolled are performed to prepare a rolled material of the copper alloy composite foil. I did .
The intensity of (200) crystal orientation by the X-ray diffraction method of silver plated by the silver plating step is 48 when the total of (220) crystal orientation intensity and (111) crystal orientation intensity is 100, and (220). The crystal orientation intensity was (111) 14 when the crystal orientation intensity was 100.
The rolling ratio of the copper alloy composite foil by the rolling process calculated by ((thickness before rolling)-(thickness after rolling)) x 100 / (thickness before rolling) is 20.2% for the copper alloy plate. was. The rolling ratio of the silver-plated rolling process was 19.8%. When the copper alloy composite foil having this crystal orientation was rolled by the rolling process, the rolling ratio of silver plating to the rolling ratio of the copper alloy plate was 0.98.
The strength of ( 200 ) crystal orientation was 68, while the total strength of ( 111 ) crystal orientation and ( 220 ) crystal orientation obtained by the X-ray diffraction method of the rolled copper alloy composite foil was 100. Further, the intensity of ( 220 ) crystal orientation with respect to the intensity of ( 111 ) crystal orientation 100 was 21.3.
The rolled material of this copper alloy composite foil was the rolled material of the copper alloy composite foil used in Example 3, and the results were good as shown in Example 3.

(比較例3)
(圧延前の銅合金複合箔として比較例1の銅合金複合箔を圧延して比較例2の圧延材を作製する方法。)
銅合金板の表面にめっきにより銀の層を施す銀めっき工程と、この銀めっき工程により作成した銅合金複合箔を圧延する圧延工程とを行った。
銀めっき工程によりめっきした銀のX線回折法による(200)結晶配向の強度が(220)結晶配向の強度と(111)結晶配向の強度の合計を100としたとき21.9であり、(220)結晶配向の強度が(111)結晶配向の強度を100としたとき6.7だった。
((圧延前の厚さ)-(圧延後の厚さ))×100/(圧延前の厚さ)で算出する圧延工程による銅合金複合箔の圧延率は、銅合金板が23.4%だった。また、銀めっきの圧延工程による圧延率は36.2%であり、この結晶配向の銅合金複合箔をこの圧延工程により圧延する際、銅合金板の圧延率に対する銀めっきの圧延率は1.54だった。
この圧延した銅合金複合箔のX線回折法により得られた銀めっきの(111)結晶配向の強度と(220)結晶配向の強度の合計100に対し、(200)結晶配向の強度は120だった。また、(111)結晶配向の強度100に対する(220)結晶配向の強度は、15だった。
この圧延前の銅合金複合箔と圧延した後の銅合金複合箔のそれぞれの試料に対し、摺動式摩耗試験装置により1N(ニュートンと示すこともある)の荷重をかけて摩耗試験を行ったところ、比較例1(圧延前)並びに比較例2(圧延後)に示した結果が得られた。
(Comparative Example 3)
(A method of rolling a copper alloy composite foil of Comparative Example 1 as a copper alloy composite foil before rolling to produce a rolled material of Comparative Example 2.)
A silver plating step of applying a silver layer to the surface of the copper alloy plate by plating and a rolling step of rolling the copper alloy composite foil produced by this silver plating step were performed.
The intensity of (200) crystal orientation by the X-ray diffraction method of silver plated by the silver plating step is 21.9 when the sum of the intensity of (220) crystal orientation and the intensity of (111) crystal orientation is 100. The intensity of (220) crystal orientation was 6.7 when the intensity of (111) crystal orientation was 100.
The rolling ratio of the copper alloy composite foil by the rolling process calculated by ((thickness before rolling)-(thickness after rolling)) x 100 / (thickness before rolling) is 23.4% for the copper alloy plate. was. The rolling ratio of the silver plating in the rolling process is 36.2%, and when the copper alloy composite foil having this crystal orientation is rolled by this rolling process, the rolling ratio of silver plating to the rolling ratio of the copper alloy plate is 1. It was 54.
The strength of (200) crystal orientation was 120, while the total strength of (111) crystal orientation and (220) crystal orientation of silver plating obtained by the X-ray diffraction method of this rolled copper alloy composite foil was 100. rice field. Further, the intensity of (220) crystal orientation with respect to the intensity of (111) crystal orientation 100 was 15.
A wear test was performed on each sample of the copper alloy composite foil before rolling and the copper alloy composite foil after rolling by applying a load of 1N (sometimes referred to as Newton) by a sliding wear tester. However, the results shown in Comparative Example 1 (before rolling) and Comparative Example 2 (after rolling) were obtained.

これら実施例及び比較例をまとめた一覧を図5に示す。 A list summarizing these examples and comparative examples is shown in FIG.

Claims (2)

銅合金板の少なくとも片方の表面に銀の平滑層を設けた銅合金複合箔の圧延材であり、X線回折法による前記銀の平滑層表面の(220)結晶配向の強度と(111)結晶配向の強度との合計を100としたとき、(200)結晶配向の強度が34以上100以下であり且つ(111)結晶配向の強度を100としたとき、(220)結晶配向の強度が21.3以上10以下である銅合金複合箔の圧延材
A rolled material of a copper alloy composite foil in which a silver smooth layer is provided on at least one surface of a copper alloy plate, and the strength of (220) crystal orientation and (111) crystals on the surface of the silver smooth layer by X-ray diffractometry. When the total with the strength of the orientation is 100, (200) the strength of the crystal orientation is 34 or more and 100 or less , and (111) the strength of the crystal orientation is 100, the strength of the (220) crystal orientation is 21 . .3 or more and 110 or less . Rolled material of copper alloy composite foil.
銅合金板の少なくとも片方の表面にめっきにより銀の層を施す銀めっき工程と、
該銀めっき工程により作成した銅合金複合箔を圧延する圧延工程とを含む銅合金複合箔の圧延材の製造方法であって、
前記圧延工程後の銅合金複合箔の圧延材平滑層表面の銀がX線回折法において (220)結晶配向の強度と(111)結晶配向の強度との合計を100としたとき、(200)結晶配向の強度が34以上100以下であり、且つ(111)結晶配向の強度を100としたとき、(220)結晶配向の強度が21.3以上110以下となるように圧延して成る銅合金複合箔の圧延材製造方法
A silver plating process in which a silver layer is applied by plating on at least one surface of a copper alloy plate, and
A method for producing a rolled material of a copper alloy composite foil , which comprises a rolling step of rolling a copper alloy composite foil produced by the silver plating step.
When the silver on the surface of the smooth layer of the rolled material of the copper alloy composite foil after the rolling step is 100 in the X-ray diffractometry, the sum of the strength of (220) crystal orientation and the strength of (111) crystal orientation is (200). ) Copper formed by rolling so that the strength of crystal orientation is 34 or more and 100 or less, and (111) the strength of crystal orientation is 100, and (220) the strength of crystal orientation is 21.3 or more and 110 or less. A method for manufacturing a rolled material of an alloy composite foil.
JP2018153413A 2018-08-17 2018-08-17 Rolled material Active JP7044227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018153413A JP7044227B2 (en) 2018-08-17 2018-08-17 Rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018153413A JP7044227B2 (en) 2018-08-17 2018-08-17 Rolled material

Publications (2)

Publication Number Publication Date
JP2020026566A JP2020026566A (en) 2020-02-20
JP7044227B2 true JP7044227B2 (en) 2022-03-30

Family

ID=69619615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018153413A Active JP7044227B2 (en) 2018-08-17 2018-08-17 Rolled material

Country Status (1)

Country Link
JP (1) JP7044227B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117203375A (en) * 2022-03-30 2023-12-08 古河电气工业株式会社 Electric contact material, and contact, terminal and connector using the same
WO2023189419A1 (en) * 2022-03-30 2023-10-05 古河電気工業株式会社 Electrical contact material, and contact, terminal and connector using same
US20240321474A1 (en) * 2022-03-30 2024-09-26 Furukawa Electric Co., Ltd. Electrical contact material, and contact, terminal and connector made using this

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076127A (en) 2011-09-30 2013-04-25 Dowa Metaltech Kk Silver plating material and production method therefor
JP2016145413A (en) 2015-01-30 2016-08-12 Dowaメタルテック株式会社 Silver plating material and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920127B1 (en) * 1970-06-26 1974-05-22
JPS4933833A (en) * 1972-07-29 1974-03-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076127A (en) 2011-09-30 2013-04-25 Dowa Metaltech Kk Silver plating material and production method therefor
JP2016145413A (en) 2015-01-30 2016-08-12 Dowaメタルテック株式会社 Silver plating material and method for producing the same

Also Published As

Publication number Publication date
JP2020026566A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
JP7044227B2 (en) Rolled material
JP2021017646A (en) Rolled material
US10829862B2 (en) Tin-plated product and method for producing same
CN101573767B (en) Conductive electric wire and insulating electric wire
CN102667989B (en) Silver-clad composite material, its manufacture method and movable contact component for movable contact component
US9646739B2 (en) Method for producing silver-plated product
EP2695733A1 (en) Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
CN107923058B (en) Sn-plated material and method for producing same
JP5077479B1 (en) Contacts and electronic parts using the same
JP2008095186A (en) Copper-based deposited alloy board for contact material and process for producing the same
WO2016178305A1 (en) Sn plating material and method for producing same
JP7350307B2 (en) Ag-graphene composite plating film metal terminal and its manufacturing method
TWI588273B (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
JP2020041210A (en) Highly-durable silver-coated hoop material
CN102439797B (en) Composition for manufacturing contacts, and contact and connector using same
KR20140111665A (en) Copper alloy and copper alloy wire
KR101855811B1 (en) Copper foil and methods of use
WO2014112619A1 (en) Copper foil, anode for lithium ion battery, and lithium ion secondary battery
JP5522771B2 (en) Sheet metal punching method
JP5339995B2 (en) Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
JP2008088477A (en) Reflow-sn-plated copper alloy material having excellent whisker resistance
CN109155208B (en) Coating material for electrical contacts and method for producing said coating material
JP2002025353A (en) Flex resistant flat cable
JP6543138B2 (en) Sn plated material and method of manufacturing the same
KR20160007650A (en) Silver coating material and method for manufacturing same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220303

R150 Certificate of patent or registration of utility model

Ref document number: 7044227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150