JP7041024B2 - Combined heat source heat pump device - Google Patents

Combined heat source heat pump device Download PDF

Info

Publication number
JP7041024B2
JP7041024B2 JP2018148085A JP2018148085A JP7041024B2 JP 7041024 B2 JP7041024 B2 JP 7041024B2 JP 2018148085 A JP2018148085 A JP 2018148085A JP 2018148085 A JP2018148085 A JP 2018148085A JP 7041024 B2 JP7041024 B2 JP 7041024B2
Authority
JP
Japan
Prior art keywords
power source
compressor
switching
auxiliary power
main power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018148085A
Other languages
Japanese (ja)
Other versions
JP2020024058A (en
Inventor
大弥 下司
隆志 眞柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2018148085A priority Critical patent/JP7041024B2/en
Publication of JP2020024058A publication Critical patent/JP2020024058A/en
Application granted granted Critical
Publication of JP7041024B2 publication Critical patent/JP7041024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主動力源/補助動力源の切り換えを行う複合熱源ヒートポンプ装置に関するものである。 The present invention relates to a combined heat source heat pump device that switches between a main power source and an auxiliary power source.

従来この種の複合熱源ヒートポンプ装置においては、熱媒と熱交換する第1ヒートポンプ回路と、外気と熱交換する空気熱交換器を有する第2ヒートポンプ回路とを備え、外気温度と所定の切換温度との比較により、何れか一方のヒートポンプ回路の圧縮機を主動力源とし、他方のヒートポンプ回路の圧縮機を補助動力源として切り換えて駆動制御するようにして、主動力源の圧縮機と補助動力源の圧縮機の両方を駆動させて運転を行ったり、補助動力源の圧縮機の駆動を停止させた状態で主動力源の圧縮機のみを駆動させて運転を行ったりするものがあった。(例えば、特許文献1参照。) Conventionally, in this type of combined heat source heat pump device, a first heat pump circuit that exchanges heat with a heat medium and a second heat pump circuit having an air heat exchanger that exchanges heat with outside air are provided, and the outside air temperature and a predetermined switching temperature are set. By comparison, the compressor of one of the heat pump circuits is used as the main power source, and the compressor of the other heat pump circuit is used as the auxiliary power source for drive control. Some of them drive both of the compressors of the main power source to operate, or drive only the compressor of the main power source with the drive of the compressor of the auxiliary power source stopped. (See, for example, Patent Document 1.)

特開2016-40500号公報Japanese Unexamined Patent Publication No. 2016-40500

ところで、この従来のものでは、補助動力源の圧縮機の駆動を停止させた状態で主動力源の圧縮機のみを駆動させて運転を行う場合、運転中において、外気温度が所定の切換温度を超えるように変化することによって、主動力源/補助動力源の切り換えが発生することがあり、それまで主動力源として駆動していた圧縮機は補助動力源に設定され停止し、それまで補助動力源として駆動を停止していた圧縮機は主動力源に設定され駆動を開始することになる。 By the way, in this conventional case, when the operation is performed by driving only the compressor of the main power source while the drive of the compressor of the auxiliary power source is stopped, the outside air temperature changes to a predetermined switching temperature during the operation. By changing to exceed, switching between the main power source and the auxiliary power source may occur, and the compressor that was driven as the main power source until then is set to the auxiliary power source and stops, and the auxiliary power is stopped until then. The compressor, which has stopped driving as a source, is set as the main power source and starts driving.

上記のように、主動力源の圧縮機のみを駆動させて運転を行っているときに、主動力源/補助動力源の切り換えが発生する状況としては、主動力源の圧縮機のみを駆動させて暖房運転を行っているときに、外気温度が上昇することで主動力源/補助動力源の切り換えが発生する場合と、主動力源の圧縮機のみを駆動させて暖房運転を行っているときに、外気温度が低下することで主動力源/補助動力源の切り換えが発生する場合と、主動力源の圧縮機のみを駆動させて冷房運転を行っているときに、外気温度が上昇することで主動力源/補助動力源の切り換えが発生する場合と、主動力源の圧縮機のみを駆動させて冷房運転を行っているときに、外気温度が低下することで主動力源/補助動力源の切り換えが発生する場合との4つのパターンがあり、主動力源/補助動力源切り換え後の主動力源の駆動開始タイミングと補助動力源の駆動停止タイミングを、前記4つのパターン全てで同一の制御としてしまうと、場合によっては、主動力源/補助動力源の切り換え時に、生成される温水または冷水の温度が大きく変動してしまい、安定した運転を行えず快適性を損なうおそれがあった。 As described above, when the operation is performed by driving only the compressor of the main power source, the situation where the switching between the main power source and the auxiliary power source occurs is that only the compressor of the main power source is driven. When switching between the main power source and the auxiliary power source occurs due to the rise in the outside air temperature during the heating operation, and when the heating operation is performed by driving only the compressor of the main power source. In addition, the outside air temperature rises when the main power source / auxiliary power source is switched due to the decrease in the outside air temperature, and when only the compressor of the main power source is driven for cooling operation. When switching between the main power source and the auxiliary power source occurs, and when the cooling operation is performed by driving only the compressor of the main power source, the outside air temperature drops and the main power source / auxiliary power source is used. There are four patterns with the case where switching occurs, and the drive start timing of the main power source and the drive stop timing of the auxiliary power source after switching between the main power source and the auxiliary power source are controlled in the same manner in all the four patterns. In some cases, the temperature of the hot water or cold water generated when switching between the main power source and the auxiliary power source fluctuates greatly, and there is a risk that stable operation cannot be performed and comfort is impaired.

本発明は上記課題を解決するために、請求項1では、第1圧縮機、第1負荷側熱交換器、第1膨張弁、及び、外気とは別の所定の熱源と熱交換可能な第1熱源側熱交換器を備えた第1ヒートポンプ回路と、第2圧縮機、第2負荷側熱交換器、第2膨張弁、及び、外気と熱交換可能な第2熱源側熱交換器を備えた第2ヒートポンプ回路と、前記第1負荷側熱交換器、前記第2負荷側熱交換器、負荷端末を備え、温水または冷水が循環する負荷側循環回路と、外気温度を検出する外気温度検出手段と、動作を制御する制御装置と、を有し、 前記制御装置は、前記負荷端末に温水または冷水が供給される運転時において、前記外気温度検出手段の検出した前記外気温度が所定の切換温度より高いか低いかに応じて、前記第1圧縮機および前記第2圧縮機のうちいずれを主動力源としいずれを補助動力源とするかを切り換える複合熱源ヒートポンプ装置において、前記主動力源のみが駆動しての前記運転時に、前記制御装置は、前記外気温度検出手段により検出される外気温度が、負荷が増加する方向に変化し前記所定の切換温度に達したことに基づき、前記主動力源と前記補助動力源とを切り換えた場合に、切換後の前記主動力源の駆動を開始させると共に、切換後の前記補助動力源の駆動を停止させるにあたり、第1所定時間の間、切換後の前記主動力源および切換後の前記補助動力源の双方の駆動がオーバーラップするように制御した後、切換後の前記補助動力源の駆動を停止させるように制御し、前記主動力源のみが駆動しての前記運転時に、前記制御装置は、前記外気温度検出手段により検出される外気温度が、負荷が減少する方向に変化し前記所定の切換温度に達したことに基づき、前記主動力源と前記補助動力源とを切り換えた場合には、切換後の前記主動力源の駆動を開始させると共に、切換後の前記補助動力源の駆動を停止させるにあたり、前記第1所定時間より短い第2所定時間の間、切換後の前記主動力源および切換後の前記補助動力源の双方の駆動がオーバーラップするように制御した後に切換後の前記補助動力源の駆動を停止させるように制御するものとした。
In order to solve the above problems, the present invention has the first aspect that heat exchange is possible with a first compressor, a first load side heat exchanger, a first expansion valve, and a predetermined heat source other than the outside air. It is equipped with a first heat pump circuit equipped with one heat source side heat exchanger, a second compressor, a second load side heat exchanger, a second expansion valve, and a second heat source side heat exchanger capable of exchanging heat with outside air. A second heat pump circuit, a load side circulation circuit provided with the first load side heat exchanger, the second load side heat exchanger, and a load terminal for circulating hot or cold water, and an outside air temperature detection for detecting the outside air temperature. The control device includes means and a control device for controlling the operation, and the control device switches the outside air temperature detected by the outside air temperature detecting means to a predetermined value during operation when hot water or cold water is supplied to the load terminal. In a combined heat source heat pump device that switches which of the first compressor and the second compressor is the main power source and which is the auxiliary power source depending on whether the temperature is higher or lower, only the main power source is used. During the driving operation, the control device is based on the fact that the outside air temperature detected by the outside air temperature detecting means changes in the direction in which the load increases and reaches the predetermined switching temperature. When switching between and the auxiliary power source, the driving of the main power source after the switching is started, and the driving of the auxiliary power source after the switching is stopped. After controlling the drive of both the main power source and the auxiliary power source after switching so as to overlap, the drive of the auxiliary power source after switching is controlled to be stopped, and only the main power source is driven. During the operation, the control device and the main power source are based on the fact that the outside air temperature detected by the outside air temperature detecting means changes in the direction in which the load decreases and reaches the predetermined switching temperature. When the auxiliary power source is switched, the driving of the main power source after the switching is started and the driving of the auxiliary power source after the switching is stopped, and the second predetermined time is shorter than the first predetermined time. During the time, the drive of both the main power source after switching and the auxiliary power source after switching is controlled to overlap, and then the drive of the auxiliary power source after switching is controlled to be stopped. I said.

また、請求項2では、前記制御装置は、前記負荷端末に温水が供給される暖房運転時において、前記外気温度検出手段により検出される外気温度が前記所定の切換温度以上の場合には前記第2圧縮機を前記主動力源、前記第1圧縮機を前記補助動力源に設定すると共に、前記外気温度検出手段により検出される外気温度が前記所定の切換温度未満の場合には前記第1圧縮機を前記主動力源、前記第2圧縮機を前記補助動力源に設定し、前記主動力源としての前記第2圧縮機のみが駆動しての前記暖房運転時に、前記制御装置は、前記外気温度検出手段により検出される外気温度が低下して前記所定の切換温度に達したことに基づき、前記主動力源と前記補助動力源とを切り換えた場合に、切換後に前記主動力源となる前記第1圧縮機の駆動を開始させると共に、切換後に前記補助動力源となる前記第2圧縮機の駆動を停止させるにあたり、前記第1所定時間の間、切換後に前記主動力源となる前記第1圧縮機および切換後に前記補助動力源となる前記第2圧縮機の双方の駆動がオーバーラップするように制御した後、切換後に前記補助動力源となる前記第2圧縮機の駆動を停止させるように制御し、前記主動力源としての前記第1圧縮機のみが駆動しての前記暖房運転時に、前記制御装置は、前記外気温度検出手段により検出される外気温度が上昇して前記所定の切換温度に達したことに基づき、前記主動力源と前記補助動力源とを切り換えた場合には、切換後に前記主動力源となる前記第2圧縮機の駆動を開始させると共に、切換後に前記補助動力源となる前記第1縮機の駆動を停止させるにあたり、前記第1所定時間より短い前記第2所定時間の間、切換後に前記主動力源となる前記第2圧縮機および切換後に前記補助動力源となる前記第1圧縮機の双方の駆動がオーバーラップするように制御した後、切換後に前記補助動力源となる前記第1圧縮機の駆動を停止させるように制御するものとした。
Further, according to claim 2, when the outside air temperature detected by the outside air temperature detecting means is equal to or higher than the predetermined switching temperature during the heating operation in which hot water is supplied to the load terminal, the control device is the first. When the 2 compressors are set as the main power source and the first compressor is set as the auxiliary power source, and the outside air temperature detected by the outside air temperature detecting means is less than the predetermined switching temperature, the first compression is performed. During the heating operation in which the machine is set as the main power source and the second compressor is set as the auxiliary power source and only the second compressor as the main power source is driven, the control device is used for the outside air. When the main power source and the auxiliary power source are switched based on the fact that the outside air temperature detected by the temperature detecting means has decreased and reached the predetermined switching temperature, the main power source becomes the main power source after the switching. In starting the drive of the first compressor and stopping the drive of the second compressor, which is the auxiliary power source after switching, the first, which becomes the main power source after switching for the first predetermined time. After controlling so that the drives of both the compressor and the second compressor, which is the auxiliary power source, overlap after switching, the drive of the second compressor, which is the auxiliary power source, is stopped after the switching. During the heating operation, which is controlled and driven only by the first compressor as the main power source, the control device raises the outside air temperature detected by the outside air temperature detecting means to raise the predetermined switching temperature. When the main power source and the auxiliary power source are switched based on the above, the driving of the second compressor, which is the main power source, is started after the switching, and the auxiliary power source is started after the switching. In stopping the drive of the first compressor, the second compressor that becomes the main power source after switching and the auxiliary power source after switching for the second predetermined time shorter than the first predetermined time. After controlling so that the drives of both of the first compressors overlap each other, the drive of the first compressor, which is the auxiliary power source, is controlled to be stopped after switching.

また、請求項3では、前記制御装置は、前記負荷端末に冷水が供給される冷房運転時において、前記外気温度検出手段により検出される外気温度が前記所定の切換温度以上の場合には前記第1圧縮機を前記主動力源、前記第2圧縮機を前記補助動力源に設定すると共に、前記外気温度検出手段により検出される外気温度が前記所定の切換温度未満の場合には前記第2圧縮機を前記主動力源、前記第1圧縮機を前記補助動力源に設定し、前記主動力源としての前記第2圧縮機のみが駆動しての前記冷房運転時に、前記制御装置は、前記外気温度検出手段により検出される外気温度が上昇して前記所定の切換温度に達したことに基づき、前記主動力源と前記補助動力源とを切り換えた場合に、切換後に前記主動力源となる前記第1圧縮機の駆動を開始させると共に、切換後に前記補助動力源となる前記第2圧縮機の駆動を停止させるにあたり、前記第1所定時間の間、切換後に前記主動力源となる前記第1圧縮機および切換後に前記補助動力源となる前記第2圧縮機の双方の駆動がオーバーラップするように制御した後、切換後に前記補助動力源となる前記第2圧縮機の駆動を停止させるように制御し、前記主動力源としての前記第1圧縮機のみが駆動しての前記冷房運転時に、前記制御装置は、前記外気温度検出手段により検出される外気温度が低下して前記所定の切換温度に達したことに基づき、前記主動力源と前記補助動力源とを切り換えた場合には、切換後に前記主動力源となる前記第2圧縮機の駆動を開始させると共に、切換後に前記補助動力源となる前記第1縮機の駆動を停止させるにあたり、前記第1所定時間より短い前記第2所定時間の間、切換後に前記主動力源となる前記第2圧縮機および切換後に前記補助動力源となる前記第1圧縮機の双方の駆動がオーバーラップするように制御した後、切換後に前記補助動力源となる前記第1圧縮機の駆動を停止させるように制御するものとした。
Further, according to claim 3, when the outside air temperature detected by the outside air temperature detecting means is equal to or higher than the predetermined switching temperature during the cooling operation in which the load terminal is supplied with cold water, the control device is the first. When one compressor is set as the main power source and the second compressor is set as the auxiliary power source, and the outside air temperature detected by the outside air temperature detecting means is less than the predetermined switching temperature, the second compression is performed. During the cooling operation in which the machine is set as the main power source and the first compressor is set as the auxiliary power source and only the second compressor as the main power source is driven, the control device is used for the outside air. When the main power source and the auxiliary power source are switched based on the fact that the outside air temperature detected by the temperature detecting means rises and reaches the predetermined switching temperature, the main power source becomes the main power source after the switching. In starting the drive of the first compressor and stopping the drive of the second compressor, which is the auxiliary power source after switching, the first, which becomes the main power source after switching for the first predetermined time. After controlling so that the drives of both the compressor and the second compressor, which is the auxiliary power source, overlap after switching, the drive of the second compressor, which is the auxiliary power source, is stopped after the switching. During the cooling operation, which is controlled and driven only by the first compressor as the main power source, the control device reduces the outside air temperature detected by the outside air temperature detecting means to the predetermined switching temperature. When the main power source and the auxiliary power source are switched based on the above, the driving of the second compressor, which is the main power source, is started after the switching, and the auxiliary power source is started after the switching. In stopping the drive of the first compressor, the second compressor that becomes the main power source after switching and the auxiliary power source after switching for the second predetermined time shorter than the first predetermined time. After controlling so that the drives of both of the first compressors overlap each other, the drive of the first compressor, which is the auxiliary power source, is controlled to be stopped after switching.

この発明によれば、主動力源のみが駆動しての運転時に、外気温度の変化によって主動力源/補助動力源を切り換えた場合に、生成される温水または冷水の温度の変動を抑制することができ、安定した運転を行えて快適性を損なうことがないものである。 According to the present invention, it is possible to suppress fluctuations in the temperature of hot water or cold water generated when the main power source / auxiliary power source is switched due to a change in the outside air temperature during operation in which only the main power source is driven. It is possible to perform stable driving without impairing comfort.

具体的には、主動力源として第2圧縮機のみが駆動しての暖房運転時に、外気温度が低下して所定の切換温度に達したことに基づき、主動力源と補助動力源とを切り換えた場合(主動力源を第2圧縮機から第1圧縮機に切り換え、補助動力源を第1圧縮機から第2圧縮機に切り換えた場合)に、切換後の主動力源(第1圧縮機)の駆動を開始させると共に、切換後の補助動力源(第2圧縮機)の駆動を停止させるにあたり、第1所定時間の間、切換後の主動力源(第1圧縮機)および切換後の補助動力源(第2圧縮機)の双方の駆動がオーバーラップするように制御した後、切換後の補助動力源(第2圧縮機)の駆動を停止させるように制御したことで、主動力源/補助動力源の切り換え時に生じる温水温度の低下を抑制することができ、目標温水温度からの温度変動が少ない安定した暖房運転を行うことができるものである。 Specifically, during the heating operation in which only the second compressor is driven as the main power source, the main power source and the auxiliary power source are switched based on the fact that the outside air temperature drops and reaches a predetermined switching temperature. (When the main power source is switched from the second compressor to the first compressor and the auxiliary power source is switched from the first compressor to the second compressor), the main power source after switching (first compressor) ), And the auxiliary power source (second compressor) after switching is stopped for a first predetermined time, the main power source after switching (first compressor) and after switching. After controlling so that the drives of both auxiliary power sources (second compressor) overlap, the main power source is controlled to stop the drive of the auxiliary power source (second compressor) after switching. / It is possible to suppress the decrease in the hot water temperature that occurs when the auxiliary power source is switched, and it is possible to perform stable heating operation with little temperature fluctuation from the target hot water temperature.

さらに、主動力源として第1圧縮機のみが駆動しての暖房運転時に、外気温度が上昇して所定の切換温度に達したことに基づき、主動力源と補助動力源とを切り換えた場合(主動力源を第1圧縮機から第2圧縮機に切り換え、補助動力源を第2圧縮機から第1圧縮機に切り換えた場合)に、切換後の主動力源(第2圧縮機)の駆動を開始させると共に、切換後の補助動力源(第1圧縮機)の駆動を停止させるにあたり、第1所定時間より短い第2所定時間の間、切換後の主動力源(第2圧縮機)および切換後の補助動力源(第1圧縮機)の双方の駆動がオーバーラップするように制御した後、切換後の補助動力源(第1圧縮機)の駆動を停止させるように制御するか、または、切換後の主動力源(第2圧縮機)および切換後の補助動力源(第1圧縮機)の双方の駆動がオーバーラップしないように、切換後の補助動力源(第1圧縮機)の駆動を停止させるように制御したことで、主動力源/補助動力源の切り換え時に生じる温水温度の上昇を抑制することができ、目標温水温度からの温度変動が少ない安定した暖房運転を行うことができるものである。 Further, when the main power source and the auxiliary power source are switched based on the fact that the outside air temperature rises and reaches a predetermined switching temperature during the heating operation in which only the first compressor is driven as the main power source ( When the main power source is switched from the first compressor to the second compressor and the auxiliary power source is switched from the second compressor to the first compressor), the main power source (second compressor) is driven after the switching. And to stop the drive of the auxiliary power source (first compressor) after switching, for a second predetermined time shorter than the first predetermined time, the main power source (second compressor) after switching and After controlling the drive of both auxiliary power sources (first compressor) after switching to overlap, control to stop the drive of the auxiliary power source (first compressor) after switching, or , The auxiliary power source (1st compressor) after switching so that the drives of both the main power source (2nd compressor) after switching and the auxiliary power source (1st compressor) after switching do not overlap. By controlling the drive to stop, it is possible to suppress the rise in hot water temperature that occurs when switching between the main power source and auxiliary power source, and it is possible to perform stable heating operation with little temperature fluctuation from the target hot water temperature. It can be done.

その上、主動力源として第2圧縮機のみが駆動しての冷房運転時に、外気温度が上昇して所定の切換温度に達したことに基づき、主動力源と補助動力源とを切り換えた場合(主動力源を第2圧縮機から第1圧縮機に切り換え、補助動力源を第1圧縮機から第2圧縮機に切り換えた場合)に、切換後の主動力源(第1圧縮機)の駆動を開始させると共に、切換後の補助動力源(第2圧縮機)の駆動を停止させるにあたり、第1所定時間の間、切換後の主動力源(第1圧縮機)および切換後の補助動力源(第2圧縮機)の双方の駆動がオーバーラップするように制御した後、切換後の補助動力源(第2圧縮機)の駆動を停止させるように制御したことで、主動力源/補助動力源の切り換え時に生じる冷水温度の上昇を抑制することができ、目標冷水温度からの温度変動が少ない安定した冷房運転を行うことができるものである。 In addition, when the main power source and the auxiliary power source are switched based on the fact that the outside air temperature rises and reaches a predetermined switching temperature during the cooling operation in which only the second compressor is driven as the main power source. (When the main power source is switched from the second compressor to the first compressor and the auxiliary power source is switched from the first compressor to the second compressor), the main power source (first compressor) after switching In starting the drive and stopping the drive of the auxiliary power source (second compressor) after switching, the main power source (first compressor) after switching and the auxiliary power after switching for the first predetermined time. After controlling so that the drives of both sources (second compressor) overlap, the drive of the auxiliary power source (second compressor) after switching is controlled to be stopped, so that the main power source / auxiliary It is possible to suppress the rise in the chilled water temperature that occurs when the power source is switched, and it is possible to perform stable cooling operation with little temperature fluctuation from the target chilled water temperature.

加えて、主動力源として第1圧縮機のみが駆動しての冷房運転時に、外気温度が低下して所定の切換温度に達したことに基づき、主動力源と補助動力源とを切り換えた場合(主動力源を第1圧縮機から第2圧縮機に切り換え、補助動力源を第2圧縮機から第1圧縮機に切り換えた場合)に、切換後の主動力源(第2圧縮機)の駆動を開始させると共に、切換後の補助動力源(第1圧縮機)の駆動を停止させるにあたり、第1所定時間より短い第2所定時間の間、切換後の主動力源(第2圧縮機)および切換後の補助動力源(第1圧縮機)の双方の駆動がオーバーラップするように制御した後、切換後の補助動力源(第1圧縮機)の駆動を停止させるように制御するか、または、切換後の主動力源(第2圧縮機)および切換後の補助動力源(第1圧縮機)の双方の駆動がオーバーラップしないように、切換後の補助動力源(第1圧縮機)の駆動を停止させるように制御したことで、主動力源/補助動力源の切り換え時に生じる冷水温度の低下を抑制することができ、目標冷水温度からの温度変動が少ない安定した冷房運転を行うことができるものである。 In addition, when the main power source and the auxiliary power source are switched based on the fact that the outside air temperature drops and reaches a predetermined switching temperature during the cooling operation in which only the first compressor is driven as the main power source. (When the main power source is switched from the first compressor to the second compressor and the auxiliary power source is switched from the second compressor to the first compressor), the main power source (second compressor) after switching When starting the drive and stopping the drive of the auxiliary power source (first compressor) after switching, the main power source (second compressor) after switching is for a second predetermined time shorter than the first predetermined time. After controlling so that the drives of both the auxiliary power source (first compressor) after switching are overlapped, the driving of the auxiliary power source (first compressor) after switching is controlled to be stopped. Alternatively, the auxiliary power source after switching (first compressor) so that the drives of both the main power source (second compressor) after switching and the auxiliary power source (first compressor) after switching do not overlap. By controlling to stop the drive of the compressor, it is possible to suppress the decrease in the chilled water temperature that occurs when switching between the main power source and the auxiliary power source, and to perform stable cooling operation with little temperature fluctuation from the target chilled water temperature. Can be done.

本発明の実施形態に係る複合熱源ヒートポンプ装置の主要なユニットを示す外観構成図。The external block diagram which shows the main unit of the composite heat source heat pump apparatus which concerns on embodiment of this invention. 複合熱源ヒートポンプ装置の全体構成を示す概略構成図。The schematic block diagram which shows the whole structure of the compound heat source heat pump apparatus. 複合熱源ヒートポンプ装置の主動力源/補助動力源の切換温度を示す図。The figure which shows the switching temperature of the main power source / auxiliary power source of a compound heat source heat pump apparatus. 暖房運転時の動作を説明する説明図。Explanatory drawing explaining operation at the time of heating operation. 冷房運転時の動作を説明する説明図。Explanatory drawing explaining operation at the time of cooling operation. 暖房運転時に外気温度が低下して主動力源/補助動力源の切り換えが発生する場合の経時推移を説明するタイムチャート。A time chart explaining the transition over time when the outside air temperature drops during heating operation and switching between the main power source and the auxiliary power source occurs. 暖房運転時に外気温度が上昇して主動力源/補助動力源の切り換えが発生する場合の経時推移を説明するタイムチャート。A time chart explaining the transition over time when the outside air temperature rises during heating operation and switching between the main power source and the auxiliary power source occurs. 冷房運転時に外気温度が上昇して主動力源/補助動力源の切り換えが発生する場合の経時推移を説明するタイムチャート。A time chart explaining the transition over time when the outside air temperature rises during cooling operation and switching between the main power source and the auxiliary power source occurs. 冷房運転時に外気温度が低下して主動力源/補助動力源の切り換えが発生する場合の経時推移を説明するタイムチャート。A time chart explaining the time course when the outside air temperature drops during cooling operation and switching between the main power source and the auxiliary power source occurs.

本発明の実施形態に係る複合熱源ヒートポンプ装置1の構成について、適宜図面を参照しながら詳細に説明する。
図1に示すように、複合熱源ヒートポンプ装置1は、第1ヒートポンプ回路40(図2参照)を備える地中熱ヒートポンプユニット4と、第2ヒートポンプ回路50(図2参照)を備える空気熱ヒートポンプユニット5とを有している。また、複合熱源ヒートポンプ装置1は、空調端末36に負荷側循環液L(例えば、水や不凍液)を循環させる負荷側循環回路30と、熱源側循環回路20と、複合熱源ヒートポンプ装置1の動作を制御する制御手段としての制御装置6(61、62)と、制御装置6に信号を送るリモコン60とを有しており、空調端末36が設置された室内の暖房または冷房を行うものである。
The configuration of the combined heat source heat pump device 1 according to the embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
As shown in FIG. 1, the combined heat source heat pump device 1 includes a ground heat pump unit 4 including a first heat pump circuit 40 (see FIG. 2) and an air heat heat pump unit including a second heat pump circuit 50 (see FIG. 2). Has 5 and. Further, the combined heat source heat pump device 1 operates the load side circulation circuit 30 for circulating the load side circulating liquid L (for example, water or antifreeze) to the air conditioning terminal 36, the heat source side circulation circuit 20, and the combined heat source heat pump device 1. It has a control device 6 (61, 62) as a control means for controlling, and a remote controller 60 that sends a signal to the control device 6, and heats or cools the room in which the air conditioning terminal 36 is installed.

図2に示すように、本実施形態に係る複合熱源ヒートポンプ装置1は、外気とは別の熱源、ここでは地中熱源を利用して空調端末36側の負荷側循環液Lを加熱または冷却する第1ヒートポンプ回路40の第1負荷側熱交換器41と、外気を熱源として利用して空調端末36側の負荷側循環液Lを加熱または冷却する第2ヒートポンプ回路50の第2負荷側熱交換器51とを負荷側循環回路30を循環する負荷側循環液Lの流れに対して、第1負荷側熱交換器41が第2負荷側熱交換器51よりも上流側に配設されている。この複合熱源ヒートポンプ装置1は、暖房装置および冷房装置として機能させることができ、以下、構成要素および動作について説明する。 As shown in FIG. 2, the combined heat source heat pump device 1 according to the present embodiment heats or cools the load-side circulating liquid L on the air conditioning terminal 36 side by using a heat source different from the outside air, here, an underground heat source. The first load side heat exchanger 41 of the first heat pump circuit 40 and the second load side heat exchange of the second heat pump circuit 50 that heats or cools the load side circulating fluid L on the air conditioning terminal 36 side by using the outside air as a heat source. The first load side heat exchanger 41 is arranged on the upstream side of the second load side heat exchanger 51 with respect to the flow of the load side circulating liquid L circulating through the load side circulation circuit 30 with the device 51. .. The combined heat source heat pump device 1 can function as a heating device and a cooling device, and its components and operations will be described below.

第1ヒートポンプ回路40は、第1冷媒C1を圧縮する回転数可変の第1圧縮機43と、第1四方弁44と、第1負荷側熱交換器41と、第1膨張弁45と、第1熱源側熱交換器46と、これらを環状に接続する第1冷媒配管42とを備えて構成されている。 The first heat pump circuit 40 includes a first compressor 43 having a variable rotation speed for compressing the first refrigerant C1, a first four-way valve 44, a first load side heat exchanger 41, a first expansion valve 45, and a first. 1 It is configured to include a heat source side heat exchanger 46 and a first refrigerant pipe 42 connecting them in a ring shape.

前記第1冷媒配管42に設けられた第1四方弁44は、第1ヒートポンプ回路40における第1冷媒C1の流れ方向を切り換える切換弁としての機能を有し、第1圧縮機43から吐出された第1冷媒C1を、第1負荷側熱交換器41、第1膨張弁45、第1熱源側熱交換器46の順に流通させ、第1圧縮機43に戻す流路を形成する状態(暖房運転時の状態)と、第1圧縮機43から吐出された第1冷媒C1を、第1熱源側熱交換器46、第1膨張弁45、第1負荷側熱交換器41の順に流通させ、第1圧縮機43に戻す流路を形成する状態(冷房運転時の状態)とに切換可能なものである。 The first four-way valve 44 provided in the first refrigerant pipe 42 has a function as a switching valve for switching the flow direction of the first refrigerant C1 in the first heat pump circuit 40, and is discharged from the first compressor 43. A state in which the first refrigerant C1 is circulated in the order of the first load side heat exchanger 41, the first expansion valve 45, and the first heat source side heat exchanger 46 to form a flow path for returning to the first compressor 43 (heating operation). (Time state) and the first refrigerant C1 discharged from the first compressor 43 are circulated in the order of the first heat source side heat exchanger 46, the first expansion valve 45, and the first load side heat exchanger 41. 1 It is possible to switch to a state of forming a flow path for returning to the compressor 43 (a state during cooling operation).

また、図2に示す地中熱ヒートポンプユニット4において、符号42aは、第1圧縮機43から吐出された第1冷媒C1の温度を検出する第1冷媒吐出温度センサであり、符号42bは、第1膨張弁45から第1熱源側熱交換器46までの第1冷媒配管42に設けられ、低圧側(暖房運転時)または高圧側(冷房運転時)の第1冷媒C1の温度を検出する第1冷媒温度センサである。 Further, in the underground heat heat pump unit 4 shown in FIG. 2, reference numeral 42a is a first refrigerant discharge temperature sensor that detects the temperature of the first refrigerant C1 discharged from the first compressor 43, and reference numeral 42b is a first refrigerant discharge temperature sensor. No. 1 provided in the first refrigerant pipe 42 from the expansion valve 45 to the first heat source side heat exchanger 46, and detecting the temperature of the first refrigerant C1 on the low pressure side (during heating operation) or the high pressure side (during cooling operation). 1 Refrigerant temperature sensor.

第2ヒートポンプ回路50は、第2冷媒C2を圧縮する回転数可変の第2圧縮機53と、第2四方弁54と、第2負荷側熱交換器51と、第2膨張弁55と、送風ファン56の作動により送られる外気との熱交換を行う第2熱源側熱交換器としての空気熱交換器57と、これらを環状に接続する第2冷媒配管52とを備えて構成されている。 The second heat pump circuit 50 includes a second compressor 53 with a variable rotation speed for compressing the second refrigerant C2, a second four-way valve 54, a second load side heat exchanger 51, a second expansion valve 55, and an air blower. It is configured to include an air heat exchanger 57 as a second heat source side heat exchanger that exchanges heat with the outside air sent by the operation of the fan 56, and a second refrigerant pipe 52 that connects them in a ring shape.

前記第2冷媒配管52に設けられた第2四方弁54は、第2ヒートポンプ回路50における第2冷媒C2の流れ方向を切り換える切換弁としての機能を有し、第2圧縮機53から吐出された第2冷媒C2を、第2負荷側熱交換器51、第2膨張弁55、空気熱交換器57の順に流通させ、第2圧縮機53に戻す流路を形成する状態(暖房運転時の状態)と、第2圧縮機53から吐出された第2冷媒C2を、空気熱交換器57、第2膨張弁55、第2負荷側熱交換器51の順に流通させ、第2圧縮機53に戻す流路を形成する状態(冷房運転時または除霜運転時)とに切換可能なものである。 The second four-way valve 54 provided in the second refrigerant pipe 52 has a function as a switching valve for switching the flow direction of the second refrigerant C2 in the second heat pump circuit 50, and is discharged from the second compressor 53. A state in which the second refrigerant C2 is circulated in the order of the second load side heat exchanger 51, the second expansion valve 55, and the air heat exchanger 57 to form a flow path for returning to the second compressor 53 (state during heating operation). ) And the second refrigerant C2 discharged from the second compressor 53 are circulated in the order of the air heat exchanger 57, the second expansion valve 55, and the second load side heat exchanger 51, and returned to the second compressor 53. It is possible to switch to the state of forming a flow path (during cooling operation or defrosting operation).

また、図2に示す空気熱ヒートポンプユニット5において、符号52aは、第2圧縮機53から吐出された第2冷媒C2の温度を検出する第2冷媒吐出温度センサであり、符号52bは、第2膨張弁55から空気熱交換器57までの第2冷媒配管52に設けられ、低圧側(暖房運転時)または高圧側(除霜運転時または冷房運転時)の第2冷媒C2の温度を検出する第2冷媒温度センサであり、符号52cは外気温度を検出する外気温度検出手段としての外気温度センサである。 Further, in the pneumatic heat pump unit 5 shown in FIG. 2, reference numeral 52a is a second refrigerant discharge temperature sensor that detects the temperature of the second refrigerant C2 discharged from the second compressor 53, and reference numeral 52b is a second refrigerant discharge temperature sensor. It is provided in the second refrigerant pipe 52 from the expansion valve 55 to the air heat exchanger 57, and detects the temperature of the second refrigerant C2 on the low pressure side (during heating operation) or the high pressure side (during defrosting operation or cooling operation). It is a second refrigerant temperature sensor, and reference numeral 52c is an outside air temperature sensor as an outside air temperature detecting means for detecting the outside air temperature.

なお、第1ヒートポンプ回路40および第2ヒートポンプ回路50の冷媒としては、R410AやR32等のHFC冷媒や二酸化炭素冷媒等の任意の冷媒を用いることができる。 As the refrigerant of the first heat pump circuit 40 and the second heat pump circuit 50, any HFC refrigerant such as R410A or R32 or any refrigerant such as carbon dioxide refrigerant can be used.

前記第1負荷側熱交換器41、第1熱源側熱交換器46、および第2負荷側熱交換器51は、例えばプレート式熱交換器で構成されている。このプレート式熱交換器は、複数の伝熱プレートが積層され、冷媒を流通させる冷媒流路と循環液等の流体を流通させる流体流路とが各伝熱プレートを境にして交互に形成されている。 The first load side heat exchanger 41, the first heat source side heat exchanger 46, and the second load side heat exchanger 51 are composed of, for example, a plate type heat exchanger. In this plate-type heat exchanger, a plurality of heat transfer plates are laminated, and a refrigerant flow path through which a refrigerant flows and a fluid flow path through which a fluid such as a circulating fluid flows are alternately formed with each heat transfer plate as a boundary. ing.

熱源側循環回路20は、回転数可変の熱源側循環ポンプ22と、第1熱源側熱交換器46と、前記第1熱源側熱交換器46を流通する第1冷媒C1と熱交換する熱源として(この例では地中に)設置された地中熱交換器23とが、熱媒配管としての熱源側配管21によって環状に接続されている。この熱源側配管21には、熱源側循環ポンプ22によって、熱媒として熱源側循環液H(水や不凍液)が循環されると共に、熱源側循環液Hを貯留し熱源側循環回路20の圧力を調整する熱源側シスターン24が設けられている。 The heat source side circulation circuit 20 serves as a heat source for heat exchange between the heat source side circulation pump 22 having a variable rotation speed, the first heat source side heat exchanger 46, and the first refrigerant C1 flowing through the first heat source side heat exchanger 46. The geothermal heat exchanger 23 installed (in the ground in this example) is connected in an annular shape by a heat source side pipe 21 as a heat medium pipe. The heat source side circulation pump 22 circulates the heat source side circulation liquid H (water or antifreeze liquid) in the heat source side piping 21 and stores the heat source side circulation liquid H to apply the pressure of the heat source side circulation circuit 20. A heat source side systurn 24 to be adjusted is provided.

負荷側循環回路30は、第1負荷側熱交換器41と、第2負荷側熱交換器51と、床暖房パネルや冷温水パネルやファンコイル等の負荷端末としての空調端末36とが、負荷側配管31によって上流側から順に環状に接続されている。この負荷側配管31には、負荷側循環回路30に負荷側循環液Lを循環させる負荷側循環ポンプ32が設けられており、空調端末36毎に分岐した負荷側配管31の各々には、その開閉により空調端末36への負荷側循環液Lの供給を制御する熱動弁33がそれぞれ設けられ、熱動弁33は、空調端末36が設置された室内の室温が所定の温度になるように開閉が制御されるものであり、図2では空調端末36外に設けられているが、空調端末36に内蔵されていてもよいものである。なお、空調端末36は、図2では2つ設けられているが、1つであってもよく、3つ以上であってもよく、数量や仕様が特に限定されるものではない。 In the load side circulation circuit 30, the first load side heat exchanger 41, the second load side heat exchanger 51, and the air conditioning terminal 36 as a load terminal such as a floor heating panel, a cold / hot water panel, and a fan coil are loaded. The side pipes 31 are connected in an annular shape in order from the upstream side. The load-side piping 31 is provided with a load-side circulation pump 32 that circulates the load-side circulating liquid L in the load-side circulation circuit 30, and each of the load-side piping 31 branched for each air conditioning terminal 36 is provided with a load-side circulation pump 32. Thermal valves 33 that control the supply of the load-side circulating liquid L to the air-conditioning terminal 36 by opening and closing are provided respectively, and the thermal valve 33 is set so that the room temperature in the room where the air-conditioning terminal 36 is installed becomes a predetermined temperature. The opening and closing is controlled, and although it is provided outside the air-conditioning terminal 36 in FIG. 2, it may be built in the air-conditioning terminal 36. Although two air-conditioning terminals 36 are provided in FIG. 2, the number or number of the air-conditioning terminals 36 may be one or three or more, and the quantity and specifications are not particularly limited.

また、図2に示す負荷側循環回路30において、符号34は、負荷側配管31に設けられ空調端末36から第1負荷側熱交換器41に流入する負荷側循環液Lの温度を検出する戻り温度センサであり、符号35は、負荷側循環液Lを貯留し負荷側循環回路30の圧力を調整する負荷側シスターンである。 Further, in the load-side circulation circuit 30 shown in FIG. 2, reference numeral 34 is a return that detects the temperature of the load-side circulating fluid L that is provided in the load-side piping 31 and flows into the first load-side heat exchanger 41 from the air conditioning terminal 36. It is a temperature sensor, and reference numeral 35 is a load side systurn that stores the load side circulation liquid L and adjusts the pressure of the load side circulation circuit 30.

制御装置6は、熱源側循環回路20、負荷側循環回路30、および第1ヒートポンプ回路40の動作を制御する地中熱ヒートポンプ制御装置61と、第2ヒートポンプ回路50の動作を制御する空気熱ヒートポンプ制御装置62とを備えている。制御装置6は、各種のデータやプログラムを記憶する記憶部と、演算・制御処理を行う制御部とを備えており、外気温度センサ52c等の温度センサ、およびリモコン60からの信号を受けて、複合熱源ヒートポンプ装置1の動作を制御できるようになっている。 The control device 6 includes a geothermal heat pump control device 61 that controls the operation of the heat source side circulation circuit 20, the load side circulation circuit 30, and the first heat pump circuit 40, and an air heat heat pump that controls the operation of the second heat pump circuit 50. It is provided with a control device 62. The control device 6 includes a storage unit that stores various data and programs, and a control unit that performs calculation / control processing. The control device 6 receives a signal from a temperature sensor such as an outside air temperature sensor 52c and a remote control 60, and receives a signal from the remote control 60. The operation of the combined heat source heat pump device 1 can be controlled.

次に、暖房運転時における地中熱ヒートポンプ制御装置61について説明すると、地中熱ヒートポンプ制御装置61は、第1負荷側熱交換器41の直上流側の負荷側循環液Lの温度を検出する戻り温度センサ34の検出値に応じて、第1圧縮機43の回転数を制御する。特にこの例では、戻り温度センサ34により検出される負荷側循環液Lの戻り温水温度が、例えば、リモコン60の設定温度に基づいて設定される目標温水温度になるように、第1圧縮機43の回転数を制御する。 Next, the geothermal heat pump control device 61 during the heating operation will be described. The geothermal heat pump control device 61 detects the temperature of the load-side circulating fluid L on the immediately upstream side of the first load-side heat exchanger 41. The rotation speed of the first compressor 43 is controlled according to the detected value of the return temperature sensor 34. In particular, in this example, the first compressor 43 is such that the return hot water temperature of the load-side circulating fluid L detected by the return temperature sensor 34 becomes a target hot water temperature set based on, for example, the set temperature of the remote controller 60. Controls the number of revolutions of.

また、地中熱ヒートポンプ制御装置61は、第1冷媒吐出温度センサ42aにより検出される第1冷媒C1の冷媒吐出温度に応じて、第1膨張弁45の弁開度を制御する。特にこの例では、第1冷媒吐出温度センサ42aにより検出される第1冷媒C1の冷媒吐出温度が、例えばリモコン60の設定温度に対応した制御上の目標冷媒吐出温度となるように、第1膨張弁45の弁開度を制御する。 Further, the geothermal heat pump control device 61 controls the valve opening degree of the first expansion valve 45 according to the refrigerant discharge temperature of the first refrigerant C1 detected by the first refrigerant discharge temperature sensor 42a. In particular, in this example, the first expansion is performed so that the refrigerant discharge temperature of the first refrigerant C1 detected by the first refrigerant discharge temperature sensor 42a becomes, for example, the control target refrigerant discharge temperature corresponding to the set temperature of the remote controller 60. The valve opening degree of the valve 45 is controlled.

さらに、地中熱ヒートポンプ制御装置61は、第1冷媒温度センサ42bにより検出される第1冷媒C1の温度に応じて、熱源側循環ポンプ22の回転数を制御する。特にこの例では、第1冷媒温度センサ42bにより検出される第1冷媒C1の温度が略一定値になるように、熱源側循環ポンプ22の回転数を制御する。 Further, the geothermal heat pump control device 61 controls the rotation speed of the heat source side circulation pump 22 according to the temperature of the first refrigerant C1 detected by the first refrigerant temperature sensor 42b. In particular, in this example, the rotation speed of the heat source side circulation pump 22 is controlled so that the temperature of the first refrigerant C1 detected by the first refrigerant temperature sensor 42b becomes a substantially constant value.

そして、地中熱ヒートポンプ制御装置61は、負荷側循環ポンプ32の回転数を制御する。特にこの例では、暖房運転が行われているときは、定速(一定回転数)にて回転するように負荷側循環ポンプ32の回転数を制御する。 Then, the geothermal heat pump control device 61 controls the rotation speed of the load-side circulation pump 32. In particular, in this example, when the heating operation is being performed, the rotation speed of the load-side circulation pump 32 is controlled so as to rotate at a constant speed (constant rotation speed).

また、地中熱ヒートポンプ制御装置61は、暖房運転時において、外気温度センサ52cの検出する外気温度を基準として、地中熱ヒートポンプユニット4および空気熱ヒートポンプユニット5のうちどちらの熱効率(採熱効率)が高いかを判断して、熱効率が高い方を主側(優先側)のヒートポンプユニット、熱効率が低い方を補助側のヒートポンプユニットに設定する。言い換えると、地中熱ヒートポンプ制御装置61は、外気温度センサ52cの検出する外気温度を基準として、地中熱ヒートポンプユニット4(第1ヒートポンプ回路40)の第1圧縮機43および空気熱ヒートポンプユニット5(第2ヒートポンプ回路50)の第2圧縮機53のうち一方を主動力源、他方を補助動力源に設定するものである。 Further, in the geothermal heat pump control device 61, the heat efficiency (heat sampling efficiency) of either the geothermal heat pump unit 4 or the air heat heat pump unit 5 is based on the outside air temperature detected by the outside air temperature sensor 52c during the heating operation. The one with the higher heat efficiency is set as the heat pump unit on the main side (priority side), and the one with the lower heat efficiency is set as the heat pump unit on the auxiliary side. In other words, the underground heat heat pump control device 61 uses the outside air temperature detected by the outside air temperature sensor 52c as a reference, and the first compressor 43 and the air heat heat pump unit 5 of the underground heat heat pump unit 4 (first heat pump circuit 40). One of the second compressors 53 of the (second heat pump circuit 50) is set as the main power source and the other as the auxiliary power source.

ここで、図3(a)を用いて、暖房運転時の主動力源/補助動力源の切り換えについて説明する。なお、図3(a)において、「地中熱HP主」、「地中熱HP補助」、「空気熱HP主」、「空気熱HP補助」と表記されているものは、それぞれ、「第1圧縮機43が主動力源」、「第1圧縮機43が補助動力源」、「第2圧縮機53が主動力源」、「第2圧縮機53が補助動力源」と読み換えが可能である。 Here, switching between the main power source and the auxiliary power source during the heating operation will be described with reference to FIG. 3A. In addition, in FIG. 3A, the ones described as "geothermal HP main", "geothermal HP auxiliary", "air heat HP main", and "air heat HP auxiliary" are "No. 1", respectively. It can be read as "1 compressor 43 is the main power source", "the first compressor 43 is the auxiliary power source", "the second compressor 53 is the main power source", and "the second compressor 53 is the auxiliary power source". Is.

まず、基本的な考え方として、冬期などで外気温度が比較的低い場合には、外気から吸熱することにより空気熱交換器57が着霜する問題があることから第1圧縮機43が主動力源とされ、第2圧縮機53が補助動力源とされる。逆に、秋期や春期、冬期であっても外気温度があまり低くない場合には、外気から吸熱しても空気熱交換器57が着霜しにくいことから第2圧縮機53が主動力源とされ、第1圧縮機43が補助動力源とされる。 First, as a basic idea, when the outside air temperature is relatively low, such as in winter, there is a problem that the air heat exchanger 57 frosts due to endothermic heat from the outside air, so the first compressor 43 is the main power source. The second compressor 53 is used as an auxiliary power source. On the contrary, when the outside air temperature is not so low even in autumn, spring, and winter, the second compressor 53 is the main power source because the air heat exchanger 57 does not easily frost even if it absorbs heat from the outside air. The first compressor 43 is used as an auxiliary power source.

すなわち、本実施形態では、暖房運転を開始する際に、外気温度センサ52cの検出する外気温度が所定の切換温度θ1(例えば、θ1=5℃)未満である場合、第1ヒートポンプ回路40の第1圧縮機43を主動力源とすると共に、第2ヒートポンプ回路50の第2圧縮機53を補助動力源とし、暖房運転を開始させる。また、外気温度センサ52cの検出する外気温度が所定の切換温度θ1以上である場合、第2ヒートポンプ回路50の第2圧縮機53を主動力源とすると共に、第1ヒートポンプ回路40の第1圧縮機43を補助動力源とし、暖房運転を開始させる。 That is, in the present embodiment, when the outside air temperature detected by the outside air temperature sensor 52c is less than the predetermined switching temperature θ1 (for example, θ1 = 5 ° C.) when the heating operation is started, the first heat pump circuit 40 is the first. 1 The compressor 43 is used as the main power source, and the second compressor 53 of the second heat pump circuit 50 is used as the auxiliary power source to start the heating operation. When the outside air temperature detected by the outside air temperature sensor 52c is equal to or higher than the predetermined switching temperature θ1, the second compressor 53 of the second heat pump circuit 50 is used as the main power source, and the first compression of the first heat pump circuit 40 is performed. The heating operation is started by using the machine 43 as an auxiliary power source.

そして、本実施形態では、上記のようにして暖房運転を開始した後、外気温度が変化した場合には、その変化の度合いに応じて、適宜、主動力源と補助動力源とを入れ換える。つまり、第1圧縮機43と第2圧縮機53の何れの動力源を主とするか、補助とするかを入れ換える。 Then, in the present embodiment, when the outside air temperature changes after the heating operation is started as described above, the main power source and the auxiliary power source are appropriately replaced according to the degree of the change. That is, which of the first compressor 43 and the second compressor 53 is the main power source or the auxiliary power source is exchanged.

すなわち、(暖房運転開始時の外気温度がθ1未満で)第1圧縮機43が主動力源、第2圧縮機53が補助動力源として暖房運転を開始した後、図3(a)に示すように、外気温度が上昇して切換温度であるθ1(5℃)以上となるまで(5℃未満の場合)はそのまま第1圧縮機43を主動力源とし第2圧縮機53を補助動力源とする。その後、外気温度がθ1以上に上昇したら、第2圧縮機53を補助動力源から主動力源に切り換え、第1圧縮機43を主動力源から補助動力源に切り換える。 That is, as shown in FIG. 3A, after the first compressor 43 is used as the main power source and the second compressor 53 is used as the auxiliary power source (when the outside air temperature at the start of the heating operation is less than θ1), the heating operation is started. In addition, until the outside air temperature rises to the switching temperature of θ1 (5 ° C) or higher (less than 5 ° C), the first compressor 43 is used as the main power source and the second compressor 53 is used as the auxiliary power source. do. After that, when the outside air temperature rises to θ1 or more, the second compressor 53 is switched from the auxiliary power source to the main power source, and the first compressor 43 is switched from the main power source to the auxiliary power source.

逆に、(暖房運転開始時の外気温度がθ1以上で)第2圧縮機53が主動力源、第1圧縮機43が補助動力源として暖房運転を開始した後、図3(a)に示すように、外気温度が低下してθ2(例えば、θ2=2℃)未満とならないうち(2℃以上の場合)はそのまま第2圧縮機53を主動力源とし第1圧縮機43を補助動力源とする。その後、外気温度がθ2未満に低下したら、第1圧縮機43を補助動力源から主動力源に切り換え、第2圧縮機53を主動力源から補助動力源に切り換える。 On the contrary, after starting the heating operation with the second compressor 53 as the main power source and the first compressor 43 as the auxiliary power source (when the outside air temperature at the start of the heating operation is θ1 or more), FIG. 3A is shown. As described above, while the outside air temperature does not drop to less than θ2 (for example, θ2 = 2 ° C.) (for example, when the temperature is 2 ° C. or higher), the second compressor 53 is used as the main power source and the first compressor 43 is used as the auxiliary power source. And. After that, when the outside air temperature drops below θ2, the first compressor 43 is switched from the auxiliary power source to the main power source, and the second compressor 53 is switched from the main power source to the auxiliary power source.

すなわち、暖房運転中において、図3(a)の矢印で示すように、上記のような外気温度の上昇方向では、主動力源と補助動力源を切り換える区切りとなる切換温度をθ1とする一方、外気温度の低下方向では、切換温度を変えてθ2とする(=主動力源/補助動力源の切り換え挙動にヒステリシスを持たせている)。なお、上記切換温度はθ1、θ2は制御装置6の記憶部に予め記憶されている。 That is, during the heating operation, as shown by the arrow in FIG. 3A, in the rising direction of the outside air temperature as described above, the switching temperature that serves as a delimiter for switching between the main power source and the auxiliary power source is set to θ1. In the direction of decrease in the outside air temperature, the switching temperature is changed to θ2 (= the switching behavior of the main power source / auxiliary power source has a hysteresis). The switching temperatures θ1 and θ2 are stored in advance in the storage unit of the control device 6.

以上のように、外気温度が変化し、それまでの主動力源・補助動力源の割り当てを入れ換えたほうが効率がよいとみなされた場合には、第1圧縮機43及び第2圧縮機53に対する割り当てが入れ換えられ、それまで主動力源だった圧縮機が補助動力源とされ、補助動力源だった圧縮機が主動力源とされる。 As described above, when the outside air temperature changes and it is considered that it is more efficient to replace the allocation of the main power source and the auxiliary power source up to that point, the first compressor 43 and the second compressor 53 are used. The allocations are swapped, the compressor that was the main power source until then becomes the auxiliary power source, and the compressor that was the auxiliary power source becomes the main power source.

なお、本実施形態では、地中熱ヒートポンプ制御装置61が、暖房運転時の主動力源/補助動力源の切換制御を行うものとして説明したが、空気熱ヒートポンプ制御装置62が暖房運転時の主動力源/補助動力源の切換制御を行うものであってもよく、地中熱ヒートポンプ制御装置61と空気熱ヒートポンプ制御装置62とが、必要に応じて互いに連係して、暖房運転時の主動力源/補助動力源の切換制御を行うものであってもよい。 In the present embodiment, the underground heat heat pump control device 61 has been described as performing switching control between the main power source / auxiliary power source during the heating operation, but the pneumatic heat pump control device 62 is mainly used during the heating operation. It may control switching between the power source and the auxiliary power source, and the underground heat heat pump control device 61 and the air heat heat pump control device 62 are linked to each other as necessary to be the main power during the heating operation. It may control switching between the source / auxiliary power source.

続いて、暖房運転時における空気熱ヒートポンプ制御装置62について説明すると、空気熱ヒートポンプ制御装置62は、戻り温度センサ34の検出値に応じて、第2圧縮機53の回転数を制御する。特にこの例では、戻り温度センサ34により検出される負荷側循環液Lの戻り温水温度が、例えばリモコン60の設定温度に基づいて設定される目標温水温度になるように、第2圧縮機53の回転数を制御する。なお、この空気熱ヒートポンプ制御装置62と地中熱ヒートポンプ制御装置61とは、必要に応じて互いに連係しつつ、対象となる第1圧縮機43または第2圧縮機53の制御を行う。 Next, the air source heat pump control device 62 during the heating operation will be described. The air source heat pump control device 62 controls the rotation speed of the second compressor 53 according to the detection value of the return temperature sensor 34. In particular, in this example, the return hot water temperature of the load-side circulating fluid L detected by the return temperature sensor 34 becomes the target hot water temperature set based on, for example, the set temperature of the remote controller 60, so that the second compressor 53 is used. Control the number of revolutions. The air-heat pump control device 62 and the geothermal heat pump control device 61 control the target first compressor 43 or second compressor 53 while coordinating with each other as necessary.

また、空気熱ヒートポンプ制御装置62は、第2冷媒吐出温度センサ52aにより検出される第2冷媒C2の冷媒吐出温度に応じて、第2膨張弁55の弁開度を制御する。特にこの例では、第2冷媒吐出温度センサ52aにより検出される第2冷媒C2の冷媒吐出温度が、例えばリモコン60の設定温度に対応した制御上の目標冷媒吐出温度となるように、第2膨張弁55の弁開度を制御する。なお、この空気熱ヒートポンプ制御装置62と地中熱ヒートポンプ制御装置61とは、必要に応じて互いに連係しつつ、対象となる第1膨張弁45または第2膨張弁55の制御を行う。 Further, the air source heat pump control device 62 controls the valve opening degree of the second expansion valve 55 according to the refrigerant discharge temperature of the second refrigerant C2 detected by the second refrigerant discharge temperature sensor 52a. In particular, in this example, the second expansion is performed so that the refrigerant discharge temperature of the second refrigerant C2 detected by the second refrigerant discharge temperature sensor 52a becomes, for example, the control target refrigerant discharge temperature corresponding to the set temperature of the remote controller 60. The valve opening degree of the valve 55 is controlled. The air-heat pump control device 62 and the geothermal heat pump control device 61 control the target first expansion valve 45 or second expansion valve 55 while coordinating with each other as necessary.

さらに、空気熱ヒートポンプ制御装置62は、外気温度センサ52cにより検出された外気温度に応じて、送風ファン56の回転数を制御する。 Further, the air source heat pump control device 62 controls the rotation speed of the blower fan 56 according to the outside air temperature detected by the outside air temperature sensor 52c.

次に、冷房運転時における地中熱ヒートポンプ制御装置61について説明するが、前記暖房運転時と比較して、負荷側循環液Lが温水か冷水かの違いしかなく、制御方法が変わらないもの(第1圧縮機43の回転数制御、第1膨張弁45の開度制御、熱源側循環ポンプ22の回転数制御、負荷側循環ポンプ32の回転数制御)については説明を省略する。空気熱ヒートポンプ制御装置62についても同様である。 Next, the geothermal heat pump control device 61 during the cooling operation will be described, but the control method does not change because the load side circulation liquid L is only different from hot water or cold water as compared with the heating operation. The description of the rotation speed control of the first compressor 43, the opening degree control of the first expansion valve 45, the rotation speed control of the heat source side circulation pump 22, and the rotation speed control of the load side circulation pump 32) will be omitted. The same applies to the air source heat pump control device 62.

ここで、地中熱ヒートポンプ制御装置61は、冷房運転時において、外気温度センサ52cの検出する外気温度を基準として、地中熱ヒートポンプユニット4および空気熱ヒートポンプユニット5のうちどちらの熱効率(採熱効率)が高いかを判断して、熱効率が高い方を主側(優先側)のヒートポンプユニット、熱効率が低い方を補助側のヒートポンプユニットに設定する。言い換えると、地中熱ヒートポンプ制御装置61は、外気温度センサ52cの検出する外気温度を基準として、地中熱ヒートポンプユニット4(第1ヒートポンプ回路40)の第1圧縮機43および空気熱ヒートポンプユニット5(第2ヒートポンプ回路50)の第2圧縮機53のうち一方を主動力源、他方を補助動力源に設定するものである。 Here, the geothermal heat pump control device 61 has the heat efficiency (heat sampling efficiency) of either the geothermal heat pump unit 4 or the air heat heat pump unit 5 with reference to the outside air temperature detected by the outside air temperature sensor 52c during the cooling operation. ) Is high, and the one with higher heat efficiency is set as the heat pump unit on the main side (priority side), and the one with lower heat efficiency is set as the heat pump unit on the auxiliary side. In other words, the underground heat heat pump control device 61 uses the outside air temperature detected by the outside air temperature sensor 52c as a reference, and the first compressor 43 and the air heat heat pump unit 5 of the underground heat heat pump unit 4 (first heat pump circuit 40). One of the second compressors 53 of the (second heat pump circuit 50) is set as the main power source and the other as the auxiliary power source.

ここで、図3(b)を用いて、冷房運転時の主動力源/補助動力源の切り換えについて説明する。なお、図3(b)において、「地中熱HP主」、「地中熱HP補助」、「空気熱HP主」、「空気熱HP補助」と表記されているものは、それぞれ、「第1圧縮機43が主動力源」、「第1圧縮機43が補助動力源」、「第2圧縮機53が主動力源」、「第2圧縮機53が補助動力源」と読み換えが可能である。 Here, switching between the main power source and the auxiliary power source during the cooling operation will be described with reference to FIG. 3 (b). In addition, in FIG. 3B, the ones described as "geothermal HP main", "geothermal HP auxiliary", "air heat HP main", and "air heat HP auxiliary" are "No. 1", respectively. It can be read as "1 compressor 43 is the main power source", "the first compressor 43 is the auxiliary power source", "the second compressor 53 is the main power source", and "the second compressor 53 is the auxiliary power source". Is.

まず、基本的な考え方として、春期や秋期などで外気温度があまり高くない場合には、外気への大きな放熱を期待できることから空気熱源を利用する第2圧縮機53が主動力源とされ、地中熱源を利用する第1圧縮機43は補助動力源とされる。逆に夏期などで外気温度が比較的高い場合には、外気への放熱をあまり期待できないことから地中熱源を利用する第1圧縮機43が主動力源とされ、空気熱源を利用する第2圧縮機53は補助動力源とされる。 First, as a basic idea, when the outside air temperature is not very high in spring or autumn, a large heat dissipation to the outside air can be expected, so the second compressor 53 that uses an air heat source is used as the main power source. The first compressor 43 using a medium heat source is used as an auxiliary power source. On the contrary, when the outside air temperature is relatively high in summer or the like, heat dissipation to the outside air cannot be expected so much, so the first compressor 43 using the underground heat source is used as the main power source, and the second using the air heat source. The compressor 53 is used as an auxiliary power source.

すなわち、本実施形態では、冷房運転を開始する際に、外気温度センサ52cの検出する外気温度が所定の切換温度θ3(例えば、θ3=33℃)未満である場合、第2ヒートポンプ回路50の第2圧縮機53を主動力源とすると共に、第1ヒートポンプ回路40の第1圧縮機43を補助動力源とし、冷房運転を開始させる。また、外気温度センサ52cの検出する外気温度が所定の切換温度θ3以上である場合、第1ヒートポンプ回路40の第1圧縮機43を主動力源とすると共に、第2ヒートポンプ回路50の第2圧縮機53を補助動力源とし、冷房運転を開始させる。 That is, in the present embodiment, when the outside air temperature detected by the outside air temperature sensor 52c is less than the predetermined switching temperature θ3 (for example, θ3 = 33 ° C.) when the cooling operation is started, the second heat pump circuit 50 is the second. 2 The compressor 53 is used as the main power source, and the first compressor 43 of the first heat pump circuit 40 is used as the auxiliary power source to start the cooling operation. When the outside air temperature detected by the outside air temperature sensor 52c is equal to or higher than the predetermined switching temperature θ3, the first compressor 43 of the first heat pump circuit 40 is used as the main power source, and the second compression of the second heat pump circuit 50 is performed. Using the machine 53 as an auxiliary power source, the cooling operation is started.

そして、本実施形態では、上記のようにして冷房運転を開始した後、外気温度が変化した場合には、その変化の度合いに応じて、適宜、主動力源と補助動力源とを入れ換える。つまり、第1圧縮機43と第2圧縮機53の何れの動力源を主とするか、補助とするかを入れ換える。 Then, in the present embodiment, when the outside air temperature changes after the cooling operation is started as described above, the main power source and the auxiliary power source are appropriately replaced according to the degree of the change. That is, which of the first compressor 43 and the second compressor 53 is the main power source or the auxiliary power source is exchanged.

すなわち、(冷房運転開始時の外気温度がθ3未満で)第2圧縮機53が主動力源、第1圧縮機43が補助動力源として冷房運転を開始した後、図3(b)に示すように、外気温度が上昇して切換温度であるθ3(33℃)以上となるまで(33℃未満の場合)はそのまま第2圧縮機53を主動力源とし第1圧縮機43を補助動力源とする。その後、外気温度がθ3以上に上昇したら、第1圧縮機43を補助動力源から主動力源に切り換え、第2圧縮機53を主動力源から補助動力源に切り換える。 That is, as shown in FIG. 3B after the second compressor 53 starts the cooling operation as the main power source and the first compressor 43 uses the auxiliary power source (when the outside air temperature at the start of the cooling operation is less than θ3). The second compressor 53 is used as the main power source and the first compressor 43 is used as the auxiliary power source until the outside air temperature rises to the switching temperature of θ3 (33 ° C.) or higher (when the temperature is lower than 33 ° C.). do. After that, when the outside air temperature rises to θ3 or higher, the first compressor 43 is switched from the auxiliary power source to the main power source, and the second compressor 53 is switched from the main power source to the auxiliary power source.

逆に、(冷房運転開始時の外気温度がθ3以上で)第1圧縮機43が主動力源、第2圧縮機53が補助動力源として冷房運転を開始した後、図3(b)に示すように、外気温度が低下してθ4(例えば、θ4=30℃)未満とならないうち(30℃以上の場合)はそのまま第1圧縮機43を主動力源とし第2圧縮機53を補助動力源とする。その後、外気温度がθ4未満に低下したら、第2圧縮機53を補助動力源から主動力源に切り換え、第1圧縮機43を主動力源から補助動力源に切り換える。 On the contrary, after starting the cooling operation with the first compressor 43 as the main power source and the second compressor 53 as the auxiliary power source (when the outside air temperature at the start of the cooling operation is θ3 or more), it is shown in FIG. 3 (b). As described above, while the outside air temperature does not decrease to less than θ4 (for example, θ4 = 30 ° C.) (when the temperature is 30 ° C. or higher), the first compressor 43 is used as the main power source and the second compressor 53 is used as the auxiliary power source. And. After that, when the outside air temperature drops below θ4, the second compressor 53 is switched from the auxiliary power source to the main power source, and the first compressor 43 is switched from the main power source to the auxiliary power source.

すなわち、冷房運転中において、図3(b)の矢印で示すように、上記のような外気温度の上昇方向では、主動力源と補助動力源を切り換える区切りとなる切換温度をθ3とする一方、外気温度の低下方向では、切換温度を変えてθ4とする(=主動力源/補助動力源の切り換え挙動にヒステリシスを持たせている)。なお、上記切換温度はθ3、θ4は制御装置6の記憶部に予め記憶されている。 That is, during the cooling operation, as shown by the arrow in FIG. 3B, in the rising direction of the outside air temperature as described above, the switching temperature that serves as a delimiter for switching between the main power source and the auxiliary power source is set to θ3, while the switching temperature is set to θ3. In the direction of decrease in the outside air temperature, the switching temperature is changed to θ4 (= the switching behavior of the main power source / auxiliary power source has a hysteresis). The switching temperatures θ3 and θ4 are stored in advance in the storage unit of the control device 6.

以上のように、外気温度が変化し、それまでの主動力源・補助動力源の割り当てを入れ換えたほうが効率がよいとみなされた場合には、第1圧縮機43及び第2圧縮機53に対する割り当てが入れ換えられ、それまで主動力源だった圧縮機が補助動力源とされ、補助動力源だった圧縮機が主動力源とされる。 As described above, when the outside air temperature changes and it is considered that it is more efficient to replace the allocation of the main power source and the auxiliary power source up to that point, the first compressor 43 and the second compressor 53 are used. The allocations are swapped, the compressor that was the main power source until then becomes the auxiliary power source, and the compressor that was the auxiliary power source becomes the main power source.

なお、本実施形態では、地中熱ヒートポンプ制御装置61が、冷房運転時の主動力源/補助動力源の切換制御を行うものとして説明したが、空気熱ヒートポンプ制御装置62が冷房運転時の主動力源/補助動力源の切換制御を行うものであってもよく、地中熱ヒートポンプ制御装置61と空気熱ヒートポンプ制御装置62とが、必要に応じて互いに連係して、冷房運転時の主動力源/補助動力源の切換制御を行うものであってもよい。 In the present embodiment, the geothermal heat pump control device 61 has been described as performing switching control between the main power source / auxiliary power source during the cooling operation, but the pneumatic heat pump control device 62 is mainly used during the cooling operation. The power source / auxiliary power source may be switched and controlled, and the geothermal heat pump control device 61 and the air heat heat pump control device 62 are linked to each other as necessary to be the main power during cooling operation. It may control switching between the source / auxiliary power source.

次に、図1および図2に示す複合熱源ヒートポンプ装置1の暖房運転時の動作について図4を用いて説明する。空調端末36に供給される温水(以下適宜、暖房運転時の負荷側循環液Lを「温水」という。)を生成する暖房運転は、第1ヒートポンプ回路40または第2ヒートポンプ回路50の何れか一方を作動させて行う場合と、第1ヒートポンプ回路40および第2ヒートポンプ回路50の双方を作動させて行う場合があるが、ここでは、第1ヒートポンプ回路40および第2ヒートポンプ回路50の双方を作動させて行う場合について説明する。なお、図4中の矢印は、冷媒や循環液の流れる方向を示したものである。 Next, the operation of the combined heat source heat pump device 1 shown in FIGS. 1 and 2 during the heating operation will be described with reference to FIG. The heating operation for generating hot water supplied to the air conditioning terminal 36 (hereinafter, appropriately, the load-side circulating fluid L during the heating operation is referred to as “hot water”) is performed by either the first heat pump circuit 40 or the second heat pump circuit 50. There are cases where both the first heat pump circuit 40 and the second heat pump circuit 50 are operated, but here, both the first heat pump circuit 40 and the second heat pump circuit 50 are operated. The case of doing this will be described. The arrows in FIG. 4 indicate the flow direction of the refrigerant and the circulating fluid.

リモコン60から空調端末36による被空調空間としての室内の加熱の指示がなされると、まず、制御装置6は、外気温度を基準として、地中熱ヒートポンプユニット4の第1圧縮機43と空気熱ヒートポンプ装置5の第2圧縮機53のうち、一方を主動力源に設定し、他方を補助動力源に設定する。 When the remote control 60 instructs the air-conditioned terminal 36 to heat the room as an air-conditioned space, the control device 6 first uses the outside air temperature as a reference to the first compressor 43 of the ground heat heat pump unit 4 and air heat. Of the second compressor 53 of the heat pump device 5, one is set as the main power source and the other is set as the auxiliary power source.

具体的には、外気温度センサ52cで検出した外気温度が所定の切換温度θ1(例えば、5℃)以上であれば、空気熱ヒートポンプユニット5の方が採熱効率が高いと判断し、第2圧縮機53を主動力源に設定すると共に第1圧縮機43を補助動力源に設定し、外気温度センサ52cで検出した外気温度が所定の切換温度θ1(例えば、5℃)未満であれば、地中熱ヒートポンプユニット4の方が採熱効率が高いと判断し、第1圧縮機43を主動力源に設定すると共に第2圧縮機53を補助動力源に設定する。 Specifically, if the outside air temperature detected by the outside air temperature sensor 52c is equal to or higher than the predetermined switching temperature θ1 (for example, 5 ° C.), it is determined that the air heat heat pump unit 5 has higher heat sampling efficiency, and the second compression is performed. If the machine 53 is set as the main power source and the first compressor 43 is set as the auxiliary power source, and the outside air temperature detected by the outside air temperature sensor 52c is less than the predetermined switching temperature θ1 (for example, 5 ° C.), the ground is ground. It is determined that the medium heat heat pump unit 4 has higher heat sampling efficiency, and the first compressor 43 is set as the main power source and the second compressor 53 is set as the auxiliary power source.

そして、制御装置6は、第1四方弁44および第2四方弁54を暖房運転時の状態となるように流路を切り換え、第1圧縮機43、第1膨張弁45、熱源側循環ポンプ22、第2圧縮機53、第2膨張弁55、送風ファン56、および負荷側循環ポンプ32を駆動させて暖房運転を開始させる。この時、熱動弁33も開弁される。 Then, the control device 6 switches the flow path of the first four-way valve 44 and the second four-way valve 54 so as to be in the state during the heating operation, and the first compressor 43, the first expansion valve 45, and the heat source side circulation pump 22. , The second compressor 53, the second expansion valve 55, the blower fan 56, and the load side circulation pump 32 are driven to start the heating operation. At this time, the thermal valve 33 is also opened.

前記暖房運転中、第1ヒートポンプ回路40では、第1圧縮機43で圧縮された高温・高圧のガス状の第1冷媒C1が第1圧縮機43から吐出され、第1冷媒C1は凝縮器として機能する第1負荷側熱交換器41にて、負荷側循環回路30を流れる温水と熱交換を行って温水に熱を放出して加熱しながら気液混合状態で高圧の冷媒に変化する。そして、この状態の第1冷媒C1が第1膨張弁45において減圧されて低圧の冷媒となって蒸発しやすい状態となり、蒸発器として機能する第1熱源側熱交換器46において、熱源側循環回路20を流れる熱源側循環液Hと熱交換を行って熱源側循環液Hから吸熱して低温・低圧のガス状の第1冷媒C1となって、再び第1圧縮機43へ戻るものである。 During the heating operation, in the first heat pump circuit 40, the high-temperature, high-pressure gaseous first refrigerant C1 compressed by the first compressor 43 is discharged from the first compressor 43, and the first refrigerant C1 serves as a condenser. In the functioning first load side heat exchanger 41, heat is exchanged with the hot water flowing through the load side circulation circuit 30, heat is released to the hot water, and the heat is changed to a high-pressure refrigerant in a gas-liquid mixed state while heating. Then, the first refrigerant C1 in this state is decompressed by the first expansion valve 45 to become a low-pressure refrigerant and easily evaporates, and in the first heat source side heat exchanger 46 functioning as an evaporator, the heat source side circulation circuit. It exchanges heat with the heat source side circulating liquid H flowing through 20 and absorbs heat from the heat source side circulating liquid H to become a low-temperature, low-pressure gaseous first refrigerant C1 and returns to the first compressor 43 again.

一方、第2ヒートポンプ回路50では、第2圧縮機53で圧縮された高温・高圧のガス状の第2冷媒C2が第2圧縮機53から吐出され、第2冷媒C2は凝縮器として機能する第2負荷側熱交換器51にて、負荷側循環回路30を流れる温水と熱交換を行って温水に熱を放出して加熱しながら気液混合状態で高圧の冷媒に変化する。そして、この状態の第2冷媒C2が第2膨張弁55において減圧されて低圧の冷媒となって蒸発しやすい状態となり、蒸発器として機能する空気熱交換器57において、送風ファン56の作動により送られる外気と熱交換を行って外気から吸熱して低温・低圧のガス状の第2冷媒C2となって、再び第2圧縮機53へ戻るものである。 On the other hand, in the second heat pump circuit 50, the high-temperature, high-pressure gaseous second refrigerant C2 compressed by the second compressor 53 is discharged from the second compressor 53, and the second refrigerant C2 functions as a condenser. 2 The load side heat exchanger 51 exchanges heat with the hot water flowing through the load side circulation circuit 30, releases heat to the hot water, and changes to a high-pressure refrigerant in a gas-liquid mixed state while heating. Then, the second refrigerant C2 in this state is decompressed by the second expansion valve 55 to become a low-pressure refrigerant and easily evaporates, and in the air heat exchanger 57 functioning as an evaporator, the blower fan 56 operates to send the second refrigerant C2. It exchanges heat with the outside air, absorbs heat from the outside air, becomes a low-temperature, low-pressure gaseous second refrigerant C2, and returns to the second compressor 53 again.

前記熱源側循環回路20では、地中熱交換器23によって地中熱が採熱され、その熱を帯びた熱源側循環液Hが熱源側循環ポンプ22の駆動により第1熱源側熱交換器46に供給される。そして第1熱源側熱交換器46にて第1冷媒C1と熱源側循環液Hとで熱交換が行われ、地中熱交換器23にて採熱された地中熱が第1冷媒C1側に汲み上げられ、第1冷媒C1が加熱され蒸発するものである。 In the heat source side circulation circuit 20, the underground heat is collected by the underground heat exchanger 23, and the heat source side circulating liquid H carrying the heat is driven by the heat source side circulation pump 22 to drive the first heat source side heat exchanger 46. Is supplied to. Then, heat exchange is performed between the first refrigerant C1 and the heat source side circulating fluid H in the first heat source side heat exchanger 46, and the geothermal heat collected by the geothermal heat exchanger 23 is on the first refrigerant C1 side. The first refrigerant C1 is heated and evaporated.

前記負荷側循環回路30では、一定回転数で駆動される負荷側循環ポンプ32の駆動により第1負荷側熱交換器41に流入した低温の温水は、凝縮器として機能する第1負荷側熱交換器41において第1冷媒C1と熱交換されて加熱された後、凝縮器として機能する第2負荷側熱交換器51において第2冷媒C2と熱交換されてさらに加熱され、加熱された温水は、その後、空調端末36に供給されて室内の暖房に用いられ、空調端末36を流通するときに放熱されて温度低下した温水は再び第1負荷側熱交換器41へと戻るものである。 In the load side circulation circuit 30, the low temperature hot water flowing into the first load side heat exchanger 41 by the drive of the load side circulation pump 32 driven at a constant rotation speed is the first load side heat exchange that functions as a condenser. After being heated by heat exchange with the first refrigerant C1 in the vessel 41, the hot water heated by heat exchange with the second refrigerant C2 in the second load side heat exchanger 51 functioning as a condenser is heated. After that, the hot water supplied to the air conditioner terminal 36 and used for indoor heating, and the hot water whose temperature has dropped due to heat dissipation when flowing through the air conditioner terminal 36 returns to the first load side heat exchanger 41 again.

次に、図1および図2に示す複合熱源ヒートポンプ装置1の冷房運転時の動作について図5を用いて説明する。空調端末36に供給される冷水(以下適宜、冷房運転時の負荷側循環液Lを「冷水」という。)を生成する冷房運転は、第1ヒートポンプ回路40または第2ヒートポンプ回路50の何れか一方を作動させて行う場合と、第1ヒートポンプ回路40および第2ヒートポンプ回路50の双方を作動させて行う場合があるが、ここでは、第1ヒートポンプ回路40および第2ヒートポンプ回路50の双方を作動させて行う場合について説明する。なお、図5中の矢印は、冷媒や循環液の流れる方向を示したものである。 Next, the operation of the combined heat source heat pump device 1 shown in FIGS. 1 and 2 during the cooling operation will be described with reference to FIG. The cooling operation for generating the cold water supplied to the air conditioning terminal 36 (hereinafter, appropriately, the load-side circulating liquid L during the cooling operation is referred to as “cold water”) is performed by either the first heat pump circuit 40 or the second heat pump circuit 50. There are cases where both the first heat pump circuit 40 and the second heat pump circuit 50 are operated, but here, both the first heat pump circuit 40 and the second heat pump circuit 50 are operated. The case of doing this will be described. The arrows in FIG. 5 indicate the flow direction of the refrigerant and the circulating fluid.

リモコン60から空調端末36による被空調空間としての室内の冷却の指示がなされると、まず、制御装置6は、外気温度を基準として、地中熱ヒートポンプユニット4の第1圧縮機43と空気熱ヒートポンプ装置5の第2圧縮機53のうち、一方を主動力源に設定し、他方を補助動力源に設定する。 When the remote control 60 instructs the air-conditioned terminal 36 to cool the room as an air-conditioned space, the control device 6 first uses the outside air temperature as a reference to the first compressor 43 of the ground heat heat pump unit 4 and air heat. Of the second compressor 53 of the heat pump device 5, one is set as the main power source and the other is set as the auxiliary power source.

具体的には、外気温度センサ52cで検出した外気温度が所定の切換温度θ3(例えば、33℃)以上であれば、地中熱ヒートポンプユニット4の方が採熱効率が高いと判断し、第1圧縮機43を主動力源に設定すると共に第2圧縮機53を補助動力源に設定し、外気温度センサ52cで検出した外気温度が所定の切換温度θ3(例えば、33℃)未満であれば、空気熱ヒートポンプユニット5の方が採熱効率が高いと判断し、第2圧縮機53を主動力源に設定すると共に第1圧縮機43を補助動力源に設定する。 Specifically, if the outside air temperature detected by the outside air temperature sensor 52c is equal to or higher than the predetermined switching temperature θ3 (for example, 33 ° C.), it is determined that the underground heat heat pump unit 4 has higher heat sampling efficiency, and the first If the compressor 43 is set as the main power source and the second compressor 53 is set as the auxiliary power source, and the outside air temperature detected by the outside air temperature sensor 52c is less than the predetermined switching temperature θ3 (for example, 33 ° C.), It is determined that the pneumatic heat pump unit 5 has higher heat collection efficiency, and the second compressor 53 is set as the main power source and the first compressor 43 is set as the auxiliary power source.

そして、制御装置6は、第1四方弁44および第2四方弁54を冷房運転時の状態となるように流路を切り換え、第1圧縮機43、第1膨張弁45、熱源側循環ポンプ22、第2圧縮機53、第2膨張弁55、送風ファン56、および負荷側循環ポンプ32を駆動させて冷房運転を開始させる。この時、熱動弁33も開弁される。 Then, the control device 6 switches the flow path so that the first four-way valve 44 and the second four-way valve 54 are in the state during the cooling operation, and the first compressor 43, the first expansion valve 45, and the heat source side circulation pump 22 are switched. , The second compressor 53, the second expansion valve 55, the blower fan 56, and the load side circulation pump 32 are driven to start the cooling operation. At this time, the thermal valve 33 is also opened.

前記冷房運転中、第1ヒートポンプ回路40では、第1圧縮機43で圧縮された高温・高圧のガス状の第1冷媒C1が第1圧縮機43から吐出され、第1冷媒C1は凝縮器として機能する第1熱源側熱交換器46にて、熱源側循環回路20を流れる熱源側循環液Hと熱交換を行って熱源側循環液Hに熱を放出して冷却しながら気液混合状態で高圧の冷媒に変化する。そして、この状態の第1冷媒C1が第1膨張弁45において減圧されて低圧の冷媒となって蒸発しやすい状態となり、蒸発器として機能する第1負荷側熱交換器41において、負荷側循環回路30を流れる冷水と熱交換を行って冷水から吸熱して低温・低圧のガス状の第1冷媒C1となって、再び第1圧縮機43へ戻るものである。 During the cooling operation, in the first heat pump circuit 40, the high-temperature, high-pressure gaseous first refrigerant C1 compressed by the first compressor 43 is discharged from the first compressor 43, and the first refrigerant C1 serves as a condenser. In the functioning first heat source side heat exchanger 46, heat is exchanged with the heat source side circulation liquid H flowing through the heat source side circulation circuit 20 to release heat to the heat source side circulation liquid H to cool the mixture in a gas-liquid state. It changes to a high pressure refrigerant. Then, the first refrigerant C1 in this state is decompressed by the first expansion valve 45 to become a low-pressure refrigerant and easily evaporates, and in the first load side heat exchanger 41 functioning as an evaporator, the load side circulation circuit. It exchanges heat with the cold water flowing through 30, absorbs heat from the cold water, becomes a low-temperature, low-pressure gaseous first refrigerant C1, and returns to the first compressor 43 again.

一方、第2ヒートポンプ回路50では、第2圧縮機53で圧縮された高温・高圧のガス状の第2冷媒C2が第2圧縮機53から吐出され、第2冷媒C2は凝縮器として機能する空気熱交換器57にて、送風ファン56の作動により送られる外気と熱交換を行って外気に熱を放出して冷却しながら気液混合状態で高圧の冷媒に変化する。そして、この状態の第2冷媒C2が第2膨張弁55において減圧されて低圧の冷媒となって蒸発しやすい状態となり、蒸発器として機能する第2負荷側熱交換器51において、負荷側循環回路30を流れる冷水と熱交換を行って冷水から吸熱して低温・低圧のガス状の第2冷媒C2となって、再び第2圧縮機53へ戻るものである。 On the other hand, in the second heat pump circuit 50, the high-temperature, high-pressure gaseous second refrigerant C2 compressed by the second compressor 53 is discharged from the second compressor 53, and the second refrigerant C2 is air that functions as a condenser. The heat exchanger 57 exchanges heat with the outside air sent by the operation of the blower fan 56, releases heat from the outside air, cools the outside air, and changes to a high-pressure refrigerant in a gas-liquid mixed state. Then, the second refrigerant C2 in this state is decompressed by the second expansion valve 55 to become a low-pressure refrigerant and easily evaporates, and in the second load side heat exchanger 51 functioning as an evaporator, the load side circulation circuit. It exchanges heat with the cold water flowing through 30, absorbs heat from the cold water, becomes a low-temperature, low-pressure gaseous second refrigerant C2, and returns to the second compressor 53 again.

前記負荷側循環回路30では、一定回転数で駆動される負荷側循環ポンプ32の駆動により第1負荷側熱交換器41に流入した冷水は、蒸発器として機能する第1負荷側熱交換器41において第1冷媒C1と熱交換されて冷却された後、蒸発器として機能する第2負荷側熱交換器51において第2冷媒C2と熱交換されてさらに冷却され、冷却された冷水は、その後、空調端末36に供給されて室内の冷房に用いられ、空調端末36を流通するときに吸熱し温度上昇した冷水は再び第1負荷側熱交換器41へと戻るものである。 In the load-side circulation circuit 30, the cold water that has flowed into the first load-side heat exchanger 41 due to the drive of the load-side circulation pump 32 that is driven at a constant rotation speed is the first load-side heat exchanger 41 that functions as an evaporator. In the second load side heat exchanger 51 that functions as an evaporator, the cold water that has been heat exchanged with the second refrigerant C2 and further cooled and cooled is subsequently cooled by heat exchange with the first refrigerant C1. The cold water that is supplied to the air conditioner terminal 36 and used for indoor cooling, absorbs heat when flowing through the air conditioner terminal 36, and whose temperature rises, returns to the first load side heat exchanger 41 again.

次に、特徴的な動作として、主動力源に設定された圧縮機のみが駆動しての暖房運転時または冷房運転時において、主動力源/補助動力源の切り換えが発生する場面の動作について、図6~図9のタイムチャートを用いて説明する。 Next, as a characteristic operation, regarding the operation of the scene where switching between the main power source and the auxiliary power source occurs during the heating operation or the cooling operation in which only the compressor set as the main power source is driven. This will be described with reference to the time charts of FIGS. 6 to 9.

図6は、暖房運転中に、外気温度が低下して主動力源/補助動力源の切り換えが発生する場面を示すもので、本実施形態における戻り温度センサ34で検出される温水温度、第1圧縮機43の回転数、第2圧縮機53の回転数の経時推移を実線で示し、比較例における戻り温度センサ34で検出される温水温度、第1圧縮機43の回転数、第2圧縮機53の回転数の経時推移を一点鎖線で示している。なお、時間t1は暖房運転が開始されてから所定時間経過した後の時間を表すものとする。 FIG. 6 shows a scene in which the outside air temperature drops and switching between the main power source and the auxiliary power source occurs during the heating operation, and the hot water temperature detected by the return temperature sensor 34 in the present embodiment is the first. The time course of the number of revolutions of the compressor 43 and the number of revolutions of the second compressor 53 is shown by a solid line, the hot water temperature detected by the return temperature sensor 34 in the comparative example, the number of revolutions of the first compressor 43, and the second compressor. The time course of the number of rotations of 53 is shown by a one-point chain line. The time t1 represents the time after a predetermined time has elapsed since the heating operation was started.

時間t1では、外気温度センサ52cで検出される外気温度が切換温度θ1(5℃)以上で、第2圧縮機53が主動力源、第1圧縮機43が補助動力源に設定された状態であり、補助動力源の第1圧縮機43の駆動を停止させた状態で主動力源の第2圧縮機53のみを駆動させての暖房運転が行われており、時間t1~t2において、第2圧縮機53を60rpsで駆動させて温水温度が目標温水温度(ここでは、30℃)に維持されている。 At time t1, the outside air temperature detected by the outside air temperature sensor 52c is set to the switching temperature θ1 (5 ° C.) or higher, the second compressor 53 is set as the main power source, and the first compressor 43 is set as the auxiliary power source. The heating operation is performed by driving only the second compressor 53 of the main power source while the drive of the first compressor 43 of the auxiliary power source is stopped, and the second is performed in the time t1 to t2. The compressor 53 is driven at 60 rps to maintain the hot water temperature at the target hot water temperature (here, 30 ° C.).

そして、時間t2に近づくにつれ、外気温度センサ52cで検出される外気温度が徐々に低下し、時間t2において、外気温度が負荷が増加する方向に変化して切換温度θ2に達した、すなわち、外気温度の低下により外的負荷が増加し、外気温度が低下して切換温度θ2に達したら(切換温度θ2未満となったら)、制御装置6は、主動力源/補助動力源の切換条件が成立したと判断し、第1圧縮機43の設定を補助動力源から主動力源に切り換え、第2圧縮機53の設定を主動力源から補助動力源に切り換える。 Then, as the time t2 approaches, the outside air temperature detected by the outside air temperature sensor 52c gradually decreases, and at the time t2, the outside air temperature changes in the direction of increasing the load and reaches the switching temperature θ2, that is, the outside air. When the external load increases due to the decrease in temperature and the outside air temperature decreases and reaches the switching temperature θ2 (when the switching temperature becomes less than θ2), the control device 6 satisfies the switching condition of the main power source / auxiliary power source. The setting of the first compressor 43 is switched from the auxiliary power source to the main power source, and the setting of the second compressor 53 is switched from the main power source to the auxiliary power source.

この時、制御装置6は、切換後に主動力源となった第1圧縮機43を停止状態から駆動を開始させると共に、切換後に補助動力源となった第2圧縮機53の駆動を継続させ(時間t2)、第1所定時間の間(時間t2~t3)、切換後に主動力源となった第1圧縮機43および切換後に補助動力源となった第2圧縮機53の双方を駆動させた状態、すなわち、第1圧縮機43および第2圧縮機53の双方の駆動がオーバーラップするように制御する(本実施形態を示す実線参照。)。なお、第1圧縮機43の駆動開始に際し、制御装置6は、それまで主動力源であった第2圧縮機53の回転数と同じである60rpsを第1圧縮機43の指示回転数とし、第1圧縮機43を60rpsで駆動させるように制御する。 At this time, the control device 6 starts driving the first compressor 43, which became the main power source after the switching, from the stopped state, and continues driving the second compressor 53, which became the auxiliary power source after the switching. During the first predetermined time (time t2 to t3) during the time t2), both the first compressor 43 which became the main power source after the switching and the second compressor 53 which became the auxiliary power source after the switching were driven. The state, that is, the drive of both the first compressor 43 and the second compressor 53 is controlled to overlap (see the solid line showing the present embodiment). At the start of driving the first compressor 43, the control device 6 sets 60 rps, which is the same as the rotation speed of the second compressor 53, which has been the main power source until then, as the indicated rotation speed of the first compressor 43. The first compressor 43 is controlled to be driven at 60 rps.

上記第1所定時間の間(時間t2~t3)において、戻り温度センサ34で検出される温水温度は、外気温度の低下に伴う外的負荷の増加により、目標温水温度から低下するが、第1圧縮機43および第2圧縮機53の双方をオーバーラップさせて駆動させているため、出力が増加し、出力と負荷のバランスがとれ、温水温度が大きく変動(アンダーシュート)することはない(本実施形態を示す実線参照。)。 During the first predetermined time (time t2 to t3), the hot water temperature detected by the return temperature sensor 34 drops from the target hot water temperature due to the increase in the external load accompanying the decrease in the outside air temperature, but the first Since both the compressor 43 and the second compressor 53 are driven by overlapping, the output is increased, the output and the load are balanced, and the hot water temperature does not fluctuate (undershoot) significantly (this). See solid line showing embodiments.).

そして、前記第1所定時間が経過した時点(時間t3)で、制御装置6は、切換後に補助動力源となった第2圧縮機53の駆動を停止させ、時間t3以降は、第1圧縮機43のみを60rpsで駆動させて温水温度が目標温水温度に維持される(本実施形態を示す実線参照。)。 Then, at the time when the first predetermined time has elapsed (time t3), the control device 6 stops driving the second compressor 53 which has become an auxiliary power source after switching, and after the time t3, the first compressor Only 43 is driven at 60 rps to maintain the hot water temperature at the target hot water temperature (see the solid line showing this embodiment).

このように、本実施形態では、主動力源として第2圧縮機53のみが駆動しての暖房運転時に、外気温度が低下して切換温度θ2に達したことに基づき、主動力源と補助動力源とを切り換えた場合(主動力源を第2圧縮機53から第1圧縮機43に切り換え、補助動力源を第1圧縮機43から第2圧縮機53に切り換えた場合)に、切換後の主動力源(第1圧縮機43)の駆動を開始させると共に、切換後の補助動力源(第2圧縮機53)の駆動を停止させるにあたり、第1所定時間の間(時間t2~t3)、切換後の主動力源(第1圧縮機43)および切換後の補助動力源(第2圧縮機53)の双方の駆動がオーバーラップするように制御した後、切換後の補助動力源(第2圧縮機53)の駆動を停止(時間t3)させるように制御するようにしている。 As described above, in the present embodiment, the main power source and the auxiliary power are based on the fact that the outside air temperature drops and reaches the switching temperature θ2 during the heating operation in which only the second compressor 53 is driven as the main power source. When switching from the source (when the main power source is switched from the second compressor 53 to the first compressor 43 and the auxiliary power source is switched from the first compressor 43 to the second compressor 53), after switching. In starting the driving of the main power source (first compressor 43) and stopping the driving of the auxiliary power source (second compressor 53) after switching, during the first predetermined time (time t2 to t3), After controlling so that the drives of both the main power source (first compressor 43) after switching and the auxiliary power source (second compressor 53) after switching overlap each other, the auxiliary power source after switching (second). The drive of the compressor 53) is controlled to be stopped (time t3).

暖房運転時において、外気温度の低下に伴い外的負荷が増加した場合、温水温度は低下傾向となる。この場合、主動力源と補助動力源とを切り換えるときに、図6の一点鎖線で示す比較例のように、切換後の主動力源(第1圧縮機43)を停止状態から駆動を開始させるのと同時に、切換後の補助動力源(第2圧縮機53)の駆動を停止させてしまうと(時間t2参照。)、出力が不足して、温水の温度が目標温水温度から大きく変動(アンダーシュート)してしまい、目標温水温度に温度調節するのに時間がかかり(時間t2以降の温水温度参照。)、安定した運転を行えず快適性を損なってしまう。それに対して、本実施形態では、切換後の補助動力源(第2圧縮機53)を即停止させずに、切換後の主動力源(第1圧縮機43)および切換後の補助動力源(第2圧縮機53)の双方が駆動状態となる時間(第1所定時間)を設けることで、主動力源/補助動力源の切り換え時に生じる温水温度の低下を抑制することができ、目標温水温度からの温度変動が少ない安定した暖房運転を行うことができるものである。 During the heating operation, when the external load increases as the outside air temperature decreases, the hot water temperature tends to decrease. In this case, when switching between the main power source and the auxiliary power source, the main power source (first compressor 43) after switching is started from the stopped state as shown in the comparative example shown by the one-point chain line in FIG. At the same time, if the drive of the auxiliary power source (second compressor 53) after switching is stopped (see time t2), the output will be insufficient and the temperature of the hot water will fluctuate greatly from the target hot water temperature (under). It takes time to adjust the temperature to the target hot water temperature (see the hot water temperature after time t2), and stable operation cannot be performed and comfort is impaired. On the other hand, in the present embodiment, the auxiliary power source after switching (second compressor 53) is not immediately stopped, but the main power source after switching (first compressor 43) and the auxiliary power source after switching (second compressor 53) are not stopped immediately. By providing a time (first predetermined time) in which both of the second compressors 53) are in the driving state, it is possible to suppress a decrease in the hot water temperature that occurs when switching between the main power source and the auxiliary power source, and the target hot water temperature can be suppressed. It is possible to perform stable heating operation with little temperature fluctuation from.

続いて、図7のタイムチャートについて説明する。図7は、暖房運転中に、外気温度が上昇して主動力源/補助動力源の切り換えが発生する場面を示すもので、本実施形態における戻り温度センサ34で検出される温水温度、第1圧縮機43の回転数、第2圧縮機53の回転数の経時推移を実線で示し、比較例における戻り温度センサ34で検出される温水温度、第1圧縮機43の回転数、第2圧縮機53の回転数の経時推移を一点鎖線で示している。なお、時間t11は暖房運転が開始されてから所定時間経過した後の時間を表すものとする。 Next, the time chart of FIG. 7 will be described. FIG. 7 shows a scene in which the outside air temperature rises and switching between the main power source and the auxiliary power source occurs during the heating operation, and the hot water temperature detected by the return temperature sensor 34 in the present embodiment is the first. The time course of the number of revolutions of the compressor 43 and the number of revolutions of the second compressor 53 is shown by a solid line, the hot water temperature detected by the return temperature sensor 34 in the comparative example, the number of revolutions of the first compressor 43, and the second compressor. The time course of the number of rotations of 53 is shown by a one-point chain line. The time t11 represents the time after a predetermined time has elapsed since the heating operation was started.

時間t11では、外気温度センサ52cで検出される外気温度が切換温度θ1(5℃)未満で、第1圧縮機43が主動力源、第2圧縮機53が補助動力源に設定された状態であり、補助動力源の第2圧縮機53の駆動を停止させた状態で主動力源の第1圧縮機43のみを駆動させての暖房運転が行われており、時間t11~t12において、第1圧縮機43を60rpsで駆動させて温水温度が目標温水温度(ここでは、30℃)に維持されている。 At time t11, the outside air temperature detected by the outside air temperature sensor 52c is less than the switching temperature θ1 (5 ° C.), the first compressor 43 is set as the main power source, and the second compressor 53 is set as the auxiliary power source. The heating operation is performed by driving only the first compressor 43 of the main power source while the drive of the second compressor 53 of the auxiliary power source is stopped, and the first is performed at time t11 to t12. The compressor 43 is driven at 60 rps, and the hot water temperature is maintained at the target hot water temperature (here, 30 ° C.).

そして、時間t12に近づくにつれ、外気温度センサ52cで検出される外気温度が徐々に上昇し、時間t12において、外気温度が負荷が減少する方向に変化して切換温度θ1に達した、すなわち、外気温度の上昇により外的負荷が減少し、外気温度が上昇して切換温度θ1に達したら(切換温度θ1以上となったら)、制御装置6は、主動力源/補助動力源の切換条件が成立したと判断し、第2圧縮機53の設定を補助動力源から主動力源に切り換え、第1圧縮機43の設定を主動力源から補助動力源に切り換える。 Then, as the time t12 approaches, the outside air temperature detected by the outside air temperature sensor 52c gradually rises, and at the time t12, the outside air temperature changes in the direction in which the load decreases and reaches the switching temperature θ1, that is, the outside air. When the external load decreases due to the rise in temperature and the outside air temperature rises and reaches the switching temperature θ1 (when the switching temperature becomes θ1 or higher), the control device 6 satisfies the switching condition of the main power source / auxiliary power source. The setting of the second compressor 53 is switched from the auxiliary power source to the main power source, and the setting of the first compressor 43 is switched from the main power source to the auxiliary power source.

この時、制御装置6は、切換後に主動力源となった第2圧縮機53を停止状態から駆動を開始させると同時に、切換後に補助動力源となった第1圧縮機43の駆動を停止させる(時間t12)、すなわち、第1圧縮機43および第2圧縮機53の双方の駆動がオーバーラップしないように、切換後に補助動力源となった第1圧縮機43の駆動を停止させる(本実施形態を示す実線参照。)。なお、第2圧縮機53の駆動開始に際し、制御装置6は、それまで主動力源であった第1圧縮機43の回転数と同じである60rpsを第2圧縮機53の指示回転数とし、第2圧縮機53を60rpsで駆動させるように制御する。 At this time, the control device 6 starts driving the second compressor 53, which has become the main power source after switching, from the stopped state, and at the same time, stops driving the first compressor 43, which has become the auxiliary power source after switching. (Time t12), that is, the drive of the first compressor 43, which is the auxiliary power source after switching, is stopped so that the drives of both the first compressor 43 and the second compressor 53 do not overlap (this implementation). See the solid line showing the morphology.) At the start of driving the second compressor 53, the control device 6 sets 60 rps, which is the same as the rotation speed of the first compressor 43, which has been the main power source until then, as the indicated rotation speed of the second compressor 53. The second compressor 53 is controlled to be driven at 60 rps.

そして、時間t12において、第2圧縮機53の駆動を開始させると同時に第1圧縮機43の駆動を停止させたことで、時間t12~t13において、戻り温度センサ34で検出される温水温度は、出力の減少により、目標温水温度から低下するが、外気温度の上昇に伴う外的負荷の減少により、出力と負荷のバランスがとれ、温水温度が大きく変動することはない(本実施形態を示す実線参照。)。時間t13以降は、第2圧縮機53のみを60rpsで駆動させて温水温度が目標温水温度に維持される(本実施形態を示す実線参照。)。 Then, at the time t12, the drive of the second compressor 53 was started and at the same time the drive of the first compressor 43 was stopped, so that the hot water temperature detected by the return temperature sensor 34 at the time t12 to t13 was increased. Although the temperature drops from the target hot water temperature due to the decrease in output, the output and load are balanced due to the decrease in external load due to the increase in outside air temperature, and the hot water temperature does not fluctuate significantly (solid line showing this embodiment). reference.). After the time t13, only the second compressor 53 is driven at 60 rps to maintain the hot water temperature at the target hot water temperature (see the solid line showing the present embodiment).

このように、本実施形態では、主動力源として第1圧縮機43のみが駆動しての暖房運転時に、外気温度が上昇して切換温度θ1に達したことに基づき、主動力源と補助動力源とを切り換えた場合(主動力源を第1圧縮機43から第2圧縮機53に切り換え、補助動力源を第2圧縮機53から第1圧縮機43に切り換えた場合)に、切換後の主動力源(第2圧縮機53)の駆動を開始させると共に、切換後の補助動力源(第1圧縮機43)の駆動を停止させるにあたり、切換後の主動力源(第2圧縮機53)および切換後の補助動力源(第1圧縮機43)の双方の駆動がオーバーラップしないように、切換後の補助動力源(第1圧縮機43)の駆動を停止させるように制御するようにしている。 As described above, in the present embodiment, the main power source and the auxiliary power are based on the fact that the outside air temperature rises and reaches the switching temperature θ1 during the heating operation in which only the first compressor 43 is driven as the main power source. When switching from the source (when the main power source is switched from the first compressor 43 to the second compressor 53 and the auxiliary power source is switched from the second compressor 53 to the first compressor 43), after switching. When starting the drive of the main power source (second compressor 53) and stopping the drive of the auxiliary power source (first compressor 43) after switching, the main power source (second compressor 53) after switching is stopped. And so that the drive of both the auxiliary power source (first compressor 43) after switching does not overlap, the drive of the auxiliary power source (first compressor 43) after switching is controlled to be stopped. There is.

暖房運転時において、外気温度の上昇に伴い外的負荷が減少した場合、温水温度は上昇傾向となる。この場合、主動力源と補助動力源とを切り換えるときに、図7の一点鎖線で示す比較例のように、第1所定時間の間(時間t12~t13)、切換後の主動力源(第2圧縮機53)および切換後の補助動力源(第1圧縮機43)の双方の駆動がオーバーラップするように制御した後、切換後の補助動力源(第1圧縮機43)の駆動を停止(時間t13参照。)させるように制御してしまうと、出力が過多となり、温水の温度が目標温水温度から大きく変動(オーバーシュート)してしまい、目標温水温度に温度調節するのに時間がかかり(時間t12以降の温水温度参照。)、安定した運転を行えず快適性を損なってしまう。それに対して、本実施形態では、切換後の主動力源(第2圧縮機53)の駆動を開始するのと同時に切換後の補助動力源(第1圧縮機43)の駆動を停止するようにしたことで、主動力源/補助動力源の切り換え時に生じる温水温度の上昇を抑制することができ、目標温水温度からの温度変動が少ない安定した暖房運転を行うことができるものである。 During the heating operation, when the external load decreases as the outside air temperature rises, the hot water temperature tends to rise. In this case, when switching between the main power source and the auxiliary power source, as shown in the comparative example shown by the one-point chain line in FIG. 7, the main power source after switching (time t12 to t13) during the first predetermined time (time t12 to t13). 2 After controlling the drive of both the compressor 53) and the auxiliary power source (first compressor 43) after switching so as to overlap, the drive of the auxiliary power source (first compressor 43) after switching is stopped. (Refer to time t13.) If the control is performed so that the output becomes excessive, the temperature of the hot water greatly fluctuates (overshoots) from the target hot water temperature, and it takes time to adjust the temperature to the target hot water temperature. (Refer to the hot water temperature after time t12.) Stable operation cannot be performed and comfort is impaired. On the other hand, in the present embodiment, the driving of the main power source (second compressor 53) after switching is started, and at the same time, the driving of the auxiliary power source (first compressor 43) after switching is stopped. As a result, it is possible to suppress the rise in hot water temperature that occurs when switching between the main power source and the auxiliary power source, and it is possible to perform stable heating operation with little temperature fluctuation from the target hot water temperature.

続いて、図8のタイムチャートについて説明する。図8は、冷房運転中に、外気温度が上昇して主動力源/補助動力源の切り換えが発生する場面を示すもので、本実施形態における戻り温度センサ34で検出される冷水温度、第1圧縮機43の回転数、第2圧縮機53の回転数の経時推移を実線で示し、比較例における戻り温度センサ34で検出される冷水温度、第1圧縮機43の回転数、第2圧縮機53の回転数の経時推移を一点鎖線で示している。なお、時間t21は冷房運転が開始されてから所定時間経過した後の時間を表すものとする。 Next, the time chart of FIG. 8 will be described. FIG. 8 shows a scene in which the outside air temperature rises and switching between the main power source and the auxiliary power source occurs during the cooling operation, and the cold water temperature detected by the return temperature sensor 34 in the present embodiment is the first. The time course of the number of revolutions of the compressor 43 and the number of revolutions of the second compressor 53 is shown by a solid line, and the cold water temperature detected by the return temperature sensor 34 in the comparative example, the number of revolutions of the first compressor 43, and the second compressor. The time course of the number of rotations of 53 is shown by a one-point chain line. The time t21 represents the time after a predetermined time has elapsed since the cooling operation was started.

時間t21では、外気温度センサ52cで検出される外気温度が切換温度θ3(33℃)未満で、第2圧縮機53が主動力源、第1圧縮機43が補助動力源に設定された状態であり、補助動力源の第1圧縮機43の駆動を停止させた状態で主動力源の第2圧縮機53のみを駆動させての冷房運転が行われており、時間t21~t22において、第2圧縮機53を60rpsで駆動させて冷水温度が目標冷水温度(ここでは、20℃)に維持されている。 At time t21, the outside air temperature detected by the outside air temperature sensor 52c is less than the switching temperature θ3 (33 ° C.), the second compressor 53 is set as the main power source, and the first compressor 43 is set as the auxiliary power source. The cooling operation is performed by driving only the second compressor 53 of the main power source while the drive of the first compressor 43 of the auxiliary power source is stopped, and the second is performed at time t21 to t22. The compressor 53 is driven at 60 rps to maintain the chilled water temperature at the target chilled water temperature (here, 20 ° C.).

そして、時間t22に近づくにつれ、外気温度センサ52cで検出される外気温度が徐々に上昇し、時間t22において、外気温度が負荷が増加する方向に変化して切換温度θ3に達した、すなわち、外気温度の上昇により外的負荷が増加し、外気温度が上昇して切換温度θ3に達したら(切換温度θ3以上となったら)、制御装置6は、主動力源/補助動力源の切換条件が成立したと判断し、第1圧縮機43の設定を補助動力源から主動力源に切り換え、第2圧縮機53の設定を主動力源から補助動力源に切り換える。 Then, as the time t22 approaches, the outside air temperature detected by the outside air temperature sensor 52c gradually rises, and at the time t22, the outside air temperature changes in the direction of increasing the load and reaches the switching temperature θ3, that is, the outside air. When the external load increases due to the rise in temperature and the outside air temperature rises and reaches the switching temperature θ3 (when the switching temperature becomes θ3 or higher), the control device 6 satisfies the switching condition of the main power source / auxiliary power source. The setting of the first compressor 43 is switched from the auxiliary power source to the main power source, and the setting of the second compressor 53 is switched from the main power source to the auxiliary power source.

この時、制御装置6は、切換後に主動力源となった第1圧縮機43を停止状態から駆動を開始させると共に、切換後に補助動力源となった第2圧縮機53の駆動を継続させ(時間t22)、第1所定時間の間(時間t22~t23)、切換後に主動力源となった第1圧縮機43および切換後に補助動力源となった第2圧縮機53の双方を駆動させた状態、すなわち、第1圧縮機43および第2圧縮機53の双方の駆動がオーバーラップするように制御する(本実施形態を示す実線参照。)。なお、第1圧縮機43の駆動開始に際し、制御装置6は、それまで主動力源であった第2圧縮機53の回転数と同じである60rpsを第1圧縮機43の指示回転数とし、第1圧縮機43を60rpsで駆動させるように制御する。 At this time, the control device 6 starts driving the first compressor 43, which became the main power source after the switching, from the stopped state, and continues driving the second compressor 53, which became the auxiliary power source after the switching. During the first predetermined time (time t22 to t23), both the first compressor 43, which became the main power source after switching, and the second compressor 53, which became the auxiliary power source after switching, were driven. The state, that is, the drive of both the first compressor 43 and the second compressor 53 is controlled to overlap (see the solid line showing the present embodiment). At the start of driving the first compressor 43, the control device 6 sets 60 rps, which is the same as the rotation speed of the second compressor 53, which has been the main power source until then, as the indicated rotation speed of the first compressor 43. The first compressor 43 is controlled to be driven at 60 rps.

上記第1所定時間の間(時間t22~t23)において、戻り温度センサ34で検出される冷水温度は、外気温度の上昇に伴う外的負荷の増加により、目標冷水温度から上昇するが、第1圧縮機43および第2圧縮機53の双方をオーバーラップさせて駆動させているため、出力が増加し、出力と負荷のバランスがとれ、温水温度が大きく変動(オーバーシュート)することはない(本実施形態を示す実線参照。)。 During the first predetermined time (time t22 to t23), the chilled water temperature detected by the return temperature sensor 34 rises from the target chilled water temperature due to the increase in the external load accompanying the rise in the outside air temperature. Since both the compressor 43 and the second compressor 53 are driven by overlapping, the output is increased, the output and the load are balanced, and the hot water temperature does not fluctuate (overshoot) significantly (this). See solid line showing embodiments.).

そして、前記第1所定時間が経過した時点(時間t23)で、制御装置6は、切換後に補助動力源となった第2圧縮機53の駆動を停止させ、時間t23以降は、第1圧縮機43のみを60rpsで駆動させて冷水温度が目標冷水温度に維持される(本実施形態を示す実線参照。)。 Then, at the time when the first predetermined time has elapsed (time t23), the control device 6 stops driving the second compressor 53 which has become an auxiliary power source after switching, and after the time t23, the first compressor Only 43 is driven at 60 rps to maintain the chilled water temperature at the target chilled water temperature (see solid line showing this embodiment).

このように、本実施形態では、主動力源として第2圧縮機53のみが駆動しての冷房運転時に、外気温度が上昇して切換温度θ3に達したことに基づき、主動力源と補助動力源とを切り換えた場合(主動力源を第2圧縮機53から第1圧縮機43に切り換え、補助動力源を第1圧縮機43から第2圧縮機53に切り換えた場合)に、切換後の主動力源(第1圧縮機43)の駆動を開始させると共に、切換後の補助動力源(第2圧縮機53)の駆動を停止させるにあたり、第1所定時間の間(時間t22~t23)、切換後の主動力源(第1圧縮機43)および切換後の補助動力源(第2圧縮機53)の双方の駆動がオーバーラップするように制御した後、切換後の補助動力源(第2圧縮機53)の駆動を停止(時間t23)させるように制御するようにしている。 As described above, in the present embodiment, the main power source and the auxiliary power are based on the fact that the outside air temperature rises and reaches the switching temperature θ3 during the cooling operation in which only the second compressor 53 is driven as the main power source. When switching from the source (when the main power source is switched from the second compressor 53 to the first compressor 43 and the auxiliary power source is switched from the first compressor 43 to the second compressor 53), after switching. In starting the driving of the main power source (first compressor 43) and stopping the driving of the auxiliary power source (second compressor 53) after switching, during the first predetermined time (time t22 to t23), After controlling so that the drives of both the main power source (first compressor 43) after switching and the auxiliary power source (second compressor 53) after switching overlap each other, the auxiliary power source after switching (second). The drive of the compressor 53) is controlled to be stopped (time t23).

冷房運転時において、外気温度の上昇に伴い外的負荷が増加した場合、冷水温度は上昇傾向となる。この場合、主動力源と補助動力源とを切り換えるときに、図8の一点鎖線で示す比較例のように、切換後の主動力源(第1圧縮機43)を停止状態から駆動を開始させるのと同時に、切換後の補助動力源(第2圧縮機53)の駆動を停止させてしまうと(時間t22参照。)、出力が不足して、冷水の温度が目標冷水温度から大きく変動(オーバーシュート)してしまい、目標冷水温度に温度調節するのに時間がかかり(時間t22以降の冷水温度参照。)、安定した運転を行えず快適性を損なってしまう。それに対して、本実施形態では、切換後の補助動力源(第2圧縮機53)を即停止させずに、切換後の主動力源(第1圧縮機43)および切換後の補助動力源(第2圧縮機53)の双方が駆動状態となる時間(第1所定時間)を設けることで、主動力源/補助動力源の切り換え時に生じる冷水温度の上昇を抑制することができ、目標冷水温度からの温度変動が少ない安定した冷房運転を行うことができるものである。 During the cooling operation, if the external load increases as the outside air temperature rises, the chilled water temperature tends to rise. In this case, when switching between the main power source and the auxiliary power source, the main power source (first compressor 43) after switching is started from the stopped state as in the comparative example shown by the one-point chain line in FIG. At the same time, if the drive of the auxiliary power source (second compressor 53) after switching is stopped (see time t22), the output is insufficient and the temperature of the chilled water fluctuates greatly from the target chilled water temperature (over). It takes time to adjust the temperature to the target chilled water temperature (see the chilled water temperature after time t22), and stable operation cannot be performed and comfort is impaired. On the other hand, in the present embodiment, the auxiliary power source after switching (second compressor 53) is not immediately stopped, but the main power source after switching (first compressor 43) and the auxiliary power source after switching (second compressor 53) are not stopped immediately. By providing a time (first predetermined time) in which both of the second compressors 53) are in the driving state, it is possible to suppress an increase in the chilled water temperature that occurs when switching between the main power source and the auxiliary power source, and the target chilled water temperature. It is possible to perform stable cooling operation with little temperature fluctuation from the air.

続いて、図9のタイムチャートについて説明する。図9は、冷房運転中に、外気温度が低下して主動力源/補助動力源の切り換えが発生する場面を示すもので、本実施形態における戻り温度センサ34で検出される冷水温度、第1圧縮機43の回転数、第2圧縮機53の回転数の経時推移を実線で示し、比較例における戻り温度センサ34で検出される冷水温度、第1圧縮機43の回転数、第2圧縮機53の回転数の経時推移を一点鎖線で示している。なお、時間t31は冷房運転が開始されてから所定時間経過した後の時間を表すものとする。 Next, the time chart of FIG. 9 will be described. FIG. 9 shows a scene in which the outside air temperature drops and switching between the main power source and the auxiliary power source occurs during the cooling operation, and the cold water temperature detected by the return temperature sensor 34 in the present embodiment is the first. The time course of the number of revolutions of the compressor 43 and the number of revolutions of the second compressor 53 is shown by a solid line, and the cold water temperature detected by the return temperature sensor 34 in the comparative example, the number of revolutions of the first compressor 43, and the second compressor. The time course of the number of rotations of 53 is shown by a one-point chain line. The time t31 represents the time after a predetermined time has elapsed since the cooling operation was started.

時間t31では、外気温度センサ52cで検出される外気温度が切換温度θ3(33℃)以上で、第1圧縮機43が主動力源、第2圧縮機53が補助動力源に設定された状態であり、補助動力源の第2圧縮機53の駆動を停止させた状態で主動力源の第1圧縮機43のみを駆動させての冷房運転が行われており、時間t31~t32において、第1圧縮機43を60rpsで駆動させて冷水温度が目標冷水温度(ここでは、20℃)に維持されている。 At time t31, the outside air temperature detected by the outside air temperature sensor 52c is set to the switching temperature θ3 (33 ° C.) or higher, the first compressor 43 is set as the main power source, and the second compressor 53 is set as the auxiliary power source. The cooling operation is performed by driving only the first compressor 43 of the main power source while the drive of the second compressor 53 of the auxiliary power source is stopped, and the first is performed at time t31 to t32. The compressor 43 is driven at 60 rps, and the chilled water temperature is maintained at the target chilled water temperature (here, 20 ° C.).

そして、時間t32に近づくにつれ、外気温度センサ52cで検出される外気温度が徐々に低下し、時間t32において、外気温度が負荷が減少する方向に変化して切換温度θ4に達した、すなわち、外気温度の低下により外的負荷が減少し、外気温度が低下して切換温度θ4に達したら(切換温度θ4未満となったら)、制御装置6は、主動力源/補助動力源の切換条件が成立したと判断し、第2圧縮機53の設定を補助動力源から主動力源に切り換え、第1圧縮機43の設定を主動力源から補助動力源に切り換える。 Then, as the time t32 approaches, the outside air temperature detected by the outside air temperature sensor 52c gradually decreases, and at the time t32, the outside air temperature changes in the direction in which the load decreases and reaches the switching temperature θ4, that is, the outside air. When the external load decreases due to the decrease in temperature and the outside air temperature decreases and reaches the switching temperature θ4 (when the switching temperature becomes less than θ4), the control device 6 satisfies the switching condition of the main power source / auxiliary power source. The setting of the second compressor 53 is switched from the auxiliary power source to the main power source, and the setting of the first compressor 43 is switched from the main power source to the auxiliary power source.

この時、制御装置6は、切換後に主動力源となった第2圧縮機53を停止状態から駆動を開始させると同時に、切換後に補助動力源となった第1圧縮機43の駆動を停止させる(時間t32)、すなわち、第1圧縮機43および第2圧縮機53の双方の駆動がオーバーラップしないように、切換後に補助動力源となった第1圧縮機43の駆動を停止させる(本実施形態を示す実線参照。)。なお、第2圧縮機53の駆動開始に際し、制御装置6は、それまで主動力源であった第1圧縮機43の回転数と同じである60rpsを第2圧縮機53の指示回転数とし、第2圧縮機53を60rpsで駆動させるように制御する。 At this time, the control device 6 starts driving the second compressor 53, which has become the main power source after switching, from the stopped state, and at the same time, stops driving the first compressor 43, which has become the auxiliary power source after switching. (Time t32), that is, the drive of the first compressor 43, which is the auxiliary power source after switching, is stopped so that the drives of both the first compressor 43 and the second compressor 53 do not overlap (this implementation). See the solid line showing the morphology.) At the start of driving the second compressor 53, the control device 6 sets 60 rps, which is the same as the rotation speed of the first compressor 43, which has been the main power source until then, as the indicated rotation speed of the second compressor 53. The second compressor 53 is controlled to be driven at 60 rps.

そして、時間t32において、第2圧縮機53の駆動を開始させると同時に第1圧縮機43の駆動を停止させたことで、時間t32~t33において、戻り温度センサ34で検出される冷水温度は、出力の減少により、目標冷水温度から低下するが、外気温度の低下に伴う外的負荷の減少により、出力と負荷のバランスがとれ、冷水温度が大きく変動することはない(本実施形態を示す実線参照。)。時間t33以降は、第2圧縮機53のみを60rpsで駆動させて冷水温度が目標冷水温度に維持される(本実施形態を示す実線参照。)。 Then, at the time t32, the drive of the second compressor 53 was started and at the same time the drive of the first compressor 43 was stopped, so that the cold water temperature detected by the return temperature sensor 34 at the time t32 to t33 was determined. Although the temperature drops from the target chilled water temperature due to the decrease in output, the output and load are balanced due to the decrease in external load due to the decrease in outside air temperature, and the chilled water temperature does not fluctuate significantly (solid line showing this embodiment). reference.). After the time t33, only the second compressor 53 is driven at 60 rps to maintain the chilled water temperature at the target chilled water temperature (see the solid line showing the present embodiment).

このように、本実施形態では、主動力源として第1圧縮機43のみが駆動しての冷房運転時に、外気温度が低下して切換温度θ4に達したことに基づき、主動力源と補助動力源とを切り換えた場合(主動力源を第1圧縮機43から第2圧縮機53に切り換え、補助動力源を第2圧縮機53から第1圧縮機43に切り換えた場合)に、切換後の主動力源(第2圧縮機53)の駆動を開始させると共に、切換後の補助動力源(第1圧縮機43)の駆動を停止させるにあたり、切換後の主動力源(第2圧縮機53)および切換後の補助動力源(第1圧縮機43)の双方の駆動がオーバーラップしないように、切換後の補助動力源(第1圧縮機43)の駆動を停止させるように制御するようにしている。 As described above, in the present embodiment, the main power source and the auxiliary power are based on the fact that the outside air temperature drops and reaches the switching temperature θ4 during the cooling operation in which only the first compressor 43 is driven as the main power source. When switching from the source (when the main power source is switched from the first compressor 43 to the second compressor 53 and the auxiliary power source is switched from the second compressor 53 to the first compressor 43), after switching. When starting the drive of the main power source (second compressor 53) and stopping the drive of the auxiliary power source (first compressor 43) after switching, the main power source (second compressor 53) after switching is stopped. And so that the drive of both the auxiliary power source (first compressor 43) after switching does not overlap, the drive of the auxiliary power source (first compressor 43) after switching is controlled to be stopped. There is.

冷房運転時において、外気温度の低下に伴い外的負荷が減少した場合、冷水温度は減少傾向となる。この場合、主動力源と補助動力源とを切り換えるときに、図9の一点鎖線で示す比較例のように、第1所定時間の間(時間t32~t33)、切換後の主動力源(第2圧縮機53)および切換後の補助動力源(第1圧縮機43)の双方の駆動がオーバーラップするように制御した後、切換後の補助動力源(第1圧縮機43)の駆動を停止(時間t13参照。)させるように制御してしまうと、出力が過多となり、冷水の温度が目標冷水温度から大きく変動(アンダーシュート)してしまい、目標冷水温度に温度調節するのに時間がかかり(時間t32以降の冷水温度参照。)、安定した運転を行えず快適性を損なってしまう。それに対して、本実施形態では、切換後の主動力源(第2圧縮機53)の駆動を開始するのと同時に切換後の補助動力源(第1圧縮機43)の駆動を停止するようにしたことで、主動力源/補助動力源の切り換え時に生じる冷水温度の低下を抑制することができ、目標冷水温度からの温度変動が少ない安定した冷房運転を行うことができるものである。 During the cooling operation, when the external load decreases as the outside air temperature decreases, the chilled water temperature tends to decrease. In this case, when switching between the main power source and the auxiliary power source, as shown in the comparative example shown by the one-point chain line in FIG. 9, the main power source after switching (time t32 to t33) during the first predetermined time (time t32 to t33). 2 After controlling the drive of both the compressor 53) and the auxiliary power source (first compressor 43) after switching so as to overlap, the drive of the auxiliary power source (first compressor 43) after switching is stopped. (Refer to time t13.) If the control is performed so that the output becomes excessive, the temperature of the chilled water greatly fluctuates (undershoots) from the target chilled water temperature, and it takes time to adjust the temperature to the target chilled water temperature. (Refer to the cold water temperature after the time t32.) Stable operation cannot be performed and comfort is impaired. On the other hand, in the present embodiment, the driving of the main power source (second compressor 53) after switching is started, and at the same time, the driving of the auxiliary power source (first compressor 43) after switching is stopped. As a result, it is possible to suppress the decrease in chilled water temperature that occurs when switching between the main power source and the auxiliary power source, and it is possible to perform stable cooling operation with little temperature fluctuation from the target chilled water temperature.

なお、本発明は先に説明した一実施形態に限定されるものでなく、本実施形態では、外気温度が切換温度(θ1、θ2、θ3、θ4)に達したときに、これを契機として、制御装置6によって、第1圧縮機43および第2圧縮機53における主動力源/補助動力源の切り換えが行われるようにしたが、外気温度の変化により主動力源/補助動力源の切り換えが必要であると判定しても、直ちに実際の切り換え動作を行わずに、その必要であるという判定となっている状態が所定の期間(例えば、30分)継続した場合に切り換えを行うようにしてもよい。これは、突風により外気温度が短時間だけ上昇しすぐ低下する場合等、偶発的要因による瞬時的な外気温度の変動を除外し、傾向的な外気温度の変化だけに対応して切り換えを行うようにすることで、第1圧縮機43、第2圧縮機53の作動安定性を確保するためである。 The present invention is not limited to the one embodiment described above, and in the present embodiment, when the outside air temperature reaches the switching temperature (θ1, θ2, θ3, θ4), this is used as an opportunity. The control device 6 is used to switch the main power source / auxiliary power source in the first compressor 43 and the second compressor 53, but it is necessary to switch the main power source / auxiliary power source due to a change in the outside air temperature. Even if it is determined that the actual switching operation is not performed immediately, the switching is performed when the state in which the determination is necessary continues for a predetermined period (for example, 30 minutes). good. This excludes momentary fluctuations in the outside air temperature due to accidental factors, such as when the outside air temperature rises for a short time due to a gust and then falls immediately, so that switching is performed only in response to the tendency of changes in the outside air temperature. This is to ensure the operational stability of the first compressor 43 and the second compressor 53.

また、本実施形態では、図7に示したように、主動力源として第1圧縮機43のみが駆動しての暖房運転時に、外気温度が上昇して主動力源/補助動力源の切り換えが発生した場合に、切換後の主動力源(第2圧縮機53)および切換後の補助動力源(第1圧縮機43)の双方の駆動がオーバーラップしないように、切換後の補助動力源(第1圧縮機43)の駆動を停止させるようにしたが、主動力源として第2圧縮機53のみが駆動しての暖房運転時に、外気温度が上昇して主動力源/補助動力源の切り換えが発生した場合に、切換後の主動力源(第1圧縮機43)および切換後の補助動力源(第2圧縮機53)の双方の駆動をオーバーラップさせた「第1所定時間(時間t2~t3)」と比較して、第1所定時間よりも短い第2所定時間の間、切換後の主動力源(第2圧縮機53)および切換後の補助動力源(第1圧縮機43)の双方の駆動がオーバーラップするように制御した後、切換後の補助動力源(第1圧縮機43)の駆動を停止させるようにしてもよい。そうすることで、第1所定時間(時間t2~t3)の間、第1圧縮機43および第2圧縮機53の駆動をオーバーラップさせた場合よりも、温水温度の変動を抑制することができ、安定した運転を実現することができる。ただし、上記第2所定時間を設定する場合、予め実験を行うなどして、目標温水温度に対する温水温度の変動が大きくならないような時間を設定することが望ましい。 Further, in the present embodiment, as shown in FIG. 7, during the heating operation in which only the first compressor 43 is driven as the main power source, the outside air temperature rises and the main power source / auxiliary power source can be switched. When it occurs, the auxiliary power source after switching (second compressor 53) and the auxiliary power source after switching (first compressor 43) do not overlap each other so that the drives of both the main power source (second compressor 53) and the auxiliary power source (first compressor 43) after switching do not overlap. The drive of the first compressor 43) was stopped, but during the heating operation in which only the second compressor 53 was driven as the main power source, the outside air temperature rose and the main power source / auxiliary power source was switched. When ~ T3) ”, the main power source after switching (second compressor 53) and the auxiliary power source after switching (first compressor 43) during the second predetermined time shorter than the first predetermined time. After controlling so that the drives of both are overlapped with each other, the drive of the auxiliary power source (first compressor 43) after switching may be stopped. By doing so, it is possible to suppress fluctuations in the hot water temperature as compared with the case where the drives of the first compressor 43 and the second compressor 53 are overlapped during the first predetermined time (time t2 to t3). , Stable operation can be realized. However, when setting the second predetermined time, it is desirable to set a time so that the fluctuation of the hot water temperature with respect to the target hot water temperature does not become large by conducting an experiment in advance.

さらに、本実施形態では、図9に示したように、主動力源として第1圧縮機43のみが駆動しての冷房運転時に、外気温度が低下して主動力源/補助動力源の切り換えが発生した場合に、切換後の主動力源(第2圧縮機53)および切換後の補助動力源(第1圧縮機43)の双方の駆動がオーバーラップしないように、切換後の補助動力源(第1圧縮機43)の駆動を停止させるようにしたが、主動力源として第2圧縮機53のみが駆動しての冷房運転時に、外気温度が上昇して主動力源/補助動力源の切り換えが発生した場合に、切換後の主動力源(第1圧縮機43)および切換後の補助動力源(第2圧縮機53)の双方の駆動をオーバーラップさせた「第1所定時間(時間t22~t23)」と比較して、第1所定時間よりも短い第2所定時間の間、切換後の主動力源(第2圧縮機53)および切換後の補助動力源(第1圧縮機43)の双方の駆動がオーバーラップするように制御した後、切換後の補助動力源(第1圧縮機43)の駆動を停止させるようにしてもよい。そうすることで、第1所定時間(時間t22~t23)の間、第1圧縮機43および第2圧縮機53の駆動をオーバーラップさせた場合よりも、冷水温度の変動を抑制することができ、安定した運転を実現することができる。ただし、上記第2所定時間を設定する場合、予め実験を行うなどして、目標冷水温度に対する冷水温度の変動が大きくならないような時間を設定することが望ましい。 Further, in the present embodiment, as shown in FIG. 9, during the cooling operation in which only the first compressor 43 is driven as the main power source, the outside air temperature drops and the main power source / auxiliary power source can be switched. When it occurs, the auxiliary power source after switching (second compressor 53) and the auxiliary power source after switching (first compressor 43) do not overlap each other so that the drives of both the main power source (second compressor 53) and the auxiliary power source (first compressor 43) after switching do not overlap. The drive of the first compressor 43) was stopped, but during the cooling operation in which only the second compressor 53 was driven as the main power source, the outside air temperature rose and the main power source / auxiliary power source was switched. When ~ T23) ”, the main power source after switching (second compressor 53) and the auxiliary power source after switching (first compressor 43) during the second predetermined time shorter than the first predetermined time. After controlling so that the drives of both are overlapped with each other, the drive of the auxiliary power source (first compressor 43) after switching may be stopped. By doing so, it is possible to suppress fluctuations in the chilled water temperature as compared with the case where the drives of the first compressor 43 and the second compressor 53 are overlapped during the first predetermined time (time t22 to t23). , Stable operation can be realized. However, when setting the second predetermined time, it is desirable to set a time so that the fluctuation of the chilled water temperature with respect to the target chilled water temperature does not become large by conducting an experiment in advance.

また、本実施形態では、図7に示したように、主動力源として第1圧縮機43のみが駆動しての暖房運転時に、外気温度が上昇して主動力源/補助動力源の切り換えが発生した場合、および、図9に示したように、主動力源として第1圧縮機43のみが駆動しての冷房運転時に、外気温度が低下して主動力源/補助動力源の切り換えが発生した場合に、切換後の主動力源の駆動開始と、切換後の補助動力源の駆動停止を同時に行って、主動力源および補助動力源の双方の駆動がオーバーラップしないようにしたが、切換後の主動力源の駆動開始と、切換後の補助動力源の駆動停止を同時とせず、予め実験を行うなどして、目標温水温度に対する実温水温度または目標冷水温度に対する実冷水温度が大きく変動しない時間を見定め、補助動力源を駆動停止した一定時間後に、主動力源の駆動を開始させるようにして、主動力源および補助動力源の双方の駆動がオーバーラップしないようにしてもよいものである。 Further, in the present embodiment, as shown in FIG. 7, during the heating operation in which only the first compressor 43 is driven as the main power source, the outside air temperature rises and the main power source / auxiliary power source is switched. When it occurs, and as shown in FIG. 9, during the cooling operation in which only the first compressor 43 is driven as the main power source, the outside air temperature drops and switching between the main power source and the auxiliary power source occurs. In that case, the drive of the main power source after switching and the drive of the auxiliary power source after switching were stopped at the same time so that the drives of both the main power source and the auxiliary power source did not overlap. The actual hot water temperature with respect to the target hot water temperature or the actual chilled water temperature with respect to the target chilled water temperature fluctuates greatly by conducting experiments in advance without simultaneously starting the drive of the main power source and stopping the drive of the auxiliary power source after switching. The drive of the main power source may be started after a certain period of time when the auxiliary power source is stopped, so that the drives of both the main power source and the auxiliary power source do not overlap. be.

また、本実施形態では、地中熱ヒートポンプユニット4の熱源として地中熱交換器23を示したが、熱源としては、地中熱の他に、湖沼、貯水池、井戸等の水熱源も利用可能であり、外気以外の熱源を利用するものであれば種類は問わないものであり、さらに、第1熱源側熱交換器46に供給される熱源側循環液Hは熱源側循環回路20のような閉回路を循環する形態でなくてもよく、熱源側循環液Hは第1熱源側熱交換器46で熱交換した後は外部に排出されるような開放式の形態であってもよいものである。 Further, in the present embodiment, the geothermal heat exchanger 23 is shown as the heat source of the geothermal heat pump unit 4, but as the heat source, water heat sources such as lakes, reservoirs, and wells can be used in addition to the geothermal heat. The type does not matter as long as it uses a heat source other than the outside air, and the heat source side circulating liquid H supplied to the first heat source side heat exchanger 46 is like the heat source side circulation circuit 20. It does not have to be in a form of circulating in a closed circuit, and the heat source side circulating fluid H may be in an open type such that it is discharged to the outside after heat exchange by the first heat source side heat exchanger 46. be.

1 複合熱源ヒートポンプ装置
6 制御装置
30 負荷側循環回路
36 空調端末
40 第1ヒートポンプ回路
41 第1負荷側熱交換器
43 第1圧縮機
45 第1膨張弁
46 第1熱源側熱交換器
50 第2ヒートポンプ回路
51 第2負荷側熱交換器
52c 外気温度センサ
53 第2圧縮機
55 第2膨張弁
57 空気熱交換器
1 Combined heat source heat pump device 6 Control device 30 Load side circulation circuit 36 Air conditioning terminal 40 1st heat pump circuit 41 1st load side heat exchanger 43 1st compressor 45 1st expansion valve 46 1st heat source side heat exchanger 50 2nd Heat pump circuit 51 2nd load side heat exchanger 52c Outside air temperature sensor 53 2nd compressor 55 2nd expansion valve 57 Air heat exchanger

Claims (3)

第1圧縮機、第1負荷側熱交換器、第1膨張弁、及び、外気とは別の所定の熱源と熱交換可能な第1熱源側熱交換器を備えた第1ヒートポンプ回路と、
第2圧縮機、第2負荷側熱交換器、第2膨張弁、及び、外気と熱交換可能な第2熱源側熱交換器を備えた第2ヒートポンプ回路と、
前記第1負荷側熱交換器、前記第2負荷側熱交換器、負荷端末を備え、温水または冷水が循環する負荷側循環回路と、
外気温度を検出する外気温度検出手段と、
動作を制御する制御装置と、を有し、
前記制御装置は、前記負荷端末に温水または冷水が供給される運転時において、前記外気温度検出手段の検出した前記外気温度が所定の切換温度より高いか低いかに応じて、前記第1圧縮機および前記第2圧縮機のうちいずれを主動力源としいずれを補助動力源とするかを切り換える複合熱源ヒートポンプ装置において、
前記主動力源のみが駆動しての前記運転時に、前記制御装置は、前記外気温度検出手段により検出される外気温度が、負荷が増加する方向に変化し前記所定の切換温度に達したことに基づき、前記主動力源と前記補助動力源とを切り換えた場合に、切換後の前記主動力源の駆動を開始させると共に、切換後の前記補助動力源の駆動を停止させるにあたり、第1所定時間の間、切換後の前記主動力源および切換後の前記補助動力源の双方の駆動がオーバーラップするように制御した後、切換後の前記補助動力源の駆動を停止させるように制御し、
前記主動力源のみが駆動しての前記運転時に、前記制御装置は、前記外気温度検出手段により検出される外気温度が、負荷が減少する方向に変化し前記所定の切換温度に達したことに基づき、前記主動力源と前記補助動力源とを切り換えた場合には、切換後の前記主動力源の駆動を開始させると共に、切換後の前記補助動力源の駆動を停止させるにあたり、前記第1所定時間より短い第2所定時間の間、切換後の前記主動力源および切換後の前記補助動力源の双方の駆動がオーバーラップするように制御した後に切換後の前記補助動力源の駆動を停止させるように制御するようにしたことを特徴とする複合熱源ヒートポンプ装置。
A first heat pump circuit including a first compressor, a first load side heat exchanger, a first expansion valve, and a first heat source side heat exchanger capable of exchanging heat with a predetermined heat source separate from the outside air.
A second heat pump circuit equipped with a second compressor, a second load side heat exchanger, a second expansion valve, and a second heat source side heat exchanger capable of exchanging heat with the outside air.
A load side circulation circuit provided with the first load side heat exchanger, the second load side heat exchanger, and a load terminal to circulate hot or cold water.
An outside air temperature detecting means for detecting the outside air temperature,
It has a control device that controls the operation, and
The control device includes the first compressor and the first compressor depending on whether the outside air temperature detected by the outside air temperature detecting means is higher or lower than a predetermined switching temperature during operation when hot water or cold water is supplied to the load terminal. In the combined heat source heat pump device that switches which of the second compressors is used as the main power source and which is used as the auxiliary power source.
During the operation in which only the main power source is driven, the control device determines that the outside air temperature detected by the outside air temperature detecting means changes in the direction in which the load increases and reaches the predetermined switching temperature. Based on this, when the main power source and the auxiliary power source are switched, the driving of the main power source after the switching is started and the driving of the auxiliary power source after the switching is stopped for a first predetermined time. During the period, the drive of both the main power source after switching and the auxiliary power source after switching is controlled to overlap, and then the drive of the auxiliary power source after switching is controlled to be stopped.
During the operation in which only the main power source is driven, the control device determines that the outside air temperature detected by the outside air temperature detecting means changes in the direction in which the load decreases and reaches the predetermined switching temperature. Based on this, when the main power source and the auxiliary power source are switched, the driving of the main power source after the switching is started, and the driving of the auxiliary power source after the switching is stopped. During the second predetermined time shorter than the predetermined time, the drive of the auxiliary power source after switching is stopped after controlling the drive of both the main power source after switching and the auxiliary power source after switching so as to overlap. A combined heat source heat pump device characterized by being controlled so as to be operated.
前記制御装置は、前記負荷端末に温水が供給される暖房運転時において、前記外気温度検出手段により検出される外気温度が前記所定の切換温度以上の場合には前記第2圧縮機を前記主動力源、前記第1圧縮機を前記補助動力源に設定すると共に、前記外気温度検出手段により検出される外気温度が前記所定の切換温度未満の場合には前記第1圧縮機を前記主動力源、前記第2圧縮機を前記補助動力源に設定し、
前記主動力源としての前記第2圧縮機のみが駆動しての前記暖房運転時に、前記制御装置は、前記外気温度検出手段により検出される外気温度が低下して前記所定の切換温度に達したことに基づき、前記主動力源と前記補助動力源とを切り換えた場合に、切換後に前記主動力源となる前記第1圧縮機の駆動を開始させると共に、切換後に前記補助動力源となる前記第2圧縮機の駆動を停止させるにあたり、前記第1所定時間の間、切換後に前記主動力源となる前記第1圧縮機および切換後に前記補助動力源となる前記第2圧縮機の双方の駆動がオーバーラップするように制御した後、切換後に前記補助動力源となる前記第2圧縮機の駆動を停止させるように制御し、
前記主動力源としての前記第1圧縮機のみが駆動しての前記暖房運転時に、前記制御装置は、前記外気温度検出手段により検出される外気温度が上昇して前記所定の切換温度に達したことに基づき、前記主動力源と前記補助動力源とを切り換えた場合には、切換後に前記主動力源となる前記第2圧縮機の駆動を開始させると共に、切換後に前記補助動力源となる前記第1縮機の駆動を停止させるにあたり、前記第1所定時間より短い前記第2所定時間の間、切換後に前記主動力源となる前記第2圧縮機および切換後に前記補助動力源となる前記第1圧縮機の双方の駆動がオーバーラップするように制御した後、切換後に前記補助動力源となる前記第1圧縮機の駆動を停止させるように制御するようにしたことを特徴とする請求項1記載の複合熱源ヒートポンプ装置。
The control device drives the second compressor as the main power when the outside air temperature detected by the outside air temperature detecting means is equal to or higher than the predetermined switching temperature during the heating operation in which hot water is supplied to the load terminal. The source, the first compressor is set as the auxiliary power source, and when the outside air temperature detected by the outside air temperature detecting means is less than the predetermined switching temperature, the first compressor is used as the main power source. The second compressor is set as the auxiliary power source, and the second compressor is set as the auxiliary power source.
During the heating operation in which only the second compressor as the main power source is driven, the control device reaches the predetermined switching temperature by lowering the outside air temperature detected by the outside air temperature detecting means. Based on this, when the main power source and the auxiliary power source are switched, the driving of the first compressor that becomes the main power source is started after the switching, and the first compressor that becomes the auxiliary power source after the switching is started. 2 In stopping the drive of the compressor, both the first compressor, which becomes the main power source after switching, and the second compressor, which becomes the auxiliary power source after switching, are driven during the first predetermined time. After controlling so as to overlap, control is performed so as to stop the drive of the second compressor, which is the auxiliary power source, after switching.
During the heating operation in which only the first compressor as the main power source is driven, the outside air temperature detected by the outside air temperature detecting means of the control device rises and reaches the predetermined switching temperature. Based on this, when the main power source and the auxiliary power source are switched, the driving of the second compressor, which is the main power source, is started after the switching, and the auxiliary power source becomes the auxiliary power source after the switching. In stopping the drive of the first compressor, the second compressor that becomes the main power source after switching and the second compressor that becomes the auxiliary power source after switching during the second predetermined time shorter than the first predetermined time. The present invention is characterized in that, after controlling so that the drives of both of the compressors overlap, the drive of the first compressor, which is the auxiliary power source, is controlled to be stopped after switching. 1. The combined heat source heat pump device according to 1.
前記制御装置は、前記負荷端末に冷水が供給される冷房運転時において、前記外気温度検出手段により検出される外気温度が前記所定の切換温度以上の場合には前記第1圧縮機を前記主動力源、前記第2圧縮機を前記補助動力源に設定すると共に、前記外気温度検出手段により検出される外気温度が前記所定の切換温度未満の場合には前記第2圧縮機を前記主動力源、前記第1圧縮機を前記補助動力源に設定し、
前記主動力源としての前記第2圧縮機のみが駆動しての前記冷房運転時に、前記制御装置は、前記外気温度検出手段により検出される外気温度が上昇して前記所定の切換温度に達したことに基づき、前記主動力源と前記補助動力源とを切り換えた場合に、切換後に前記主動力源となる前記第1圧縮機の駆動を開始させると共に、切換後に前記補助動力源となる前記第2圧縮機の駆動を停止させるにあたり、前記第1所定時間の間、切換後に前記主動力源となる前記第1圧縮機および切換後に前記補助動力源となる前記第2圧縮機の双方の駆動がオーバーラップするように制御した後、切換後に前記補助動力源となる前記第2圧縮機の駆動を停止させるように制御し、
前記主動力源としての前記第1圧縮機のみが駆動しての前記冷房運転時に、前記制御装置は、前記外気温度検出手段により検出される外気温度が低下して前記所定の切換温度に達したことに基づき、前記主動力源と前記補助動力源とを切り換えた場合には、切換後に前記主動力源となる前記第2圧縮機の駆動を開始させると共に、切換後に前記補助動力源となる前記第1縮機の駆動を停止させるにあたり、前記第1所定時間より短い前記第2所定時間の間、切換後に前記主動力源となる前記第2圧縮機および切換後に前記補助動力源となる前記第1圧縮機の双方の駆動がオーバーラップするように制御した後、切換後に前記補助動力源となる前記第1圧縮機の駆動を停止させるように制御するようにしたことを特徴とする請求項1記載の複合熱源ヒートポンプ装置。
The control device drives the first compressor as the main power when the outside air temperature detected by the outside air temperature detecting means is equal to or higher than the predetermined switching temperature during the cooling operation in which cold water is supplied to the load terminal. The source, the second compressor is set as the auxiliary power source, and when the outside air temperature detected by the outside air temperature detecting means is less than the predetermined switching temperature, the second compressor is used as the main power source. The first compressor is set as the auxiliary power source, and the first compressor is set as the auxiliary power source.
During the cooling operation in which only the second compressor as the main power source is driven, the outside air temperature detected by the outside air temperature detecting means of the control device rises and reaches the predetermined switching temperature. Based on this, when the main power source and the auxiliary power source are switched, the driving of the first compressor that becomes the main power source is started after the switching, and the first compressor that becomes the auxiliary power source after the switching is started. 2 In stopping the drive of the compressor, both the first compressor, which becomes the main power source after switching, and the second compressor, which becomes the auxiliary power source after switching, are driven during the first predetermined time. After controlling so as to overlap, control is performed so as to stop the drive of the second compressor, which is the auxiliary power source, after switching.
During the cooling operation in which only the first compressor as the main power source is driven, the control device reaches the predetermined switching temperature after the outside air temperature detected by the outside air temperature detecting means is lowered. Based on this, when the main power source and the auxiliary power source are switched, the driving of the second compressor, which is the main power source, is started after the switching, and the auxiliary power source becomes the auxiliary power source after the switching. In stopping the drive of the first compressor, the second compressor that becomes the main power source after switching and the second compressor that becomes the auxiliary power source after switching during the second predetermined time shorter than the first predetermined time. The present invention is characterized in that, after controlling so that the drives of both of the compressors overlap, the drive of the first compressor, which is the auxiliary power source, is controlled to be stopped after switching. 1. The combined heat source heat pump device according to 1.
JP2018148085A 2018-08-07 2018-08-07 Combined heat source heat pump device Active JP7041024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018148085A JP7041024B2 (en) 2018-08-07 2018-08-07 Combined heat source heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018148085A JP7041024B2 (en) 2018-08-07 2018-08-07 Combined heat source heat pump device

Publications (2)

Publication Number Publication Date
JP2020024058A JP2020024058A (en) 2020-02-13
JP7041024B2 true JP7041024B2 (en) 2022-03-23

Family

ID=69619418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018148085A Active JP7041024B2 (en) 2018-08-07 2018-08-07 Combined heat source heat pump device

Country Status (1)

Country Link
JP (1) JP7041024B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054176A1 (en) 2012-10-05 2014-04-10 三菱電機株式会社 Heat pump device
JP2016040500A (en) 2014-08-12 2016-03-24 株式会社コロナ Composite heat source heat pump device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054176A1 (en) 2012-10-05 2014-04-10 三菱電機株式会社 Heat pump device
JP2016040500A (en) 2014-08-12 2016-03-24 株式会社コロナ Composite heat source heat pump device

Also Published As

Publication number Publication date
JP2020024058A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
US8713951B2 (en) Air conditioning apparatus
JP5182358B2 (en) Refrigeration equipment
JP6231395B2 (en) Combined heat source heat pump device
CN103216963A (en) Air conditioner and starting control method thereof
WO2013145844A1 (en) Heat source system, device for controlling same, and method for controlling same
JP6231403B2 (en) Combined heat source heat pump device
JP6976878B2 (en) Heat pump air conditioning system
JP6609198B2 (en) Combined heat source heat pump device
JP6800283B2 (en) Air conditioner
JP6599812B2 (en) Combined heat source heat pump device
JP7041024B2 (en) Combined heat source heat pump device
KR20150009201A (en) A heat pump system and a control method the same
JP2017166773A (en) Heat pump type cold/hot water supply system
JP6574392B2 (en) Heat pump equipment
JP6359398B2 (en) Combined heat source heat pump device
KR20180135882A (en) A heat pump having refrigerant storage means
JP6830296B2 (en) Combined heat source heat pump device
JP2008051464A (en) Air conditioner
JP7000261B2 (en) Combined heat source heat pump device
JP6208086B2 (en) Combined heat source heat pump device
JP6359397B2 (en) Combined heat source heat pump device
JP6968769B2 (en) Combined heat source heat pump device
JP6933599B2 (en) Heat pump cold heat source machine
JP2010038408A (en) Outdoor heat exchanger and refrigerating cycle device mounted with the same
JP6609195B2 (en) Heat pump equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220310

R150 Certificate of patent or registration of utility model

Ref document number: 7041024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150