JP7039732B2 - Color-developing film including uneven structure, pressure test film and its manufacturing method - Google Patents

Color-developing film including uneven structure, pressure test film and its manufacturing method Download PDF

Info

Publication number
JP7039732B2
JP7039732B2 JP2020564996A JP2020564996A JP7039732B2 JP 7039732 B2 JP7039732 B2 JP 7039732B2 JP 2020564996 A JP2020564996 A JP 2020564996A JP 2020564996 A JP2020564996 A JP 2020564996A JP 7039732 B2 JP7039732 B2 JP 7039732B2
Authority
JP
Japan
Prior art keywords
color
developing
layer
film
structure layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020564996A
Other languages
Japanese (ja)
Other versions
JP2021513477A (en
Inventor
ツゥイ、イェ
ラン、グアンニャン
リウ、ヤジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoding Lucky Innovative Materials CoLtd
Original Assignee
Baoding Lucky Innovative Materials CoLtd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoding Lucky Innovative Materials CoLtd filed Critical Baoding Lucky Innovative Materials CoLtd
Publication of JP2021513477A publication Critical patent/JP2021513477A/en
Application granted granted Critical
Publication of JP7039732B2 publication Critical patent/JP7039732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/53Base coat plus clear coat type
    • B05D7/536Base coat plus clear coat type each layer being cured, at least partially, separately
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0847Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers
    • C08G18/0852Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0847Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers
    • C08G18/0852Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic
    • C08G18/0857Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic the solvent being a polyol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7843Nitrogen containing -N-C=0 groups containing urethane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D109/00Coating compositions based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09D109/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D189/00Coating compositions based on proteins; Coating compositions based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/41Organic pigments; Organic dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/02Measuring force or stress, in general by hydraulic or pneumatic means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • C08J2401/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • C08J2409/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2463/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08J2475/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Color Printing (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本開示は、発色フィルム及び圧力試験フィルム並びにその製造方法に関し、特に、凹凸構造層を含む発色フィルム及び圧力試験フィルム並びにその製造方法に関する。 The present disclosure relates to a color-developing film and a pressure test film and a method for producing the same, and more particularly to a color-developing film and a pressure test film including an uneven structure layer and a method for producing the same.

圧力試験は、主にプリント配線板のラミネート、ロール間圧力の確認及び調整、液晶ガラスパネルの貼り合わせ、エンジンシリンダーパッケージングなどの、圧力に厳しい要求が求められる各生産加工工程において応用されている。圧力試験は、通常、圧力試験機を用いて行われるが、このような圧力試験方法は操作が煩雑で、測定結果に遅延性があり、試験精度と感度が劣り、小さい面積の領域の圧力試験にしか適用できず、オンライン圧力監視には適さないほか、特殊な形状の領域を有する圧力試験にも適さない。 Pressure tests are mainly applied in each production processing process that requires strict pressure requirements, such as laminating printed wiring boards, checking and adjusting the pressure between rolls, laminating liquid crystal glass panels, and engine cylinder packaging. .. The pressure test is usually performed using a pressure tester, but such a pressure test method is complicated to operate, has a delay in measurement results, is inferior in test accuracy and sensitivity, and is a pressure test in a small area. Applicable only to, not suitable for online pressure monitoring, nor suitable for pressure testing with specially shaped areas.

これらの圧力試験の応用を便利にするために、圧力試験フィルムが大量に使用されている。圧力試験フィルムは通常、発色部分と呈色部分を有し、発色部分はマイクロカプセルを含み、マイクロカプセルは電子供与性無色染料前駆体を含む。発色部分は圧力の作用下で、そのうちのマイクロカプセルが破壊されて電子供与性無色染料が放出し、これらの電子供与性無色染料が電子受容性化合物と接触することにより呈色部分が着色され、その後、呈色部分の着色面積と色度などにより、前記圧力の大きさと着力点などを確定する。 To facilitate the application of these pressure tests, pressure test films are used in large quantities. The pressure test film usually has a coloring part and a coloring part, the coloring part contains microcapsules, and the microcapsules contain an electron donating colorless dye precursor. Under the action of pressure, the microcapsules of the colored part are destroyed and the electron-donating colorless dye is released, and these electron-donating colorless dyes come into contact with the electron-accepting compound to color the colored part. After that, the magnitude of the pressure and the force-applying point are determined by the coloring area and the chromaticity of the colored portion.

しかし、従来の圧力試験フィルムでは、圧力試験フィルムの受圧面積とマイクロカプセルの実際の受圧面積を縮小化することはできなかった。実際の使用においては、相当の圧力の下でこそ、マイクロカプセルが破裂して電子供与性無色染料を放出し、電子受容性化合物と接触して着色することができる。このため、圧力試験フィルムを用いて小さな圧力を試験する場合、高感度の圧力試験を実現することは困難であった。 However, with the conventional pressure test film, it is not possible to reduce the pressure receiving area of the pressure test film and the actual pressure receiving area of the microcapsules. In practical use, only under considerable pressure can the microcapsules rupture and release an electron-donating colorless dye, which can be contacted and colored with an electron-accepting compound. Therefore, when testing a small pressure using a pressure test film, it is difficult to realize a highly sensitive pressure test.

このため、圧力の小さい試験環境下での圧力試験に対応できる圧力試験フィルムが求められている。 Therefore, there is a demand for a pressure test film that can be used for a pressure test in a test environment where the pressure is low.

このため、本開示は、圧力試験フィルムの発色層と基材との間に凹凸構造層を追加し、圧力試験フィルムの受圧面積とマイクロカプセルの実際の受圧面積を縮小化して、圧力試験フィルムの高感度を実現する。 Therefore, in the present disclosure, an uneven structure layer is added between the coloring layer of the pressure test film and the substrate, and the pressure receiving area of the pressure test film and the actual pressure receiving area of the microcapsules are reduced to reduce the pressure receiving area of the pressure test film. Achieve high sensitivity.

具体的には、本開示の1つの形態では、他の層が塗布されて発色フィルムを形成するための基材、基材に形成される凹凸構造層、及び、凹凸構造層に塗布され、電子供与性無色染料前駆体が内包されたマイクロカプセルを含み、当該電子供与性無色染料が電子受容性化合物と接触して着色する発色層、を備え、発色フィルムが圧力を受けると、前記凹凸構造層が前記発色層を押圧し、前記発色層内のマイクロカプセルが破壊されて電子供与性無色染料前駆体が放出される、発色フィルムを提供する。 Specifically, in one form of the present disclosure, another layer is applied to a base material for forming a color-developing film, an uneven structure layer formed on the base material, and an uneven structure layer applied to an electron. A color-developing layer containing microcapsules containing a donor colorless dye precursor and coloring the electron-donating colorless dye in contact with an electron-accepting compound, and when the color-developing film is under pressure, the concavo-convex structure layer is provided. Presses the color-developing layer to provide a color-developing film in which the microcapsules in the color-developing layer are destroyed and an electron-donating colorless dye precursor is released.

好ましくは、前記発色フィルムは、前記基材と前記凹凸構造層との間に、前記基材上に前記凹凸構造層を強固に支持するためのアンダーコート層をさらに含む。 Preferably, the color-developing film further includes an undercoat layer for firmly supporting the uneven structure layer on the base material between the base material and the uneven structure layer.

好ましくは、前記凹凸構造層が少なくとも2つの凸部を有し、隣接する2つの凸部の先端間の直線距離Lが、D50×0.2≦L≦D50×0.8という関係を満たし、ここで、D50は、前記マイクロカプセルの累積粒度分布数が50%に達したときの対応する粒子径を表す。 Preferably, the concave-convex structure layer has at least two convex portions, and the linear distance L between the tips of the two adjacent convex portions satisfies the relationship of D50 × 0.2 ≦ L ≦ D50 × 0.8. Here, D50 represents the corresponding particle size when the cumulative number of particle size distributions of the microcapsules reaches 50%.

好ましくは、前記凹凸構造層はUV樹脂で形成される。 Preferably, the concavo-convex structure layer is formed of UV resin.

好ましくは、前記凹凸構造層における凸部形状が、円柱状、円錐状、直方体又は立方体である。 Preferably, the convex shape in the concavo-convex structure layer is columnar, conical, rectangular parallelepiped or cubic.

好ましくは、前記凹凸構造層上の凸部の先端部が尖った形状である。 Preferably, the tip of the convex portion on the uneven structure layer has a sharp shape.

凹凸構造層の形成方法については、出願人が同日に提出した発明名称を「凹凸構造作製装置」とする出願を参照することができる。 For the method of forming the concavo-convex structure layer, it is possible to refer to the application in which the invention name submitted by the applicant on the same day is "concavo-convex structure producing apparatus".

好ましくは、前記アンダーコート層は水性樹脂が塗布されて形成され、前記水性樹脂は、ポリビニルアルコール又はスチレン-ブタジエン共重合体ラテックス系水性樹脂である。 Preferably, the undercoat layer is formed by applying an aqueous resin, and the aqueous resin is polyvinyl alcohol or a styrene-butadiene copolymer latex-based aqueous resin.

本開示のもう1つの形態では、上記の発色フィルムを含む発色フィルム層と、電子受容性化合物の呈色材料を含む呈色フィルム層と、を含む圧力試験フィルムを提供する。 In another aspect of the present disclosure, there is provided a pressure test film including a color-developing film layer containing the above-mentioned color-developing film and a color-developing film layer containing a color-developing material of an electron-accepting compound.

本開示のさらにもう1つの形態では、活性希釈剤をUV樹脂に加えて均一に攪拌し、光開始剤又は助剤を加えて均一に攪拌することにより、凹凸構造層スラリーを調製することと、電子供与性無色染料前駆体を含む油相及び水相を調製し、膜乳化法により油相を水相に加えてエマルションを形成し、硬化剤をさらに加えて均一に攪拌し、50℃に昇温して4時間反応させてマイクロカプセル分散液を調製し、接着剤及び水をさらに加えて均一に攪拌して発色層スラリーを調製することと、基材に凹凸構造層スラリー、発色層スラリーを順に塗布して圧力試験フィルムに使用可能な発色フィルムを得ることと、を含む、発色フィルムを製造する方法を提供する。 In yet another embodiment of the present disclosure, a concave-convex structure layer slurry is prepared by adding an active diluent to a UV resin and stirring uniformly, and adding a photoinitiator or an auxiliary agent and stirring uniformly. An oil phase and an aqueous phase containing an electron-donating colorless dye precursor are prepared, the oil phase is added to the aqueous phase by a film emulsification method to form an emulsion, a curing agent is further added, and the mixture is uniformly stirred and raised to 50 ° C. A microcapsule dispersion is prepared by warming and reacting for 4 hours, and an adhesive and water are further added and uniformly stirred to prepare a color-developing layer slurry. Provided are a method for producing a color-developing film, which comprises applying in sequence to obtain a color-developing film that can be used as a pressure test film.

本開示のもう1つの形態では、活性希釈剤をUV樹脂に加えて均一に攪拌し、光開始剤又は助剤を加えて均一に攪拌することにより、凹凸構造層スラリーを製造することと、電子供与性無色染料前駆体を含む油相及び水相を調製し、膜乳化法により油相を水相に加えてエマルションを形成し、硬化剤をさらに加えて均一に攪拌し、50℃に昇温して4時間反応させてマイクロカプセル分散液を調製し、接着剤及び水をさらに加えて均一に攪拌して発色層スラリーを調製することと、活性白土を水に加えて攪拌し予備分散させた後、サンドミルで磨砕して活性白土水分散液を調製し、接着剤を加えて均一に攪拌して呈色層スラリーを調製することと、基材に凹凸構造層スラリー、発色層スラリーを順に塗布して圧力試験フィルムに使用可能な発色フィルムを得て、基材に呈色層スラリーを塗布して圧力試験フィルムに使用可能な呈色フィルムを得ることと、前記発色フィルムと前記呈色フィルムを組み合わせて前記圧力試験フィルムとすることと、を含む、圧力試験フィルムを製造する方法を提供する。 In another embodiment of the present disclosure, an active diluent is added to a UV resin and stirred uniformly, and a photoinitiator or an auxiliary agent is added and stirred uniformly to produce a concavo-convex structure layer slurry, and an electron. An oil phase and an aqueous phase containing a donor colorless dye precursor are prepared, the oil phase is added to the aqueous phase by a film emulsification method to form an emulsion, a curing agent is further added, and the mixture is uniformly stirred and heated to 50 ° C. Then, the mixture was reacted for 4 hours to prepare a microcapsule dispersion, and an adhesive and water were further added and stirred uniformly to prepare a color-developing layer slurry, and active white clay was added to water and stirred to pre-disperse. After that, the active white clay water dispersion is prepared by grinding with a sand mill, an adhesive is added, and the mixture is uniformly stirred to prepare a color-developing layer slurry, and the uneven structure layer slurry and the color-developing layer slurry are sequentially placed on the base material. A color-developing film that can be applied and used as a pressure test film is obtained, and a color-developing layer slurry is applied to a substrate to obtain a color-developing film that can be used as a pressure test film. To obtain the pressure test film by combining the above, and to provide a method for producing a pressure test film.

本開示の圧力試験フィルムは使用過程において、塗布層が対向するように発色フィルム材料Lと呈色フィルム材料Kを重ね、受圧面の間に置き、マイクロカプセルがその破裂限界値を超える圧力を受けたときに破裂して電子供与性無色染料を放出し、当該電子供与性無色染料が呈色フィルム材料Kに含まれる電子受容性化合物と接触して発色反応を起こし、発色領域濃度の濃淡の観察、測定により、圧力の試験を行うことができる。これは電子供与性無色染料と電子受容性化合物との発色原理を利用した圧力試験であるため、高感度、高解像度特性を有し、かつ低温環境、特に5℃~15℃の環境下での使用要件を満たすこともできる。 In the process of use of the pressure test film of the present disclosure, the color-developing film material L and the color-developing film material K are placed on top of each other so that the coating layers face each other and placed between the pressure receiving surfaces, and the microcapsules receive a pressure exceeding the bursting limit value. When it bursts, it releases an electron-donating colorless dye, and the electron-donating colorless dye comes into contact with the electron-accepting compound contained in the color-developing film material K to cause a color reaction, and observation of the shade of the color-developing region concentration. , The pressure can be tested by measurement. Since this is a pressure test using the color-developing principle of an electron-donating colorless dye and an electron-accepting compound, it has high sensitivity and high resolution characteristics, and is in a low temperature environment, especially in an environment of 5 ° C to 15 ° C. It can also meet usage requirements.

さらに、本開示の圧力試験フィルムは、発色層とアンダーコート層との間に凹凸構造層を設けることにより、圧力試験フィルムの受圧面積とマイクロカプセルの実際の受圧面積を縮小集約化することができる。圧力換算式P=F/Sによれば、同一の圧力下において、受圧面積が小さくなるとマイクロカプセルが実際に受ける圧力の値が大きくなり、実際に受ける圧力がその限界値を超えるとマイクロカプセルが破裂して電子供与性無色染料を放出し、電子受容性化合物に接触して発色する。よって、圧力試験フィルムに小さな圧力が加えられても、圧力試験フィルムの高感度を実現することができる。 Further, in the pressure test film of the present disclosure, the pressure receiving area of the pressure test film and the actual pressure receiving area of the microcapsules can be reduced and integrated by providing the uneven structure layer between the coloring layer and the undercoat layer. .. According to the pressure conversion formula P = F / S, under the same pressure, when the pressure receiving area becomes smaller, the value of the pressure actually received by the microcapsules increases, and when the pressure actually received exceeds the limit value, the microcapsules receive. It bursts to release an electron-donating colorless dye and comes into contact with an electron-accepting compound to develop color. Therefore, even if a small pressure is applied to the pressure test film, high sensitivity of the pressure test film can be realized.

本開示をよりよく理解できるように、かつ本開示を如何にして実施するかをより明確に説明するために、図面及び実施の形態を参照して本開示について説明する。
図1は本開示の1つの実施の形態に係る発色フィルム材料Lの構造概念図である。 図2は本開示の1つの実施の形態に係る圧力試験フィルムの構造概念図である。 図3は本開示の1つの実施の形態に係る発色フィルムの製造方法のフロー図である。 図4は本開示の1つの実施の形態に係る圧力試験フィルムの製造方法のフロー図である。
The present disclosure will be described with reference to the drawings and embodiments in order to better understand the disclosure and to more clearly explain how the disclosure is carried out.
FIG. 1 is a structural conceptual diagram of a color-developing film material L according to one embodiment of the present disclosure. FIG. 2 is a structural conceptual diagram of a pressure test film according to one embodiment of the present disclosure. FIG. 3 is a flow chart of a method for manufacturing a color-developing film according to one embodiment of the present disclosure. FIG. 4 is a flow chart of a method for manufacturing a pressure test film according to one embodiment of the present disclosure.

以下、本開示を実施するための具体的な実施の形態について詳細に説明する。なお、以下の説明は、本開示内容のある好ましい例についての説明に過ぎず、本開示の範囲を限定するものではない。以下の説明により、本開示の他の例、特徴、態様、実施の形態及び利点が当業者にとって自明なものになるであろう。本開示明細書に記載の思想、表現、実施の形態、例などのうちの任意の1つ又は複数は、本開示明細書に記載の他の思想、表現、実施の形態、例などのうちの任意の1つ又は複数と組み合わせてよいと理解すべきである。よって、以下に説明する教示、表現、実施形態、例などは、互いに独立しているものと見なすべきではない。 Hereinafter, specific embodiments for carrying out the present disclosure will be described in detail. It should be noted that the following description is merely a description of a preferred example of the content of the present disclosure, and does not limit the scope of the present disclosure. The following description will make other examples, features, embodiments, embodiments and advantages of the present disclosure obvious to those of skill in the art. Any one or more of the ideas, expressions, embodiments, examples, etc. described in the present disclosure may be among the other ideas, expressions, embodiments, examples, etc. described in the present disclosure specification. It should be understood that it may be combined with any one or more. Therefore, the teachings, expressions, embodiments, examples, etc. described below should not be considered independent of each other.

また、図面における図示は必ずしも縮尺どおりではなく、場合によって、本開示の特徴は、本開示の内容を理解しやすくするために図面において拡大又は縮小されることがある。図面において、同一の図面符号は通常、同一の特徴を表す。 Also, the illustrations in the drawings are not necessarily in scale and, in some cases, the features of the present disclosure may be enlarged or reduced in the drawings to make the content of the present disclosure easier to understand. In drawings, the same drawing code usually represents the same feature.

図1は本開示の1つの実施の形態に係る発色フィルムの構造概念図である。図1に示すように、本開示によれば、発色フィルムは発色フィルム材料Lからなり、発色フィルム材料Lは発色フィルム基材213、アンダーコート層215、凹凸構造層217及び発色層219からなる。発色フィルム基材213に、アンダーコート層215、凹凸構造層217、発色層219が順次塗布されて付着している。アンダーコート層215、凹凸構造層217、発色層219の構造及び作用については後にさらに詳細に説明する。 FIG. 1 is a structural conceptual diagram of a color-developing film according to one embodiment of the present disclosure. As shown in FIG. 1, according to the present disclosure, the color-developing film is composed of a color-developing film material L, and the color-developing film material L is composed of a color-developing film base material 213, an undercoat layer 215, an uneven structure layer 217, and a color-developing layer 219. The undercoat layer 215, the concavo-convex structure layer 217, and the color-developing layer 219 are sequentially applied and adhered to the color-developing film base material 213. The structures and actions of the undercoat layer 215, the concavo-convex structure layer 217, and the coloring layer 219 will be described in more detail later.

図2は本開示の1つの実施の形態に係る圧力試験フィルムの構造概念図である。図2に示すように、本開示によれば、圧力試験フィルムは、発色層材料Lを含む発色フィルム層と呈色フィルム材料Kを含む呈色フィルム層とからなる。発色フィルム材料Lは上記のように構成され、呈色フィルム材料Kは、呈色フィルム基材223と呈色層225とからなる。当該圧力試験フィルムは、発色フィルムの発色層219が呈色フィルムの呈色層225に対向するように重ねて形成されている。なお、発色フィルム材料Lと呈色フィルム材料Kは、製造時に圧力試験フィルムを形成せずに、単独のフィルム、つまり発色フィルムと呈色フィルムを別々に製造及び販売し、応用時に、発色フィルムと呈色フィルムとを、発色フィルムの発色層219が呈色フィルムの呈色層255に対向するように重ねて圧力試験フィルムを形成するというような構成としてもよい(以下では説明の便宜上、引き続きこれを圧力試験フィルムという)。 FIG. 2 is a structural conceptual diagram of a pressure test film according to one embodiment of the present disclosure. As shown in FIG. 2, according to the present disclosure, the pressure test film includes a color-developing film layer containing a color-developing layer material L and a color-developing film layer containing a color-developing film material K. The color-developing film material L is configured as described above, and the color-developing film material K is composed of a color-developing film base material 223 and a color-developing layer 225. The pressure test film is formed by stacking the color-developing layer 219 of the color-developing film so as to face the color-developing layer 225 of the color-developing film. The color-developing film material L and the color-developing film material K do not form a pressure test film at the time of manufacture, but separately manufacture and sell a single film, that is, a color-developing film and a color-developing film. The color-developing film may be superposed on the color-developing film so that the color-developing layer 219 of the color-developing film faces the color-developing layer 255 of the color-developing film to form a pressure test film. Is called a pressure test film).

また、圧力試験フィルムの応用時に、発色フィルム受圧面211と呈色フィルム受圧面221との間に圧力Pを加えることにより、発色フィルムにおけるマイクロカプセルが破壊されて電子供与性無色染料が放出され、当該電子供与性無色染料が呈色層内の電子受容性化合物と会することにより発色し、発色の程度に応じて圧力Pの大きさを確定することにより、圧力試験フィルムによる圧力試験という目的を達成する。 Further, when the pressure test film is applied, by applying the pressure P between the pressure receiving surface 211 of the coloring film and the pressure receiving surface 221 of the coloring film, the microcapsules in the coloring film are destroyed and the electron donating colorless dye is released. The purpose of the pressure test using a pressure test film is to determine the magnitude of the pressure P according to the degree of color development when the electron-donating colorless dye meets with the electron-accepting compound in the color-developing layer to develop a color. Achieve.

<基材>
ここでいう基材には、発色フィルムの基材213と呈色フィルムの基材223とを含む。本開示の1つの実施の形態において、本開示に適した基材は、プラスチックフィルム、紙、合成紙などの基材から選択できる。このうち、プラスチックフィルムは、具体的にポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)などが挙げられる。紙の具体例としては、上質紙、塗工紙、アート紙などが挙げられる。合成紙の具体例としては、ポリエチレン、ポリアミド、ポリエチレンテレフタレートなどの合成繊維からなる合成紙又はこれらを紙の片面若しくは両面に積層して製造された合成紙などが挙げられる。本開示では50~125μmのPETが好ましい。
<Base material>
The base material referred to here includes the base material 213 of the color-developing film and the base material 223 of the color-developing film. In one embodiment of the present disclosure, the substrate suitable for the present disclosure can be selected from substrates such as plastic film, paper and synthetic paper. Among these, specific examples of the plastic film include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and the like. Specific examples of paper include high-quality paper, coated paper, and art paper. Specific examples of the synthetic paper include synthetic paper made of synthetic fibers such as polyethylene, polyamide, and polyethylene terephthalate, or synthetic paper produced by laminating these on one side or both sides of the paper. In the present disclosure, PET of 50 to 125 μm is preferable.

<アンダーコート層215>
本開示の1つの実施の形態において、前記アンダーコート層215の役割は、発色フィルム基材213に対する凹凸構造層217の密着性を向上させることである。前記アンダーコート層215は通常、スチレン-ブタジエン共重合体ラテックス(SBR)、アクリル酸エステル系ラテックス、ポリビニルアルコール(PVA)、ゼラチン、カルボキシメチルセルロース(CMC)などの合成物質又は天然高分子物質を含む一種類又は複数種類の水性樹脂で構成される。本開示ではPVA及びSBRが好ましい。
<Undercoat layer 215>
In one embodiment of the present disclosure, the role of the undercoat layer 215 is to improve the adhesion of the concavo-convex structure layer 217 to the color-developing film substrate 213. The undercoat layer 215 usually contains a synthetic substance such as styrene-butadiene copolymer latex (SBR), acrylic acid ester-based latex, polyvinyl alcohol (PVA), gelatin, carboxymethyl cellulose (CMC), or a natural polymer substance. It is composed of one kind or multiple kinds of water-based resins. PVA and SBR are preferred in this disclosure.

<凹凸構造層217>
本開示の1つの実施の形態において、前記凹凸構造層217の役割は、圧力試験フィルム表面にかかる圧力を面積変換した後に発色層219内のマイクロカプセルに加えることである。前記凹凸構造層217は、UV樹脂、活性希釈剤、光開始剤からなる。
<Concave and convex structure layer 217>
In one embodiment of the present disclosure, the role of the concavo-convex structure layer 217 is to apply the pressure applied to the surface of the pressure test film to the microcapsules in the coloring layer 219 after area conversion. The concavo-convex structure layer 217 is composed of a UV resin, an active diluent and a photoinitiator.

本開示の1つの実施の形態において、前記凹凸構造層217に含まれるUV樹脂は、以下のUV樹脂のうちの2つ以上からなり、本開示に適用可能なUV樹脂としては、ウレタンアクリレート、エポキシアクリレート、脂肪族ウレタンアクリレートなどを含むがこれらに限定されない。前記凹凸構造層217における活性希釈剤は以下の活性希釈剤のうちの2つ以上からなり、トリプロピレングリコールジアクリレート(TPGDA)、ジプロピレングリコールジアクリレート(DPGDA)のような二官能性モノマー、ペンタエリスリトールトリアクリレート(PET3A)、トリメチロールプロパントリアクリレート(TMPTA)のような三官能性モノマー、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールテトラアクリレート(PET4A)のような多官能性モノマーなどを含むがこれらに限定されない。光開始剤としては、1-ヒドロキシシクロヘキシルフェニルケトン(184)、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシト゛(TPO)、2-メチル-1-[4-メチルチオフェニル]-2-モルホリニル-1-プロパノン(907)などを含むがこれらに限定されない。 In one embodiment of the present disclosure, the UV resin contained in the concave-convex structure layer 217 is composed of two or more of the following UV resins, and the UV resins applicable to the present disclosure include urethane acrylate and epoxy. It includes, but is not limited to, acrylates, aliphatic urethane acrylates, and the like. The active diluent in the uneven structure layer 217 is composed of two or more of the following active diluents, and is a bifunctional monomer such as tripropylene glycol diacrylate (TPGDA) or dipropylene glycol diacrylate (DPGDA), penta. Includes trifunctional monomers such as erythritol triacrylate (PET3A), trimethylolpropane triacrylate (TMPTA), dipentaerythritol hexaacrylate (DPHA), polyfunctional monomers such as pentaerythritol tetraacrylate (PET4A), etc. Not limited to these. Photoinitiators include 1-hydroxycyclohexylphenyl ketone (184), 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO), 2-methyl-1- [4-methylthiophenyl] -2-morpholinyl-1. -Including, but not limited to, propanon (907).

本開示の1つの実施の形態において、前記凹凸構造層217がアンダーコート層215に設けられ、前記凹凸構造層217の凹凸部分は少なくとも2つ以上の凸部を有し、隣接する2つの凸部間の直線距離LがD50×0.2≦L≦D50×0.8を満たす。L<D50×0.2である場合、隣接する凸部のピッチが小さすぎるためマイクロカプセルの受圧面積を有効に集中させることができず、微小圧力条件下での圧力分布試験ができない。L>D50×0.8であれば、大部分のマイクロカプセルが、隣接する凸部間の空隙に入り込み、受圧時に破裂発色できず圧力分布試験ができない。 In one embodiment of the present disclosure, the concavo-convex structure layer 217 is provided in the undercoat layer 215, and the concavo-convex portion of the concavo-convex structure layer 217 has at least two or more convex portions, and two adjacent convex portions. The linear distance L between them satisfies D50 × 0.2 ≦ L ≦ D50 × 0.8. When L <D50 × 0.2, the pitch of the adjacent convex portions is too small, so that the pressure receiving area of the microcapsules cannot be effectively concentrated, and the pressure distribution test under the micro pressure condition cannot be performed. If L> D50 × 0.8, most of the microcapsules enter the voids between the adjacent protrusions, and when the pressure is received, the color bursts and the color cannot be developed, and the pressure distribution test cannot be performed.

本開示の1つの実施の形態において、前記凹凸構造層217の凸部形状は、円柱状、円錐状、直方体、立方体などの形状を含むがこれらに限定されない。 In one embodiment of the present disclosure, the convex shape of the concave-convex structure layer 217 includes, but is not limited to, a shape such as a columnar shape, a conical shape, a rectangular parallelepiped shape, and a cube shape.

本開示の1つの実施の形態において、前記凹凸構造層217の凸部の先端部は尖った形状である。 In one embodiment of the present disclosure, the tip of the convex portion of the concave-convex structure layer 217 has a sharp shape.

<発色層219>
本開示の1つの実施の形態において、前記発色層219は、マイクロカプセル、接着剤及び助剤を含み、当該マイクロカプセルは電子供与性無色染料前駆体を含む。本開示の1つの実施の形態において、本開示のマイクロカプセルには電子供与性無色染料前駆体溶液とマイクロカプセル壁の2つの部分を少なくとも含んでいる。
<Coloring layer 219>
In one embodiment of the present disclosure, the color-developing layer 219 comprises microcapsules, an adhesive and an auxiliary agent, the microcapsules comprising an electron donating colorless dye precursor. In one embodiment of the present disclosure, the microcapsules of the present disclosure contain at least two portions, an electron donating colorless dye precursor solution and a microcapsule wall.

(電子供与性無色染料前駆体溶液)
本開示の1つの実施の形態において、前記電子供与性無色染料前駆体溶液は、少なくとも一種類の電子供与性無色染料前駆体及び少なくとも一種類の溶媒を含む。そのうち、電子供与性無色染料前駆体は主要な発色剤として役に立つ。電子供与性無色染料前駆体は、公知の物質を使用することができ、フルオラン系化合物、インドリルペプチドケトン系化合物、ローダミンラクタム系化合物、スピロピラン系化合物、フェノチアジン系化合物などが挙げられる。本開示に適した電子供与性無色染料前駆体は、クリスタルバイオレットラクトン(CVL)、無色メチレンブルー(BLMB)を含むがこれらに限定されない。
(Electron-donating colorless dye precursor solution)
In one embodiment of the present disclosure, the electron donating colorless dye precursor solution comprises at least one electron donating colorless dye precursor and at least one solvent. Of these, electron-donating colorless dye precursors serve as the main color formers. As the electron donating colorless dye precursor, a known substance can be used, and examples thereof include a fluorine-based compound, an indrill peptide ketone-based compound, a rhodamine lactam-based compound, a spiropyran-based compound, and a phenothiazine-based compound. Electron-donating colorless dye precursors suitable for the present disclosure include, but are not limited to, crystal violet lactone (CVL), colorless methylene blue (BLMB).

溶媒の主な役割は前記電子供与性無色染料前駆体を溶解することであり、公知の物質を用いることができる。例えば、1-フェニル-1-ジメチルフェニルエタンなどのジアリールアルカン類、ジアリールアルケン類、ジイソプロピルナフタレンなどのアルキルナフタレン類、イソアルカンなどの脂肪族炭化水素類、コーン油、ヒマシ油、ナタネ油などの天然動植物油類、鉱物油などが挙げられる。 The main role of the solvent is to dissolve the electron-donating colorless dye precursor, and known substances can be used. For example, diarylalkanes such as 1-phenyl-1-dimethylphenylethane, diarylalkenes, alkylnaphthalene such as diisopropylnaphthalene, aliphatic hydrocarbons such as isoalkane, natural animals and plants such as corn oil, castor oil and rapeseed oil. Examples include oils and mineral oils.

本開示の1つの実施の形態において、前記の電子供与性無色染料前駆体溶液は、前記染料溶液100部に対する3~12部の電子供与性無色染料前駆体を含み、電子供与性無色染料前駆体が3部未満であれば発色濃度が不足し、電子供与性無色染料前駆体が12部を超えると低温環境下で当該電子供与性無色染料前駆体が晶出し有効発色成分が減少する。 In one embodiment of the present disclosure, the electron donating colorless dye precursor solution comprises 3 to 12 parts of an electron donating colorless dye precursor with respect to 100 parts of the dye solution, and the electron donating colorless dye precursor contains 3 to 12 parts. If it is less than 3 parts, the color development concentration is insufficient, and if the electron-donating colorless dye precursor exceeds 12 parts, the electron-donating colorless dye precursor is crystallized in a low temperature environment and the effective color-developing component is reduced.

また、本開示の1つの実施の形態では、必要に応じて、低い沸点を有する溶媒を補助溶媒として加えて、電子供与性無色染料前駆体を溶媒によりよく溶解させることができる。本開示に適した低沸点溶媒は、アセトン、メチルエチルケトンなどのケトン類、酢酸メチル、酢酸エチルなどのエステル類を含むがこれらに限定されない。 Further, in one embodiment of the present disclosure, if necessary, a solvent having a low boiling point can be added as an auxiliary solvent to better dissolve the electron-donating colorless dye precursor in the solvent. Low boiling point solvents suitable for the present disclosure include, but are not limited to, ketones such as acetone and methyl ethyl ketone, and esters such as methyl acetate and ethyl acetate.

(マイクロカプセル壁材)
本開示の1つの実施の形態において、前記マイクロカプセルの壁材は、ポリウレタンウレア、ゼラチン、メラミンホルムアルデヒド樹脂などの公知の水不溶性かつ油不溶性の物質から選択することができ、本開示においてはポリウレタンウレアが好ましい。
(Microcapsule wall material)
In one embodiment of the present disclosure, the wall material of the microcapsules can be selected from known water-insoluble and oil-insoluble substances such as polyurethane urea, gelatin, melamine formaldehyde resin, and in the present disclosure, polyurethane urea. Is preferable.

前記マイクロカプセルの壁材の形成には、界面重合法、in situ重合法、コアセルベーション法などの公知の方法を用いることができる。本開示の1つの実施の形態においては界面重合法で壁材を形成するのが好ましい。 For the formation of the wall material of the microcapsules, a known method such as an interfacial polymerization method, an in situ polymerization method, or a core selvation method can be used. In one embodiment of the present disclosure, it is preferable to form the wall material by an interfacial polymerization method.

本開示の1つの実施の形態において、前記壁材料は、少なくとも反応性モノマー及び硬化剤からなる。前記マイクロカプセル壁材に適用する反応性モノマーは、ジシクロヘキシルメタンジイソシアネート(HDI)、ヘキサメチレンジイソシアネート(HMDI)、ヘキサメチレンジイソシアネートのトリメチロールプロパン付加物、キシリレンジイソシアネートのトリメチロールプロパン付加物などのポリイソシアネートオリゴマーを含むがこれらに限定されない。前記マイクロカプセル壁材の製造に適用する硬化剤は、脂肪族又は芳香族ポリオールなどの多価ヒドロキシ化合物、トリエチレンテトラミン、ヘキサメチレンジアミンなどのポリアミン、エチレンジアミンのブチレンオキサイド付加物などの脂肪族ポリアミンのアルキレンオキサイド付加物などを含むがこれらに限定されず。分子中に2つ以上の-NH基又は-NH基を持つポリアミンであれば使用することができる。本開示の1つの実施の形態においては硬化剤を水に溶解して使用することが好ましい。 In one embodiment of the present disclosure, the wall material comprises at least a reactive monomer and a curing agent. Reactive monomers applied to the microcapsule wall material are polyisocyanates such as dicyclohexylmethane diisocyanate (HDI), hexamethylene diisocyanate (HMDI), trimethylolpropane adduct of hexamethylene diisocyanate, and trimethylolpropane adduct of xylylene diisocyanate. Includes, but is not limited to, oligomers. The curing agent applied to the production of the microcapsule wall material is a polyhydric hydroxy compound such as an aliphatic or aromatic polyol, a polyamine such as triethylenetetramine and hexamethylenediamine, and an aliphatic polyamine such as an adduct of butylene oxide of ethylenediamine. Includes, but is not limited to, alkylene oxide adducts and the like. Any polyamine having two or more -NH groups or -NH 2 groups in the molecule can be used. In one embodiment of the present disclosure, it is preferable to dissolve the curing agent in water and use it.

本開示の1つの実施の形態において、前記マイクロカプセルの粒径分布の特徴は、粒度分布D50が5μm~15μmで、粒度分布スパン(span)が0.5~1.2であるというものであり、ここでは、span=(D90-D10)/D50)である。D50が5μm未満である場合、マイクロカプセルの受圧限界値は急激に増加し、実際の適用範囲は限られる上、多くのマイクロカプセルは粒子径が小さいため、前記凸部構造間の空隙に入り込み、発色に関与できない。D50が15μmを超える場合、圧力試験フィルムの外観が不均一になる。spanが0.5未満である場合、マイクロカプセルの製造コストが劇的に増加し、spanが1.2より大きい場合、マイクロカプセル体系内の大小の粒子が表面エネルギーの差により凝集を生じるという現象が顕著になり、圧力試験フィルムの応用過程において、凝集による発色濃度のムラが発生し、試験精度が低下する。 In one embodiment of the present disclosure, the characteristics of the particle size distribution of the microcapsules are that the particle size distribution D50 is 5 μm to 15 μm and the particle size distribution span is 0.5 to 1.2. , Here, span = (D90-D10) / D50). When D50 is less than 5 μm, the pressure limit value of the microcapsules increases sharply, the actual application range is limited, and many microcapsules have a small particle size, so that they enter the voids between the convex structures. Cannot participate in color development. When D50 exceeds 15 μm, the appearance of the pressure test film becomes non-uniform. When the span is less than 0.5, the manufacturing cost of microcapsules increases dramatically, and when the span is larger than 1.2, large and small particles in the microcapsule system agglomerate due to the difference in surface energy. In the process of applying the pressure test film, unevenness of the color development density due to aggregation occurs, and the test accuracy is lowered.

(接着剤及び助剤)
本開示の1つの実施の形態において、前記発色層における接着剤は、デンプン、CMC、PVAなどの水溶性高分子から選択することができる。
(Adhesives and auxiliaries)
In one embodiment of the present disclosure, the adhesive in the coloring layer can be selected from water-soluble polymers such as starch, CMC, PVA and the like.

本開示の1つの実施の形態において、前記助剤は少なくとも乳化剤を含み、前記乳化剤は、PVA、CMC、デンプン、ゼラチンなどの両親媒性高分子を含むがこれらに限定されず、本開示ではPVAが好ましい。 In one embodiment of the present disclosure, the auxiliary agent comprises at least an emulsifier, wherein the emulsifier comprises, but is not limited to, amphipathic macromolecules such as PVA, CMC, starch, gelatin and the like. Is preferable.

<呈色層225>
本開示の1つの実施の形態において、前記呈色層225は電子受容性化合物及び接着剤を含む。本開示の1つの実施の形態において、前記電子受容性化合物は主要な顕色剤であり、前記電子受容性化合物は、公知の電子受容性化合物を用いることができ、例えば、活性白土、カオリン、粘土類などの無機化合物、芳香族カルボン酸金属塩類、カルボキシル化テルペンフェノール樹脂金属塩類、フェノール樹脂、サリチル酸塩類及びその誘導体などの有機化合物を用いることができる。
<Coloring layer 225>
In one embodiment of the present disclosure, the coloration layer 225 comprises an electron accepting compound and an adhesive. In one embodiment of the present disclosure, the electron-accepting compound is the primary color developer, and the electron-accepting compound can be a known electron-accepting compound, eg, active white clay, kaolin, etc. Inorganic compounds such as clays, aromatic carboxylic acid metal salts, carboxylated terpene phenol resin metal salts, phenolic resins, salicylates and derivatives thereof can be used.

前記呈色層225における接着剤の役割は、電子受容性化合物の呈色フィルム基材223への付着性を高めることである。本開示に係る呈色層225に適用する接着剤は、以下の水溶性結合剤のうちの1つ以上から構成され、SBR、アクリルラテックス、PVA、アラビアゴム、ゼラチン、CMCなどを含むがこれらに限定されない。 The role of the adhesive in the coloration layer 225 is to enhance the adhesion of the electron-accepting compound to the coloration film base material 223. The adhesive applied to the coloration layer 225 according to the present disclosure is composed of one or more of the following water-soluble binders, and includes SBR, acrylic latex, PVA, gum arabic, gelatin, CMC and the like. Not limited.

図3は本開示の1つの実施の形態に係る発色フィルムの製造方法のフロー図である。図3に示すように、本開示の1つの実施の形態では、ステップS310において、発色フィルムである発色フィルム材料Lの製造に用いる各種スラリーを調製する。前記スラリーは、アンダーコート層スラリー、凹凸構造層スラリー及び発色層スラリーを少なくとも含む。前記ステップS310は、水性樹脂を水に溶解し、助剤を加えて均一に攪拌して、アンダーコート層スラリーを調製しておくことを含む。前記ステップS310は、UV樹脂に活性希釈剤を加えて均一に攪拌し、光開始剤又は助剤を添加して均一に攪拌することにより、凹凸構造層スラリーを調製しておくことをさらに含む。前記ステップS310は、マイクロカプセルを作製することと、発色層スラリーを調製することとをさらに含み、前記マイクロカプセルの作製は、水と油の混合物を乳化させてマイクロカプセル壁材を形成することを含む。前記油相は、少なくとも前記電子供与性無色染料前駆体溶液、マイクロカプセル壁材を合成するための反応モノマーからなり、また、前記水相は、少なくとも乳化剤、水からなる。前記乳化工程は、例えば、機械攪拌乳化法、ホモエマルション法、超音波乳化法、膜乳化法などの公知の乳化方法を用いることができる。本開示の1つの実施の形態において、好ましくは膜乳化法を用いてエマルションを調製し、硬化剤の水溶液をさらに加えて均一に攪拌し、50℃に昇温して4時間反応させてマイクロカプセル分散液を調製する。発色層スラリーの調製は、マイクロカプセル分散液に接着剤及び水をさらに加えて均一に攪拌して発色層スラリーを調製しておくことを含む。 FIG. 3 is a flow chart of a method for manufacturing a color-developing film according to one embodiment of the present disclosure. As shown in FIG. 3, in one embodiment of the present disclosure, in step S310, various slurries used for producing the color-developing film material L, which is a color-developing film, are prepared. The slurry includes at least an undercoat layer slurry, a concavo-convex structure layer slurry and a coloring layer slurry. The step S310 includes dissolving the aqueous resin in water, adding an auxiliary agent, and stirring the mixture uniformly to prepare an undercoat layer slurry. The step S310 further includes preparing an uneven structure layer slurry by adding an active diluent to a UV resin and stirring it uniformly, and adding a photoinitiator or an auxiliary agent and stirring it uniformly. The step S310 further comprises preparing microcapsules and preparing a color-developing layer slurry, wherein the preparation of microcapsules is to emulsify a mixture of water and oil to form microcapsule wall materials. include. The oil phase comprises at least the electron-donating colorless dye precursor solution and a reaction monomer for synthesizing a microcapsule wall material, and the aqueous phase comprises at least an emulsifier and water. As the emulsification step, known emulsification methods such as a mechanically stirred emulsification method, a homoemulsion method, an ultrasonic emulsification method, and a membrane emulsification method can be used. In one embodiment of the present disclosure, an emulsion is preferably prepared using a membrane emulsification method, an aqueous solution of a curing agent is further added, the mixture is uniformly stirred, the temperature is raised to 50 ° C., and the mixture is reacted for 4 hours to form microcapsules. Prepare a dispersion. Preparation of the color-developing layer slurry includes preparing an color-developing layer slurry by further adding an adhesive and water to the microcapsule dispersion and stirring the mixture uniformly.

ステップS320では、アンダーコート層を、ワイヤーバー、グラビア塗工、押出塗工、反転ローラー塗工などの公知の塗工方式によって基板に塗布して乾燥させる。 In step S320, the undercoat layer is applied to the substrate by a known coating method such as wire bar, gravure coating, extrusion coating, and reversing roller coating, and dried.

ステップS330では、凹凸構造層のウェットコーティング層を、ワイヤーバー、グラビア塗工、押出塗工、反転ローラー塗工などの公知の塗工方式によってアンダーコート層に塗布して凹凸構造層を得る。 In step S330, the wet coating layer of the concavo-convex structure layer is applied to the undercoat layer by a known coating method such as wire bar, gravure coating, extrusion coating, and reversing roller coating to obtain the concavo-convex structure layer.

ステップS340では、凹凸構造層に、スライドコート、カーテンコートなどの公知の塗工方式によって発色層を塗布して乾燥させて、本開示に係る発色フィルム材料を得る。 In step S340, a color-developing layer is applied to the uneven structure layer by a known coating method such as a slide coat or a curtain coat and dried to obtain a color-developing film material according to the present disclosure.

図4は本開示の1つの実施の形態に係る圧力試験フィルムの製造方法のフロー図である。図4に示すように、圧力試験フィルムの製造方法は、ステップS410、ステップS450及びステップS460以外は、図3に示す発色フィルムの製造方法とほぼ同一であるため、同一の部分については図3の説明を参照されたい。また、図4に示すように、圧力試験フィルムの製造方法におけるステップS410は、図3に示すステップS310の内容を含む。本開示の当該実施の形態では、ステップS410において呈色フィルム材料を形成するためのスラリーを調製することが追加されただけで、前記スラリーは、少なくとも呈色層スラリーを含み、前記呈色層スラリーは、活性白土を水に加えて攪拌し予備分散させた後、サンドミルで磨砕して活性白土水分散液を調製し、接着剤を加えて均一に攪拌して形成される。 FIG. 4 is a flow chart of a method for manufacturing a pressure test film according to one embodiment of the present disclosure. As shown in FIG. 4, the method for manufacturing the pressure test film is almost the same as the method for manufacturing the color-developing film shown in FIG. 3 except for step S410, step S450 and step S460. Please refer to the explanation. Further, as shown in FIG. 4, step S410 in the method for manufacturing a pressure test film includes the contents of step S310 shown in FIG. In the embodiment of the present disclosure, only the preparation of the slurry for forming the coloring film material is added in step S410, and the slurry contains at least the coloring layer slurry, and the coloring layer slurry is contained. Is formed by adding active clay to water, stirring and pre-dispersing, grinding with a sand mill to prepare an active clay aqueous dispersion, adding an adhesive, and stirring uniformly.

また、ステップS450では、呈色層を、ワイヤーバー、グラビア塗工、押出塗工、反転ローラー塗工などの公知の塗工方式によって基板に塗布して乾燥させて前記呈色フィルム材料を得る。 Further, in step S450, the color-developing layer is applied to a substrate by a known coating method such as wire bar, gravure coating, extrusion coating, and inversion roller coating, and dried to obtain the color-developing film material.

そして、ステップS460では、得られた発色フィルム材料を呈色フィルム材料と組み合わせるか、又は、それらを使用するときに一時的に組み合わせることにより、前記圧力試験フィルムを形成する。 Then, in step S460, the pressure test film is formed by combining the obtained color-developing film material with the color-developing film material or by temporarily combining them when they are used.

なお、本開示の1つの実施の形態では、図4に示すステップS410において、図3に示すステップS310に対して追加した内容と、図4に示すステップS450の内容とを併せて、呈色フィルム材料の製造方法を形成してもよい。 In one embodiment of the present disclosure, in step S410 shown in FIG. 4, the content added to step S310 shown in FIG. 3 and the content of step S450 shown in FIG. 4 are combined to form a color-developing film. A method of manufacturing the material may be formed.

本開示に係る圧力試験フィルムの例
以下では、具体的な実施の形態を組み合わせて本開示についてさらに説明するが、本開示はこれらに限定されない。
Examples of pressure test films according to the present disclosure The present disclosure will be further described below in combination with specific embodiments, but the present disclosure is not limited thereto.

(例1)
アンダーコート層スラリーの調製
SBR 6kg
PVA217(10%) 10kg
水 84kg
6kgのSBRと10kgの10%のPVA217水溶液を84kgの水に加え、均一に攪拌してアンダーコート層スラリーを調製しておく。
(Example 1)
Preparation of undercoat layer slurry SBR 6 kg
PVA217 (10%) 10kg
84 kg of water
6 kg of SBR and 10 kg of 10% PVA217 aqueous solution are added to 84 kg of water and stirred uniformly to prepare an undercoat layer slurry.

凹凸構造層塗布液の調製
ウレタンアクリレート 40kg
エポキシアクリレート 20kg
PET3A 25kg
DPHA 15kg
184 3kg
TPO 3kg
20kgのエポキシアクリレートを40kgのウレタンアクリレートに加え、均一に攪拌し、さらに25kgのPET3A及び15kgのDPHAを順次加え、均一に攪拌した後、3kgの184及び3kgのTPOを加え、十分に均一に攪拌して凹凸構造層スラリーを調製しておく。
Preparation of uneven structure layer coating liquid Urethane acrylate 40 kg
Epoxy acrylate 20kg
PET3A 25kg
DPHA 15kg
184 3 kg
TPO 3kg
Add 20 kg of epoxy acrylate to 40 kg of urethane acrylate and stir uniformly, then add 25 kg of PET3A and 15 kg of DPHA in sequence, stir uniformly, then add 3 kg of 184 and 3 kg of TPO and stir sufficiently uniformly. To prepare a concavo-convex structure layer slurry.

マイクロカプセル及びその分散液の調製
油相溶液の調製
ジイソプロピルナフタレン 60kg
CVL 3.0kg
BLMB 2.4kg
ヘキサメチレンジイソシアネートのトリメチロールプロパン付加物 12kg
メチルエチルケトン 5kg
3.0kgのCVLと2.4kgのBLMBを60kgのジイソプロピルナフタレンと5kgのメチルエチルケトンに加え、完全に溶解するまで攪拌して染料溶液を得ておき、上記の染料溶液に12kgのヘキサメチレンジイソシアネートのトリメチロールプロパン付加物を加え、十分に均一に攪拌して油相溶液を得ておく。
Preparation of microcapsules and their dispersions Preparation of oil phase solution Diisopropylnaphthalene 60 kg
CVL 3.0kg
BLMB 2.4kg
Trimethylolpropane adduct of hexamethylene diisocyanate 12 kg
Methyl ethyl ketone 5 kg
Add 3.0 kg of CVL and 2.4 kg of BLMB to 60 kg of diisopropylnaphthalene and 5 kg of methylethylketone, stir until completely dissolved to obtain a dye solution, and add 12 kg of hexamethylene diisocyanate to the above dye solution. Add the methylol propane adduct and stir well enough to obtain an oil phase solution.

水相溶液の調製
水 60kg
PVA217水溶液(10%) 40kg
40kgの10%のPVA217水溶液を60kgの水に加え、均一に攪拌して水相溶液を得ておく。
Preparation of aqueous phase solution 60 kg of water
PVA217 aqueous solution (10%) 40 kg
40 kg of 10% PVA217 aqueous solution is added to 60 kg of water and stirred uniformly to obtain an aqueous phase solution.

硬化剤水溶液
トリエチレンテトラミン 5kg
水 20kg
膜乳化器の連続移動相として水相溶液を、分散相として油相溶液を用い、膜乳化法によりマイクロカプセルエマルションを得た後、得られたエマルションに硬化剤水溶液を加え、攪拌状態下で50℃まで昇温して4時間反応を継続した後、室温まで冷却し、水を加えて固形分30%に調整し、電子供与性無色染料前駆体を含むマイクロカプセル分散液を得る。
Hardener aqueous solution Triethylenetetramine 5 kg
20 kg of water
An aqueous phase solution is used as the continuous mobile phase of the membrane emulsifier, and an oil phase solution is used as the dispersed phase. After obtaining a microcapsule emulsion by the membrane emulsification method, a curing agent aqueous solution is added to the obtained emulsion, and the mixture is stirred. After raising the temperature to ° C. and continuing the reaction for 4 hours, the mixture is cooled to room temperature and water is added to adjust the solid content to 30% to obtain a microcapsule dispersion containing an electron-donating colorless dye precursor.

発色層分散液の調製
マイクロカプセル分散液(30%) 50kg
PVA205水溶液(10%) 20kg
CMC水溶液(10%) 30kg
水 33kg
20kgの10%のPVA205水溶液及び30kgの10%のCMC水溶液を50kgの30%のマイクロカプセル分散液に順次加え、均一に攪拌した後、33kgの水を加えて固形分15%に調整して発色層分散液を得ておく。
Preparation of color-developing layer dispersion Microcapsule dispersion (30%) 50 kg
PVA205 aqueous solution (10%) 20 kg
CMC aqueous solution (10%) 30 kg
33 kg of water
20 kg of 10% PVA205 aqueous solution and 30 kg of 10% CMC aqueous solution are sequentially added to 50 kg of 30% microcapsule dispersion, and after stirring uniformly, 33 kg of water is added to adjust the solid content to 15% for color development. Obtain a layer dispersion.

呈色層分散液の調製
水 30kg
活性白土 10kg
SBR 2kg
ゼラチン 2kg
10kgの活性白土を30kgの水に加え、サンドミルでサンドミル分散して活性白土水分散液を得て、2kgのSBRと2kgのゼラチンをさらに加えて均一に攪拌し、呈色層分散液を得ておく。
Preparation water for coloration layer dispersion 30 kg
10 kg of activated clay
SBR 2kg
Gelatin 2kg
10 kg of active clay was added to 30 kg of water and dispersed in a sand mill to obtain an active clay water dispersion. 2 kg of SBR and 2 kg of gelatin were further added and stirred uniformly to obtain a coloration layer dispersion. deep.

75μmのPET基材にワイヤーバーを使用して順次に0.5μmのアンダーコート層、凹凸構造層を塗布し、スライドコーターで12μmの発色層を塗布し、乾燥し、巻き取って、本開示に係る圧力試験フィルムの発色フィルム材料を得る。 A 0.5 μm undercoat layer and a concavo-convex structure layer are sequentially applied to a 75 μm PET substrate using a wire bar, a 12 μm coloring layer is applied with a slide coater, dried, wound up, and used in the present disclosure. Obtain a color-developing film material for the pressure test film.

75μmのPET基材にワイヤーバーで13μmの呈色層を塗布し、乾燥、巻取り後、本開示に係る圧力試験フィルムの呈色フィルム材料を得る。得られた発色フィルム材料を呈色フィルム材料に塗布層が対向するように重ねてその性能を検査する。 A 13 μm color-developing layer is applied to a 75 μm PET substrate with a wire bar, dried and wound to obtain a color-developing film material for the pressure test film according to the present disclosure. The obtained color-developing film material is superposed on the color-developing film material so that the coating layer faces each other, and its performance is inspected.

(例2)
アンダーコート層スラリーの調製
SBR 6kg
PVA217(10%) 10kg
水 84kg
6kgのSBRと10kgの10%のPVA217水溶液を84kgの水に加え、均一に攪拌してアンダーコート層スラリーを調製しておく。
(Example 2)
Preparation of undercoat layer slurry SBR 6 kg
PVA217 (10%) 10kg
84 kg of water
6 kg of SBR and 10 kg of 10% PVA217 aqueous solution are added to 84 kg of water and stirred uniformly to prepare an undercoat layer slurry.

凹凸構造層塗布液の調製
ウレタンアクリレート 40kg
エポキシアクリレート 20kg
PET3A 22kg
DPHA 18kg
907 3kg
TPO 3kg
20kgのエポキシアクリレートを40kgのウレタンアクリレートに加え、均一に攪拌し、さらに22kgのPET3Aと18kgのDPHAを順次加え、均一に攪拌した後、3kgの907と3kgのTPOを加えて、十分に均一に攪拌して凹凸構造層スラリーを調製しておく。
Preparation of uneven structure layer coating liquid Urethane acrylate 40 kg
Epoxy acrylate 20kg
PET3A 22kg
DPHA 18kg
907 3kg
TPO 3kg
Add 20 kg of epoxy acrylate to 40 kg of urethane acrylate and stir uniformly, then add 22 kg of PET3A and 18 kg of DPHA in sequence, stir evenly, then add 3 kg of 907 and 3 kg of TPO to make it sufficiently uniform. Stir to prepare a concavo-convex structure layer slurry.

マイクロカプセル及びその分散液の調製
油相溶液の調製
ジイソプロピルナフタレン 60kg
CVL 4.4kg
BLMB 3.6kg
ヘキサメチレンジイソシアネートのトリメチロールプロパン付加物 10kg
メチルエチルケトン 5kg
4.4kgのCVLと3.6kgのBLMBを60kgのジイソプロピルナフタレンと5kgのメチルエチルケトンに加え、完全に溶解するまで攪拌して染料溶液を得ておき、上記の染料溶液に10kgのヘキサメチレンジイソシアネートのトリメチロールプロパン付加物を加え、十分に均一に攪拌して油相溶液を得ておく。
Preparation of microcapsules and their dispersions Preparation of oil phase solution Diisopropylnaphthalene 60 kg
CVL 4.4kg
BLMB 3.6kg
Trimethylolpropane adduct of hexamethylene diisocyanate 10 kg
Methyl ethyl ketone 5 kg
Add 4.4 kg of CVL and 3.6 kg of BLMB to 60 kg of diisopropylnaphthalene and 5 kg of methylethylketone, stir until completely dissolved to obtain a dye solution, and add 10 kg of hexamethylene diisocyanate to the above dye solution. Add the methylol propane adduct and stir well enough to obtain an oil phase solution.

水相溶液の調製
水 60kg
PVA205水溶液(10%) 40kg
40kgの10%のPVA205水溶液を60kgの水に加え、均一に攪拌して水相溶液を得ておく。
硬化剤水溶液
エチレンジアミンのブチレンオキサイド付加物 5kg
水 20kg
膜乳化器の連続移動相として水相溶液を、分散相として油相溶液を用い、膜乳化法によりマイクロカプセルエマルションを得る。その後、得られたエマルションに硬化剤水溶液を加え、攪拌状態下で50℃まで昇温して4時間反応を継続した後、室温まで冷却し、水を加えて固形分30%に調整し、電子供与性無色染料前駆体を含むマイクロカプセル分散液を得る。
Preparation of aqueous phase solution 60 kg of water
PVA205 aqueous solution (10%) 40 kg
40 kg of 10% PVA205 aqueous solution is added to 60 kg of water and stirred uniformly to obtain an aqueous phase solution.
Hardener aqueous solution Ethylenediamine butylene oxide adduct 5 kg
20 kg of water
An aqueous phase solution is used as the continuous mobile phase of the membrane emulsifier, and an oil phase solution is used as the dispersed phase, and a microcapsule emulsion is obtained by a membrane emulsification method. Then, an aqueous curing agent solution was added to the obtained emulsion, the temperature was raised to 50 ° C. under stirring, the reaction was continued for 4 hours, the mixture was cooled to room temperature, and water was added to adjust the solid content to 30%. Obtain a microcapsule dispersion containing a donor colorless dye precursor.

発色層分散液の調製
マイクロカプセル分散液(30%) 50kg
PVA205水溶液(10%) 20kg
CMC水溶液(10%) 30kg
水 33kg
20kgの10%のPVA205水溶液と30kgの10%のCMC水溶液を50kgの30%のマイクロカプセル分散液に順次加え、均一に攪拌した後、33kgの水を加えて固形分15%に調整して発色層分散液を得ておく。
Preparation of color-developing layer dispersion Microcapsule dispersion (30%) 50 kg
PVA205 aqueous solution (10%) 20 kg
CMC aqueous solution (10%) 30 kg
33 kg of water
20 kg of 10% PVA205 aqueous solution and 30 kg of 10% CMC aqueous solution are sequentially added to 50 kg of 30% microcapsule dispersion, and after stirring uniformly, 33 kg of water is added to adjust the solid content to 15% for color development. Obtain a layer dispersion.

呈色層分散液の調製
水 30kg
活性白土 10kg
SBR 2kg
ゼラチン 2kg
10kgの活性白土を30kgの水に加え、サンドミルでサンドミル分散して活性白土水分散液を得て、2kgのSBRと2kgのゼラチンをさらに加えて均一に攪拌し、呈色層分散液を得ておく。
Preparation water for coloration layer dispersion 30 kg
10 kg of activated clay
SBR 2kg
Gelatin 2kg
10 kg of active clay was added to 30 kg of water and dispersed in a sand mill to obtain an active clay water dispersion. 2 kg of SBR and 2 kg of gelatin were further added and stirred uniformly to obtain a coloration layer dispersion. deep.

75μmのPET基材にワイヤーバーを使用して順次に0.5μmのアンダーコート層、凹凸構造層を塗布し、スライドコーターで12μmの発色層を塗布し、乾燥し、巻き取って、本開示に係る圧力試験フィルムの発色フィルム材料を得る。 A 0.5 μm undercoat layer and a concavo-convex structure layer are sequentially applied to a 75 μm PET substrate using a wire bar, a 12 μm coloring layer is applied with a slide coater, dried, wound up, and used in the present disclosure. Obtain a color-developing film material for the pressure test film.

75μmのPET基材にワイヤーバーで13μmの呈色層を塗布し、乾燥、巻取り後、本開示に係る圧力試験フィルムの呈色フィルム材料を得る。得られた発色フィルム材料を呈色フィルム材料に塗布層が対向するように重ねてその機能を検査する。 A 13 μm color-developing layer is applied to a 75 μm PET substrate with a wire bar, dried and wound to obtain a color-developing film material for the pressure test film according to the present disclosure. The obtained color-developing film material is superposed on the color-developing film material so that the coating layer faces each other, and its function is inspected.

(例3)
アンダーコート層スラリーの調製
SBR 5kg
PVA117(10%) 15kg
水 80kg
5kgのSBRと15kgの10%のPVA117水溶液を80kgの水に加え、均一に攪拌してアンダーコート層スラリーを調製しておく。
(Example 3)
Preparation of undercoat layer slurry SBR 5 kg
PVA117 (10%) 15kg
80 kg of water
5 kg of SBR and 15 kg of 10% PVA117 aqueous solution are added to 80 kg of water and stirred uniformly to prepare an undercoat layer slurry.

凹凸構造層塗布液の調製
ウレタンアクリレート 40kg
エポキシアクリレート 20kg
TPGDA 25kg
DPHA 15kg
184 3kg
TPO 3kg
20kgのエポキシアクリレートを40kgのウレタンアクリレートに加え、均一に攪拌し、さらに25kgのTPGDAと15kgのDPHAを順次加え、均一に攪拌した後、3kgの184及び3kgのTPOを加え、十分に均一に攪拌して凹凸構造層スラリーを調製しておく。
Preparation of uneven structure layer coating liquid Urethane acrylate 40 kg
Epoxy acrylate 20kg
TPGDA 25kg
DPHA 15kg
184 3 kg
TPO 3kg
Add 20 kg of epoxy acrylate to 40 kg of urethane acrylate and stir uniformly, then add 25 kg of TPGDA and 15 kg of DPHA in sequence, stir uniformly, then add 3 kg of 184 and 3 kg of TPO and stir sufficiently uniformly. To prepare a concavo-convex structure layer slurry.

マイクロカプセル及びその分散液の調製
油相溶液の調製
1-フェニル-1-ジメチルフェニルエタン 60kg
CVL 1.5kg
BLMB 1.2kg
ヘキサメチレンジイソシアネートのトリメチロールプロパン付加物 8kg
メチルエチルケトン 5kg
1.5kgのCVLと1.2kgのBLMBを60kgの1-フェニル-1-ジメチルフェニルエタンと5kgのメチルエチルケトンに加え、完全に溶解するまで攪拌して染料溶液を得ておき、上記の染料溶液に8kgのヘキサメチレンジイソシアネートのトリメチロールプロパン付加物を加え、十分に均一に攪拌して油相溶液を得ておく。
Preparation of microcapsules and their dispersions Preparation of oil phase solution
1-Phenyl-1-Dimethylphenylethane 60kg
CVL 1.5kg
BLMB 1.2kg
Trimethylolpropane adduct of hexamethylene diisocyanate 8 kg
Methyl ethyl ketone 5 kg
Add 1.5 kg of CVL and 1.2 kg of BLMB to 60 kg of 1-phenyl-1-dimethylphenylethane and 5 kg of methylethylketone, and stir until completely dissolved to obtain a dye solution. Add 8 kg of trimethylolpropane adduct of hexamethylene diisocyanate and stir well enough to obtain an oil phase solution.

水相溶液の調製
水 60kg
PVA217水溶液(10%) 40kg
40kgの10%のPVA217水溶液を60kgの水に加え、均一に攪拌して水相溶液を得ておく。
Preparation of aqueous phase solution 60 kg of water
PVA217 aqueous solution (10%) 40 kg
40 kg of 10% PVA217 aqueous solution is added to 60 kg of water and stirred uniformly to obtain an aqueous phase solution.

硬化剤水溶液
ヘキサメチレンジアミン 4kg
水 20kg
膜乳化器の連続移動相として水相溶液を、分散相として油相溶液を用い、膜乳化法によりマイクロカプセルエマルションを得る。その後、得られたエマルションに硬化剤水溶液を加え、攪拌状態下で50℃まで昇温して4時間反応を継続した後、室温まで冷却し、水を加えて固形分30%に調整し、電子供与性無色染料前駆体を含むマイクロカプセル分散液を得る。
Hardener aqueous solution Hexamethylenediamine 4 kg
20 kg of water
An aqueous phase solution is used as the continuous mobile phase of the membrane emulsifier, and an oil phase solution is used as the dispersed phase, and a microcapsule emulsion is obtained by a membrane emulsification method. Then, an aqueous curing agent solution was added to the obtained emulsion, the temperature was raised to 50 ° C. under stirring, the reaction was continued for 4 hours, the mixture was cooled to room temperature, and water was added to adjust the solid content to 30%. Obtain a microcapsule dispersion containing a donor colorless dye precursor.

発色層分散液の調製
マイクロカプセル分散液(30%) 50kg
PVA205水溶液(10%) 20kg
CMC水溶液(10%) 30kg
水 33kg
20kgの10%のPVA205水溶液と30kgの10%のCMC水溶液を50kgの30%のマイクロカプセル分散液に順次加え、均一に攪拌した後、33kgの水を加えて固形分15%に調整して発色層分散液を得ておく。
Preparation of color-developing layer dispersion Microcapsule dispersion (30%) 50 kg
PVA205 aqueous solution (10%) 20 kg
CMC aqueous solution (10%) 30 kg
33 kg of water
20 kg of 10% PVA205 aqueous solution and 30 kg of 10% CMC aqueous solution are sequentially added to 50 kg of 30% microcapsule dispersion, and after stirring uniformly, 33 kg of water is added to adjust the solid content to 15% for color development. Obtain a layer dispersion.

呈色層分散液の調製
水 30kg
活性白土 10kg
SBR 2kg
ゼラチン 2kg
10kgの活性白土を30kgの水に加え、サンドミルでサンドミル分散して活性白土水分散液を得て、2kgのSBRと2kgのゼラチンをさらに加えて均一に攪拌し、呈色層分散液を得ておく。
Preparation water for coloration layer dispersion 30 kg
10 kg of activated clay
SBR 2kg
Gelatin 2kg
10 kg of active clay was added to 30 kg of water and dispersed in a sand mill to obtain an active clay water dispersion. 2 kg of SBR and 2 kg of gelatin were further added and stirred uniformly to obtain a coloration layer dispersion. deep.

75μmのPET基材にワイヤーバーを使用して順次に0.5μmのアンダーコート層、凹凸構造層を塗布し、スライドコーターで12μmの発色層を塗布し、乾燥し、巻き取って、本開示に係る圧力試験フィルムの発色フィルム材料を得る。 A 0.5 μm undercoat layer and a concavo-convex structure layer are sequentially applied to a 75 μm PET substrate using a wire bar, a 12 μm coloring layer is applied with a slide coater, dried, wound up, and used in the present disclosure. Obtain a color-developing film material for the pressure test film.

75μmのPET基材にワイヤーバーで13μmの呈色層を塗布し、乾燥、巻取り後、本開示に係る圧力試験フィルムの呈色フィルム材料を得る。得られた発色フィルム材料を呈色フィルム材料に塗布層が対向するように重ねてその性能を検査する。 A 13 μm color-developing layer is applied to a 75 μm PET substrate with a wire bar, dried and wound to obtain a color-developing film material for the pressure test film according to the present disclosure. The obtained color-developing film material is superposed on the color-developing film material so that the coating layer faces each other, and its performance is inspected.

(例4)
アンダーコート層スラリーの調製
SBR 5kg
PVA217(10%) 15kg
水 80kg
5kgのSBRと15kgの10%のPVA217水溶液を80kgの水に加え、均一に攪拌してアンダーコート層スラリーを調製しておく。
(Example 4)
Preparation of undercoat layer slurry SBR 5 kg
PVA217 (10%) 15kg
80 kg of water
5 kg of SBR and 15 kg of 10% PVA217 aqueous solution are added to 80 kg of water and stirred uniformly to prepare an undercoat layer slurry.

凹凸構造層塗布液の調製
ウレタンアクリレート 35kg
エポキシアクリレート 25kg
PET3A 20kg
PET4A 20kg
184 3kg
907 3kg
25kgのエポキシアクリレートを35kgのウレタンアクリレートに加え、均一に攪拌し、さらに20kgのPET3A及び20kgのPET4Aを順次加え、均一に攪拌した後、3kgの184及び3kgの907を加えた後、十分に均一に攪拌して凹凸構造層スラリーを調製しておく。
Preparation of coating liquid for uneven structure layer Urethane acrylate 35 kg
Epoxy acrylate 25kg
PET3A 20kg
PET4A 20kg
184 3 kg
907 3kg
25 kg of epoxy acrylate is added to 35 kg of urethane acrylate and stirred uniformly, then 20 kg of PET3A and 20 kg of PET4A are sequentially added, and after uniformly stirring, 3 kg of 184 and 3 kg of 907 are added and then sufficiently uniform. To prepare a concavo-convex structure layer slurry.

マイクロカプセル及びその分散液の調製
油相溶液の調製
ジイソプロピルナフタレン 60kg
CVL 3.0kg
BLMB 2.4kg
ヘキサメチレンジイソシアネートのトリメチロールプロパン付加物 7.5kg
メチルエチルケトン 5kg
3.0kgのCVLと2.4kgのBLMBを60kgのジイソプロピルナフタレンと5kgのメチルエチルケトンに加え、完全に溶解するまで攪拌して染料溶液を得ておき、上記の染料溶液に7.5kgのヘキサメチレンジイソシアネートのトリメチロールプロパン付加物を加え、十分に均一に攪拌して油相溶液を得ておく。
Preparation of microcapsules and their dispersions Preparation of oil phase solution Diisopropylnaphthalene 60 kg
CVL 3.0kg
BLMB 2.4kg
Trimethylolpropane adduct of hexamethylene diisocyanate 7.5 kg
Methyl ethyl ketone 5 kg
Add 3.0 kg of CVL and 2.4 kg of BLMB to 60 kg of diisopropylnaphthalene and 5 kg of methylethylketone, stir until completely dissolved to obtain a dye solution, and add 7.5 kg of hexamethylene diisocyanate to the above dye solution. Add the trimethylol propane adduct from the above and stir well enough to obtain an oil phase solution.

水相溶液の調製
水 60kg
PVA217水溶液(10%) 40kg
40kgの10%のPVA217水溶液を60kgの水に加え、均一に攪拌して水相溶液を得ておく。
Preparation of aqueous phase solution 60 kg of water
PVA217 aqueous solution (10%) 40 kg
40 kg of 10% PVA217 aqueous solution is added to 60 kg of water and stirred uniformly to obtain an aqueous phase solution.

硬化剤水溶液
トリエチレンテトラミン 4kg
水 20kg
膜乳化器の連続移動相として水相溶液を、分散相として油相溶液を用い、膜乳化法によりマイクロカプセルエマルションを得る。その後、得られたエマルションに硬化剤水溶液を加え、攪拌状態下で50℃まで昇温して4時間反応を継続した後、室温まで冷却し、水を加えて固形分30%に調整し、電子供与性無色染料前駆体を含むマイクロカプセル分散液を得る。
Hardener aqueous solution Triethylenetetramine 4 kg
20 kg of water
An aqueous phase solution is used as the continuous mobile phase of the membrane emulsifier, and an oil phase solution is used as the dispersed phase, and a microcapsule emulsion is obtained by a membrane emulsification method. Then, an aqueous curing agent solution was added to the obtained emulsion, the temperature was raised to 50 ° C. under stirring, the reaction was continued for 4 hours, the mixture was cooled to room temperature, and water was added to adjust the solid content to 30%. Obtain a microcapsule dispersion containing a donor colorless dye precursor.

発色層分散液の調製
マイクロカプセル分散液(30%) 50kg
PVA205水溶液(10%) 20kg
CMC水溶液(10%) 30kg
水 33kg
20kgの10%のPVA205水溶液と30kgの10%のCMC水溶液を50kgの30%のマイクロカプセル分散液に順次加え、均一に攪拌した後、33kgの水を加えて固形分15%に調整して発色層分散液を得ておく。
Preparation of color-developing layer dispersion Microcapsule dispersion (30%) 50 kg
PVA205 aqueous solution (10%) 20 kg
CMC aqueous solution (10%) 30 kg
33 kg of water
20 kg of 10% PVA205 aqueous solution and 30 kg of 10% CMC aqueous solution are sequentially added to 50 kg of 30% microcapsule dispersion, and after stirring uniformly, 33 kg of water is added to adjust the solid content to 15% for color development. Obtain a layer dispersion.

呈色層分散液の調製
水 30kg
活性白土 10kg
SBR 2kg
ゼラチン 2kg
10kgの活性白土を30kgの水に加え、サンドミルでサンドミル分散して活性白土水分散液を得て、2kgのSBRと2kgのゼラチンをさらに加えて均一に攪拌し、呈色層分散液を得ておく。
Preparation water for coloration layer dispersion 30 kg
10 kg of activated clay
SBR 2kg
Gelatin 2kg
10 kg of active clay was added to 30 kg of water and dispersed in a sand mill to obtain an active clay water dispersion. 2 kg of SBR and 2 kg of gelatin were further added and stirred uniformly to obtain a coloration layer dispersion. deep.

75μmのPET基材にワイヤーバーを使用して順次に0.5μmのアンダーコート層、凹凸構造層を塗布し、スライドコーターで12μmの発色層を塗布し、乾燥し、巻き取って、本開示に係る圧力試験フィルムの発色フィルム材料を得る。 A 0.5 μm undercoat layer and a concavo-convex structure layer are sequentially applied to a 75 μm PET substrate using a wire bar, a 12 μm coloring layer is applied with a slide coater, dried, wound up, and used in the present disclosure. Obtain a color-developing film material for the pressure test film.

75μmのPET基材にワイヤーバーで13μmの呈色層を塗布し、乾燥、巻取り後、本開示に係る圧力試験フィルムの呈色フィルム材料を得る。得られた発色フィルム材料を呈色フィルム材料に塗布層が対向するように重ねてその性能を検査する。 A 13 μm color-developing layer is applied to a 75 μm PET substrate with a wire bar, dried and wound to obtain a color-developing film material for the pressure test film according to the present disclosure. The obtained color-developing film material is superposed on the color-developing film material so that the coating layer faces each other, and its performance is inspected.

(例5)
アンダーコート層スラリーの調製
SBR 6kg
PVA117(10%) 10kg
水 84kg
6kgのSBRと10kgの10%のPVA217水溶液を84kgの水に加え、均一に攪拌してアンダーコート層スラリーを調製しておく。
(Example 5)
Preparation of undercoat layer slurry SBR 6 kg
PVA117 (10%) 10kg
84 kg of water
6 kg of SBR and 10 kg of 10% PVA217 aqueous solution are added to 84 kg of water and stirred uniformly to prepare an undercoat layer slurry.

凹凸構造層塗布液の調製
ウレタンアクリレート 30kg
エポキシアクリレート 30kg
DPGDA 30kg
PET4 10kg
184 2.5kg
TPO 4kg
30kgのエポキシアクリレートを30kgのウレタンアクリレートに加え、均一に攪拌し、さらに30kgのDPGDA及び10kgのPET4Aを順次加え、均一に攪拌した後、2.5kgの184及び4kgのTPOを加え、十分に均一に攪拌して凹凸構造層スラリーを製造しておく。
Preparation of uneven structure layer coating liquid Urethane acrylate 30 kg
Epoxy acrylate 30kg
DPGDA 30kg
PET4 10kg
184 2.5 kg
TPO 4kg
Add 30 kg of epoxy acrylate to 30 kg of urethane acrylate and stir uniformly, then add 30 kg of DPGDA and 10 kg of PET4A sequentially, stir evenly, then add 2.5 kg of 184 and 4 kg of TPO and be sufficiently uniform. To produce a concavo-convex structure layer slurry.

マイクロカプセル及びその分散液の作製
油相溶液の調製
1-フェニル-1-ジメチルフェニルエタン 60kg
CVL 2.0kg
BLMB 1.6kg
ヘキサメチレンジイソシアネートのトリメチロールプロパン付加物 12kg
メチルエチルケトン 5kg
2.0kgのCVLと1.6kgのBLMBを60kgの1-フェニル-1-ジメチルフェニルエタンと5kgのメチルエチルケトンに加え、完全に溶解するまで攪拌して染料溶液を得ておき、上記の染料溶液に12kgのヘキサメチレンジイソシアネートのトリメチロールプロパン付加物を加え、十分に均一に攪拌して油相溶液を得ておく。
Preparation of microcapsules and their dispersions Preparation of oil phase solution
1-Phenyl-1-Dimethylphenylethane 60kg
CVL 2.0kg
BLMB 1.6kg
Trimethylolpropane adduct of hexamethylene diisocyanate 12 kg
Methyl ethyl ketone 5 kg
Add 2.0 kg of CVL and 1.6 kg of BLMB to 60 kg of 1-phenyl-1-dimethylphenylethane and 5 kg of methylethylketone, and stir until completely dissolved to obtain a dye solution. Add 12 kg of hexamethylene diisocyanate trimethylolpropane adduct and stir well enough to obtain an oil phase solution.

水相溶液の調製
水 60kg
PVA217水溶液(10%) 40kg
40kgの10%のPVA217水溶液を60kgの水に加え、均一に攪拌して水相溶液を得ておく。
Preparation of aqueous phase solution 60 kg of water
PVA217 aqueous solution (10%) 40 kg
40 kg of 10% PVA217 aqueous solution is added to 60 kg of water and stirred uniformly to obtain an aqueous phase solution.

硬化剤水溶液
トリエチレンテトラミン 5kg
水 20kg
膜乳化器の連続移動相として水相溶液を、分散相として油相溶液を用い、膜乳化法によりマイクロカプセルエマルションを得る。その後、得られたエマルションに硬化剤水溶液を加え、攪拌状態下で50℃まで昇温して4時間反応を継続した後、室温まで冷却し、水を加えて固形分30%に調整し、電子供与性無色染料前駆体を含むマイクロカプセル分散液を得る。
Hardener aqueous solution Triethylenetetramine 5 kg
20 kg of water
An aqueous phase solution is used as the continuous mobile phase of the membrane emulsifier, and an oil phase solution is used as the dispersed phase, and a microcapsule emulsion is obtained by a membrane emulsification method. Then, an aqueous curing agent solution was added to the obtained emulsion, the temperature was raised to 50 ° C. under stirring, the reaction was continued for 4 hours, the mixture was cooled to room temperature, and water was added to adjust the solid content to 30%. Obtain a microcapsule dispersion containing a donor colorless dye precursor.

発色層分散液の調製
マイクロカプセル分散液(30%) 50kg
PVA205水溶液(10%) 20kg
CMC水溶液(10%) 30kg
水 33kg
20kgの10%のPVA205水溶液と30kgの10%のCMC水溶液を50kgの30%のマイクロカプセル分散液に順次加え、均一に攪拌した後、33kgの水を加えて固形分15%に調整して発色層分散液を得ておく。
Preparation of color-developing layer dispersion Microcapsule dispersion (30%) 50 kg
PVA205 aqueous solution (10%) 20 kg
CMC aqueous solution (10%) 30 kg
33 kg of water
20 kg of 10% PVA205 aqueous solution and 30 kg of 10% CMC aqueous solution are sequentially added to 50 kg of 30% microcapsule dispersion, and after stirring uniformly, 33 kg of water is added to adjust the solid content to 15% for color development. Obtain a layer dispersion.

呈色層分散液の調製
水 30kg
活性白土 10kg
SBR 2kg
ゼラチン 2kg
10kgの活性白土を30kgの水に加え、サンドミルでサンドミル分散して活性白土水分散液を得て、2kgのSBRと2kgのゼラチンをさらに加えて均一に攪拌し、呈色層分散液を得ておく。
Preparation water for coloration layer dispersion 30 kg
10 kg of activated clay
SBR 2kg
Gelatin 2kg
10 kg of active clay was added to 30 kg of water and dispersed in a sand mill to obtain an active clay water dispersion. 2 kg of SBR and 2 kg of gelatin were further added and stirred uniformly to obtain a coloration layer dispersion. deep.

75μmのPET基材にワイヤーバーを使用して順次に0.5μmのアンダーコート層、凹凸構造層を塗布し、スライドコーターで12μmの発色層を塗布し、乾燥し、巻き取って、本開示に係る圧力試験フィルムの発色フィルム材料を得る。 A 0.5 μm undercoat layer and a concavo-convex structure layer are sequentially applied to a 75 μm PET substrate using a wire bar, a 12 μm coloring layer is applied with a slide coater, dried, wound up, and used in the present disclosure. Obtain a color-developing film material for the pressure test film.

75μmのPET基材にワイヤーバーで13μmの呈色層を塗布し、乾燥、巻取り後、本開示に係る圧力試験フィルムの呈色フィルム材料を得る。得られた発色フィルム材料を呈色フィルム材料に塗布層が対向するように重ねてその性能を検査する。 A 13 μm color-developing layer is applied to a 75 μm PET substrate with a wire bar, dried and wound to obtain a color-developing film material for the pressure test film according to the present disclosure. The obtained color-developing film material is superposed on the color-developing film material so that the coating layer faces each other, and its performance is inspected.

従来の圧力試験フィルムとの比較
(比較例1)
アンダーコート層スラリーの調製
SBR 6kg
PVA217(10%) 10kg
水 84kg
6kgのSBRと10kgの10%のPVA217水溶液を84kgの水に加え、均一に攪拌してアンダーコート層スラリーを調製しておく。
Comparison with conventional pressure test film (Comparative Example 1)
Preparation of undercoat layer slurry SBR 6 kg
PVA217 (10%) 10kg
84 kg of water
6 kg of SBR and 10 kg of 10% PVA217 aqueous solution are added to 84 kg of water and stirred uniformly to prepare an undercoat layer slurry.

マイクロカプセル及びその分散液の調製
油相溶液の調製
ジイソプロピルナフタレン 60kg
CVL 5.0kg
BLMB 3.8kg
ヘキサメチレンジイソシアネートのトリメチロールプロパン付加物 12kg
メチルエチルケトン 5kg
5.0kgのCVLと3.8kgのBLMBを60kgのジイソプロピルナフタレンと5kgのメチルエチルケトンに加え、完全に溶解するまで攪拌して染料溶液を得ておき、上記の染料溶液に12kgのヘキサメチレンジイソシアネートのトリメチロールプロパン付加物を加え、十分に均一に攪拌して油相溶液を得ておく。
Preparation of microcapsules and their dispersions Preparation of oil phase solution Diisopropylnaphthalene 60 kg
CVL 5.0kg
BLMB 3.8kg
Trimethylolpropane adduct of hexamethylene diisocyanate 12 kg
Methyl ethyl ketone 5 kg
Add 5.0 kg of CVL and 3.8 kg of BLMB to 60 kg of diisopropylnaphthalene and 5 kg of methylethylketone, stir until completely dissolved to obtain a dye solution, and add 12 kg of hexamethylene diisocyanate to the above dye solution. Add the methylol propane adduct and stir well enough to obtain an oil phase solution.

水相溶液の調製
水 60kg
PVA217水溶液(10%) 40kg
40kgの10%のPVA217水溶液を60kgの水に加え、均一に攪拌して水相溶液を得ておく。
Preparation of aqueous phase solution 60 kg of water
PVA217 aqueous solution (10%) 40 kg
40 kg of 10% PVA217 aqueous solution is added to 60 kg of water and stirred uniformly to obtain an aqueous phase solution.

硬化剤水溶液
トリエチレンテトラミン 5kg
水 20kg
機械乳化法により、水相溶液を連続相とし、750rpm高速攪拌状態下で油相溶液を加えて10分間乳化し、マイクロカプセルエマルションを得る。その後、得られたエマルションに硬化剤水溶液を加え、攪拌状態下で50℃まで昇温して4時間反応を継続した後、室温まで冷却し、水を加えて固形分を30%に調整し、電子供与性無色染料前駆体を含むマイクロカプセル分散液を得る。
Hardener aqueous solution Triethylenetetramine 5 kg
20 kg of water
By the mechanical emulsification method, the aqueous phase solution is made into a continuous phase, the oil phase solution is added under a high-speed stirring state of 750 rpm, and the mixture is emulsified for 10 minutes to obtain a microcapsule emulsion. Then, an aqueous curing agent solution was added to the obtained emulsion, the temperature was raised to 50 ° C. under stirring, the reaction was continued for 4 hours, the mixture was cooled to room temperature, and water was added to adjust the solid content to 30%. A microcapsule dispersion containing an electron-donating colorless dye precursor is obtained.

発色層分散液の調製
マイクロカプセル分散液(30%) 50kg
PVA205水溶液(10%) 20kg
CMC水溶液(10%) 30kg
水 33kg
20kgの10%のPVA205水溶液と30kgの10%のCMC水溶液を50kgの30%のマイクロカプセル分散液に順次加え、均一に攪拌した後、33kgの水を加えて固形分15%に調整して発色層分散液を得ておく。
Preparation of color-developing layer dispersion Microcapsule dispersion (30%) 50 kg
PVA205 aqueous solution (10%) 20 kg
CMC aqueous solution (10%) 30 kg
33 kg of water
20 kg of 10% PVA205 aqueous solution and 30 kg of 10% CMC aqueous solution are sequentially added to 50 kg of 30% microcapsule dispersion, and after stirring uniformly, 33 kg of water is added to adjust the solid content to 15% for color development. Obtain a layer dispersion.

呈色層分散液の調製
水 30kg
活性白土 10kg
SBR 2kg
ゼラチン 2kg
10kgの活性白土を30kgの水に加え、サンドミルでサンドミル分散して活性白土水分散液を得て、2kgのSBRと2kgのゼラチンをさらに加えて均一に攪拌し、呈色層分散液を得ておく。
Preparation water for coloration layer dispersion 30 kg
10 kg of activated clay
SBR 2kg
Gelatin 2kg
10 kg of active clay was added to 30 kg of water and dispersed in a sand mill to obtain an active clay water dispersion. 2 kg of SBR and 2 kg of gelatin were further added and stirred uniformly to obtain a coloration layer dispersion. deep.

75μmのPET基材にワイヤーバーを使用して順次に0.5μmのアンダーコート層を塗布し、スライドコーターで12μmの発色層を塗布し、乾燥し、巻き取って圧力試験フィルムの発色フィルム材料を得る。 A 0.5 μm undercoat layer is sequentially applied to a 75 μm PET substrate using a wire bar, a 12 μm color-developing layer is applied with a slide coater, dried, and wound to obtain a color-developing film material for a pressure test film. obtain.

75μmのPET基材にワイヤーバーで13μmの呈色層を塗布し、乾燥、巻取り後、圧力試験フィルムの呈色フィルム材料を得る。得られた発色フィルム材料を呈色フィルム材料に塗布層が対向するように重ねてその性能を検査する。 A 13 μm color-developing layer is applied to a 75 μm PET substrate with a wire bar, dried and wound to obtain a color-developing film material for a pressure test film. The obtained color-developing film material is superposed on the color-developing film material so that the coating layer faces each other, and its performance is inspected.

(比較例2)
アンダーコート層スラリーの調製
SBR 5kg
PVA217(10%) 15kg
水 80kg
5kgのSBRと15kgの10%のPVA217水溶液を80kgの水に加え、均一に攪拌してアンダーコート層スラリーを調製しておく。
(Comparative Example 2)
Preparation of undercoat layer slurry SBR 5 kg
PVA217 (10%) 15kg
80 kg of water
5 kg of SBR and 15 kg of 10% PVA217 aqueous solution are added to 80 kg of water and stirred uniformly to prepare an undercoat layer slurry.

凹凸構造層塗布液の調製
ウレタンアクリレート 40kg
エポキシアクリレート 20kg
PET3A 25kg
DPHA 15kg
184 3kg
TPO 3kg
20kgのエポキシアクリレートを40kgのウレタンアクリレートに加え、均一に攪拌し、さらに25kgのPET3A及び15kgのDPHAを順次加え、均一に攪拌した後、3kgの184及び3kgのTPOを加えた後、十分に均一に攪拌して凹凸構造層スラリーを調製しておく。
Preparation of uneven structure layer coating liquid Urethane acrylate 40 kg
Epoxy acrylate 20kg
PET3A 25kg
DPHA 15kg
184 3 kg
TPO 3kg
20 kg of epoxy acrylate was added to 40 kg of urethane acrylate and stirred uniformly, then 25 kg of PET3A and 15 kg of DPHA were sequentially added, and after uniformly stirring, 3 kg of 184 and 3 kg of TPO were added and then sufficiently uniform. To prepare a concavo-convex structure layer slurry.

マイクロカプセル及びその分散液の調製
油相溶液の調製
ジイソプロピルナフタレン 60kg
CVL 6.5kg
BLMB 5.4kg
ヘキサメチレンジイソシアネートのトリメチロールプロパン付加物 12kg
メチルエチルケトン 5kg
6.5kgのCVLと5.4kgのBLMBを60kgのジイソプロピルナフタレンと5kgのメチルエチルケトンに加え、完全に溶解するまで攪拌して染料溶液を得ておき、上記の染料溶液に12kgのヘキサメチレンジイソシアネートのトリメチロールプロパン付加物を加え、十分に均一に攪拌して油相溶液を得ておく。
Preparation of microcapsules and their dispersions Preparation of oil phase solution Diisopropylnaphthalene 60 kg
CVL 6.5kg
BLMB 5.4kg
Trimethylolpropane adduct of hexamethylene diisocyanate 12 kg
Methyl ethyl ketone 5 kg
Add 6.5 kg of CVL and 5.4 kg of BLMB to 60 kg of diisopropylnaphthalene and 5 kg of methylethylketone, stir until completely dissolved to obtain a dye solution, and add 12 kg of hexamethylene diisocyanate to the above dye solution. Add the methylol propane adduct and stir well enough to obtain an oil phase solution.

水相溶液の調製
水 60kg
PVA217水溶液(10%) 40kg
40kgの10%のPVA217水溶液を60kgの水に加え、均一に攪拌して水相溶液を得ておく。
Preparation of aqueous phase solution 60 kg of water
PVA217 aqueous solution (10%) 40 kg
40 kg of 10% PVA217 aqueous solution is added to 60 kg of water and stirred uniformly to obtain an aqueous phase solution.

硬化剤水溶液
トリエチレンテトラミン 5kg
水 20kg
機械乳化法により、水相溶液を連続相とし、950rpm高速攪拌状態下で油相溶液を加えて10分間乳化し、マイクロカプセルエマルションを得る。その後、得られたエマルションに硬化剤水溶液を加え、攪拌状態下で50℃まで昇温して、4時間反応を継続した後、室温まで冷却し、水を加えて固形分を30%に調整し、電子供与性無色染料前駆体を含むマイクロカプセル分散液を得る。
Hardener aqueous solution Triethylenetetramine 5 kg
20 kg of water
By the mechanical emulsification method, the aqueous phase solution is made into a continuous phase, the oil phase solution is added under a high-speed stirring state of 950 rpm, and the mixture is emulsified for 10 minutes to obtain a microcapsule emulsion. Then, an aqueous curing agent solution was added to the obtained emulsion, the temperature was raised to 50 ° C. under stirring, the reaction was continued for 4 hours, the mixture was cooled to room temperature, and water was added to adjust the solid content to 30%. , Obtain a microcapsule dispersion containing an electron-donating colorless dye precursor.

発色層分散液の調製
マイクロカプセル分散液(30%) 50kg
PVA205水溶液(10%) 20kg
CMC水溶液(10%) 30kg
水 33kg
20kgの10%のPVA205水溶液と30kgの10%のCMC水溶液を50kgの30%のマイクロカプセル分散液に順次加え、均一に攪拌した後、33kgの水を加えて固形分15%に調整して発色層分散液を得ておく。
Preparation of color-developing layer dispersion Microcapsule dispersion (30%) 50 kg
PVA205 aqueous solution (10%) 20 kg
CMC aqueous solution (10%) 30 kg
33 kg of water
20 kg of 10% PVA205 aqueous solution and 30 kg of 10% CMC aqueous solution are sequentially added to 50 kg of 30% microcapsule dispersion, and after stirring uniformly, 33 kg of water is added to adjust the solid content to 15% for color development. Obtain a layer dispersion.

75μmのPET基材にワイヤーバーを使用して順次に0.5μmのアンダーコート層、凹凸構造層を塗布し、スライドコーターで12μmの発色層を塗布し、乾燥し、巻き取って圧力試験フィルムの発色フィルム材料を得る。 Using a wire bar, a 0.5 μm undercoat layer and an uneven structure layer are sequentially applied to a 75 μm PET substrate, a 12 μm coloring layer is applied with a slide coater, dried, and rolled up to form a pressure test film. Obtain a color-developing film material.

75μmのPET基材にワイヤーバーで13μmの呈色層を塗布し、乾燥、巻取り後、圧力試験フィルムの呈色フィルム材料を得る。得られた発色フィルム材料を呈色フィルム材料に塗布層が対向するように重ねてその性能を検査する。 A 13 μm color-developing layer is applied to a 75 μm PET substrate with a wire bar, dried and wound to obtain a color-developing film material for a pressure test film. The obtained color-developing film material is superposed on the color-developing film material so that the coating layer faces each other, and its performance is inspected.

Figure 0007039732000001
Figure 0007039732000001

表において、各項目の性能のテスト方法は以下のとおりである。 In the table, the performance test method for each item is as follows.

1.粒度分布のテスト方法
マイクロカプセル分散液を採取し、BT-9300ST型レーザー粒度分布計を用いてテストし、マイクロカプセル分散液の粒度分布D50と粒度分布スパン(span)を得る。
1. 1. Particle size distribution test method A microcapsule dispersion is collected and tested using a BT-9300ST type laser particle size distribution meter to obtain a particle size distribution D50 and a particle size distribution span (span) of the microcapsule dispersion.

2.A値のテスト方法
アンダーコート層及び凹凸構造層を塗布したシートを採取し、電子顕微鏡(SEM)で隣接する凸部5組の間の最短距離を測定し、その平均値を求めてA値を得る。
2. 2. A value test method A sheet coated with an undercoat layer and an uneven structure layer is collected, the shortest distance between five sets of adjacent convex portions is measured with an electron microscope (SEM), and the average value is calculated to obtain the A value. obtain.

3.低温発色適性のテスト方法
上記で得られた圧力試験フィルムを2つのグループI、IIに分け、それぞれ25℃の条件下と10℃の条件下で以下のテストを行う。まず、上記マイクロカプセルを3cm×3cmの大きさに切断し、塗布層が対向するように電子供与性無色染料前駆体を含む発色シートと電子受容性化合物を含む呈色シートを重ね、2つの滑らかな表面の間にこれを配置し、シート全体に全面的に圧力を加えて飽和発色させ、次いで、重ね合わせた両シートを剥離し、呈色シートの呈色部分の濃度値OD1をX. rite色差計を用いて測定し、同一の方法で呈色シートの非呈色部分の初期濃度値OD0を求め、OD1-OD0から実際の発色濃度ODを求める。ODI-ODIIにより、異なる温度下における2つのグループのシートの、同一圧力下での発色濃度の差ΔODを得ることができる。
3. 3. Low temperature color aptitude test method The pressure test film obtained above is divided into two groups I and II, and the following tests are performed under the conditions of 25 ° C and 10 ° C, respectively. First, the microcapsules are cut into a size of 3 cm × 3 cm, and a color-developing sheet containing an electron-donating colorless dye precursor and a color-developing sheet containing an electron-accepting compound are laminated so that the coating layers face each other. This is placed between the various surfaces, and pressure is applied to the entire sheet to cause saturated color development. The measurement is performed using a colorimeter, the initial density value OD0 of the non-colored portion of the color-developing sheet is obtained by the same method, and the actual color-developing density OD is obtained from OD1-OD0. With ODI-ODII, it is possible to obtain the difference ΔOD of the color-developing densities of two groups of sheets under the same pressure under different temperatures.

評価基準
A (1.5≦OD、ΔOD≦0.2):10℃で染料が析出せず、通常使用可能である。
B (1.3≦OD<1.5、0.2<ΔOD≦0.4):10℃で染料がわずかに析出し、使用には影響しない。
C (OD<1.3、ΔOD>0.4):10℃で色素が激しく析出し、正常に使用できない。
Evaluation Criteria A (1.5 ≦ OD, ΔOD ≦ 0.2): The dye does not precipitate at 10 ° C, and it can be used normally.
B (1.3 ≦ OD <1.5, 0.2 <ΔOD ≦ 0.4): The dye slightly precipitates at 10 ° C. and does not affect the use.
C (OD <1.3, ΔOD> 0.4): The dye is violently deposited at 10 ° C. and cannot be used normally.

4.試験感度のテスト方法
上記で得られた圧力試験フィルムを20cm×20cmの大きさに切断し、塗布層が対向するように電子供与性無色染料前駆体を含む発色シートと電子受容性化合物を含む呈色シートを重ね、2つの滑らかな表面の間にこれを配置し、シート全体に全面的に圧力を加えて発色させ、その後、重ね合わせた両シートを剥離し、呈色シート上の異なる5つの領域の呈色濃度値ODiをX. rite色差計を用いてランダム測定し、平均値ODを求めるとともに最大誤差値ΔODを求め、ΔODをODで除算すれば百分率数値Xが得られる。
4. Test Sensitivity Test Method The pressure test film obtained above is cut into a size of 20 cm × 20 cm, and a color-developing sheet containing an electron-donating colorless dye precursor and an electron-accepting compound are presented so that the coating layers face each other. Color sheets are stacked and placed between two smooth surfaces, pressure is applied over the entire sheet to develop color, then both stacked sheets are peeled off and five different on the coloring sheet. The color density value ODi of the region is randomly measured using an X. rite colorimeter, the average value OD is obtained, the maximum error value ΔOD is obtained, and ΔOD is divided by OD to obtain the percentage value X.

A (X≦5%):境界が明瞭に識別でき、試験感度は高い。
B (5%<X≦10%):境界の鮮明さは許容可能であり、試験感度は許容可能である。
C (10%<X):境界がややぼやけており、試験感度は劣る。
A (X ≦ 5%): The boundary can be clearly identified and the test sensitivity is high.
B (5% <X ≦ 10%): Boundary sharpness is acceptable and test sensitivity is acceptable.
C (10% <X): The boundary is slightly blurred, and the test sensitivity is inferior.

5.外観均一性のテスト方法
上記で得られた圧力試験フィルムを10cm×10cmの大きさに切断し、ランダムに5つの領域を選び、電子顕微鏡によるマイクロカプセルの外観観察を行う。
5. Appearance uniformity test method The pressure test film obtained above is cut into a size of 10 cm × 10 cm, five regions are randomly selected, and the appearance of the microcapsules is observed with an electron microscope.

A:大小の粒子の広がりが均一であり、凝集がない。
B:大小の粒子の広がりがほぼ均一であり、顕著な凝集がない。
C:大小の粒子の広がりが十分に均一ではなく、小さな粒子が大きな粒子に引き寄せられて島状構造を形成する。
A: The spread of large and small particles is uniform, and there is no agglomeration.
B: The spread of large and small particles is almost uniform, and there is no remarkable aggregation.
C: The spread of large and small particles is not sufficiently uniform, and small particles are attracted to large particles to form an island-like structure.

表におけるテスト結果から分かるように、低温発色適性、試験感度及び外観均一性がいずれも比較例より優れるため、本開示の技術案を採用することによって製造された圧力試験フィルムは、低温環境の使用要件を満たすことができ、高感度及び高解像度の圧力分布試験を実現することができる。 As can be seen from the test results in the table, the low temperature color development suitability, the test sensitivity and the appearance uniformity are all superior to the comparative examples, so that the pressure test film produced by adopting the technical proposal of the present disclosure is used in a low temperature environment. The requirements can be met, and high-sensitivity and high-resolution pressure distribution tests can be realized.

本開示は、図面に示され、本明細書に記載されている実施の形態に限らない。上記説明は単なる例示的なものであり、本開示の範囲を限定するものではない。上記説明から、本開示の思想及び範囲内に入る多数の変形例が明らかとなるであろう。 The present disclosure is not limited to the embodiments shown in the drawings and described herein. The above description is merely exemplary and does not limit the scope of this disclosure. From the above description, a number of variants that fall within the ideas and scope of the present disclosure will become apparent.

Claims (9)

他の層が塗布されて発色フィルムを形成するための基材と、
前記基材に形成される凹凸構造層と、
前記凹凸構造層に塗布され、かつ電子供与性無色染料前駆体が内包されたマイクロカプセルを含み、前記電子供与性無色染料が電子受容性化合物と接触して着色する発色層と、を備え、
前記発色フィルムが圧力を受けると、前記凹凸構造層が前記発色層を押圧し、前記発色層内のマイクロカプセルが破壊されて前記電子供与性無色染料前駆体が放出され
前記凹凸構造層が少なくとも2つの凸部を有し、隣接する2つの凸部の先端間の直線距離Lが、D50×0.2≦L≦D50×0.8という関係を満たし、ここで、D50は、前記マイクロカプセルの累積粒度分布数が50%に達したときの対応する粒子径を表す
発色フィルム。
A base material for which another layer is applied to form a color-developing film,
Concavo-convex structure layer formed on the substrate and
It comprises a microcapsule coated on the concavo-convex structure layer and containing an electron-donating colorless dye precursor, and comprises a coloring layer in which the electron-donating colorless dye comes into contact with an electron-accepting compound and is colored.
When the color-developing film receives pressure, the uneven structure layer presses the color-developing layer, the microcapsules in the color-developing layer are destroyed, and the electron-donating colorless dye precursor is released .
The uneven structure layer has at least two convex portions, and the linear distance L between the tips of the two adjacent convex portions satisfies the relationship of D50 × 0.2 ≦ L ≦ D50 × 0.8. D50 represents the corresponding particle size when the cumulative particle size distribution of the microcapsules reaches 50% .
Color-developing film.
前記基材と前記凹凸構造層との間に、前記基材上に前記凹凸構造層を強固に支持するためのアンダーコート層をさらに含む、
請求項1に記載の発色フィルム。
An undercoat layer for firmly supporting the uneven structure layer is further included on the base material between the base material and the uneven structure layer.
The color-developing film according to claim 1.
前記凹凸構造層がUV樹脂で形成されている、
請求項1又は2に記載の発色フィルム。
The uneven structure layer is made of UV resin.
The color-developing film according to claim 1 or 2.
前記凹凸構造層における凸部形状が、円柱状、円錐状、直方体又は立方体である、
請求項1又は2に記載の発色フィルム。
The convex shape in the uneven structure layer is columnar, conical, rectangular parallelepiped or cubic.
The color-developing film according to claim 1 or 2.
前記凹凸構造層における凸部の先端部が尖った形状である、
請求項1又は2に記載の発色フィルム。
The tip of the convex portion in the uneven structure layer has a sharp shape.
The color-developing film according to claim 1 or 2.
前記アンダーコート層は水性樹脂が塗布されて形成され、前記水性樹脂は、ポリビニルアルコール又はスチレン-ブタジエン共重合体ラテックス系水性樹脂であることが好ましい、
請求項2に記載の発色フィルム。
The undercoat layer is formed by applying an aqueous resin, and the aqueous resin is preferably polyvinyl alcohol or a styrene-butadiene copolymer latex-based aqueous resin.
The color-developing film according to claim 2.
請求項1~のいずれか1項に記載の発色フィルムを含む発色フィルム層と、
電子受容性化合物の呈色材料を含む呈色フィルム層と、を含む、
圧力試験フィルム。
A color-developing film layer containing the color-developing film according to any one of claims 1 to 6 .
A color-developing film layer containing a color-developing material of an electron-accepting compound, and the like.
Pressure test film.
活性希釈剤をUV樹脂に加えて均一に攪拌し、光開始剤又は助剤を加えて均一に攪拌することにより、凹凸構造層スラリーを調製することと、
電子供与性無色染料前駆体を含む油相及び水相を調製し、膜乳化法により油相を水相に加えてエマルションを形成し、硬化剤をさらに加えて均一に攪拌し、50℃に昇温して4時間反応させてマイクロカプセル分散液を調製し、接着剤及び水をさらに加えて均一に攪拌して発色層スラリーを調製することと、
基材に凹凸構造層スラリー、発色層スラリーを順に塗布して圧力試験フィルムに使用可能な発色フィルムを得ることと、を含む、
請求項1~のいずれか1項に記載の発色フィルムを製造する方法。
To prepare a concavo-convex structure layer slurry by adding an active diluent to the UV resin and stirring uniformly, and adding a photoinitiator or an auxiliary agent and stirring uniformly.
An oil phase and an aqueous phase containing an electron-donating colorless dye precursor are prepared, the oil phase is added to the aqueous phase by a film emulsification method to form an emulsion, a curing agent is further added, and the mixture is uniformly stirred and raised to 50 ° C. After warming and reacting for 4 hours to prepare a microcapsule dispersion, further adding an adhesive and water and stirring uniformly to prepare a color-developing layer slurry.
A color-developing film that can be used as a pressure test film is obtained by sequentially applying a concavo-convex structure layer slurry and a color-developing layer slurry to a substrate.
The method for producing a color-developing film according to any one of claims 1 to 6 .
活性希釈剤をUV樹脂に加えて均一に攪拌し、光開始剤又は助剤を加えて均一に攪拌することにより、凹凸構造層スラリーを製造することと、
電子供与性無色染料前駆体を含む油相及び水相を調製し、膜乳化法により油相を水相に加えてエマルションを形成し、硬化剤をさらに加えて均一に攪拌し、50℃に昇温して4時間反応させてマイクロカプセル分散液を調製し、接着剤及び水をさらに加えて均一に攪拌して発色層スラリーを調製することと、
活性白土を水に加えて攪拌し予備分散させた後、サンドミルで磨砕して活性白土水分散液を調製し、接着剤を加えて均一に攪拌して呈色層スラリーを調製することと、
基材に凹凸構造層スラリー、発色層スラリーを順に塗布して圧力試験フィルムに使用可能な発色フィルムを得て、また、基材に呈色層スラリーを塗布して圧力試験フィルムに使用可能な呈色フィルムを得ることと、
前記発色フィルムと前記呈色フィルムを組み合わせて前記圧力試験フィルムとすることと、を含む、
請求項に記載の圧力試験フィルムを製造する方法。
To produce a concavo-convex structure layer slurry by adding an active diluent to a UV resin and stirring uniformly, and adding a photoinitiator or an auxiliary agent and stirring uniformly.
An oil phase and an aqueous phase containing an electron-donating colorless dye precursor are prepared, the oil phase is added to the aqueous phase by a film emulsification method to form an emulsion, a curing agent is further added, and the mixture is uniformly stirred and raised to 50 ° C. After warming and reacting for 4 hours to prepare a microcapsule dispersion, further adding an adhesive and water and stirring uniformly to prepare a color-developing layer slurry.
After adding active clay to water and stirring to pre-disperse it, grind it with a sand mill to prepare an active clay water dispersion, add an adhesive and stir evenly to prepare a color-developing layer slurry.
A color-developing film that can be used as a pressure test film is obtained by applying the uneven structure layer slurry and a color-developing layer slurry to the base material in this order, and a color-developing layer slurry is applied to the base material to obtain a color-developing film that can be used as a pressure test film. To get a color film,
The pressure test film is obtained by combining the color-developing film and the color-developing film.
The method for producing the pressure test film according to claim 7 .
JP2020564996A 2018-02-11 2019-01-28 Color-developing film including uneven structure, pressure test film and its manufacturing method Active JP7039732B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810143407.8 2018-02-11
CN201810143407.8A CN108373548B (en) 2018-02-11 2018-02-11 Color film with concave-convex structure, pressure test film and preparation method thereof
PCT/CN2019/073336 WO2019154148A1 (en) 2018-02-11 2019-01-28 Color-generating film having ridged structure, pressure test film and preparation method therefor

Publications (2)

Publication Number Publication Date
JP2021513477A JP2021513477A (en) 2021-05-27
JP7039732B2 true JP7039732B2 (en) 2022-03-22

Family

ID=63017847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020564996A Active JP7039732B2 (en) 2018-02-11 2019-01-28 Color-developing film including uneven structure, pressure test film and its manufacturing method

Country Status (4)

Country Link
JP (1) JP7039732B2 (en)
KR (1) KR102468052B1 (en)
CN (1) CN108373548B (en)
WO (1) WO2019154148A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144056B (en) * 2018-02-11 2022-03-29 保定乐凯新材料股份有限公司 Color film with special formula, pressure test film and preparation method thereof
CN108373548B (en) * 2018-02-11 2022-03-29 保定乐凯新材料股份有限公司 Color film with concave-convex structure, pressure test film and preparation method thereof
WO2020149410A1 (en) * 2019-01-17 2020-07-23 富士フイルム株式会社 Pressure measuring material and pressure measuring material production method
CN113249947B (en) * 2021-07-15 2021-09-28 兴晔新材料(南通)有限公司 Textile fabric stretching auxiliary part and stretching process
CN116082688A (en) * 2023-02-24 2023-05-09 上海席亚高分子材料有限公司 Color film for pressure test

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068990A (en) 2007-09-13 2009-04-02 Fujifilm Corp Pressure measuring method
JP2009068991A (en) 2007-09-13 2009-04-02 Fujifilm Corp Rugged sheet
JP2009128248A (en) 2007-11-26 2009-06-11 Fujifilm Corp Pressure distribution measuring method
US20100184233A1 (en) 2007-07-11 2010-07-22 Fujifilm Corporation Material for pressure measurement
CN101874199A (en) 2007-12-04 2010-10-27 富士胶片株式会社 Material for measurement of pressure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331467A (en) * 1993-05-19 1994-12-02 Fujitsu Ltd Pressure measuring film and pressure measuring method
JPH07237351A (en) * 1994-02-28 1995-09-12 New Oji Paper Co Ltd Thermal recording material
JPH1062276A (en) * 1996-08-21 1998-03-06 Fuji Photo Film Co Ltd Method and apparatus for measuring pressure
JP2001270223A (en) 2000-03-23 2001-10-02 Toyobo Co Ltd Ink jet recording sheet
JP4073017B2 (en) 2003-04-15 2008-04-09 株式会社リコー Thermal recording material
JP2004317403A (en) * 2003-04-18 2004-11-11 Alps Electric Co Ltd Surface pressure distribution sensor
JP5142640B2 (en) * 2007-09-07 2013-02-13 富士フイルム株式会社 Material for pressure measurement
JP5202578B2 (en) * 2010-06-03 2013-06-05 日本写真印刷株式会社 Information detector including pressure detector and pressure detector
JP2012251291A (en) 2011-05-31 2012-12-20 Fujifilm Corp Methods for recording and evaluating irregularity of substrate concrete surface
TWD148294S (en) * 2011-09-09 2012-07-21 艾恩特精密工業股份有限公司 Communication socket 1
CN202805823U (en) * 2012-08-28 2013-03-20 上海所克净化材料有限公司 Color plastic pressure diaphragm
JP2017181147A (en) * 2016-03-29 2017-10-05 セイコーエプソン株式会社 Pressure sensor, altimeter, electronic apparatus, and movable body
CN106531733A (en) * 2016-12-21 2017-03-22 清华大学 Flexible pressure sensor and preparation method therefor
CN108373548B (en) * 2018-02-11 2022-03-29 保定乐凯新材料股份有限公司 Color film with concave-convex structure, pressure test film and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100184233A1 (en) 2007-07-11 2010-07-22 Fujifilm Corporation Material for pressure measurement
JP2009068990A (en) 2007-09-13 2009-04-02 Fujifilm Corp Pressure measuring method
JP2009068991A (en) 2007-09-13 2009-04-02 Fujifilm Corp Rugged sheet
JP2009128248A (en) 2007-11-26 2009-06-11 Fujifilm Corp Pressure distribution measuring method
CN101874199A (en) 2007-12-04 2010-10-27 富士胶片株式会社 Material for measurement of pressure

Also Published As

Publication number Publication date
CN108373548A (en) 2018-08-07
WO2019154148A1 (en) 2019-08-15
CN108373548B (en) 2022-03-29
KR102468052B1 (en) 2022-11-18
KR20200120697A (en) 2020-10-21
JP2021513477A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP7039732B2 (en) Color-developing film including uneven structure, pressure test film and its manufacturing method
TWI396836B (en) Material for pressure measurement
KR101497737B1 (en) Material for pressure measurement
TWI428577B (en) Material for pressure measurement
TWI842080B (en) Material for pressure measurement and pressure measurement material set
KR900000964B1 (en) Microcapsule-containing water-base coating formulation and copying and/or recording material making use of said coating formulation
JP5142640B2 (en) Material for pressure measurement
GB1581757A (en) Coating compositions and the utilisation thereof
JP6830531B2 (en) Material for pressure measurement
JP7178123B2 (en) Color-developing film with special formulation, pressure test film and method for producing the same
JP5258236B2 (en) Material for pressure measurement
WO2019154147A1 (en) Device for preparing ridged structure
JP2009068991A (en) Rugged sheet
JP7231732B2 (en) Sheet set for pressure measurement, sheet for pressure measurement
JPH0478435A (en) Microcapsule and its production
JP2001070870A (en) Production of optical recording material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220309

R150 Certificate of patent or registration of utility model

Ref document number: 7039732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350