JP7038477B2 - Image display device and its manufacturing method - Google Patents

Image display device and its manufacturing method Download PDF

Info

Publication number
JP7038477B2
JP7038477B2 JP2017034749A JP2017034749A JP7038477B2 JP 7038477 B2 JP7038477 B2 JP 7038477B2 JP 2017034749 A JP2017034749 A JP 2017034749A JP 2017034749 A JP2017034749 A JP 2017034749A JP 7038477 B2 JP7038477 B2 JP 7038477B2
Authority
JP
Japan
Prior art keywords
image display
resin layer
photocurable resin
cover member
light transmissive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017034749A
Other languages
Japanese (ja)
Other versions
JP2018141834A (en
Inventor
孝夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2017034749A priority Critical patent/JP7038477B2/en
Priority to TW106145016A priority patent/TWI833689B/en
Priority to KR1020180006094A priority patent/KR102612913B1/en
Priority to CN201810140388.3A priority patent/CN108508641B/en
Publication of JP2018141834A publication Critical patent/JP2018141834A/en
Priority to JP2021081598A priority patent/JP7192915B2/en
Application granted granted Critical
Publication of JP7038477B2 publication Critical patent/JP7038477B2/en
Priority to KR1020230008517A priority patent/KR20230019176A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、液晶表示パネル等の画像表示部材と、その表面側に配される湾曲した透明保護シート等の光透過性カバー部材とが、光透過性の光硬化樹脂層を介して積層されている画像表示装置、及びその製造方法に関する。 In the present invention, an image display member such as a liquid crystal display panel and a light transmissive cover member such as a curved transparent protective sheet arranged on the surface side thereof are laminated via a light transmissive photocurable resin layer. The present image display device and its manufacturing method.

カーナビゲーションなどの車載用情報端末に用いられている画像表示装置は、フラットな光透過性カバー部材に光硬化性樹脂組成物を塗布し、紫外線照射により仮硬化させて仮硬化樹脂層を形成した後、仮硬化樹脂層に液晶表示パネルや有機ELパネル等のフラットな画像表示部材を積層し、続いて仮硬化樹脂層に対し紫外線照射を再度行うことにより本硬化させて光硬化樹脂層とすることにより製造されている(特許文献1)。 In the image display device used for in-vehicle information terminals such as car navigation systems, a photocurable resin composition is applied to a flat light-transmitting cover member and temporarily cured by irradiation with ultraviolet rays to form a temporarily cured resin layer. After that, a flat image display member such as a liquid crystal display panel or an organic EL panel is laminated on the temporarily cured resin layer, and then the temporarily cured resin layer is subjected to ultraviolet irradiation again to be main-cured to obtain a photocurable resin layer. (Patent Document 1).

ところで、車載用情報端末用の画像表示装置の意匠性やタッチ感を向上させるために、一方向に湾曲した形状の光透過性カバー部材を用いることが求められるようになっている。このため、このような画像表示装置を特許文献1に記載の製造方法に準じて製造することが試みられている。例えば、湾曲した光透過性カバー部材100の凹部側表面100aに光硬化性樹脂組成物101を塗布し(図4A)、紫外線を照射して仮硬化樹脂層102を形成し(図4B)、その仮硬化樹脂層102に平坦な画像表示部材103を積層することにより製造することが試みられているが(図4C)、多くの場合、画像表示部材103の角103aが光透過性カバー部材100の凹部面100aに線接触するように積層されている。 By the way, in order to improve the design and touch feeling of an image display device for an in-vehicle information terminal, it is required to use a light transmissive cover member having a shape curved in one direction. Therefore, it is attempted to manufacture such an image display device according to the manufacturing method described in Patent Document 1. For example, the photocurable resin composition 101 is applied to the concave surface side surface 100a of the curved light transmissive cover member 100 (FIG. 4A), and the temporary curing resin layer 102 is formed by irradiating with ultraviolet rays (FIG. 4B). Attempts have been made to manufacture by laminating a flat image display member 103 on the temporarily cured resin layer 102 (FIG. 4C), but in many cases, the corner 103a of the image display member 103 is the light transmissive cover member 100. It is laminated so as to make line contact with the concave surface 100a.

特開2014-119520号公報Japanese Unexamined Patent Publication No. 2014-119520

一般に、光硬化性樹脂組成物を紫外線照射により光硬化させると硬化収縮が生じるが、フラットな光透過性カバー部材にフラットな画像表示部材を積層する特許文献1の製造方法の場合には、面方向の光硬化性樹脂組成物の塗布厚が約150μm程度と薄くしかも均一であるため、光硬化樹脂層が硬化収縮してもボイドが発生し難く、画像品質に対する光硬化樹脂層の残留応力の影響を無視できるものであった。 Generally, when a photocurable resin composition is photocured by irradiation with ultraviolet rays, curing shrinkage occurs, but in the case of the manufacturing method of Patent Document 1 in which a flat image display member is laminated on a flat light transmissive cover member, a surface is formed. Since the coating thickness of the photocurable resin composition in the direction is as thin and uniform as about 150 μm, voids are unlikely to occur even if the photocurable resin layer is cured and shrunk, and the residual stress of the photocurable resin layer with respect to image quality is reduced. The impact was negligible.

一方、一方向に湾曲した形状の光透過性カバー部材の凹部面に光硬化性樹脂組成物を塗布した場合、湾曲していない辺近傍の光硬化性樹脂組成物の塗布厚は0~500μm程度になるが、凹部面の中央部の光硬化性樹脂組成物の塗布厚は湾曲していない辺近傍の塗布厚より非常に厚くなり、場合により数mm厚程度にまで厚くなる。このため、凹部面の中央部では、光硬化性樹脂組成物の硬化収縮が著しく大きなものとなり、結果的に中央部には凹みが形成され、組み上げた画像表示装置の表示面に空隙が生じ、また、空隙が生じないまでも、光硬化樹脂層の残留応力により表示に色ムラが生ずるということが懸念されている。 On the other hand, when the photocurable resin composition is applied to the concave surface of the light transmissive cover member having a curved shape in one direction, the coating thickness of the photocurable resin composition near the non-curved side is about 0 to 500 μm. However, the coating thickness of the photocurable resin composition at the center of the concave surface is much thicker than the coating thickness near the non-curved side, and in some cases, it becomes as thick as several mm. Therefore, the curing shrinkage of the photocurable resin composition becomes remarkably large in the central portion of the concave portion surface, and as a result, a concave portion is formed in the central portion, and a gap is generated on the display surface of the assembled image display device. Further, even if no voids are formed, there is a concern that color unevenness may occur in the display due to the residual stress of the photocurable resin layer.

本発明の目的は、以上の従来の技術の問題点を解決することであり、画像表示部材とその表面側に配される湾曲した光透過性カバー部材とを光硬化性樹脂組成物の光硬化樹脂層を介して積層して画像表示装置を製造する際に、組み上げた画像表示装置の表示面に空隙が生じないようにし、また、空隙が生じないまでも、光硬化樹脂層の残留応力により表示に色ムラが生じないようにすることを目的とする。 An object of the present invention is to solve the above-mentioned problems of the prior art, in which an image display member and a curved light-transmitting cover member arranged on the surface side thereof are photocurable of a photocurable resin composition. When manufacturing an image display device by laminating via a resin layer, voids do not occur on the display surface of the assembled image display device, and even if voids do not occur, the residual stress of the photocurable resin layer causes them. The purpose is to prevent color unevenness in the display.

本発明者は、画像表示部材と、湾曲した光透過性カバー部材とが、光硬化樹脂層を介して積層されている画像表示装置において、透過性カバー部材の凹部面側の幅を画像表示部材の幅より大きくし、且つそれらを積層している光硬化樹脂層の最大厚みを、画像表示部材が光透過性カバー部材に接触しない厚さとすることにより、画像表示装置の表示面に空隙が生じないようにでき、また、光硬化樹脂層の残留応力を低減させて表示の色ムラが生じないようにできることを見出した。 In an image display device in which an image display member and a curved light transmissive cover member are laminated via a photocurable resin layer, the present inventor determines the width of the transmissive cover member on the concave surface side. By making the width larger than the width of the image and setting the maximum thickness of the photocurable resin layer on which they are laminated so that the image display member does not come into contact with the light transmissive cover member, a gap is generated on the display surface of the image display device. It has been found that it can be prevented from occurring, and that the residual stress of the photocurable resin layer can be reduced to prevent color unevenness in the display.

更に本発明者は、そのような画像表示装置を製造する場合に、画像表示部材が光透過性カバー部材に接触しない厚さになるように光硬化樹脂層の最大厚みをコントロールするためには、(イ)湾曲した光透過性カバー部材については、その凹部面に、画像表示装置を断面視したときに光透過性カバー部材の凹部面側の幅よりも狭い幅の画像表示部材が光透過性カバー部材に接触すると想定される2つの接触点を結んだ基準線まで光硬化性樹脂組成物を充填し、紫外線照射してベース厚を有する第1の仮硬化樹脂層を形成し、(ロ)他方、画像表示部材については、意図した光硬化樹脂層の最大厚みから、光透過性カバー部材側の仮硬化樹脂層の基準線までの最大厚みを減じて得られる厚みに相当する厚みで、光硬化性樹脂組成物を平坦な画像表示部材に塗布し、紫外線照射して第2の仮硬化樹脂層を形成し、(ハ)それらの仮硬化樹脂層を貼り合わせ、更に紫外線照射して本硬化させることにより、基準線までの最大厚みを超える所定の最大厚さにコントロールされた光硬化樹脂層を形成できることを見出し、本発明の製造方法を完成させるに至った。 Further, the present inventor, in the case of manufacturing such an image display device, in order to control the maximum thickness of the photocurable resin layer so that the image display member does not come into contact with the light transmissive cover member. (B) For the curved light-transmitting cover member, an image display member having a width narrower than the width of the light-transmitting cover member on the concave surface side when the image display device is viewed in cross section is light-transmitting on the concave surface. The photocurable resin composition is filled up to a reference line connecting two contact points that are supposed to come into contact with the cover member, and is irradiated with ultraviolet rays to form a first temporarily cured resin layer having a base thickness (b). On the other hand, for the image display member, the thickness corresponding to the thickness obtained by subtracting the maximum thickness from the intended maximum thickness of the photocurable resin layer to the reference line of the temporarily cured resin layer on the light transmissive cover member side, is used. The curable resin composition is applied to a flat image display member, irradiated with ultraviolet rays to form a second temporarily cured resin layer, and (c) these temporarily cured resin layers are bonded together, and further irradiated with ultraviolet rays to perform main curing. By doing so, it was found that a photocurable resin layer controlled to a predetermined maximum thickness exceeding the maximum thickness up to the reference line can be formed, and the production method of the present invention has been completed.

即ち、本発明は、画像表示部材と、湾曲した光透過性カバー部材とが、光硬化樹脂層を介して積層されている画像表示装置であって、
光透過性カバー部材の凹部面側の幅が、画像表示部材の幅より大きく、
光硬化樹脂層の最大厚みが、画像表示部材が光透過性カバー部材に接触しない厚さである画像表示装置を提供する。
That is, the present invention is an image display device in which an image display member and a curved light transmissive cover member are laminated via a photocurable resin layer.
The width of the light transmissive cover member on the concave surface side is larger than the width of the image display member.
Provided is an image display device in which the maximum thickness of the photocurable resin layer is such that the image display member does not come into contact with the light transmissive cover member.

また、本発明は、上述の画像表示装置の製造方法において、
以下の工程(A)~(F):
<工程(A)>
湾曲した光透過性カバー部材の凹部面に、画像表示装置を断面視したときに光透過性カバー部材の凹部面側の幅よりも狭い幅の画像表示部材が光透過性カバー部材に接触すると想定される2つの接触点を結んだ基準線まで光硬化性樹脂組成物を充填する工程;
<工程(B)>
工程(A)で充填された光硬化性樹脂組成物に対し紫外線を照射して仮硬化させて第1仮硬化樹脂層を形成する工程;
<工程(C)>
画像表示部材の片面に、所定厚の光硬化性樹脂組成物を塗布する工程;
<工程(D)>
工程(C)で塗布された光硬化性樹脂組成物に対し紫外線を照射して仮硬化させて第2仮硬化樹脂層を形成する工程;
<工程(E)>
第1仮硬化樹脂層と第2仮硬化樹脂層とが向き合うように、湾曲した光透過性カバー部材と画像表示部材とを積層する工程;
<工程(F)>
第1仮硬化樹脂層及び第2仮硬化樹脂層に対し紫外線を照射して本硬化させてそれぞれ第1光硬化樹脂層及び第2光硬化樹脂層とすることにより、それらが積層された光硬化樹脂層を形成する工程;
を有する製造方法を提供する。
Further, the present invention relates to the above-mentioned method for manufacturing an image display device.
The following steps (A) to (F):
<Process (A)>
It is assumed that an image display member having a width narrower than the width on the concave surface side of the light transmissive cover member comes into contact with the light transmissive cover member on the concave surface of the curved light transmissive cover member when the image display device is viewed in cross section. The step of filling the photocurable resin composition up to the reference line connecting the two contact points to be formed;
<Process (B)>
A step of irradiating the photocurable resin composition filled in the step (A) with ultraviolet rays to temporarily cure the photocurable resin composition to form a first temporarily cured resin layer;
<Process (C)>
A step of applying a photocurable resin composition having a predetermined thickness on one side of an image display member;
<Process (D)>
A step of irradiating the photocurable resin composition applied in the step (C) with ultraviolet rays to temporarily cure the photocurable resin composition to form a second temporarily cured resin layer;
<Process (E)>
A step of laminating a curved light-transmitting cover member and an image display member so that the first temporarily cured resin layer and the second temporarily cured resin layer face each other;
<Process (F)>
The first temporarily cured resin layer and the second temporarily cured resin layer are irradiated with ultraviolet rays to be main-cured to form a first photocurable resin layer and a second photocurable resin layer, respectively, whereby they are laminated and photocured. Step of forming a resin layer;
Provided is a manufacturing method having the above.

本発明の画像表示装置は、画像表示部材と、湾曲した光透過性カバー部材とが、光硬化樹脂層を介して積層されており、透過性カバー部材の凹部面側の幅が画像表示部材の幅より大きく、且つそれらを積層している光硬化樹脂層の最大厚みが、画像表示部材が光透過性カバー部材に接触しない厚さとなっている。このため、画像表示装置の表示面に空隙が生じないようにでき、また、光硬化樹脂層の残留応力を低減させて表示の色ムラが生じないようにできる。 In the image display device of the present invention, an image display member and a curved light transmissive cover member are laminated via a photocurable resin layer, and the width of the transmissive cover member on the concave surface side is the image display member. The maximum thickness of the photocurable resin layer larger than the width and laminating them is such that the image display member does not come into contact with the light transmissive cover member. Therefore, it is possible to prevent voids from being generated on the display surface of the image display device, and it is possible to reduce the residual stress of the photocurable resin layer so that color unevenness of the display does not occur.

図1は、本発明の画像表示装置の断面図である。FIG. 1 is a cross-sectional view of the image display device of the present invention. 図2Aは、光透過性カバー部材の説明図である。FIG. 2A is an explanatory diagram of the light transmissive cover member. 図2Bは、光透過性カバー部材の説明図である。FIG. 2B is an explanatory diagram of the light transmissive cover member. 図2Cは、光透過性カバー部材の説明図である。FIG. 2C is an explanatory diagram of the light transmissive cover member. 図2Dは、光透過性カバー部材の説明図である。FIG. 2D is an explanatory diagram of the light transmissive cover member. 図2Eは、光透過性カバー部材の説明図である。FIG. 2E is an explanatory diagram of the light transmissive cover member. 図2Fは、光透過性カバー部材の説明図である。FIG. 2F is an explanatory diagram of the light transmissive cover member. 図3Aは、本発明の製造方法の工程(A)の説明図である。FIG. 3A is an explanatory diagram of a step (A) of the manufacturing method of the present invention. 図3Bは、本発明の製造方法の工程(B)の説明図である。FIG. 3B is an explanatory diagram of a step (B) of the manufacturing method of the present invention. 図3Cは、本発明の製造方法の工程(C)の説明図である。FIG. 3C is an explanatory diagram of a step (C) of the manufacturing method of the present invention. 図3Dは、本発明の製造方法の工程(D)の説明図である。FIG. 3D is an explanatory diagram of a step (D) of the manufacturing method of the present invention. 図3Eは、本発明の製造方法の工程(E)の説明図である。FIG. 3E is an explanatory diagram of a step (E) of the manufacturing method of the present invention. 図3Fは、本発明の製造方法の工程(F)の説明図である。FIG. 3F is an explanatory diagram of a step (F) of the manufacturing method of the present invention. 図4Aは、従来の画像表示装置の製造方法の説明図である。FIG. 4A is an explanatory diagram of a method of manufacturing a conventional image display device. 図4Bは、従来の画像表示装置の製造方法の説明図である。FIG. 4B is an explanatory diagram of a method of manufacturing a conventional image display device. 図4Cは、従来の画像表示装置の製造方法の説明図である。FIG. 4C is an explanatory diagram of a method of manufacturing a conventional image display device.

以下、本発明の画像表示装置とその製造方法について、図面を参照しつつ詳細に説明する。まず画像表示装置から説明する。 Hereinafter, the image display device of the present invention and the manufacturing method thereof will be described in detail with reference to the drawings. First, the image display device will be described.

図1に示す、本発明の画像表示装置10は、画像表示部材1と、湾曲した光透過性カバー部材2とが、光硬化樹脂層3を介して積層されている構造を有している。光透過性カバー部材2の湾曲の程度は、画像表示装置10の使用目的などに応じて適宜設定することができる。この画像表示装置10においては、光透過性カバー部材の凹部面側の幅Y(例えば、50~150mm、より一般的には85~100mm)が、画像表示部材1の幅Xより大きくなっており(例えば、5~30mm、より一般的には10~25mm程度大きくなっており)、光硬化樹脂層3の最大厚みhm(例えば、0.5~4.0mm、より現実的には1.6~3.5mm)が、画像表示部材1が光透過性カバー部材2に接触しない厚さとなっている。具体的には、図1に示すように、画像表示装置10を断面視したときに、光透過性カバー部材2の凹部面底部Bから、光硬化樹脂層3が存在しない場合に画像表示部材1が光透過性カバー部材2に接触すると想定される2つの接触点P1及びP2を結んだ基準線L0までの距離h0(例えば、0.3~3.5mm、より現実的には1.5~3.4mm)よりも、光硬化樹脂層3の最大厚みhmが厚くなっている。このような構造とすることにより、光硬化樹脂層3が硬化収縮しても、画像表示部材1が光透過性カバー部材2に接触していないので、光硬化樹脂層3自体で応力を緩和でき、しかも画像表示部材1の変形・移動が過度に制限されないため、画像表示装置10の表示面の空隙の発生と、表示の色ムラの発生とを抑制することができる。 The image display device 10 of the present invention shown in FIG. 1 has a structure in which an image display member 1 and a curved light transmissive cover member 2 are laminated via a photocurable resin layer 3. The degree of curvature of the light transmissive cover member 2 can be appropriately set according to the purpose of use of the image display device 10. In the image display device 10, the width Y (for example, 50 to 150 mm, more generally 85 to 100 mm) on the concave surface side of the light transmissive cover member is larger than the width X of the image display member 1. (For example, it is 5 to 30 mm, more generally 10 to 25 mm larger), and the maximum thickness hm of the photocurable resin layer 3 (for example, 0.5 to 4.0 mm, more realistically 1.6). ~ 3.5 mm) is the thickness at which the image display member 1 does not come into contact with the light transmissive cover member 2. Specifically, as shown in FIG. 1, when the image display device 10 is viewed in cross section, the image display member 1 is present when the photocurable resin layer 3 is not present from the bottom portion B of the concave surface of the light transmissive cover member 2. The distance h0 (for example, 0.3 to 3.5 mm, more realistically 1.5 to The maximum thickness hm of the photocurable resin layer 3 is thicker than that of 3.4 mm). With such a structure, even if the photocurable resin layer 3 is cured and shrunk, the image display member 1 is not in contact with the light transmissive cover member 2, so that the stress can be relaxed by the photocurable resin layer 3 itself. Moreover, since the deformation / movement of the image display member 1 is not excessively restricted, it is possible to suppress the occurrence of voids on the display surface of the image display device 10 and the occurrence of color unevenness in the display.

光硬化樹脂層3の形成に関し、光硬化性樹脂組成物を、光透過性カバー部材2の凹部面に一度で必要な厚みで過不足なく塗布することは不可能ではないが、非常に困難である。特に、光硬化樹脂層3の最大厚みhmが、光透過性カバー部材2の凹部面底部Bから光透過性カバー部材2の凹部面側の角P3とP4とを結んだ直線L1までの距離h1(例えば3.0~4.2mm)よりも大きい場合には困難性が顕著となる。これは、塗布すべき光硬化性樹脂組成物が流動性を有するからである。 Regarding the formation of the photocurable resin layer 3, it is not impossible, but it is very difficult, to apply the photocurable resin composition to the concave surface of the light transmissive cover member 2 at a time with a required thickness without excess or deficiency. be. In particular, the maximum thickness hm of the photocurable resin layer 3 is the distance h1 from the bottom portion B of the concave surface surface of the light transmissive cover member 2 to the straight line L1 connecting the corners P3 and P4 on the concave surface side of the light transmissive cover member 2. If it is larger than (for example, 3.0 to 4.2 mm), the difficulty becomes remarkable. This is because the photocurable resin composition to be applied has fluidity.

従って、本発明の画像表示装置10においては、後述の製造方法に依存する構成ではあるが、光硬化樹脂層3を、光透過性カバー部材2側の第1光硬化樹脂層3aと画像表示部材1側の第2光硬化樹脂層3bとの2層構造とすることが好ましい。ここで、第1光硬化樹脂層3aの最大厚さh0は、光透過性カバー部材2の凹部面底部Bから、画像表示部材1が光透過性カバー部材2に接触すると想定される2点P1、P2を結んだ基準線L0までの距離に相当する。このような2層構成とすれば、平坦な画像表示部材1上にhmからh0を減じた厚さに対応する厚さ(例えば、0.03~1.5mm)の第2光硬化樹脂層3bを形成することが容易となる。 Therefore, in the image display device 10 of the present invention, although the configuration depends on the manufacturing method described later, the photocurable resin layer 3 is the first photocurable resin layer 3a on the light transmissive cover member 2 side and the image display member. It is preferable to have a two-layer structure with the second photocurable resin layer 3b on the one side. Here, the maximum thickness h0 of the first photocurable resin layer 3a is two points P1 in which the image display member 1 is assumed to come into contact with the light transmissive cover member 2 from the concave surface bottom portion B of the light transmissive cover member 2. , Corresponds to the distance to the reference line L0 connecting P2. With such a two-layer structure, the second photocurable resin layer 3b having a thickness (for example, 0.03 to 1.5 mm) corresponding to the thickness obtained by subtracting h0 from hm on the flat image display member 1 Is easy to form.

(画像表示部材1)
本発明の画像表示装置10を構成する画像表示部材1としては、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル、タッチパネル等を挙げることができる。ここで、タッチパネルとは、液晶表示パネルのような表示素子とタッチパッドのような位置入力装置を組み合わせた画像表示・入力パネルを意味する。
(Image display member 1)
Examples of the image display member 1 constituting the image display device 10 of the present invention include a liquid crystal display panel, an organic EL display panel, a plasma display panel, and a touch panel. Here, the touch panel means an image display / input panel in which a display element such as a liquid crystal display panel and a position input device such as a touch pad are combined.

(光透過性カバー部材2)
湾曲した光透過性カバー部材2の具体的な形状としては、一方向に湾曲した形状(例えば、円柱パイプをその中心軸に平行な平面で切断して得られる劣弧側の形状(以下、横樋形状と称する))(図2A)や、X方向とY方向に湾曲した形状(図2B)、360°方向に湾曲した形状(例えば、球をその中心点を含まない平面で切断して得られる劣弧側の形状)(図2C)などが挙げられる。これらの形状の中央部に平坦部2bが形成されていてもよい(例えば、図2D)。
(Light transmissive cover member 2)
The specific shape of the curved light transmissive cover member 2 is a shape curved in one direction (for example, a shape on the inferior arc side obtained by cutting a cylindrical pipe in a plane parallel to its central axis (hereinafter, horizontal trough). (Referred to as a shape)) (FIG. 2A), a shape curved in the X and Y directions (FIG. 2B), and a shape curved in the 360 ° direction (for example, obtained by cutting a sphere in a plane not including its center point). Shape on the inferior arc side) (Fig. 2C) and the like. A flat portion 2b may be formed in the central portion of these shapes (for example, FIG. 2D).

光透過性カバー部材2が横樋形状である場合(図2A)、その両端部2xと2yの内側に、光硬化性樹脂組成物の塗布領域を画する内側ダム材20(図2E)、もしくはその両端部2xと2yの外側に光硬化性樹脂組成物の塗布領域を画する外側ダム材21(図2F)を設けることが好ましい。内側ダム材20及び外側ダム材21としては、塗布された光硬化性樹脂組成物を、それと相溶することなく堰き止めることができ、光硬化性樹脂組成物の仮硬化後に、簡便に除去可能な公知の材料から形成することができる。例えば、内側ダム材20としては、微粘着層を備えた公知の熱可塑性エラストマーテープなどを光透過性カバー部材2の端部内側に土手状に貼りつけたものが挙げられる。外側ダム材21としては、シリコーンシート、フッ素樹脂シート等を挙げることができる。 When the light transmissive cover member 2 has a horizontal trough shape (FIG. 2A), the inner dam material 20 (FIG. 2E) or the inner dam material 20 (FIG. 2E) that defines the coating region of the photocurable resin composition inside the both end portions 2x and 2y. It is preferable to provide the outer dam material 21 (FIG. 2F) that defines the coating region of the photocurable resin composition on the outer sides of both ends 2x and 2y. As the inner dam material 20 and the outer dam material 21, the applied photocurable resin composition can be dammed without being compatible with the coated photocurable resin composition, and can be easily removed after the photocurable resin composition is temporarily cured. It can be formed from any known material. For example, as the inner dam material 20, a known thermoplastic elastomer tape having a slightly adhesive layer or the like is attached to the inside of the end portion of the light transmissive cover member 2 in a bank shape. Examples of the outer dam material 21 include a silicone sheet and a fluororesin sheet.

なお、光透過性カバー部材2が図2Bや図2Cの態様である場合、ダム材は無くてもよい。また、図2Aの態様の場合であっても、内側ダム材20に対応する光透過性カバー部材2の表面に、光硬化性樹脂組成物の流れを防止するための表面処理(例えば、光硬化性樹脂組成物の特性に応じて粗面化処理、親水化処理、あるいは撥水化処理等)を施してもよい。 When the light transmissive cover member 2 has the embodiment shown in FIGS. 2B and 2C, the dam material may be omitted. Further, even in the case of the aspect of FIG. 2A, a surface treatment (for example, photocuring) for preventing the flow of the photocurable resin composition on the surface of the light transmissive cover member 2 corresponding to the inner dam material 20 is performed. Depending on the characteristics of the sex resin composition, roughening treatment, hydrophilization treatment, water repellent treatment, etc.) may be performed.

光透過性カバー部材2の材料としては、画像表示部材に形成された画像が視認可能となるような光透過性があればよく、ガラス、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート等の樹脂材料が挙げられる。これらの材料には、片面又は両面ハードコート処理、反射防止処理などを施すことができる。光透過性カバー部材1の湾曲の形状や厚さなどの寸法的な特性、弾性などの物性は、使用目的に応じて適宜決定することができる。 The material of the light-transmitting cover member 2 may be any material as long as it has light-transmitting property so that the image formed on the image display member can be visually recognized, and a resin such as glass, acrylic resin, polyethylene terephthalate, polyethylene naphthalate, or polycarbonate. Materials are mentioned. These materials can be subjected to single-sided or double-sided hardcourt treatment, antireflection treatment, and the like. Dimensional characteristics such as the curved shape and thickness of the light transmissive cover member 1, and physical properties such as elasticity can be appropriately determined according to the purpose of use.

(光硬化樹脂層3)
画像表示部材1と光透過性カバー部材2とを接合する光硬化樹脂層3は、光硬化性樹脂組成物の層状の光硬化物であり、画像表示部材1が表示する画像を視認可能とする光透過性を有する。光硬化樹脂層3を構成する光硬化性樹脂組成物は、その性状が好ましくは液状である。液状のものを使用すると、光透過性カバー部材2の凹部に光硬化性樹脂組成物を組成物表面が平坦となるように充填することができる。ここで、液状とは、コーンプレート型粘度計で0.01~100Pa・s(25℃)の粘度を示すものである。
(Photo-curing resin layer 3)
The photocurable resin layer 3 that joins the image display member 1 and the light transmissive cover member 2 is a layered photocurable product of the photocurable resin composition, and makes the image displayed by the image display member 1 visible. Has light transmission. The properties of the photocurable resin composition constituting the photocurable resin layer 3 are preferably liquid. When a liquid material is used, the recesses of the light-transmitting cover member 2 can be filled with the photocurable resin composition so that the surface of the composition is flat. Here, the liquid means a viscosity of 0.01 to 100 Pa · s (25 ° C.) with a cone plate type viscometer.

このような光硬化性樹脂組成物は、ベース成分(成分(イ))、アクリレート系モノマー成分(成分(ロ))、及び光重合開始剤(成分(ハ))を含有するものを好ましく例示することができる。更に可塑剤成分(成分(ニ))を含有することができる。また、光硬化性樹脂組成物の最終的な硬化収縮率は、好ましくは3%以上のものである。5%以上であってもよい。 Such a photocurable resin composition preferably comprises a base component (component (a)), an acrylate-based monomer component (component (b)), and a photopolymerization initiator (component (c)). be able to. Further, a plasticizer component (component (d)) can be contained. The final curing shrinkage of the photocurable resin composition is preferably 3% or more. It may be 5% or more.

ここで、“最終的な硬化収縮率”とは、光硬化性樹脂組成物を未硬化の状態から完全に硬化させた状態との間で生じた硬化収縮率を意味する。ここで、完全に硬化とは、後述するように硬化率が少なくとも90%となるように硬化した状態を意味する。以下、最終的な硬化収縮率を全硬化収縮率と称する。また、硬化性樹脂組成物を未硬化の状態から仮硬化させた状態との間で生じた硬化収縮率を仮硬化収縮率と称する。更に、本硬化工程において、仮硬化の状態から完全に硬化させた状態との間で生じた硬化収縮率は、本硬化収縮率と称する。 Here, the "final curing shrinkage rate" means the curing shrinkage rate generated between the uncured state and the completely cured state of the photocurable resin composition. Here, "completely cured" means a state of being cured so that the curing rate is at least 90%, as will be described later. Hereinafter, the final curing shrinkage rate is referred to as a total curing shrinkage rate. Further, the curing shrinkage rate generated between the uncured state and the temporarily cured state of the curable resin composition is referred to as a temporary curing shrinkage rate. Further, in the main curing step, the curing shrinkage rate generated between the temporarily cured state and the completely cured state is referred to as the main curing shrinkage rate.

光硬化性樹脂組成物の全硬化収縮率は、未硬化(換言すれば、硬化前)の組成物と完全硬化後の固体の完全硬化物の比重を電子比重計(アルファーミラージュ(株)製SD-120L)を用いて測定し、両者の比重差から次式により算出することができる。また、光硬化性樹脂組成物の仮硬化樹脂の仮硬化収縮率は、未硬化(換言すれば、硬化前)の組成物と仮硬化後の固体の仮硬化物の比重を電子比重計(アルファーミラージュ(株)製SD-120L)を用いて測定し、両者の比重差から次式により算出することができる。本硬化収縮率は、全硬化収縮率から仮硬化収縮率を減じることにより算出することができる。 For the total curing shrinkage rate of the photocurable resin composition, the specific densities of the uncured (in other words, before curing) composition and the completely cured solid solid product after complete curing are measured by an electronic specific gravimeter (SD manufactured by Alpha Mirage Co., Ltd.). -120L) can be used for measurement, and the difference in specific gravity between the two can be calculated by the following equation. Further, the temporary curing shrinkage rate of the temporary curing resin of the photocurable resin composition is the specific gravity of the uncured (in other words, before curing) composition and the solid temporary cured product after the temporary curing, which is measured by an electron specific gravity meter (alpha). It can be measured using SD-120L manufactured by Mirage Co., Ltd., and can be calculated by the following formula from the difference in specific gravity between the two. The main curing shrinkage rate can be calculated by subtracting the temporary curing shrinkage rate from the total curing shrinkage rate.

Figure 0007038477000001
Figure 0007038477000001

成分(イ)のベース成分は、光硬化樹脂層の膜形成成分であり、エラストマー及びアクリレート系オリゴマーの少なくともいずれか一方を含有する成分である。両者を成分(イ)として併用してもよい。 The base component of the component (a) is a film-forming component of the photocurable resin layer, and is a component containing at least one of an elastomer and an acrylate-based oligomer. Both may be used together as a component (a).

エラストマーとしては、好ましくはアクリル酸エステルの共重合体からなるアクリル共重合体、ポリブテン、ポリオレフィン等を好ましく挙げることができる。なお、このアクリル酸エステル共重合体の重量平均分子量は、好ましくは5000~500000であり、ポリブテンの繰り返し数nは好ましくは10~10000である。 As the elastomer, preferably, an acrylic copolymer composed of a copolymer of an acrylic acid ester, polybutene, polyolefin and the like can be mentioned. The weight average molecular weight of this acrylic acid ester copolymer is preferably 5000 to 500,000, and the number of repetitions n of polybutene is preferably 10 to 10,000.

他方、アクリレート系オリゴマーとしては、好ましくは、ポリイソプレン、ポリウレタン、ポリブタジエン等を骨格に持つ(メタ)アクリレート系オリゴマーを挙げることができる。なお、本明細書において、「(メタ)アクリレート」という用語は、アクリレートとメタクリレートとを包含する。 On the other hand, examples of the acrylate-based oligomer preferably include (meth) acrylate-based oligomers having polyisoprene, polyurethane, polybutadiene, or the like in the skeleton. In addition, in this specification, the term "(meth) acrylate" includes acrylate and methacrylate.

ポリイソプレン骨格の(メタ)アクリレートオリゴマーの好ましい具体例としては、ポリイソプレン重合体の無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物(UC102(ポリスチレン換算分子量約17000)、(株)クラレ;UC203(ポリスチレン換算分子量約35000)、(株)クラレ;UC-1(ポリスチレン換算分子量約25000)、(株)クラレ)等を挙げることができる。 Preferred specific examples of the (meth) acrylate oligomer having a polyisoprene skeleton include an esterified product of a maleic anhydride adduct of a polyisoprene polymer and 2-hydroxyethyl methacrylate (UC102 (polystyrene equivalent molecular weight of about 17,000), Kuraray Co., Ltd.). UC203 (polystyrene equivalent molecular weight about 35,000), Kuraray Co., Ltd .; UC-1 (polystyrene equivalent molecular weight about 25,000), Kuraray Co., Ltd.) and the like can be mentioned.

また、ポリウレタン骨格を持つ(メタ)アクリレート系オリゴマーの好ましい具体例としては、脂肪族ウレタンアクリレート(EBECRYL230(分子量5000)、ダイセル・オルネクス(株);UA-1、ライトケミカル工業(株))等を挙げることができる。 Further, as a preferable specific example of the (meth) acrylate-based oligomer having a polyurethane skeleton, an aliphatic urethane acrylate (EBECRYL230 (molecular weight 5000), Daicel Ornex Co., Ltd .; UA-1, Light Chemical Industry Co., Ltd.) and the like are used. Can be mentioned.

ポリブタジエン骨格の(メタ)アクリレート系オリゴマーとしては、公知のものを採用することができる。 As the (meth) acrylate-based oligomer having a polybutadiene skeleton, known ones can be adopted.

成分(ロ)のアクリレート系モノマー成分は、画像表示装置の製造工程において、光硬化性樹脂組成物に十分な反応性及び塗布性等を付与するために反応性希釈剤として使用されている。このようなアクリレート系モノマーとしては、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルアクリレート、ステアリルアクリレート、ベンジルアクリレート、テトラヒドロフリフリルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルメタクリレート、イソボルニルアクリレート、ジシクロペンタニルアクリレート、ラウリルメタクリレート等を挙げることができる。 The acrylate-based monomer component of the component (b) is used as a reactive diluent in order to impart sufficient reactivity, coatability, etc. to the photocurable resin composition in the manufacturing process of the image display device. Examples of such acrylate-based monomers include 2-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, stearyl acrylate, benzyl acrylate, tetrahydrofrifuryl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl methacrylate, isobornyl acrylate, and di. Cyclopentanyl acrylate, lauryl methacrylate and the like can be mentioned.

成分(ハ)の光重合開始剤としては、公知の光ラジカル重合開始剤を使用することができ、例えば、1-ヒドロキシ-シクロへキシルフェニルケトン(イルガキュア184、BASFジャパン(株))、2-ヒドロキシ-1-{4-[4-(2一ヒドロキシ-2-メチル-プロピロニル)ベンジル]フェニル}-2-メチル-1-プロパン-1-オン(イルガキュア127、BASFジャパン(株))、ベンゾフェノン、アセトフェノン等を挙げることができる。 As the photopolymerization initiator of the component (c), a known photoradical polymerization initiator can be used, and for example, 1-hydroxy-cyclohexylphenyl ketone (Irgacure 184, BASF Japan Co., Ltd.), 2- Hydroxy-1- {4- [4- (2-1 hydroxy-2-methyl-propironyl) benzyl] phenyl} -2-methyl-1-propan-1-one (Irgacure 127, BASF Japan Co., Ltd.), benzophenone, Acetphenone and the like can be mentioned.

このような光重合開始剤は、ベース成分(イ)中のアクリレート系オリゴマー及びモノマー(成分(ロ))の合計100質量部に対し、少なすぎると紫外線照射時に硬化不足となり、多すぎると開裂によるアウトガスが増え発泡不具合の傾向があるので、好ましくは0.1~5質量部、より好ましくは0.2~3質量部である。 If the amount of such a photopolymerization initiator is too small with respect to a total of 100 parts by mass of the acrylate-based oligomer and the monomer (component (b)) in the base component (a), the curing will be insufficient when irradiated with ultraviolet rays, and if it is too large, it will be cleaved. Since the amount of outgas increases and there is a tendency for foaming defects, the amount is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass.

また、光硬化性樹脂組成物は、分子量の調整のために連鎖移動剤を含有することができる。例えば、2-メルカプトエタノール、ラウリルメルカプタン、グリシジルメルカプタン、メルカプト酢酸、チオグリコール酸2-エチルヘキシル、2,3-ジメチルカプト-1-プロパノール、α-メチルスチレンダイマーなどが挙げられる。 In addition, the photocurable resin composition can contain a chain transfer agent for adjusting the molecular weight. For example, 2-mercaptoethanol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-ethylhexyl thioglycolate, 2,3-dimethylcapto-1-propanol, α-methylstyrene dimer and the like can be mentioned.

成分(ニ)の可塑剤成分は、光硬化樹脂層に緩衝性を付与するとともに、光硬化性樹脂組成物の硬化収縮率を低減させるために使用され、紫外線の照射では成分(イ)のベース成分及び成分(ロ)のアクリレート系モノマー成分と反応しないものである。このような可塑剤成分は、固体の粘着付与剤(1)と液状オイル成分(2)とを含有する。 The plasticizer component of the component (d) is used to impart cushioning properties to the photocurable resin layer and reduce the curing shrinkage rate of the photocurable resin composition, and is the base of the component (a) when irradiated with ultraviolet rays. It does not react with the acrylate-based monomer component of the component and the component (b). Such a plasticizer component contains a solid tackifier (1) and a liquid oil component (2).

固体の粘着付与剤(1)としては、テルペン樹脂、テルペンフェノール樹脂、水素添加テルペン樹脂等のテルペン系樹脂、天然ロジン、重合ロジン、ロジンエステル、水素添加ロジン等のロジン樹脂、テルペン系水素添加樹脂を挙げることができる。また、前述のアクリレート系モノマーを予め低分子ポリマー化した非反応性のオリゴマーも使用することができ、具体的には、ブチルアクリレートと2-ヘキシルアクリレートおよびアクリル酸の共重合体やシクロヘキシルアクリレートとメタクリル酸の共重合体等を挙げることができる。 Examples of the solid tackifier (1) include terpene resins such as terpene resin, terpene phenol resin and hydrogenated terpene resin, rosin resins such as natural rosin, polymerized rosin, rosin ester and hydrogenated rosin, and terpene hydrogenated resin. Can be mentioned. In addition, a non-reactive oligomer obtained by preliminarily converting the above-mentioned acrylate-based monomer into a low-molecular polymer can also be used. Specifically, a copolymer of butyl acrylate and 2-hexyl acrylate and acrylic acid, or cyclohexyl acrylate and methacrylic can be used. Examples thereof include acid copolymers.

液状オイル成分(2)としては、ポリプタジエン系オイル、又はポリイソプレン系オイル等を含有することができる。 As the liquid oil component (2), a polyptadiene-based oil, a polyisoprene-based oil, or the like can be contained.

また、光硬化性樹脂組成物は、更に、必要に応じて、シランカップリング剤等の接着改善剤、酸化防止剤等の一般的な添加剤を含有することができる。 Further, the photocurable resin composition can further contain a general additive such as an adhesion improving agent such as a silane coupling agent and an antioxidant, if necessary.

光硬化性樹脂組成物は、硬化収縮率が好ましくは3%未満に抑制されているので、基本的には可塑剤成分を含有することは必須ではないが、光硬化樹脂層3に緩衝性を付与する等のために、本発明の効果を損なわない範囲で可塑剤成分(成分(ニ))を含有することができる。従って、光硬化性樹脂組成物中に成分(イ)のベース成分と成分(ロ)のアクリレート系モノマー成分との合計含有量は好ましくは25~85質量%であるが、成分(ニ)の可塑剤成分の含有量は0~65質量%の範囲である。 Since the curing shrinkage of the photocurable resin composition is preferably suppressed to less than 3%, it is basically not essential to contain a plasticizer component, but the photocurable resin layer 3 has a cushioning property. A plasticizer component (component (d)) can be contained within a range that does not impair the effects of the present invention. Therefore, the total content of the base component of the component (a) and the acrylate-based monomer component of the component (b) in the photocurable resin composition is preferably 25 to 85% by mass, but the plasticity of the component (d). The content of the agent component is in the range of 0 to 65% by mass.

本発明の画像表示装置は、以下の工程(A)~(F)を有する製造方法により製造することができる。以下、図面を参照しながら工程毎に詳細に説明する。 The image display device of the present invention can be manufactured by a manufacturing method having the following steps (A) to (F). Hereinafter, each process will be described in detail with reference to the drawings.

<工程(A):充填工程>
まず、図3Aに示ように、湾曲した光透過性カバー部材2の凹部面に、画像表示装置を断面視したときに光透過性カバー部材2の凹部面側の幅よりも狭い幅の画像表示部材が光透過性カバー部材に接触すると想定される2つの接触点P1及びP2を結んだ基準線L0までディスペンサーD等により光硬化性樹脂組成物30を充填する。
<Step (A): Filling step>
First, as shown in FIG. 3A, an image is displayed on the concave surface of the curved light transmissive cover member 2 with a width narrower than the width on the concave surface side of the light transmissive cover member 2 when the image display device is viewed in cross section. The photocurable resin composition 30 is filled with the dispenser D or the like up to the reference line L0 connecting the two contact points P1 and P2 where the member is assumed to come into contact with the light transmissive cover member.

<工程(B):第1仮硬化樹脂層形成工程>
次に、図3Bに示すように、工程(A)で充填された光硬化性樹脂組成物30に対し紫外線UVを照射して仮硬化させて第1仮硬化樹脂層30aを形成する。ここで、仮硬化させるのは、光硬化性樹脂組成物30を流動しない状態にして取り扱い性を向上させるためである。このような仮硬化のレベルは、第1仮硬化樹脂層30aの硬化率(ゲル分率)が好ましくは10%以上90%以下、より好ましくは40%以上90%以下、特に60%以上90%以下となるようなレベルである。また、硬化率(ゲル分率)とは、紫外線照射前の光硬化性樹脂組成物30中の(メタ)アクリロイル基の存在量に対する紫外線照射後の(メタ)アクリロイル基の存在量の割合(消費量割合)と定義される数値であり、この数値が大きい程、硬化が進行していることを示す。
<Step (B): First temporary curing resin layer forming step>
Next, as shown in FIG. 3B, the photocurable resin composition 30 filled in the step (A) is irradiated with ultraviolet UV rays and temporarily cured to form the first temporarily cured resin layer 30a. Here, the purpose of temporary curing is to improve the handleability by keeping the photocurable resin composition 30 in a non-flowing state. As for the level of such temporary curing, the curing rate (gel fraction) of the first temporary curing resin layer 30a is preferably 10% or more and 90% or less, more preferably 40% or more and 90% or less, and particularly 60% or more and 90%. The level is as follows. The curing rate (gel fraction) is the ratio (consumption) of the abundance of (meth) acryloyl groups after ultraviolet irradiation to the abundance of (meth) acryloyl groups in the photocurable resin composition 30 before ultraviolet irradiation. It is a numerical value defined as (quantity ratio), and the larger this numerical value is, the more the curing is progressing.

なお、硬化率(ゲル分率)は、紫外線照射前の樹脂組成物層のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(hx)と、紫外線照射後の樹脂組成物層のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(hy)とを、以下の数式に代入することにより算出することができる。 The curing rate (gel fraction) is the absorption peak height (hx) of 1640 to 1620 cm -1 from the baseline in the FT-IR measurement chart of the resin composition layer before UV irradiation, and the resin after UV irradiation. The absorption peak height (hy) of 1640 to 1620 cm -1 from the baseline in the FT-IR measurement chart of the composition layer can be calculated by substituting it into the following formula.

Figure 0007038477000002
Figure 0007038477000002

紫外線の照射に関し、硬化率(ゲル分率)が好ましくは10~80%となるように仮硬化させることができる限り、光源の種類、出力、累積光量などは特に制限はなく、公知の紫外線照射による(メタ)アクリレートの光ラジカル重合プロセス条件を採用することができる。 Regarding irradiation with ultraviolet rays, the type, output, cumulative amount of light, etc. of the light source are not particularly limited as long as they can be temporarily cured so that the curing rate (gel fraction) is preferably 10 to 80%, and known ultraviolet irradiation is performed. The photoradical polymerization process conditions of (meth) acrylate can be adopted.

また、紫外線照射条件に関し、上述の硬化率の範囲内において、後述する工程(E)の積層工程における貼り合わせ操作の際、第1仮硬化樹脂層30aや第2仮硬化樹脂層31bの液だれや変形が生じないような条件を選択することが好ましい。そのような液だれや変形が生じないような条件を粘度で表現すると、20Pa・S以上(コーンプレートレオメーター、25℃、コーン及びプレートC35/2、回転数10rpm)となる。 Further, regarding the ultraviolet irradiation conditions, the dripping of the first temporarily cured resin layer 30a and the second temporarily cured resin layer 31b during the bonding operation in the laminating step of the step (E) described later within the range of the above-mentioned curing rate. It is preferable to select conditions that do not cause deformation. Expressing the conditions under which such dripping and deformation do not occur in terms of viscosity is 20 Pa · S or more (cone plate leometer, 25 ° C., cone and plate C35 / 2, rotation speed 10 rpm).

仮硬化における硬化のレベルは、後述する本硬化工程(F)において第1仮硬化樹脂層30a及び第2仮硬化樹脂層31bからそれぞれ第1光硬化樹脂層3a及び第2光硬化樹脂層3bへの間で生ずる硬化収縮率が3%未満となるように、硬化させるものである。即ち、全硬化収縮率が5%である光硬化性樹脂組成物30、31の場合には、仮硬化の際に少なくとも2%ほど仮硬化収縮させておくことになる。 The level of curing in the temporary curing is from the first temporary curing resin layer 30a and the second temporary curing resin layer 31b to the first photocuring resin layer 3a and the second photocuring resin layer 3b in the main curing step (F) described later, respectively. It is cured so that the curing shrinkage rate generated between the two is less than 3%. That is, in the case of the photocurable resin compositions 30 and 31 having a total curing shrinkage rate of 5%, the temporary curing shrinkage is performed by at least 2% at the time of temporary curing.

なお、工程(A)の充填に先立ち、内側ダム材20(図2E参照)や外側ダム材21(図2F参照)を設けた場合、工程(B)の後、工程(F)の前で、内側ダム材20又は外側ダム材21を除去することが好ましい。既に光硬化性樹脂組成物が仮硬化しており、樹脂流動が生じないからである。 When the inner dam material 20 (see FIG. 2E) and the outer dam material 21 (see FIG. 2F) are provided prior to the filling in the step (A), after the step (B) and before the step (F), It is preferable to remove the inner dam material 20 or the outer dam material 21. This is because the photocurable resin composition has already been temporarily cured and the resin does not flow.

<工程(C):塗布工程>
次に、図3Cに示すように、画像表示部材1の片面に、所定厚の光硬化性樹脂組成物31をディスペンサー等を用いて塗布する。光硬化性樹脂組成物31は、工程(A)で説明したものと同じものを使用することが好ましい。光硬化性樹脂組成物31の塗布は、図1に示すように、光硬化樹脂層3の最大厚みhmを、画像表示部材1が光透過性カバー部材2に接触しない厚さにするように行う。
<Step (C): Coating step>
Next, as shown in FIG. 3C, a photocurable resin composition 31 having a predetermined thickness is applied to one side of the image display member 1 using a dispenser or the like. As the photocurable resin composition 31, it is preferable to use the same one as described in the step (A). As shown in FIG. 1, the photocurable resin composition 31 is applied so that the maximum thickness hm of the photocurable resin layer 3 is such that the image display member 1 does not come into contact with the light transmissive cover member 2. ..

<工程(D):第2仮硬化樹脂層形成工程>
次に、図3Dに示すように、工程(C)で塗布された光硬化性樹脂組成物31に対し、工程(B)と同様の操作・条件で紫外線UVを照射して仮硬化させて第2仮硬化樹脂層31bを形成する。
<Step (D): Second temporary curing resin layer forming step>
Next, as shown in FIG. 3D, the photocurable resin composition 31 applied in the step (C) is irradiated with ultraviolet UV under the same operations and conditions as in the step (B) to be temporarily cured. 2 The temporarily cured resin layer 31b is formed.

<工程(E):積層工程>
続いて、第1仮硬化樹脂層30aと第2仮硬化樹脂層31bとが向き合うように、湾曲した光透過性カバー部材2と画像表示部材1とを積層する(図3E)。積層は、公知の圧着装置を用いて、10℃~80℃で加圧することにより行うことができるが、第1仮硬化樹脂層30a、第2仮硬化樹脂層31b、画像表示部材1、光透過性カバー部材2とのそれぞれの界面に気泡が入らないようにするために、いわゆる真空貼合法で積層を行うことが好ましい。
<Process (E): Laminating process>
Subsequently, the curved light transmissive cover member 2 and the image display member 1 are laminated so that the first temporarily cured resin layer 30a and the second temporarily cured resin layer 31b face each other (FIG. 3E). Laminating can be performed by pressurizing at 10 ° C to 80 ° C using a known crimping device, but the first temporarily cured resin layer 30a, the second temporarily cured resin layer 31b, the image display member 1, and light transmission can be performed. In order to prevent air bubbles from entering the respective interfaces with the property cover member 2, it is preferable to perform laminating by a so-called vacuum bonding method.

なお、工程(E)と工程(F)との間で、積層物に公知の加圧脱泡処理(処理条件例:0.2~0.8MPa、25~60℃、5~20min)を行うことが好ましい。 In addition, between the step (E) and the step (F), a known pressure defoaming treatment (treatment condition example: 0.2 to 0.8 MPa, 25 to 60 ° C., 5 to 20 min) is performed on the laminate. Is preferable.

<工程(F):本硬化工程>
続いて、図3Fに示すように、画像表示部材1と光透過性カバー部材2との間に挟持されている第1仮硬化樹脂層30a及び第2仮硬化樹脂層31bに対し紫外線UVを照射して本硬化させてそれぞれ第1光硬化樹脂層3a及び第2光硬化樹脂層3bとすることにより、それらが積層された光硬化樹脂層3を形成する。これにより図1に示す画像表示装置が得られる。なお、本工程において本硬化させるのは、第1仮硬化樹脂層30a及び第2仮硬化樹脂層31bを十分に硬化させて、画像表示部材1と光透過性カバー部材2とを接着し積層するためである。このような本硬化のレベルは、光透過性の光硬化樹脂層3の硬化率(ゲル分率)が好ましくは90%より大、より好ましくは95%以上100%以下となるようなレベルである。
<Step (F): Main curing step>
Subsequently, as shown in FIG. 3F, the first temporarily cured resin layer 30a and the second temporarily cured resin layer 31b sandwiched between the image display member 1 and the light transmissive cover member 2 are irradiated with ultraviolet UV rays. Then, it is finally cured to form a first photocurable resin layer 3a and a second photocurable resin layer 3b, respectively, to form a photocurable resin layer 3 in which they are laminated. As a result, the image display device shown in FIG. 1 is obtained. In this step, the main curing is to sufficiently cure the first temporarily cured resin layer 30a and the second temporarily cured resin layer 31b, and the image display member 1 and the light transmissive cover member 2 are adhered and laminated. Because. Such a level of main curing is such that the curing rate (gel fraction) of the light-transmitting photo-curing resin layer 3 is preferably more than 90%, more preferably 95% or more and 100% or less. ..

なお、光硬化樹脂層3の光透過性のレベルは、画像表示部材1に形成された画像が視認可能となるような光透過性であればよい。 The level of light transmission of the photocurable resin layer 3 may be such that the image formed on the image display member 1 can be visually recognized.

以下、本発明を実施例により具体的に説明する。なお、以下の実施例において、光硬化性樹脂組成物の全硬化収縮率、仮硬化収縮率、本硬化収縮率は、光硬化性樹脂組成物の比重、仮硬化物、完全硬化物のそれぞれの比重を電子比重計(アルファーミラージュ(株)製SD-120L)を用いて測定し、それらの測定結果を次式に当て嵌めて算出した。 Hereinafter, the present invention will be specifically described with reference to Examples. In the following examples, the total curing shrinkage rate, the temporary curing shrinkage rate, and the main curing shrinkage rate of the photocurable resin composition are the specific gravity of the photocurable resin composition, the temporary curing product, and the completely cured product, respectively. The specific gravity was measured using an electronic specific gravity meter (SD-120L manufactured by Alpha Mirage Co., Ltd.), and the measurement results were applied to the following equations for calculation.

Figure 0007038477000003
Figure 0007038477000003

実施例1
(工程(A):充填工程)
まず、45(w)×80(l)×3(t)mmのサイズの透明樹脂板(ポリエチレンテレフタレート板)を用意し、幅方向に曲率半径が300mm(r)となるように公知の手法で湾曲させ、湾曲した横樋形状の光透過性カバー部材として樹脂カバー(図2A)を得た。
Example 1
(Step (A): Filling step)
First, a transparent resin plate (polyethylene terephthalate plate) having a size of 45 (w) × 80 (l) × 3 (t) mm is prepared, and a known method is used so that the radius of curvature is 300 mm (r) in the width direction. A resin cover (FIG. 2A) was obtained as a curved and curved horizontal trough-shaped light-transmitting cover member.

別途、ポリブタジエンの骨格を持つアクリレート系オリゴマー(TE-2000、日本曹達(株))50質量部、ヒドロキシエチルメタクリレート20質量部、光重合開始剤10質量部(イルガキュア184、BASFジャパン(株)製を3重量部、SpeedCure TPO、DKSHジャパン(株)製を7質量部)を均一に混合して光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物は、硬化率0%から90%までの間で、5.6%の全硬化収縮率を示すものであった。 Separately, 50 parts by mass of an acrylate-based oligomer having a polybutadiene skeleton (TE-2000, Nippon Soda Co., Ltd.), 20 parts by mass of hydroxyethyl methacrylate, and 10 parts by mass of a photopolymerization initiator (Irgacure 184, manufactured by BASF Japan Co., Ltd.). A photocurable resin composition was prepared by uniformly mixing 3 parts by mass, SpeedCure TPO, and 7 parts by mass of DKSH Japan Co., Ltd.). This photocurable resin composition exhibited a total curing shrinkage rate of 5.6% between 0% and 90%.

次に、横樋形状の樹脂カバーの両端を、外側ダム材としてシリコーンラバーシート2枚で挟み込んだ(図2F)。この樹脂カバーの凹部に、調製した光硬化性樹脂組成物を、樹脂用ディスペンサーを用いて、中央部での厚さが670μm厚、幅が40mmとなるように吐出し光硬化性樹脂組成物膜を形成した。 Next, both ends of the horizontal trough-shaped resin cover were sandwiched between two silicone rubber sheets as an outer dam material (FIG. 2F). The prepared photocurable resin composition is discharged into the recesses of the resin cover using a resin dispenser so that the thickness at the center is 670 μm and the width is 40 mm. Formed.

(工程(B):第1仮硬化樹脂層形成工程)
次に、工程(A)で作成した光硬化性樹脂組成物膜に対して、紫外線照射装置(LC-8、浜松ホトニクス(株)製)を使って、積算光量が1200mJ/cm2となるように、200mW/cm2強度の紫外線を6秒照射することにより光硬化性樹脂組成物膜を仮硬化させて第1仮硬化樹脂層を形成し、更に外側ダム材を除去した。なお、第1仮硬化樹脂層の仮硬化収縮率は3.8%であった。
(Step (B): First temporary curing resin layer forming step)
Next, the photocurable resin composition film prepared in the step (A) was subjected to an ultraviolet irradiation device (LC-8, manufactured by Hamamatsu Photonics Co., Ltd.) so that the integrated light amount was 1200 mJ / cm 2 . The photocurable resin composition film was temporarily cured by irradiating it with ultraviolet rays having an intensity of 200 mW / cm 2 for 6 seconds to form a first temporarily cured resin layer, and further, the outer dam material was removed. The temporary curing shrinkage rate of the first temporary curing resin layer was 3.8%.

なお、第1仮硬化樹脂層の硬化率は、FT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さを指標として求めたところ、約70%であった。 The curing rate of the first temporarily cured resin layer was about 70% when determined using the absorption peak height of 1640 to 1620 cm-1 from the baseline in the FT-IR measurement chart as an index.

(工程(C):塗布工程)
次に、40(W)×80(L)mmのサイズのフラットな液晶表示素子の偏光板が積層された面に、工程(A)で使用した光硬化性樹脂組成物を、先端をスリット状にしたディスペンサーにより膜厚が100μmとなるように塗布した。
(Step (C): Coating step)
Next, the photocurable resin composition used in the step (A) is slit-shaped at the tip on the surface on which the polarizing plate of the flat liquid crystal display element having a size of 40 (W) × 80 (L) mm is laminated. It was applied so that the film thickness would be 100 μm with the dispenser.

(工程(D):第2仮硬化樹脂層形成工程)
次に、工程(C)で作成した光硬化性樹脂組成物膜に対して、紫外線照射装置(LC-8、浜松ホトニクス製)を使って、積算光量が1200mJ/cm2となるように、200mW/cm2強度の紫外線を6秒照射することにより光硬化性樹脂組成物膜を仮硬化させて第2仮硬化樹脂層を形成した。第2仮硬化樹脂層の仮硬化収縮率は3.8%であり、硬化率は約70%であった。
(Step (D): Second temporarily cured resin layer forming step)
Next, the photocurable resin composition film prepared in the step (C) was 200 mW so that the integrated light amount was 1200 mJ / cm 2 using an ultraviolet irradiation device (LC-8, manufactured by Hamamatsu Photonics). The photocurable resin composition film was temporarily cured by irradiating it with ultraviolet rays having a strength of / cm 2 for 6 seconds to form a second temporarily cured resin layer. The temporary curing shrinkage rate of the second temporary curing resin layer was 3.8%, and the curing rate was about 70%.

(工程(E):積層工程)
次に、工程(B)の第1仮硬化樹脂層が形成された樹脂カバーに、工程(D)の第2仮硬化樹脂層が形成された液晶表示素子を、第1仮硬化樹脂層と第2仮硬化樹脂層とが対向するように載置し、樹脂カバー側から真空貼合機(真空度50Pa、貼合圧0.07MPa、貼合時間3秒、常温)で貼り付けた。
(Step (E): Laminating step)
Next, the liquid crystal display element on which the second temporarily cured resin layer of the step (D) is formed on the resin cover on which the first temporarily cured resin layer of the step (B) is formed is combined with the first temporarily cured resin layer. 2 The temporarily cured resin layer was placed so as to face each other, and the resin cover was attached from the resin cover side with a vacuum bonding machine (vacuum degree 50 Pa, bonding pressure 0.07 MPa, bonding time 3 seconds, normal temperature).

(工程(F):本硬化工程)
次に、この液晶表示素子に対し、樹脂カバー側から、紫外線照射装置(ECS-03601EG、アイグラフィックス(株))を使って紫外線(200mW/cm2)を3000mJ/cm2で照射することにより仮硬化樹脂層を完全に硬化させ、光透過性の光硬化樹脂層を形成した。この光硬化樹脂層の硬化率は98%であった。これにより、液晶表示素子に、光透過性カバー部材として湾曲した樹脂カバーが光硬化樹脂層を介して積層された液晶表示装置が得られた。また、本硬化収縮率は1.8%であった。
(Step (F): Main curing step)
Next, the liquid crystal display element is irradiated with ultraviolet rays (200 mW / cm 2 ) at 3000 mJ / cm 2 from the resin cover side using an ultraviolet irradiation device (ECS-03601EG, Eye Graphics Co., Ltd.). The temporarily cured resin layer was completely cured to form a light-transmitting photo-curing resin layer. The curing rate of this photocurable resin layer was 98%. As a result, a liquid crystal display device in which a curved resin cover as a light transmissive cover member is laminated on the liquid crystal display element via a photocurable resin layer is obtained. The main curing shrinkage rate was 1.8%.

得られた液晶表示装置について、空隙の発生の有無をガラス樹脂カバー側から目視観察したところ、ガラス樹脂カバーと光硬化樹脂層との界面には空隙は、観察されなかった。また、表示操作を行ったところ、ガラス樹脂カバーの中央の表示に色ムラは観察されなかった。なお、仮硬化収縮率は3.8%であり、本硬化収縮率は1.8%であった。 When the presence or absence of voids was visually observed from the glass resin cover side of the obtained liquid crystal display device, no voids were observed at the interface between the glass resin cover and the photocurable resin layer. Moreover, when the display operation was performed, no color unevenness was observed in the display in the center of the glass resin cover. The temporary curing shrinkage rate was 3.8%, and the main curing shrinkage rate was 1.8%.

比較例1
工程(C)と工程(D)を行わずに、工程(B)の第1仮硬化樹脂層が形成された樹脂カバーに、第2仮硬化樹脂層が形成されていない液晶表示素子を載置し、樹脂カバー側から真空貼合機(真空度50Pa、貼合圧0.07MPa、貼合時間3秒、常温)で貼り付けた以外、実施例1と同様の操作を行い、画像表示装置を得た。得られた液晶表示装置は、空隙の発生の有無を樹脂カバー側から目視観察したところ、光硬化樹脂層と液晶表示素子との界面の略中央部に気泡状の空隙が生じていた。
Comparative Example 1
A liquid crystal display element on which the second temporarily cured resin layer is not formed is placed on the resin cover on which the first temporarily cured resin layer is formed in the step (B) without performing the steps (C) and (D). Then, the same operation as in Example 1 was performed except that the resin cover was attached from the resin cover side with a vacuum bonding machine (vacuum degree 50 Pa, bonding pressure 0.07 MPa, bonding time 3 seconds, normal temperature), and the image display device was displayed. Obtained. When the presence or absence of voids was visually observed from the resin cover side of the obtained liquid crystal display device, bubble-like voids were found in the substantially central portion of the interface between the photocurable resin layer and the liquid crystal display element.

本発明の画像表示装置は、画像表示部材と、湾曲した光透過性カバー部材とが、光硬化樹脂層を介して積層されており、透過性カバー部材の凹部面側の幅が画像表示部材の幅より大きく、且つそれらを積層している光硬化樹脂層の最大厚みが、画像表示部材が光透過性カバー部材に接触しない厚さとなっている。このため、画像表示装置の表示面に空隙が生じないようにでき、また、光硬化樹脂層の残留応力を低減させて表示の色ムラが生じないようにできる。従って、本発明の画像表示装置は、例えば、タッチパネルを備えた車載用情報端末の工業的製造に有用である。 In the image display device of the present invention, an image display member and a curved light transmissive cover member are laminated via a photocurable resin layer, and the width of the transmissive cover member on the concave surface side is the image display member. The maximum thickness of the photocurable resin layer larger than the width and laminating them is such that the image display member does not come into contact with the light transmissive cover member. Therefore, it is possible to prevent voids from being generated on the display surface of the image display device, and it is possible to reduce the residual stress of the photocurable resin layer so that color unevenness of the display does not occur. Therefore, the image display device of the present invention is useful, for example, in the industrial manufacture of an in-vehicle information terminal provided with a touch panel.

1 画像表示部材
2 光透過性カバー部材
2b 平坦部
2x、2y 光透過性カバー部材の両端部
3 光硬化樹脂層
3a 第1光硬化樹脂層
3b 第2光硬化樹脂層
10 画像表示装置
20 内側ダム材
21 外側ダム材
30、31 光硬化性樹脂組成物
30a 第1仮硬化樹脂層
31b 第2仮硬化樹脂層
B 光透過性カバー部材の凹部面側底部
D ディスペンサー
hm 光硬化樹脂層の最大厚み
h0 第1光硬化樹脂層の最大厚さ
h1 底部Bから直線L1までの距離
L0 接触点を結んだ基準線
L1 光透過性カバー部材の凹部面側の角を結んだ直線
P1、P2 画像表示部材と光透過性カバー部材との接触点
P3、P4 光透過性カバー部材の凹部面側の角
X 画像表示部材の幅
Y 光透過性カバー部材の凹部面側の幅
1 Image display member 2 Light-transmitting cover member 2b Flat part 2x, 2y Both ends of light-transmitting cover member 3 Photo-curing resin layer 3a First photo-curing resin layer 3b Second photo-curing resin layer 10 Image display device 20 Inner dam Material 21 Outer dam material 30, 31 Photo-curing resin composition 30a First temporary-curing resin layer 31b Second temporary-curing resin layer B Recessed surface side bottom of light-transmitting cover member D Dispenser hm Maximum thickness of photo-curing resin layer h0 Maximum thickness of the first photo-curing resin layer h1 Distance from the bottom B to the straight line L1 L0 Reference line connecting the contact points L1 Straight line connecting the corners on the concave surface side of the light transmissive cover member P1, P2 With the image display member Contact points with the light-transmitting cover member P3, P4 Corner of the light-transmitting cover member on the concave surface side X Width of the image display member Y Width of the light-transmitting cover member on the concave surface side

Claims (9)

画像表示部材と、湾曲した光透過性カバー部材とが、光硬化樹脂層のみを介して積層されている画像表示装置であって、
光透過性カバー部材の凹部面側の幅が、画像表示部材の幅より大きく、
光硬化樹脂層の最大厚みが、画像表示部材が光透過性カバー部材に接触しない厚さであり、
画像表示装置を断面視したときに、光透過性カバー部材の凹部面底部から、画像表示部材が光透過性カバー部材に接触すると想定される2つの接触点を結んだ基準線までの距離よりも、光硬化樹脂層の最大厚みが厚く、
光硬化樹脂層が、光透過性カバー部材側の第1光硬化樹脂層と画像表示部材側の第2光硬化樹脂層との2層構造となっており、第1光硬化樹脂層の最大厚さが、光透過性カバー部材の凹部面底部から、画像表示部材が光透過性カバー部材に接触すると想定される2点を結んだ基準線までの距離に相当する、画像表示装置。
An image display device in which an image display member and a curved light transmissive cover member are laminated only via a photocurable resin layer.
The width of the light transmissive cover member on the concave surface side is larger than the width of the image display member.
The maximum thickness of the photocurable resin layer is the thickness at which the image display member does not come into contact with the light transmissive cover member .
The distance from the bottom of the concave surface of the light-transmitting cover member to the reference line connecting the two contact points where the image-transmitting member is assumed to come into contact with the light-transmitting cover member when the image display device is viewed in cross section. , The maximum thickness of the photocurable resin layer is thick,
The photo-curing resin layer has a two-layer structure of a first photo-curing resin layer on the light-transmitting cover member side and a second photo-curing resin layer on the image display member side, and the maximum thickness of the first photo-curing resin layer. The image display device corresponds to the distance from the bottom of the concave surface of the light transmissive cover member to the reference line connecting two points where the image display member is assumed to come into contact with the light transmissive cover member .
画像表示部材が、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル又はタッチパネルである請求項1記載の画像表示装置。 The image display device according to claim 1 , wherein the image display member is a liquid crystal display panel, an organic EL display panel, a plasma display panel, or a touch panel. 光硬化性樹脂組成物が、エラストマー及びアクリレート系オリゴマーの少なくとも一方と、アクリル系モノマーと、光重合開始剤とを含有する液状の樹脂組成物であって、
エラストマーが、アクリル共重合体、ポリブテン及びポリオレフィンからなる群から選択される少なくとも一種であり、
アクリレート系オリゴマーが、ポリウレタン系(メタ)アクリレート、ポリブタジエン系(メタ)アクリレート及びポリイソプレン系(メタ)アクリレートからなる群から選択される少なくとも一種である請求項1又は2記載の画像表示装置。
The photocurable resin composition is a liquid resin composition containing at least one of an elastomer and an acrylate-based oligomer, an acrylic-based monomer, and a photopolymerization initiator.
The elastomer is at least one selected from the group consisting of acrylic copolymers, polybutenes and polyolefins.
The image display device according to claim 1 or 2 , wherein the acrylate-based oligomer is at least one selected from the group consisting of polyurethane-based (meth) acrylates, polybutadiene-based (meth) acrylates, and polyisoprene-based (meth) acrylates.
画像表示部材と、湾曲した光透過性カバー部材とが、光硬化樹脂層のみを介して積層され、光透過性カバー部材の凹部面側の幅が、画像表示部材の幅より大きく、光硬化樹脂層の最大厚みが、画像表示部材が光透過性カバー部材に接触しない厚さとなっている画像表示装置の製造方法において、
以下の工程(A)~(F):
<工程(A)>
湾曲した光透過性カバー部材の凹部面に、画像表示装置を断面視したときに光透過性カバー部材の凹部面側の幅よりも狭い幅の画像表示部材が光透過性カバー部材に接触すると想定される2つの接触点を結んだ基準線まで光硬化性樹脂組成物を充填する工程;
<工程(B)>
工程(A)で充填された光硬化性樹脂組成物に対し紫外線を照射して仮硬化させて第1仮硬化樹脂層を形成する工程;
<工程(C)>
画像表示部材の片面に、所定厚の光硬化性樹脂組成物を塗布する工程;
<工程(D)>
工程(C)で塗布された光硬化性樹脂組成物に対し紫外線を照射して仮硬化させて第2仮硬化樹脂層を形成する工程;
<工程(E)>
第1仮硬化樹脂層と第2仮硬化樹脂層とが互いに直接向き合うように、湾曲した光透過性カバー部材と画像表示部材とを積層する工程;
<工程(F)>
第1仮硬化樹脂層及び第2仮硬化樹脂層に対し紫外線を照射して本硬化させてそれぞれ第1光硬化樹脂層及び第2光硬化樹脂層とすることにより、それらが積層された光硬化樹脂層を形成する工程;
を有する製造方法。
The image display member and the curved light transmissive cover member are laminated only via the photocurable resin layer, and the width of the light transmissive cover member on the concave surface side is larger than the width of the image display member, and the photocurable resin. In the method for manufacturing an image display device, the maximum thickness of the layer is such that the image display member does not come into contact with the light transmissive cover member .
The following steps (A) to (F):
<Process (A)>
It is assumed that an image display member having a width narrower than the width on the concave surface side of the light transmissive cover member comes into contact with the light transmissive cover member on the concave surface of the curved light transmissive cover member when the image display device is viewed in cross section. The step of filling the photocurable resin composition up to the reference line connecting the two contact points to be formed;
<Process (B)>
A step of irradiating the photocurable resin composition filled in the step (A) with ultraviolet rays to temporarily cure the photocurable resin composition to form a first temporarily cured resin layer;
<Process (C)>
A step of applying a photocurable resin composition having a predetermined thickness on one side of an image display member;
<Process (D)>
A step of irradiating the photocurable resin composition applied in the step (C) with ultraviolet rays to temporarily cure the photocurable resin composition to form a second temporarily cured resin layer;
<Process (E)>
A step of laminating a curved light-transmitting cover member and an image display member so that the first temporarily cured resin layer and the second temporarily cured resin layer face each other directly;
<Process (F)>
The first temporarily cured resin layer and the second temporarily cured resin layer are irradiated with ultraviolet rays to be main-cured to form a first photocurable resin layer and a second photocurable resin layer, respectively, whereby they are laminated and photocured. Step of forming a resin layer;
Manufacturing method having.
工程(B)の第1仮硬化樹脂層及び工程(D)の第2仮硬化樹脂層の硬化率が、それぞれ10%以上90%以下であり、工程(F)の光硬化樹脂層の硬化率が90%より大きく100%以下である請求項記載の製造方法。 The curing rates of the first temporarily cured resin layer in the step (B) and the second temporarily cured resin layer in the step (D) are 10% or more and 90% or less, respectively, and the curing rate of the photocurable resin layer in the step (F) is 4. The manufacturing method according to claim 4 , wherein is greater than 90% and 100% or less. 工程(A)の充填に先立ち、湾曲した光透過性カバー部材の凹部面側の基準線まで光硬化性樹脂組成物を充填可能とするダム部材を、当該凹部面に設ける請求項又は記載の製造方法。 The fourth or fifth aspect of the present invention, wherein a dam member capable of filling the photocurable resin composition up to the reference line on the concave surface side of the curved light transmissive cover member is provided on the concave surface prior to the filling in the step (A). Manufacturing method. 工程(E)と工程(F)との間で、加圧脱泡処理を行う請求項4~6のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 4 to 6 , wherein a pressure defoaming treatment is performed between the step (E) and the step (F). 画像表示部材が、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル又はタッチパネルである請求項4~7のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 4 to 7 , wherein the image display member is a liquid crystal display panel, an organic EL display panel, a plasma display panel, or a touch panel. 光硬化性樹脂組成物が、エラストマー及びアクリレート系オリゴマーの少なくとも一方と、アクリル系モノマーと、光重合開始剤とを含有する液状の樹脂組成物であって、
エラストマーが、アクリル共重合体、ポリブテン及びポリオレフィンからなる群から選択される少なくとも一種であり、
アクリレート系オリゴマーが、ポリウレタン系(メタ)アクリレート、ポリブタジエン系(メタ)アクリレート及びポリイソプレン系(メタ)アクリレートからなる群から選択される少なくとも一種である請求項4~8のいずれかに記載の製造方法。
The photocurable resin composition is a liquid resin composition containing at least one of an elastomer and an acrylate-based oligomer, an acrylic-based monomer, and a photopolymerization initiator.
The elastomer is at least one selected from the group consisting of acrylic copolymers, polybutenes and polyolefins.
The production method according to any one of claims 4 to 8 , wherein the acrylate-based oligomer is at least one selected from the group consisting of polyurethane-based (meth) acrylate, polybutadiene-based (meth) acrylate, and polyisoprene-based (meth) acrylate. ..
JP2017034749A 2017-02-27 2017-02-27 Image display device and its manufacturing method Active JP7038477B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017034749A JP7038477B2 (en) 2017-02-27 2017-02-27 Image display device and its manufacturing method
TW106145016A TWI833689B (en) 2017-02-27 2017-12-21 Image display device and method for manufacturing the same
KR1020180006094A KR102612913B1 (en) 2017-02-27 2018-01-17 Image display device and method for manufacturing the same
CN201810140388.3A CN108508641B (en) 2017-02-27 2018-02-11 Image display device and method for manufacturing the same
JP2021081598A JP7192915B2 (en) 2017-02-27 2021-05-13 Image display device and its manufacturing method
KR1020230008517A KR20230019176A (en) 2017-02-27 2023-01-20 Image display device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017034749A JP7038477B2 (en) 2017-02-27 2017-02-27 Image display device and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021081598A Division JP7192915B2 (en) 2017-02-27 2021-05-13 Image display device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018141834A JP2018141834A (en) 2018-09-13
JP7038477B2 true JP7038477B2 (en) 2022-03-18

Family

ID=63375634

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017034749A Active JP7038477B2 (en) 2017-02-27 2017-02-27 Image display device and its manufacturing method
JP2021081598A Active JP7192915B2 (en) 2017-02-27 2021-05-13 Image display device and its manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021081598A Active JP7192915B2 (en) 2017-02-27 2021-05-13 Image display device and its manufacturing method

Country Status (4)

Country Link
JP (2) JP7038477B2 (en)
KR (2) KR102612913B1 (en)
CN (1) CN108508641B (en)
TW (1) TWI833689B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020095146A (en) * 2018-12-12 2020-06-18 株式会社デンソー Display device
JP7368990B2 (en) * 2019-09-23 2023-10-25 デクセリアルズ株式会社 Method for manufacturing optical devices
JP7550396B1 (en) 2023-08-14 2024-09-13 株式会社ソフテム Magnetic Adsorption Device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106252A (en) 2006-09-26 2008-05-08 Mitsubishi Rayon Co Ltd Acrylic resin composition, acrylic resin film, delustered acrylic resin film for thermoforming, photo-curable acrylic resin film and laminated body laminated with them
JP2011529002A (en) 2008-07-25 2011-12-01 ヘンケル コーポレイション Attenuated light method for mold assembly and mold part manufacturing
JP2014118450A (en) 2012-12-14 2014-06-30 Dexerials Corp Photocurable resin composition and manufacturing method of picture display unit using the same
US20140198436A1 (en) 2013-01-15 2014-07-17 Samsung Display Co., Ltd. Display device having cover window
JP2014134789A (en) 2012-12-14 2014-07-24 Dexerials Corp Method for manufacturing image display device, and resin dispenser
JP2015155089A (en) 2014-02-20 2015-08-27 芝浦メカトロニクス株式会社 Adhesive coating device and production device and production method of member for display unit
JP2015200724A (en) 2014-04-07 2015-11-12 三菱電機株式会社 Image display device and method for manufacturing image display device
WO2016074917A1 (en) 2014-11-14 2016-05-19 Robert Bosch Gmbh Method and apparatus for optical bonding, and a display
JP2016190977A (en) 2015-03-31 2016-11-10 信越化学工業株式会社 Ultraviolet-curable liquid organopolysiloxane composition for image display device, adhesive for image display device containing the composition, image display device using the adhesive, and method for bonding using the adhesive
JP2016194669A (en) 2015-03-31 2016-11-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
JP2016194670A (en) 2015-03-31 2016-11-17 Nltテクノロジー株式会社 Display device and manufacturing method thereof
JP2018132566A (en) 2017-02-13 2018-08-23 スタンレー電気株式会社 Display

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3401726B1 (en) * 2007-07-17 2020-08-26 Dexerials Corporation Image display device and production method thereof
JP2009093158A (en) * 2007-09-21 2009-04-30 Toshiba Matsushita Display Technology Co Ltd Display element
JP2011081414A (en) * 2010-12-24 2011-04-21 Hitachi Ltd Display device
CN104629613A (en) 2011-10-21 2015-05-20 日本化药株式会社 Method for producing optical member and use of ultraviolet ray cured resin composition for same
JP5304922B1 (en) * 2012-05-09 2013-10-02 デクセリアルズ株式会社 Manufacturing method of image display device
JP2014010294A (en) * 2012-06-29 2014-01-20 Japan Display Inc Display module, and electronic device
US9439315B2 (en) 2012-06-29 2016-09-06 Samsung Display Co., Ltd. Display device, and method and apparatus for manufacturing the same
JP5852244B2 (en) 2012-07-30 2016-02-03 芝浦メカトロニクス株式会社 Substrate pasting apparatus and substrate pasting method
JP5370706B1 (en) 2012-12-14 2013-12-18 デクセリアルズ株式会社 Manufacturing method of image display device
KR20140096596A (en) * 2013-01-28 2014-08-06 삼성디스플레이 주식회사 Display device and method for manufacturing the same
US9470919B2 (en) * 2013-05-14 2016-10-18 Microsoft Technology Licensing, Llc Methods for producing a glass-based non planar digital display
JP6275589B2 (en) * 2013-09-26 2018-02-07 芝浦メカトロニクス株式会社 Adhesive coating apparatus, adhesive coating method, display device member manufacturing apparatus, and display device member manufacturing method
CN105392827A (en) * 2013-10-15 2016-03-09 日本合成化学工业株式会社 Resin sheet and use thereof
KR101710188B1 (en) 2013-11-26 2017-02-24 엘지전자 주식회사 Display Apparatus
JP2016066607A (en) * 2014-09-18 2016-04-28 株式会社半導体エネルギー研究所 Exfoliation method, light-emitting device, module and electronic apparatus
JP2017026887A (en) * 2015-07-24 2017-02-02 日本写真印刷株式会社 Cover panel, operation panel, and method for manufacturing operation panel
CN105045348B (en) 2015-08-31 2018-08-24 业成光电(深圳)有限公司 Three-dimension curved surface shows equipment and its manufacturing method
TWI561896B (en) * 2016-05-19 2016-12-11 Covatech Inc Liquid optical clear adhesive (loca) curved bonding method and display device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106252A (en) 2006-09-26 2008-05-08 Mitsubishi Rayon Co Ltd Acrylic resin composition, acrylic resin film, delustered acrylic resin film for thermoforming, photo-curable acrylic resin film and laminated body laminated with them
JP2011529002A (en) 2008-07-25 2011-12-01 ヘンケル コーポレイション Attenuated light method for mold assembly and mold part manufacturing
JP2014118450A (en) 2012-12-14 2014-06-30 Dexerials Corp Photocurable resin composition and manufacturing method of picture display unit using the same
JP2014134789A (en) 2012-12-14 2014-07-24 Dexerials Corp Method for manufacturing image display device, and resin dispenser
US20140198436A1 (en) 2013-01-15 2014-07-17 Samsung Display Co., Ltd. Display device having cover window
JP2015155089A (en) 2014-02-20 2015-08-27 芝浦メカトロニクス株式会社 Adhesive coating device and production device and production method of member for display unit
JP2015200724A (en) 2014-04-07 2015-11-12 三菱電機株式会社 Image display device and method for manufacturing image display device
WO2016074917A1 (en) 2014-11-14 2016-05-19 Robert Bosch Gmbh Method and apparatus for optical bonding, and a display
JP2016190977A (en) 2015-03-31 2016-11-10 信越化学工業株式会社 Ultraviolet-curable liquid organopolysiloxane composition for image display device, adhesive for image display device containing the composition, image display device using the adhesive, and method for bonding using the adhesive
JP2016194669A (en) 2015-03-31 2016-11-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
JP2016194670A (en) 2015-03-31 2016-11-17 Nltテクノロジー株式会社 Display device and manufacturing method thereof
JP2018132566A (en) 2017-02-13 2018-08-23 スタンレー電気株式会社 Display

Also Published As

Publication number Publication date
TWI833689B (en) 2024-03-01
CN108508641B (en) 2022-08-02
KR102612913B1 (en) 2023-12-12
JP7192915B2 (en) 2022-12-20
CN108508641A (en) 2018-09-07
TW201841728A (en) 2018-12-01
JP2021131567A (en) 2021-09-09
KR20230019176A (en) 2023-02-07
JP2018141834A (en) 2018-09-13
KR20180099459A (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6465157B2 (en) Image display device manufacturing method, resin dispenser
JP7376819B2 (en) Method for manufacturing an image display device
KR102277736B1 (en) Method of manufacturing image display device
JP7192915B2 (en) Image display device and its manufacturing method
EP3594927B1 (en) Method for manufacturing image display device
JP6904161B2 (en) Manufacturing method of image display device
US11846841B2 (en) Method for manufacturing optical device
WO2021020295A1 (en) Optical device production method
JP6877211B2 (en) Manufacturing method of optical equipment and optical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210216

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210513

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211005

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211012

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211102

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220208

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220308

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220308

R150 Certificate of patent or registration of utility model

Ref document number: 7038477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150