JP7038372B2 - Magnetic force sorting device, usage of magnetic force sorting device and pollutant dry treatment system - Google Patents

Magnetic force sorting device, usage of magnetic force sorting device and pollutant dry treatment system Download PDF

Info

Publication number
JP7038372B2
JP7038372B2 JP2017197419A JP2017197419A JP7038372B2 JP 7038372 B2 JP7038372 B2 JP 7038372B2 JP 2017197419 A JP2017197419 A JP 2017197419A JP 2017197419 A JP2017197419 A JP 2017197419A JP 7038372 B2 JP7038372 B2 JP 7038372B2
Authority
JP
Japan
Prior art keywords
sorted
magnetic force
particle size
sorting device
force sorting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017197419A
Other languages
Japanese (ja)
Other versions
JP2019069423A (en
Inventor
好治 三苫
友祐 佐藤
春介 中島
彩 岩間
光司 岩田
祐一 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Tekki Corp
Original Assignee
Sanwa Tekki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Tekki Corp filed Critical Sanwa Tekki Corp
Priority to JP2017197419A priority Critical patent/JP7038372B2/en
Publication of JP2019069423A publication Critical patent/JP2019069423A/en
Application granted granted Critical
Publication of JP7038372B2 publication Critical patent/JP7038372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、放射性物質に汚染された土壌など粉粒体状の汚染物の処理に使用可能な磁力選別装置、磁力選別装置の使用方法及び汚染物乾式処理システムに関する。 The present invention relates to a magnetic force sorting device that can be used for treating powdery contaminants such as soil contaminated with radioactive substances, a method of using the magnetic force sorting device, and a contaminant dry treatment system.

放射性汚染土壌の処理は、湿式法と乾式法とに大別できそれぞれ長所、短所がある。乾式法の長所の1つは廃水処理の問題が生じないことであり、乾式法についてこれまでに多くの処理方法が提案されている(例えば特許文献1参照)。 The treatment of radioactively contaminated soil can be roughly divided into a wet method and a dry method, each of which has advantages and disadvantages. One of the advantages of the dry method is that it does not cause a problem of wastewater treatment, and many treatment methods have been proposed for the dry method (see, for example, Patent Document 1).

特許文献1には、選別物の粒径を変更可能な粒径可変機構を備える磁力選別装置が開示されており、これにより汚染物の濃度に対応した選別、あるいは被選別物の性状に応じた選別が可能とある。また磁力選別装置の使用方法として回転ドラム表面磁束密度、被選別物の供給速度、回転ドラムの回転速度、粉粒体状の汚染物と強磁性粉末及び/又は常磁性粉末との混合割合、被選別物の含水率のいずれか1を調節することで選別物を所望の粒径に選別できるとある。 Patent Document 1 discloses a magnetic force sorting device provided with a particle size variable mechanism capable of changing the particle size of the sorted object, whereby sorting corresponding to the concentration of contaminants or depending on the properties of the sorted object is made. Sorting is possible. In addition, as a method of using the magnetic force sorting device, the magnetic flux density on the surface of the rotating drum, the supply speed of the object to be sorted, the rotating speed of the rotating drum, the mixing ratio of the powdery contaminants with the ferromagnetic powder and / or the paramagnetic powder, and the subject. It is said that the sorted product can be sorted to a desired particle size by adjusting any one of the water content of the sorted product.

特開2017-113744号公報Japanese Unexamined Patent Publication No. 2017-13744

特許文献1に記載の回転ドラム式の磁選機を使用した磁力選別装置は、選別装置が選別物の粒径を変更可能な粒径可変機構を備え、また回転ドラムの回転速度を調節する等の方法により汚染物の濃度に対応した選別、あるいは被選別物の性状に応じた選別が可能であるが、さらなる分級性能の向上、使い勝手の向上が期待されている。 The magnetic force sorting device using the rotary drum type magnetic separator described in Patent Document 1 is provided with a particle size variable mechanism capable of changing the particle size of the sorted object, and also adjusts the rotation speed of the rotary drum. Depending on the method, sorting according to the concentration of contaminants or sorting according to the properties of the object to be sorted is possible, but further improvement in classification performance and usability are expected.

本発明の目的は、従来の磁力選別装置と比較し分級性能、使い勝手に優れる磁力選別装置、磁力選別装置の使用方法及び汚染物乾式処理システムを提供することである。 An object of the present invention is to provide a magnetic force sorting device having excellent classification performance and usability as compared with a conventional magnetic force sorting device, a method of using the magnetic force sorting device, and a contaminant dry treatment system.

本発明は、粉粒体状の汚染物と強磁性粉末及び/又は常磁性粉末とが混合されてなる被選別物を選別する磁力選別装置であって、内側に磁石が配置された回転ドラム式の磁選機と、前記磁選機の選別物排出口に設置され選別物をN以上(Nは2以上の整数)の粒径に区分けする選別装置と、前記磁選機に被選別物を供給する、排出口に排出される被選別物を薄層化する薄層化手段を備える供給装置と、を備え、前記磁選機は、前記回転ドラムに対する前記磁石の位置を変更可能な位置可変機構を備え、前記選別装置は、区分けする粒径を変更可能な粒径可変機構を備え、前記薄層化手段が、平面視において先端部が三角歯形状又は櫛歯形状又は波型形状又は台形状のトラフであり、又は前記薄層化手段が、平面視において三角歯形状又は櫛歯形状又は波型形状又は台形状の部材が先端部に取付けられたトラフであることを特徴とする磁力選別装置である。 The present invention is a magnetic separation device that sorts an object to be sorted, which is a mixture of powdery contaminants and ferromagnetic powder and / or paramagnetic powder, and is a rotary drum type with a magnet arranged inside. The magnetic separator, a sorting device installed at the sorting material discharge port of the magnetic separator, which divides the sorted material into particles having a particle size of N or more (N is an integer of 2 or more) , and supplies the material to be sorted to the magnetic separator. The magnetic separator comprises a supply device provided with a thinning means for thinning the material to be sorted discharged to the discharge port, and the magnetic separator is provided with a position variable mechanism capable of changing the position of the magnet with respect to the rotating drum. The sorting device is provided with a particle size variable mechanism capable of changing the particle size to be separated, and the thinning means is a trough having a triangular tooth shape, a comb tooth shape, a corrugated shape, or a trapezoidal shape at the tip in a plan view. Yes, or the thinning means is a magnetic separation device characterized in that, in a plan view, a triangular tooth-shaped or comb-shaped or corrugated or trapezoidal member is a trough attached to a tip portion .

また本発明の磁力選別装置において、前記選別装置は、選別物を2以上の粒径に区分けする仕切板又は選別物を2以上の粒径に区分し回収する2個以上の分別回収槽と、前記仕切板又は前記分別回収槽を上下及び/又は左右に移動させる移動手段と、を備えることを特徴とする。 Further, in the magnetic force sorting device of the present invention, the sorting device includes a partition plate for classifying the sorted items into two or more particle sizes, or two or more separate collection tanks for classifying the sorted items into two or more particle sizes and collecting them. It is characterized by comprising a moving means for moving the partition plate or the separated collection tank up and down and / or left and right.

また本発明の磁力選別装置において、前記選別装置は、選別物を2以上の粒径に区分けする可動仕切板を備え、前記可動仕切板は、左右に移動可能に構成された構造及び/又は高さが可変可能に構成されている構造であることを特徴とする。 Further, in the magnetic force sorting device of the present invention, the sorting device includes a movable partition plate for dividing the sorted object into two or more particle sizes, and the movable partition plate has a structure and / or a height configured to be movable to the left and right. It is characterized in that it has a structure that is variably configured.

また本発明の磁力選別装置において、前記選別装置は、選別物を3以上の粒径に区分けする仕切板又は選別物を3以上の粒径に区分し回収する3個以上の分別回収槽を有することを特徴とする。 Further, in the magnetic force sorting device of the present invention, the sorting device has a partition plate for classifying the sorted items into 3 or more particle sizes or three or more separate collection tanks for classifying and collecting the sorted items into 3 or more particle sizes. It is characterized by that.

また本発明の磁力選別装置において、前記選別装置は、さらに3区分以上に区分けされた選別物のうち2区分以上を混合する混合手段を備えることを特徴とする。 Further, in the magnetic force sorting device of the present invention, the sorting device is characterized by comprising a mixing means for mixing two or more of the sorted items further divided into three or more categories.

また本発明の磁力選別装置は、さらに、少なくとも前記磁選機の選別物排出口及び前記選別装置を覆うケーシングと、前記ケーシング内に浮遊する前記選別物を吸引し回収する集塵装置と、を備え、前記集塵装置の吸込口は、前記選別装置が区分けする粒径の小さい選別物の側に設けられていることを特徴とする。 Further, the magnetic force sorting device of the present invention further includes at least a sorting material discharge port of the magnetic separator, a casing covering the sorting device, and a dust collector for sucking and collecting the sorting material floating in the casing. The suction port of the dust collector is provided on the side of the sorting object having a small particle size to be sorted by the sorting device.

また本発明の磁力選別装置は、さらに前記磁選機の回転ドラムの回転速度を可変可能な速度可変手段を備えることを特徴とする。 Further, the magnetic force sorting apparatus of the present invention is further provided with a speed variable means capable of varying the rotational speed of the rotating drum of the magnetic separator.

また本発明の磁力選別装置は、さらに被選別物の含水率を調節する含水率調節手段を備え、前記磁力選別装置は、前記含水率調節手段により含水率が調節された被選別物を選別することを特徴とする。 Further, the magnetic force sorting device of the present invention further includes a water content adjusting means for adjusting the water content of the object to be sorted, and the magnetic force sorting device sorts the object to be sorted whose water content is adjusted by the water content adjusting means. It is characterized by that.

また本発明の磁力選別装置は、前記強磁性粉末が、酸化鉄を主成分とする強磁性粉末であることを特徴とする。 Further, the magnetic force sorting apparatus of the present invention is characterized in that the ferromagnetic powder is a ferromagnetic powder containing iron oxide as a main component.

また本発明の磁力選別装置は、前記粉粒体状の汚染物が、放射性物質汚染土壌であることを特徴とする。 Further, the magnetic force sorting apparatus of the present invention is characterized in that the powdery and granular contaminants are radioactive material-contaminated soil.

また本発明は、前記磁力選別装置の使用方法であって、下記(A)群の少なくともいずれか1を調節することで前記選別物を所望の粒径に選別することを特徴とする磁力選別装置の使用方法である。
(A)磁選機の回転ドラムに対する磁石の位置,回転ドラム表面磁束密度,被選別物の供給速度,回転ドラムの回転速度,粉粒体状の汚染物と強磁性粉末及び/又は常磁性粉末との混合割合,被選別物の含水率
Further, the present invention is a method of using the magnetic force sorting device, wherein the sorted object is sorted to a desired particle size by adjusting at least one of the following groups (A). How to use.
(A) The position of the magnet with respect to the rotating drum of the magnetic separator, the magnetic flux density on the surface of the rotating drum, the supply speed of the object to be sorted, the rotation speed of the rotating drum, the particulate contaminants and the ferromagnetic powder and / or the paramagnetic powder. Mixing ratio, water content of the material to be sorted

また本発明は、粉粒体状の汚染物を汚染濃度により分別する汚染物乾式処理システムであって、前記磁力選別装置と、粉粒体状の汚染物と強磁性粉末及び/又は常磁性粉末とを混合する混合装置と、前記混合装置に強磁性粉末及び/又は常磁性粉末を供給する磁性粉末供給装置と、貯蔵された粉粒体状の汚染物を前記混合装置に移送する汚染物移送装置と、前記混合装置から前記供給装置に粉粒体状の汚染物と強磁性粉末及び/又は常磁性粉末との混合物を移送する被選別物移送装置と、を備え、前記汚染物移送装置及び/又は前記被選別物移送装置は、移送中に移送物に対して2次粒子の解砕、粉粒体状の汚染物の表面研磨、粉粒体状の汚染物の微細化のうちいずれか1以上の作用を及ぼすことを特徴とする汚染物乾式処理システムである。
Further, the present invention is a contaminant dry treatment system that separates powder or granular material according to the concentration of contamination, and is a magnetic sorting device, a powder or granular material, a ferromagnetic powder, and / or a normal magnetic powder. A mixing device that mixes with, a magnetic powder supply device that supplies ferromagnetic powder and / or paramagnetic powder to the mixing device, and a contaminant transfer that transfers stored powder or granular material to the mixing device. The device is provided with an object transfer device for transferring a mixture of powder or granular material and a mixture of ferromagnetic powder and / or paramagnetic powder from the mixing device to the supply device, and the contaminant transfer device and the device. / Or, the object transfer device may be one of crushing secondary particles, polishing the surface of powder-like contaminants, and refining powder-grain-like contaminants during transfer. It is a contaminant dry treatment system characterized by exerting one or more actions.

また本発明の汚染物乾式処理システムは、車両に載置され、車両に載せたまま分別運転が可能に構成されてなることを特徴とする。 Further, the pollutant dry treatment system of the present invention is characterized in that it is mounted on a vehicle and can be separately operated while mounted on the vehicle.

本発明によれば、従来の磁力選別装置と比較し分級性能、使い勝手に優れる磁力選別装置及び磁力選別装置の使用方法及び汚染物乾式処理システムを提供することができる。これにより汚染物の濃度に対応した選別、あるいは被選別物の性状に応じた選別が可能となる。 According to the present invention, it is possible to provide a magnetic force sorting device, a method of using the magnetic force sorting device, and a contaminant dry treatment system, which are superior in classification performance and usability as compared with a conventional magnetic force sorting device. This enables sorting according to the concentration of contaminants or sorting according to the properties of the object to be sorted.

本発明の第1実施形態の磁力選別装置1の概略構成を示す側面図及び正面図である。It is a side view and the front view which show the schematic structure of the magnetic force sorting apparatus 1 of 1st Embodiment of this invention. 本発明の第1実施形態の磁力選別装置1の回転ドラム11の構成を示す図である。It is a figure which shows the structure of the rotary drum 11 of the magnetic force sorting apparatus 1 of 1st Embodiment of this invention. 本発明の第1実施形態の磁力選別装置1の固定治具66の構成及び回転ドラム11の磁石部18の配置を説明するための図である。It is a figure for demonstrating the structure of the fixing jig 66 of the magnetic force sorting apparatus 1 of 1st Embodiment of this invention, and the arrangement of the magnet part 18 of a rotary drum 11. 本発明の第1実施形態の磁力選別装置1の選別装置31廻りの構成図である。It is a block diagram around the sorting apparatus 31 of the magnetic force sorting apparatus 1 of 1st Embodiment of this invention. 本発明の第1実施形態の磁力選別装置1の供給装置71の先端部の構造を説明するための図である。It is a figure for demonstrating the structure of the tip part of the supply device 71 of the magnetic force sorting apparatus 1 of 1st Embodiment of this invention. 本発明の第1実施形態の磁力選別装置1の被選別物201に作用する力を示す模式図である。It is a schematic diagram which shows the force acting on the object 201 of the magnetic force sorting apparatus 1 of 1st Embodiment of this invention. 本発明の第1実施形態の磁力選別装置1の回転ドラム11から離れ放出される粒子の推定される軌跡を説明するための模式図である。It is a schematic diagram for demonstrating the estimated locus of the particle emitted away from the rotating drum 11 of the magnetic force sorting apparatus 1 of 1st Embodiment of this invention. 本発明の第1実施形態の磁力選別装置1の低速から中速での回転時の回転ドラム11から離れ放出される粒子の推定される軌跡と回転ドラム11の回転速度との関係を示す図である。It is a figure which shows the relationship between the estimated locus of the particle which is separated from the rotating drum 11 and the rotation speed of a rotating drum 11 at the time of rotation of the magnetic force sorting apparatus 1 of 1st Embodiment of this invention at a low speed to a medium speed. be. 本発明の第1実施形態の磁力選別装置1の中速から高速での回転時の回転ドラム11から離れ放出される粒子の推定される軌跡と回転ドラム11の回転速度との関係を示す図である。It is a figure which shows the relationship between the estimated locus of the particle which is separated from the rotating drum 11 at the time of rotation of the magnetic force sorting apparatus 1 of 1st Embodiment of this invention, and the rotation speed of a rotating drum 11. be. 本発明の第2実施形態の磁力選別装置2の概略構成を示す側面図及び正面図である。It is a side view and the front view which show the schematic structure of the magnetic force sorting apparatus 2 of the 2nd Embodiment of this invention. 本発明の第2実施形態の磁力選別装置2の選別装置41廻りの構成図である。It is a block diagram around the sorting apparatus 41 of the magnetic force sorting apparatus 2 of the 2nd Embodiment of this invention. 本発明の第3実施形態の磁力選別装置3の概略構成を示す側面図である。It is a side view which shows the schematic structure of the magnetic force sorting apparatus 3 of the 3rd Embodiment of this invention. 本発明の第4実施形態の磁力選別装置4の概略構成を示す側面図である。It is a side view which shows the schematic structure of the magnetic force sorting apparatus 4 of the 4th Embodiment of this invention. 本発明の第5実施形態の磁力選別装置5の概略構成を示す図であり、(A)が側面図、(B)は選別装置321の作用効果を説明するための模式図である。It is a figure which shows the schematic structure of the magnetic force sorting apparatus 5 of the 5th Embodiment of this invention, (A) is a side view, (B) is a schematic diagram for explaining the operation and effect of the sorting apparatus 321. 本発明の第6実施形態の磁力選別装置6の概略構成を示す図である。It is a figure which shows the schematic structure of the magnetic force sorting apparatus 6 of the 6th Embodiment of this invention. 本発明の第7実施形態の汚染物乾式処理システム101の概略構成を示す図である。It is a figure which shows the schematic structure of the pollutant dry treatment system 101 of the 7th Embodiment of this invention. 本発明の第7実施形態の汚染物乾式処理システム101の磁力選別装置7に設けられる選別物排出器81の構造を説明するための図である。It is a figure for demonstrating the structure of the sorting material discharger 81 provided in the magnetic force sorting apparatus 7 of the pollutant dry processing system 101 of the 7th Embodiment of this invention. 本発明の第8実施形態の汚染物乾式処理システム102の概略構成を示す図である。It is a figure which shows the schematic structure of the pollutant dry treatment system 102 of 8th Embodiment of this invention. 本発明の実施例である三角歯効果確認試験における仕切板の位置を示す図である。It is a figure which shows the position of the partition plate in the triangular tooth effect confirmation test which is an Example of this invention. 本発明の実施例である三角歯効果確認試験における供給速度と質量率との関係を示す図である。It is a figure which shows the relationship between the supply rate and the mass ratio in the triangular tooth effect confirmation test which is an Example of this invention. 本発明の実施例である三角歯効果確認試験における供給速度と質量率との関係を示す図である。It is a figure which shows the relationship between the supply rate and the mass ratio in the triangular tooth effect confirmation test which is an Example of this invention. 本発明の実施例である三角歯効果確認試験における供給速度と質量率との関係を示す図である。It is a figure which shows the relationship between the supply rate and the mass ratio in the triangular tooth effect confirmation test which is an Example of this invention. 本発明の実施例である汚染物乾式処理システム試験における仕切板の位置を示す図である。It is a figure which shows the position of the partition plate in the pollutant dry treatment system test which is an Example of this invention. 本発明の実施例である汚染物乾式処理システム試験で使用した現場原土の粒径分布及び放射能濃度分布図である。It is a particle size distribution and radioactivity concentration distribution map of the field raw soil used in the pollutant dry treatment system test which is an Example of this invention. 本発明の実施例である汚染物乾式処理システム試験の分級結果である。It is a classification result of the pollutant dry treatment system test which is an Example of this invention. 本発明の実施例であり、チューブ式コンベアを使用し真砂土を通過させたときの粒径分布である。It is an embodiment of the present invention, and is a particle size distribution when passing through decomposed granite soil using a tube type conveyor. 本発明の実施例である模擬原土を用いた運転条件比較試験(ドラム周速度:87m/min)の分級結果である。It is a classification result of the operation condition comparison test (drum peripheral speed: 87 m / min) using the simulated raw soil which is an example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(ドラム周速度:71m/min)の分級結果である。It is a classification result of the operation condition comparison test (drum peripheral speed: 71 m / min) using the simulated raw soil which is an example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(ドラム周速度:57m/min)の分級結果である。It is a classification result of the operation condition comparison test (drum peripheral speed: 57 m / min) using the simulated raw soil which is an example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(大粒径側仕切位置)における大粒径側仕切位置と質量率との関係を示す図である。It is a figure which shows the relationship between the large particle size side partition position and the mass ratio in the operation condition comparison test (large particle size side partition position) using the simulated raw soil which is an Example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(大粒径側仕切位置:-150mm)の分級結果である。It is the classification result of the operation condition comparison test (large particle size side partition position: −150 mm) using the simulated raw soil which is an example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(大粒径側仕切位置:-100mm)の分級結果である。It is the classification result of the operation condition comparison test (large particle size side partition position: -100 mm) using the simulated raw soil which is an example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(大粒径側仕切位置:-60mm)の分級結果である。It is the classification result of the operation condition comparison test (large particle size side partition position: -60 mm) using the simulated raw soil which is an example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(大粒径側仕切位置)の大粒径側仕切位置を変えた時の区分Bの最頻値規格化質量率の変化を示す図である。The mode of the mode standardized mass ratio of Category B when the large particle size side partition position is changed in the operating condition comparison test (large particle size side partition position) using the simulated raw soil which is an embodiment of the present invention. It is a figure which shows. 本発明の実施例である模擬原土を用いた運転条件比較試験(大粒径側仕切位置)における大粒径側仕切位置と分級指標粒径との関係を示す図である。It is a figure which shows the relationship between the large particle size side partition position and the classification index particle diameter in the operation condition comparison test (large particle size side partition position) using the simulated raw soil which is an Example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置)の小粒径側仕切位置と質量率との関係を示す図である。It is a figure which shows the relationship between the small particle size side partition position and the mass ratio of the operation condition comparison test (small particle size side partition position) using the simulated raw soil which is an Example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置)の処理速度と質量率との関係を示す図である。It is a figure which shows the relationship between the processing speed and the mass ratio of the operation condition comparison test (small particle size side partition position) using the simulated raw soil which is an Example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置)の小粒径側仕切位置と質量率との関係を示す図である。It is a figure which shows the relationship between the small particle size side partition position and the mass ratio of the operation condition comparison test (small particle size side partition position) using the simulated raw soil which is an Example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置:100mm)の分級結果である。It is a classification result of the operation condition comparison test (small particle size side partition position: 100 mm) using the simulated raw soil which is an example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置:150mm)の分級結果である。It is a classification result of the operation condition comparison test (small particle size side partition position: 150 mm) using the simulated raw soil which is an example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置:200mm,処理速度:600kg/h)の分級結果である。It is the classification result of the operation condition comparison test (small particle size side partition position: 200 mm, processing speed: 600 kg / h) using the simulated raw soil which is an example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置:200mm,処理速度:2200kg/h)の分級結果である。It is the classification result of the operation condition comparison test (small particle size side partition position: 200 mm, processing speed: 2200 kg / h) using the simulated raw soil which is an example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置:200mm,処理速度:400kg/h)の分級結果である。It is the classification result of the operation condition comparison test (small particle size side partition position: 200 mm, processing speed: 400 kg / h) using the simulated raw soil which is an example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置:250mm,処理速度:400kg/h)の分級結果である。It is the classification result of the operation condition comparison test (small particle size side partition position: 250 mm, processing speed: 400 kg / h) using the simulated raw soil which is an example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置)の小粒径側仕切位置を変えた時の区分Aの最頻値規格化質量率の変化を示す図である。The mode of the mode standardized mass ratio of Category A when the small particle size side partition position is changed in the operating condition comparison test (small particle size side partition position) using the simulated raw soil which is an embodiment of the present invention. It is a figure which shows. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置)の小粒径側仕切位置と分級指標粒径との関係を示す図である。It is a figure which shows the relationship between the small particle size side partition position and the classification index particle diameter of the operation condition comparison test (small particle size side partition position) using the simulated raw soil which is an Example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置)の小粒径側仕切位置を変えた時の区分Aの最頻値規格化質量率の変化を示す図である。The mode of the mode standardized mass ratio of Category A when the small particle size side partition position is changed in the operating condition comparison test (small particle size side partition position) using the simulated raw soil which is an embodiment of the present invention. It is a figure which shows. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置)の処理速度と分級指標粒径との関係を示す図である。It is a figure which shows the relationship between the processing speed and the classification index particle diameter of the operation condition comparison test (small particle diameter side partition position) using the simulated raw soil which is an Example of this invention. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置)の小粒径側仕切位置を変えた時の区分Aの最頻値規格化質量率の変化を示す図である。The mode of the mode standardized mass ratio of Category A when the small particle size side partition position is changed in the operating condition comparison test (small particle size side partition position) using the simulated raw soil which is an embodiment of the present invention. It is a figure which shows. 本発明の実施例である模擬原土を用いた運転条件比較試験(小粒径側仕切位置)の小粒径側仕切位置と分級指標粒径との関係を示す図である。It is a figure which shows the relationship between the small particle size side partition position and the classification index particle diameter of the operation condition comparison test (small particle size side partition position) using the simulated raw soil which is an Example of this invention.

図1は、本発明の第1実施形態の磁力選別装置1の概略構成を示す図であり、(A)が側面図、(B)が正面図である。図2は、磁力選別装置1の回転ドラム11の構成図、図3は、固定治具66の構成及び回転ドラム11の磁石部18の位置を説明するための図である。図4は、選別装置31廻りの構成図であり、(A)が側面図、(B)が正面図、図5は、磁力選別装置1の供給装置71の先端部の構造を説明するための図である。図6は、本発明の第1実施形態の磁力選別装置1の被選別物201に作用する力を示す模式図である。 1A and 1B are views showing a schematic configuration of a magnetic force sorting apparatus 1 according to a first embodiment of the present invention, in which FIG. 1A is a side view and FIG. 1B is a front view. FIG. 2 is a configuration diagram of the rotary drum 11 of the magnetic force sorting device 1, and FIG. 3 is a diagram for explaining the configuration of the fixing jig 66 and the position of the magnet portion 18 of the rotary drum 11. 4A and 4B are configuration views around the sorting device 31, where FIG. 4A is a side view, FIG. 4B is a front view, and FIG. 5 is for explaining the structure of the tip of the supply device 71 of the magnetic force sorting device 1. It is a figure. FIG. 6 is a schematic diagram showing a force acting on the object to be sorted 201 of the magnetic force sorting device 1 of the first embodiment of the present invention.

磁力選別装置1は、ドラム回転式の磁選機10と磁選機10に被選別物を定量供給する供給装置71と、被選別物201を区分けする選別装置31と、磁選機10を支持する架台51とを備え、供給装置71を介して連続的に供給される、粉粒体状の汚染物と強磁性粉末及び/又は常磁性粉末とが混合されてなる被選別物201を連続的に選別し、被選別物201を3区分に選別する。なお本実施形態では、被選別物201を3区分に選別するが、仕切板32a、33bを3枚以上に増やし、被選別物201を4区分以上に選別することも可能である。 The magnetic separation device 1 includes a drum rotary type magnetic separator 10, a supply device 71 that quantitatively supplies the material to be sorted to the magnetic separator 10, a sorting device 31 that separates the material to be sorted 201, and a pedestal 51 that supports the magnetic separator 10. The object to be sorted 201, which is a mixture of a powdery contaminant and a ferromagnetic powder and / or a paramagnetic powder, which is continuously supplied via the supply device 71, is continuously sorted. , The object to be sorted 201 is sorted into 3 categories. In the present embodiment, the object to be sorted 201 is sorted into three categories, but it is also possible to increase the number of partition plates 32a and 33b to three or more and to sort the object to be sorted 201 into four or more categories.

磁選機10は、内側に磁石部18が配置された回転ドラム11を有する点において、公知のドラム回転式磁選機と同じであるが、本磁選機10は、磁石部18の位置を容易に変更可能な位置可変機構を備える。 The magnetic separator 10 is the same as a known drum rotary magnetic separator in that it has a rotary drum 11 in which a magnet portion 18 is arranged, but the magnetic separator 10 easily changes the position of the magnet portion 18. Equipped with a possible position variable mechanism.

回転ドラム11は、回転自在な円筒状の外側ドラム13と、外側ドラム13の内側に配置された円筒状の内側ドラム16とを含み、内側ドラム16は半円筒状の磁石が配置された磁石部18を有する。図1及び図3(A)では右半分が磁石部18である。 The rotary drum 11 includes a rotatable cylindrical outer drum 13 and a cylindrical inner drum 16 arranged inside the outer drum 13, and the inner drum 16 is a magnet portion in which a semi-cylindrical magnet is arranged. Has 18. In FIGS. 1 and 3A, the right half is the magnet portion 18.

外側ドラム13は、非磁性の円筒体であり、両サイドにフランジ部14及び回転軸15が設けられている。外側ドラム13は、回転軸15が軸受64で支持されケーシング21に回転自在に固定され、一方の回転軸15が駆動装置61と連結する(図1(B)参照)。 The outer drum 13 is a non-magnetic cylindrical body, and flange portions 14 and a rotating shaft 15 are provided on both sides of the outer drum 13. In the outer drum 13, the rotating shaft 15 is supported by the bearing 64 and rotatably fixed to the casing 21, and one rotating shaft 15 is connected to the drive device 61 (see FIG. 1 (B)).

内側ドラム16は、外径が外側ドラム13の内径よりも僅かに小さい円筒体であり、半円筒状の磁石部18を有する。回転ドラム11のうち磁石部18と近接する領域、図1においては右半分が磁場印加部となり、左半分が磁場無印加部となる。磁石部18は、永久磁石、電磁石のいずれであってもよい。 The inner drum 16 is a cylindrical body having an outer diameter slightly smaller than the inner diameter of the outer drum 13, and has a semi-cylindrical magnet portion 18. The region of the rotating drum 11 close to the magnet portion 18, in FIG. 1, the right half is the magnetic field application portion and the left half is the magnetic field non-application portion. The magnet portion 18 may be either a permanent magnet or an electromagnet.

内側ドラム16は、両側に回動軸17を備え、回動軸17の外周面に取付けられた軸受65が外側ドラム13の回転軸15の内側凹部に嵌め込まれた状態で取付けられている。回動軸17の一方は、ケーシング21から突出し、先端に内側ドラム16を回動させるためのハンドル19が設けられている(図2参照)。またケーシング21から突出した回動軸17に対して、回動軸17を固定する固定治具66が設けられている。本実施形態では固定治具66が主となり位置可変機構を構成する。 The inner drum 16 is provided with rotating shafts 17 on both sides, and the bearing 65 attached to the outer peripheral surface of the rotating shaft 17 is attached in a state of being fitted into the inner concave portion of the rotating shaft 15 of the outer drum 13. One of the rotating shafts 17 protrudes from the casing 21 and a handle 19 for rotating the inner drum 16 is provided at the tip thereof (see FIG. 2). Further, a fixing jig 66 for fixing the rotating shaft 17 to the rotating shaft 17 protruding from the casing 21 is provided. In the present embodiment, the fixing jig 66 is mainly used to form the position variable mechanism.

固定治具66は、回動軸17を覆う半割れの一対の締結具67と、締結具67を支持する一端がケーシング21に固定された一対の支持体68と、締結具67を締め込み又は緩めるための締結レバー69とを含む。このような固定治具66は、締結具67を締め込むと内側ドラム16の位置が固定され、締結具67を緩めると内側ドラム16を回動させることができる。 The fixing jig 66 tightens or tightens a pair of half-split fasteners 67 that cover the rotating shaft 17, a pair of supports 68 whose one end that supports the fasteners 67 is fixed to the casing 21, and the fasteners 67. Includes a fastening lever 69 for loosening. In such a fixing jig 66, the position of the inner drum 16 is fixed when the fastener 67 is tightened, and the inner drum 16 can be rotated by loosening the fastener 67.

内側ドラム16は、外側ドラム13と僅かな隙間を有した状態で同心上に配置され、さらに固定治具66が設けられているので外側ドラム13は、内側ドラム16と独立して回転させることができる。また内側ドラム16は、回転ドラム11の基線(鉛直線)に対する磁石部18の傾斜角度を0~θの範囲で変更可能なため(図3(B)参照)、被選別物201、特に微粒子の回転ドラム11からの離脱タイミングを変化させることができる。これにより粒径選別範囲を拡張することができる。なお回転ドラム11のケーシング21への取付け要領等は、本実施形態に限定されるものはない。 The inner drum 16 is arranged concentrically with the outer drum 13 with a slight gap, and since the fixing jig 66 is provided, the outer drum 13 can be rotated independently of the inner drum 16. can. Further, since the inner drum 16 can change the inclination angle of the magnet portion 18 with respect to the baseline (vertical line) of the rotating drum 11 in the range of 0 to θ 1 (see FIG. 3 (B)), the object to be sorted 201, particularly fine particles. The timing of withdrawal from the rotating drum 11 can be changed. This makes it possible to expand the particle size selection range. The procedure for attaching the rotary drum 11 to the casing 21 is not limited to this embodiment.

ケーシング21は、長方体形状を有し、底面を除く他の5面には板材が取付けられ壁が形成されている。ケーシング21は、安定に設置可能な脚53を有する架台51の上に固定されており、架台51により、ケーシング21の下方に選別装置31を設置するためのスペースが確保されている。 The casing 21 has a rectangular parallelepiped shape, and a plate material is attached to the other five surfaces except the bottom surface to form a wall. The casing 21 is fixed on a pedestal 51 having legs 53 that can be stably installed, and the pedestal 51 secures a space below the casing 21 for installing the sorting device 31.

ケーシング21の天井面22には、被選別物201の投入口23が設けられ、投入口23には、被選別物201を回転ドラム11の所定の位置に導くためのシュート24が設けられている。ケーシング21の底面は、全面開口し選別物202の排出口25となっている。シュート24は、供給装置71を介して定量供給される被選別物201を回転ドラム11の磁場印加部の上端近傍に供給するように設置されている。またシュート24は、回転ドラム11の幅方向に対して被選別物201を均等に供給すべく、幅が回転ドラム11の幅と同一となっている。 The ceiling surface 22 of the casing 21 is provided with an input port 23 for the object to be sorted 201, and the input port 23 is provided with a chute 24 for guiding the object to be sorted 201 to a predetermined position of the rotary drum 11. .. The bottom surface of the casing 21 is fully open to serve as a discharge port 25 for the sorted material 202. The chute 24 is installed so as to supply the object to be sorted 201, which is quantitatively supplied via the supply device 71, to the vicinity of the upper end of the magnetic field application portion of the rotary drum 11. Further, the chute 24 has the same width as the width of the rotary drum 11 in order to evenly supply the object to be sorted 201 in the width direction of the rotary drum 11.

選別装置31は、排出口25から落下する選別物202を落下位置に応じて3区分に区分けするものであり、排出口25の下方に配置されている。選別装置31は、2つの仕切板32a、32bと、各仕切板32a、32bをスライド自在に支持するリニアレール36とを有し、各仕切板32a、32bは、排出口25から落下する選別物202に対応し、位置を可変させることのできる可動構造となっている。この可動式の仕切板32a、32bは、区分けする粒径を変更可能な粒径可変機構として機能する。 The sorting device 31 divides the sorting object 202 that falls from the discharging port 25 into three categories according to the falling position, and is arranged below the discharging port 25. The sorting device 31 has two partition plates 32a and 32b and a linear rail 36 that slidably supports each of the partition plates 32a and 32b, and each of the partition plates 32a and 32b is a sorting object that falls from the discharge port 25. It corresponds to 202 and has a movable structure whose position can be changed. The movable partition plates 32a and 32b function as a particle size variable mechanism capable of changing the particle size to be divided.

仕切板32aは、上端を排出口25に臨ませる鉛直板33aと、鉛直板33aの下端に連結する傾斜板34aと、リニアレール36にスライド自在に係止する係止体35aとを含み構成される。鉛直板33aは、落下する選別物202を区分けする部材であり、傾斜板34aは、選別物202を分別回収槽38に送るシュートとして機能する。このため傾斜板34aは、鉛直板33aと連結する側が高くなるように設置されており、横断面形状がコ字状となっている。係止体35aは、板状の部材であり、鉛直板33aの両側面の端部に固定されている。 The partition plate 32a includes a vertical plate 33a whose upper end faces the discharge port 25, an inclined plate 34a connected to the lower end of the vertical plate 33a, and a locking body 35a which is slidably locked to the linear rail 36. Ru. The vertical plate 33a is a member that separates the falling sorting material 202, and the inclined plate 34a functions as a chute for sending the sorting material 202 to the separated collection tank 38. Therefore, the inclined plate 34a is installed so that the side connected to the vertical plate 33a is higher, and the cross-sectional shape is U-shaped. The locking body 35a is a plate-shaped member, and is fixed to the ends of both side surfaces of the vertical plate 33a.

リニアレール36は、真っ直ぐな細長い板状の部材であり、架台51の両側面の端部にそれぞれ1本、架台51の正面及び背面に架け渡すように取付けられている。仕切板32aは、鉛直板33aが2本のリニアレール36の間に、係止体35aがリニアレール36の上に載るようにリニアレール36に直交配置されている。これにより仕切板32aは、係止体35aを介してリニアレール36に係止し、リニアレール36上を左右(図1(A)における左側、右側)に移動することができる(図1(A)参照)。 The linear rail 36 is a straight elongated plate-shaped member, and is attached to the ends of both side surfaces of the gantry 51 so as to be bridged over the front and back of the gantry 51, respectively. The partition plate 32a is arranged orthogonally to the linear rail 36 so that the vertical plate 33a is placed between the two linear rails 36 and the locking body 35a is placed on the linear rail 36. As a result, the partition plate 32a can be locked to the linear rail 36 via the locking body 35a and can move left and right (left side and right side in FIG. 1A) on the linear rail 36 (FIG. 1 (A). )reference).

仕切板32bは、傾斜板34bの傾斜方向が、傾斜板34aの傾斜方向と逆向きとなっているが、仕切板32bの構造は、仕切板32aと同じである。 In the partition plate 32b, the inclined direction of the inclined plate 34b is opposite to the inclined direction of the inclined plate 34a, but the structure of the partition plate 32b is the same as that of the partition plate 32a.

以上のように構成される選別装置31は、仕切板32a及び/又は仕切板32bの位置を左右に移動させることで、区分A、区分B及び区分Nの大きさを簡単に変えることができる。仕切板32aを側面視において左に移動させることで区分Nを大きくすることが可能となり、これにより区分Nに非磁着物の他、磁着物の一部を回収することができる。また仕切板32aの鉛直板33aと仕切板32bの鉛直板33bとを接触させると、区分Bをなくし、区分Nと区分Aの2区分とすることもできる。 The sorting device 31 configured as described above can easily change the sizes of the division A, the division B, and the division N by moving the positions of the partition plates 32a and / or the partition plates 32b to the left and right. By moving the partition plate 32a to the left in the side view, it is possible to increase the size of the division N, so that the non-magnetic material and a part of the magnetic material can be collected in the division N. Further, when the vertical plate 33a of the partition plate 32a and the vertical plate 33b of the partition plate 32b are brought into contact with each other, the division B can be eliminated and the division can be divided into two divisions, the division N and the division A.

架台51は、ケーシング21の下方に選別装置31を設置し、さらに分別回収槽38を配置できる高さを有する、安定に設置可能な脚53を有する架台である。架台の天井面52は、ケーシング21の底面に合せて開口している。架台51の側面部には、正面側、背面側及び両側面側それぞれの上半分に透明、あるいは、不透明なパネル54が取付けられている。なおパネル54に透明なパネルを使用すれば動作状況が確認できるので好ましい。傾斜板34aの先端側は、正面側のパネル54の下から架台51の正面側に突出する。傾斜板34bの先端側は、背面側のパネル54の下から架台51の背面側に突出する。 The gantry 51 is a gantry having a leg 53 that can be stably installed and has a height at which a sorting device 31 is installed below the casing 21 and a separate collection tank 38 can be arranged. The ceiling surface 52 of the gantry is open so as to match the bottom surface of the casing 21. A transparent or opaque panel 54 is attached to the upper half of each of the front side, the back side, and both side surfaces on the side surface portion of the gantry 51. It is preferable to use a transparent panel for the panel 54 because the operating status can be confirmed. The tip end side of the inclined plate 34a projects from under the panel 54 on the front side toward the front side of the gantry 51. The tip end side of the inclined plate 34b projects from under the panel 54 on the back surface side toward the back surface side of the gantry 51.

駆動装置61は、回転ドラム11を回転させる装置であり、駆動モータ62、減速機63及び減速機63と回転ドラム11とを結ぶ回転伝達具を含む。減速機63は、減速比を可変可能な減速機であり、これにより回転ドラム11の回転数を可変させることができる。回転伝達具は、減速機63側のスプロケット(図示省略)、回転ドラム11側のスプロケット(図示省略)、これらを結ぶチェーンやドライブシャフト等(図示省略)で構成され、減速機63の回転を回転ドラム11に伝達する。 The drive device 61 is a device for rotating the rotary drum 11, and includes a drive motor 62, a speed reducer 63, and a rotation transmitter connecting the speed reducer 63 and the rotary drum 11. The speed reducer 63 is a speed reducer whose reduction ratio can be changed, whereby the rotation speed of the rotary drum 11 can be changed. The rotation transmitter is composed of a sprocket on the speed reducer 63 side (not shown), a sprocket on the rotating drum 11 side (not shown), a chain connecting these, a drive shaft, etc. (not shown), and rotates the rotation of the speed reducer 63. It is transmitted to the drum 11.

上記実施形態では、可変タイプの減速機63を用いて回転ドラム11の回転数を可変させるが、インバータモータを使用して回転ドラム11の回転数を可変させてもよい。また回転伝達具も、上記実施形態に限定されるものではない。 In the above embodiment, the rotation speed of the rotary drum 11 is varied by using the variable type speed reducer 63, but the rotation speed of the rotary drum 11 may be variable by using an inverter motor. Further, the rotation transmitter is not limited to the above embodiment.

本実施形態において磁選機10に被選別物201を連続的に定量供給する供給装置71は、振動フィーダー71である。振動フィーダー71は、被選別物ホッパー77の供給口の下側に配置されたトラフ72を振動させ、トラフ先端73から被選別物201をシュート24上に落下させ被選別物201を供給する装置である。 In the present embodiment, the supply device 71 that continuously and quantitatively supplies the material to be sorted 201 to the magnetic separator 10 is a vibration feeder 71. The vibration feeder 71 is a device that vibrates the trough 72 arranged under the supply port of the object hopper 77, drops the object 201 from the trough tip 73 onto the chute 24, and supplies the object 201. be.

本実施形態の振動フィーダー71は、基本構成は公知の振動フィーダーと特に変わりはないが、トラフ先端73の形状に特徴がある。従来の振動フィーダーのトラフ先端は、平面視において一直線であるが、本実施形態の振動フィーダー71は、トラフ72の先端部に平面視において三角歯状(鋸刃状)の板材74が取付けられている(図5参照)。 The basic configuration of the vibration feeder 71 of the present embodiment is not particularly different from that of a known vibration feeder, but the shape of the trough tip 73 is characteristic. The trough tip of the conventional vibration feeder is straight in a plan view, but in the vibration feeder 71 of the present embodiment, a triangular tooth-shaped (saw blade-shaped) plate 74 is attached to the tip of the trough 72 in a plan view. (See Fig. 5).

被選別物201が、磁性鉄粉が付着した土粒子のような場合、振動フィーダー71から排出される土粒子同士が結合肥大化し、2次粒子径が増加することがある。このような土粒子同士の結合による肥大化は、供給量が多いほど生じ易い。本実施形態の磁力選別装置1は、被選別物201を粒径により区分けしようとするものであるから、粒径の大きい被選別物に微細な被選別物が付着すると、本来、微細な区分に区分けされるはずであった微細な被選別物が粒径の大きい区分に区分けされ好ましくない。 When the object to be sorted 201 is like soil particles to which magnetic iron powder is attached, the soil particles discharged from the vibration feeder 71 may be bonded and enlarged, and the secondary particle diameter may increase. Such enlargement due to the binding of soil particles is more likely to occur as the supply amount increases. Since the magnetic force sorting device 1 of the present embodiment attempts to classify the object to be sorted 201 according to the particle size, if the object to be sorted adheres to the object to be sorted having a large particle size, it is originally classified into the fine items. The fine objects to be sorted, which should have been classified, are classified into categories having a large particle size, which is not preferable.

平面視において三角歯状の板材74は、平面視において一直線の板材に比較して周辺長が長い。このような板材74が先端部に取付けられてなるトラフ72から被選別物201を落下させると、被選別物201とトラフ72との接触面積が大きいため被選別物201は広く分散した状態で落下する。これにより被選別物201は薄層化され、粒子同士がかい離した状態で磁選機10に供給される。 The triangular tooth-shaped plate material 74 in a plan view has a longer peripheral length than a straight plate material in a plan view. When the object to be sorted 201 is dropped from the trough 72 having such a plate material 74 attached to the tip portion, the object to be sorted 201 falls in a widely dispersed state because the contact area between the object to be sorted 201 and the trough 72 is large. do. As a result, the object to be sorted 201 is thinned and supplied to the magnetic separator 10 in a state where the particles are separated from each other.

以上のように本実施形態の振動フィーダー71は、トラフ72の先端部に取付けられた三角歯状の板材74が被選別物201を薄層化する薄層化手段として作用するため、供給量が多い場合であっても分級性能を高く維持することができる。 As described above, the vibration feeder 71 of the present embodiment has a supply amount because the triangular tooth-shaped plate material 74 attached to the tip of the trough 72 acts as a thinning means for thinning the material to be sorted 201. Even if there are many cases, the classification performance can be maintained high.

本実施形態の振動フィーダー71における三角歯状の板材74は、被選別物201を落下させるとき被選別物201とトラフ72(板材74)との接触面積を大きくすることにより被選別物201を薄層化し、粒子同士のかい離を促進させるものであるから、平面視において周辺長の長い板材であれば三角歯状の板材74以外であってもよい。平面視において周辺長の長い板材としては、平面視において櫛歯状の板材、波形の板材、台形の板材が挙げられる(図5(B)参照)。 The triangular tooth-shaped plate material 74 in the vibration feeder 71 of the present embodiment thins the material to be sorted 201 by increasing the contact area between the material to be sorted 201 and the trough 72 (plate material 74) when the material to be sorted 201 is dropped. Since it is stratified and promotes separation between particles, a plate material having a long peripheral length in a plan view may be a plate material other than the triangular tooth-shaped plate material 74. Examples of the plate material having a long peripheral length in the plan view include a comb-shaped plate material, a corrugated plate material, and a trapezoidal plate material in the plan view (see FIG. 5B).

本実施形態の振動フィーダー71では、トラフ72の先端部に三角歯状の板材74が取付けられているが、トラフ先端73の形状を三角歯状(鋸刃状)、櫛歯状、波形、台形としてもよい。以上のような薄層化手段は、振動フィーダーに限らずベルトフィーダー等にも適用することができる。供給装置71がベルトフィーダーであれば被選別物201の落下口となるベルトの先端部に、幅方向一杯に三角歯状の板材74を取付ければよい。 In the vibration feeder 71 of the present embodiment, the triangular tooth-shaped plate 74 is attached to the tip of the trough 72, but the shape of the trough tip 73 is triangular (saw blade-shaped), comb-toothed, corrugated, or trapezoidal. May be. The thinning means as described above can be applied not only to the vibration feeder but also to the belt feeder and the like. If the feeder 71 is a belt feeder, a triangular tooth-shaped plate 74 may be attached to the tip of the belt, which is the drop port of the object to be sorted 201, in the full width direction.

振動フィーダー71のトラフ先端73又は板材74の先端から落下する被選別物201は、斜面であるシュート24を滑落し回転ドラム11に達する。シュート24を滑落する距離が長い場合、摩擦係数の大きい小粒子分が傾斜面に滞留しがちとなり、これを巻き込むように大粒子分が滑落すると粒子同士の分離が悪化する可能性がある。よって振動フィーダー71のトラフ先端73又は板材74先端と回転ドラム11との距離を可能な限り短くすることが好ましい。 The object 201 to be sorted, which falls from the trough tip 73 of the vibration feeder 71 or the tip of the plate material 74, slides down the chute 24 on the slope and reaches the rotary drum 11. When the distance that the chute 24 slides down is long, small particles having a large friction coefficient tend to stay on the inclined surface, and if the large particles slide down so as to entrain them, the separation between the particles may deteriorate. Therefore, it is preferable to make the distance between the trough tip 73 or the plate 74 tip of the vibration feeder 71 and the rotary drum 11 as short as possible.

磁力選別装置1で選別可能な被選別物201は、基本的に磁着物と非磁着物との混合物であればよく、特定の被選別物201に限定されるものではない。被選別物201としては、粉粒体状の汚染物と強磁性粉末及び/又は常磁性粉末との混合物が挙げられる。強磁性粉末等と粉粒体状の汚染物とを混合すると、汚染物の表面に強磁性粉末等が吸着し、これら混合物は、汚染物の粒径等により磁着物と非磁着物とになる。 The object to be sorted 201 that can be sorted by the magnetic force sorting device 1 is basically a mixture of a magnetic substance and a non-magnetic object, and is not limited to the specific object to be sorted 201. Examples of the object to be sorted 201 include a mixture of a granular material-like contaminant and a ferromagnetic powder and / or a paramagnetic powder. When a ferromagnetic powder or the like and a granular material-like contaminant are mixed, the ferromagnetic powder or the like is adsorbed on the surface of the contaminant, and the mixture becomes a magnetic or non-magnetic particle depending on the particle size of the contaminant. ..

粉粒体状の汚染物としては、汚染物質が重金属、ダイオキシン類、PCB、農薬など残留性有機汚染物質(POPs)、放射性物質等であり、汚染物として前記汚染物質に汚染された土壌、焼却灰、瓦礫、廃プラスチック、木くず、さらにはこれらの混合物が挙げられる。放射性物質も特定の物質に限定されるものではなく、セシウムCs、プルトニウムPu、ウランU、ラジウムRaなど幅広い放射性物質を対象とすることができる。 As the pollutants in the form of powders, the pollutants are heavy metals, dioxin, PCBs, residual organic pollutants (POPs) such as pesticides, radioactive substances, etc., and the pollutants are soil contaminated with the pollutants and incineration. Examples include ash, rubble, waste plastic, wood chips, and even mixtures thereof. The radioactive substance is not limited to a specific substance, and a wide range of radioactive substances such as cesium Cs, plutonium Pu, uranium U, and radium Ra can be targeted.

強磁性粉末としてはFe-Ni合金,Fe-Co合金,Ni-Co合金,ステンレス(Fe-Ni-Cr),Mn-Al磁石,サマリウム磁石,ネオジウム磁石,マグネタイト,マグヘマタイト,Baフェライト等の粉末が挙げられる。常磁性粉末としては、アルミニウム,三酸化二クロム,酸化コバルト,一酸化鉄,水酸化第一鉄,ウスタイト,含水酸化鉄(δ以外)等の粉末が挙げられる。中でも酸化鉄を主成分とする強磁性粉末が好ましく、マグネタイト粉末がより好ましい。 As the ferromagnetic powder, powders such as Fe-Ni alloy, Fe-Co alloy, Ni-Co alloy, stainless steel (Fe-Ni-Cr), Mn-Al magnet, samarium magnet, neodium magnet, magnetite, maghematite, and Ba ferrite. Can be mentioned. Examples of the paramagnetic powder include powders such as aluminum, dichromium trioxide, cobalt oxide, iron monoxide, ferrous hydroxide, wustite, and iron hydroxide-containing (other than δ). Of these, a ferromagnetic powder containing iron oxide as a main component is preferable, and magnetite powder is more preferable.

以下に、強磁性粉末が汚染物に吸着する想定メカニズムを、汚染物を土壌として説明する。土壌は、同形置換効果により土壌表面が負に帯電しているため、土壌表面には正電荷をもつカチオンが集積している。このような状況下、負に帯電した強磁性粉末を添加すると、カチオン周辺に吸着し、結果として土壌に吸着する。電荷量が多ければカチオンと強く吸着することになる。一方で、自身の電荷反発及び土壌表層電荷との静電反発により、負の荷電量が多くなればなるほど分散力が増し、土壌表層に均一に拡散しようとする。 The hypothetical mechanism by which the ferromagnetic powder is adsorbed on the pollutant will be described below with the pollutant as soil. Since the soil surface is negatively charged due to the homomorphic substitution effect, positively charged cations are accumulated on the soil surface. Under such circumstances, when a negatively charged ferromagnetic powder is added, it is adsorbed around the cation, and as a result, it is adsorbed on the soil. If the amount of charge is large, it will be strongly adsorbed to the cation. On the other hand, due to its own charge repulsion and electrostatic repulsion with the soil surface layer charge, the larger the amount of negative charge, the greater the dispersion force and the more it tries to diffuse uniformly to the soil surface layer.

次に図6を用いて、回転ドラム11上で被選別物201に作用する力について説明する。ここでは汚染物が土壌粒子、強磁性粉末がマグネタイト粉末とし、これら混合物を被選別物201として説明する。 Next, with reference to FIG. 6, the force acting on the object to be sorted 201 on the rotary drum 11 will be described. Here, the contaminant is soil particles, the ferromagnetic powder is magnetite powder, and a mixture thereof will be described as the subject 201.

回転している回転ドラム11上に落下した被選別物201は、表面に強磁性粉末であるマグネタイトが付着しているため、回転ドラム11の磁場印加領域では、外部磁場Hより誘起される磁気力Mにより回転ドラム(外側ドラム)表面12に貼り付こうとする。また被選別物201には磁気力Mと反対方向に垂直抗力Nと遠心力Cが作用する。また被選別物201には、鉛直方向に重力Gが作用し、さらに回転ドラム表面12との間に摩擦力Fが作用する。摩擦力Fは、回転ドラム11の回転方向とは逆向きである。 Since magnetite, which is a ferromagnetic powder, adheres to the surface of the object to be sorted 201 that has fallen onto the rotating rotating drum 11, the magnetic force induced by the external magnetic field H in the magnetic field application region of the rotating drum 11. It tries to be attached to the surface 12 of the rotating drum (outer drum) by M. Further, a normal force N and a centrifugal force C act on the object to be sorted 201 in the direction opposite to the magnetic force M. Further, the gravity G acts on the object to be sorted 201 in the vertical direction, and a frictional force F acts on the object to be sorted 201 with the rotating drum surface 12. The frictional force F is in the direction opposite to the rotation direction of the rotating drum 11.

被選別物201に作用する力のうち、磁気力Mと摩擦力Fとは被選別物201を回転ドラム表面12上に止め置く方向に作用し、逆に遠心力Cと重力G(但しθ<0)とは、被選別物201を回転ドラム表面12から引き離す方向に作用する。被選別物201はこれらのバランスより回転ドラム表面12に貼り付く。 Of the forces acting on the object to be sorted 201, the magnetic force M and the frictional force F act in the direction of holding the object to be sorted 201 on the surface 12 of the rotating drum, and conversely, the centrifugal force C and the gravity G (however θ <. 0) means that the object to be sorted 201 acts in a direction of pulling away from the surface 12 of the rotating drum. The object 201 to be sorted adheres to the surface 12 of the rotating drum due to these balances.

回転ドラム表面12上の被選別物201の水平からの仰角をθ、摩擦係数をμとすると、図6においてドラム中心点線方向の力のつり合いは、式(1)~(2)で示される。またドラム中心点線方向に垂直方向の力のつり合いは、式(3)~(5)で示される。 Assuming that the elevation angle of the object 201 on the rotating drum surface 12 from the horizontal is θ and the friction coefficient is μ, the balance of forces in the direction of the dotted line at the center of the drum in FIG. 6 is represented by the equations (1) and (2). The balance of forces in the direction perpendicular to the dotted line of the center of the drum is represented by the equations (3) to (5).

Figure 0007038372000001
Figure 0007038372000001

式(1)が成立する仰角θで丁度つり合い(分別閾値θ;-90°<θ<90°)、θがこれよりも小さくなると被選別物201は、回転ドラム表面12から滑り落ちる。被選別物201に作用する力の大きさは、被選別物201の磁着特性により異なり、分別閾値θも被選別物201により異なる。また被選別物201に作用する力の大きさは、磁力選別装置1の運転条件、磁力選別装置1の装置特性によっても変化する。 When the elevation angle θ at which the equation (1) holds is just balanced (separation threshold value θ T ; −90 ° <θ T <90 °) and θ becomes smaller than this, the object to be sorted 201 slides off the rotating drum surface 12. The magnitude of the force acting on the object to be sorted 201 differs depending on the magnetism characteristics of the object to be sorted 201, and the sorting threshold value θ T also differs depending on the object to be sorted 201. Further, the magnitude of the force acting on the object to be sorted 201 also changes depending on the operating conditions of the magnetic force sorting device 1 and the device characteristics of the magnetic force sorting device 1.

被選別物201の磁着特性としては、被選別物201の粒径、形状、比重、含水率、マグネタイトの付着量、表面帯電状態がある。 The magnetizing characteristics of the object to be sorted include the particle size, shape, specific gravity, water content, amount of magnetite adhered, and the surface charged state of the object to be sorted 201.

先に述べたように重力はsinθ>0、すなわちθ>0°である限り回転ドラム表面12に押し付けるように作用する。θ<0においては、引き離す力になるので回転ドラム表面12から被選別物201を引き離すことに寄与する。また遠心力Cは、回転ドラム11の半径をR、被選別物201の速度をV、被選別物201の質量をMとすると、式(6)が成立し、質量Mが大きいと回転ドラム表面12から剥離し易くなる。 As mentioned above, gravity acts to press against the rotating drum surface 12 as long as sin θ> 0, that is, θ> 0 °. When θ <0, it becomes a pulling force, which contributes to pulling the object to be sorted 201 away from the rotating drum surface 12. As for the centrifugal force C, if the radius of the rotating drum 11 is R, the velocity of the object to be sorted 201 is V, and the mass of the object to be sorted 201 is M 0 , the equation (6) holds, and if the mass M 0 is large, the centrifugal force C rotates. It becomes easy to peel off from the drum surface 12.

Figure 0007038372000002
Figure 0007038372000002

一般的に粒径の小さい粒子は、質量Mが小さいが、強磁性粉末の付着量も少なく、磁気力Mも小さくなる。粒子を球形と仮定し、その半径をrとすると表面積は半径rの2乗に比例し、体積は半径rの3乗に比例する。マグネタイト粉末は、土壌粒子に付着し易く、土壌粒子の表面積に比例して付着するものと考えられるため、マグネタイト粉末の付着量∝磁着力は、粒子半径rの2乗に比例し、粒子の質量Mは、半径rの3乗に比例する。磁着力は、粒径rのおおよそ2乗に比例するが、θ<0のときの引き剥がしに作用する重力は粒径rの3乗に比例して大きくなるので、粒径rが大きくなると磁着力より重力による剥離の効果が大きくなる。 Generally, a particle having a small particle size has a small mass M 0 , but a small amount of adhered ferromagnetic powder and a small magnetic force M. Assuming that the particles are spherical and the radius is r, the surface area is proportional to the square of the radius r and the volume is proportional to the cube of the radius r. Since the magnetite powder easily adheres to the soil particles and is considered to adhere in proportion to the surface area of the soil particles, the adhesion amount ∝ magnetic attachment force of the magnetite powder is proportional to the square of the particle radius r and the mass of the particles. M 0 is proportional to the cube of the radius r. The magnetic force is proportional to the square of the particle size r, but the gravity acting on the peeling when θ <0 increases in proportion to the cube of the particle size r, so that the magnetism increases as the particle size r increases. The effect of peeling due to gravity is greater than the force of application.

以上のことから、被選別物201の粒径及び比重に関しては、それらが大きい程、回転ドラム11の下半分ではこれから外れ落下し易くなる。マグネタイト粉末の付着量に関しては、付着量が多いほど磁気力Mが大きくなり、回転ドラム表面12から外れ難くなる。粒径の小さい被選別物201ほど自重が軽く、単位重量当たりのマグネタイト粉末の付着量が多くなるため回転ドラム表面12から外れ難くなる。逆に粒径が大きくなるに従って自重が重くなり、さらに単位重量当たりのマグネタイトの付着量が少なくなるため回転ドラム表面12から外れ易くなる。被選別物201の形状、含水率及び表面帯電状態は、摩擦力Fに影響を与える。 From the above, regarding the particle size and specific gravity of the object to be sorted 201, the larger they are, the easier it is for the lower half of the rotating drum 11 to come off and fall. Regarding the amount of magnetite powder adhered, the larger the adhered amount, the larger the magnetic force M, and the more difficult it is to come off from the rotating drum surface 12. The smaller the particle size of the object to be sorted 201, the lighter its own weight, and the larger the amount of magnetite powder attached per unit weight, so that it is difficult to remove from the rotating drum surface 12. On the contrary, as the particle size increases, the weight becomes heavier, and the amount of magnetite adhered per unit weight decreases, so that the magnetite easily comes off from the rotating drum surface 12. The shape, water content, and surface charge state of the object to be sorted 201 affect the frictional force F.

磁力選別装置1の運転条件としては、回転ドラム11の回転数及び被選別物201の供給速度(処理速度)がある。回転ドラム11の回転数は、回転数を上げるほど遠心力Cが大きくなり、被選別物201は、回転ドラム表面12から外れ易くなる。被選別物201の供給速度は、回転ドラム11上の被選別物201の厚さに反映される。つまり被選別物201の供給速度が大きい程、回転ドラム11上の被選別物201の厚さは厚くなる。回転ドラム11上の被選別物201の厚さが厚くなると、上面側の被選別物201は、回転ドラム表面12との距離が大きくなり磁気力Mが作用し難くなり、結果、上面側の被選別物201は、回転ドラム表面12から外れ易くなる。 The operating conditions of the magnetic force sorting device 1 include the rotation speed of the rotating drum 11 and the supply speed (processing speed) of the object to be sorted 201. As for the rotation speed of the rotating drum 11, the centrifugal force C increases as the rotation speed increases, and the object to be sorted 201 easily comes off from the rotating drum surface 12. The supply speed of the object to be sorted 201 is reflected in the thickness of the object to be sorted 201 on the rotating drum 11. That is, the higher the supply speed of the object to be sorted 201, the thicker the thickness of the object to be sorted 201 on the rotating drum 11. When the thickness of the object to be sorted 201 on the rotating drum 11 becomes thicker, the distance between the object to be sorted 201 on the upper surface side and the surface 12 of the rotating drum becomes larger, and the magnetic force M becomes difficult to act on the object to be sorted. The sorting object 201 is likely to come off from the rotating drum surface 12.

次に回転ドラム11の回転速度と推定される回転ドラム11から離れ放出される粒子の軌跡との関係を説明する。図7は、磁力選別装置1の回転ドラム11から離れ放出される粒子の推定される軌跡を説明するための模式図である。ここで磁石部18の傾斜角度θ=0°とする。 Next, the relationship between the rotation speed of the rotating drum 11 and the locus of particles emitted away from the estimated rotating drum 11 will be described. FIG. 7 is a schematic diagram for explaining an estimated locus of particles emitted away from the rotating drum 11 of the magnetic force sorting device 1. Here, the inclination angle θ 1 of the magnet portion 18 is 0 °.

回転ドラム11から離れ放出される粒子の推定される軌跡は、仮定1:空気抵抗は無視できる、仮定2:回転ドラム11へ投下された粒子は、回転ドラム11上をドラム回転速度と同じ速度で移動する(回転ドラム11上の滑り、転がりを無視する)とすると、式(7)~式(12)で示される。回転ドラム11から離れ放出される粒子の推定される軌跡は、式(7)~式(12)で示されるように回転ドラム11の回転速度vの影響を受ける。 The estimated trajectory of the particles emitted away from the rotating drum 11 is Assumption 1: Air resistance is negligible, Assumption 2: Particles dropped on the rotating drum 11 are placed on the rotating drum 11 at the same speed as the drum rotation speed. Assuming that the particles move (ignoring slipping and rolling on the rotating drum 11), they are represented by equations (7) to (12). The estimated locus of the particles emitted away from the rotating drum 11 is affected by the rotational speed v of the rotating drum 11 as shown by the equations (7) to (12).

Figure 0007038372000003
Figure 0007038372000003

図8及び図9は、回転ドラム11から離れ放出される粒子の推定される軌跡と回転ドラム11の回転速度vとの関係を示す図である。ここで磁石部18の傾斜角度θ=0°とする。図8及び図9において、回転ドラム11から離れ放出される粒子の推定される軌跡は、式(7)~式(12)を用いて算出している。図8及び図9に示されるように回転ドラム11の回転速度vが上昇するに従って、同一高さh(m)における粒子の軌跡が広がる。これにより回転ドラム11の回転速度vを変更することで、区分けする粒子の粒径を変更することができる。図8及び図9は、計算により算出された粒子の推定される軌跡の一例であり、図8及び図9に示す数値に限定されるものではない。 8 and 9 are diagrams showing the relationship between the estimated locus of particles emitted away from the rotating drum 11 and the rotational speed v of the rotating drum 11. Here, the inclination angle θ 1 of the magnet portion 18 is 0 °. In FIGS. 8 and 9, the estimated loci of the particles emitted away from the rotating drum 11 are calculated using the equations (7) to (12). As shown in FIGS. 8 and 9, as the rotation speed v of the rotating drum 11 increases, the trajectory of the particles at the same height h (m) expands. Thereby, by changing the rotation speed v of the rotating drum 11, the particle size of the particles to be divided can be changed. 8 and 9 are examples of estimated trajectories of particles calculated by calculation, and are not limited to the numerical values shown in FIGS. 8 and 9.

また回転ドラム11の回転速度vを大きくすると、粒子粒径の空間分布幅が広がるため、分級粒径閾値の分解能を細かく設定することができる。特に、磁力選別装置1は、仕切板32a及び/又は仕切板32bの位置を左右に移動させることで、区分N、区分B及び区分Aの大きさを簡単に変えることができる選別装置31を備えるので、回転ドラム11の回転速度vを大きくして使用すれば、被選別物(汚染物)を所望の濃度に容易に選別することができる。 Further, when the rotation speed v of the rotating drum 11 is increased, the spatial distribution width of the particle size is widened, so that the resolution of the classification particle size threshold can be finely set. In particular, the magnetic force sorting device 1 includes a sorting device 31 that can easily change the sizes of the division N, the division B, and the division A by moving the positions of the partition plate 32a and / or the partition plate 32b to the left and right. Therefore, if the rotation speed v of the rotary drum 11 is increased and used, the object to be sorted (contaminant) can be easily sorted to a desired concentration.

磁力選別装置1の装置特性としては、磁選機10の磁石部18の位置及びドラム表面の磁束密度がある。 The device characteristics of the magnetic separation device 1 include the position of the magnet portion 18 of the magnetic separator 10 and the magnetic flux density on the drum surface.

磁選機10の磁石部18は、半円筒形であり、その磁石部18の終着端では急激に磁束密度が低下する。回転ドラム11の基線(鉛直線)からの傾斜角度θ(図3(B)参照)を変更することにより、被選別物201が回転ドラム11の最下点付近を通過する際、同一空間座標位置に対して磁束密度を変化させることができる。これにより被選別物201の回転ドラム11からの離脱位置を調整することができ、選別装置31による粒径選別範囲を拡張することができる。 The magnet portion 18 of the magnetic separator 10 has a semi-cylindrical shape, and the magnetic flux density drops sharply at the terminal end of the magnet portion 18. By changing the inclination angle θ 1 (see FIG. 3B) from the baseline (vertical line) of the rotating drum 11, the objects to be sorted 201 pass near the lowest point of the rotating drum 11 and have the same spatial coordinates. The magnetic flux density can be changed with respect to the position. As a result, the position of the object to be sorted 201 detached from the rotating drum 11 can be adjusted, and the particle size sorting range by the sorting device 31 can be expanded.

被選別物201の磁着比率は、回転ドラム表面12の磁束密度に比例して増加する。磁石部18に電磁石を使用し、ドラム表面の磁束密度を調節することで被選別物201の磁着比率を制御することができる。また外側ドラム13の材質、表面状態も被選別物201の磁着に影響を与える。 The magnetism ratio of the object to be sorted 201 increases in proportion to the magnetic flux density of the rotating drum surface 12. An electromagnet is used for the magnet portion 18, and the magnetic flux density of the drum surface can be adjusted to control the magnetic adhesion ratio of the object to be sorted 201. Further, the material and surface condition of the outer drum 13 also affect the magnetism of the object to be sorted 201.

以上のように回転ドラム表面12において被選別物201に作用する力は、被選別物201の性状、磁力選別装置1の運転条件、磁力選別装置1の装置特性等によって異なるため、回転ドラム11の表面磁束密度、被選別物201の供給速度、回転ドラム11の回転速度、磁選機10の磁石部18の位置(傾斜角度θ)、土壌粒子とマグネタイト粉末との混合割合、土壌粒子の含水率のうち、少なくとも1つを調節することで、被選別物201の落下位置を調節することができる。 As described above, the force acting on the object to be sorted 201 on the surface of the rotating drum 12 differs depending on the properties of the object to be sorted 201, the operating conditions of the magnetic force sorting device 1, the device characteristics of the magnetic force sorting device 1, and the like. Surface magnetic flux density, supply speed of object 201, rotation speed of rotary drum 11, position of magnet portion 18 of magnetic separator 10 (tilt angle θ 1 ), mixing ratio of soil particles and magnetite powder, water content of soil particles By adjusting at least one of them, the drop position of the object to be sorted 201 can be adjusted.

次に、放射性物質汚染土壌とマグネタイト粉末との混合物を被選別物201として磁力選別装置1の動作を説明する。ここで、放射性物質汚染土壌とマグネタイトとの混合物のうち、放射性物質汚染土壌の表面にマグネタイト粉末が付着しているものを磁気土粒子と呼ぶ。 Next, the operation of the magnetic force sorting device 1 will be described with a mixture of radioactively contaminated soil and magnetite powder as the object to be sorted 201. Here, among the mixtures of radioactive material-contaminated soil and magnetite, those in which the magnetite powder adheres to the surface of the radioactive material-contaminated soil are referred to as magnetic soil particles.

混合装置を用いて十分に混合された放射性物質汚染土壌とマグネタイト粉末との混合物は、被選別物ホッパー77に充填された後、振動フィーダー71を介して磁選機10に連続的に定量供給される。 The mixture of the radioactively contaminated soil and the magnetite powder sufficiently mixed using the mixing device is filled in the material hopper 77 to be sorted and then continuously quantitatively supplied to the magnetic separator 10 via the vibration feeder 71. ..

シュート24を通じて、回転している回転ドラム11上の磁場印加部の上端に落下した被選別物201のうち、粒径のかなり大きい磁気土粒子、あるいはマグネタイト粉末が付着し損ねた汚染土壌は、仰角(図6参照)が0°<θ<90°の範囲で回転ドラム11上を滑落する。これら粒子は、選別装置31の仕切板32aで仕切られる区分Nで回収される。 Among the objects to be sorted 201 that fell to the upper end of the magnetic field application portion on the rotating rotating drum 11 through the chute 24, the contaminated soil to which the magnetic soil particles having a considerably large particle size or the magnetite powder failed to adhere is the elevation angle. (See FIG. 6) slides down on the rotating drum 11 in the range of 0 ° <θ <90 °. These particles are collected in the category N partitioned by the partition plate 32a of the sorting device 31.

粒径が中程度の磁気土粒子は、仰角θ<0°にて回転ドラム表面12から脱着分離し、放射線状に落下し、区分Bで回収される。粒径が小さい磁気土粒子は、回転ドラム11の磁場印加部端仰角θ≒-90°にて回転ドラム表面12から脱着分離し、放射線状に落下し、区分Aで回収される。 The magnetic soil particles having a medium particle size are desorbed and separated from the rotating drum surface 12 at an elevation angle θ <0 °, fall in a radial pattern, and are collected in Category B. The magnetic soil particles having a small particle size are desorbed and separated from the surface of the rotating drum 12 at an elevation angle θ≈−90 ° at the end of the magnetic field application portion of the rotating drum 11, fall in a radial pattern, and are collected in Category A.

放射性物質汚染土壌は、粒径の小さいものほど汚染濃度が高いことが知られている(例えば特開2013-242210号公報、表1)。上記のように粒径の小さい放射性物質汚染土壌は、区分Aに、粒径の大きい放射性物質汚染土壌は、区分Nに、その中間の粒径の放射性物質汚染土壌は区分Bに回収されるため、放射性物質汚染土壌の濃縮、除染等を行うことができる。なお上記実施形態では、選別装置31が区分けする区分数を3としたが、区分数を4以上とすることも可能であり、これにより放射性物質汚染土壌の濃縮、除染等をより適切に行うことができる。 It is known that the smaller the particle size of the radioactive material-contaminated soil, the higher the contamination concentration (for example, Japanese Patent Application Laid-Open No. 2013-242210, Table 1). As described above, the soil contaminated with radioactive substances having a small particle size is collected in Category A, the soil contaminated with radioactive substances having a large particle size is collected in Category N, and the soil contaminated with radioactive substances having an intermediate particle size is collected in Category B. , Concentrate and decontaminate soil contaminated with radioactive substances. In the above embodiment, the number of divisions divided by the sorting device 31 is 3, but the number of divisions can be 4 or more, whereby the soil contaminated with radioactive substances can be concentrated and decontaminated more appropriately. be able to.

放射性物質汚染土壌以外の汚染物であっても、汚染物質が主として粉粒体状の固体表面に固着、吸着又は付着した汚染物は、通常、粒径の小さい物ほど汚染物質の濃度が高くなる。このような汚染物も放射性物質汚染土壌と同様に濃縮、除染等を行うことができる。 Even if the pollutants are other than radioactive soil, the pollutants that are mainly adhered to, adsorbed or adhered to the solid surface in the form of powders have a higher concentration of the pollutants as the particle size is smaller. .. Such pollutants can also be concentrated and decontaminated in the same manner as soil contaminated with radioactive substances.

上記のように第1実施形態の磁力選別装置1は、選別物の落下位置に対応し選別物を3区分以上に区分けすることができるので、汚染物の濃度に対応した選別を行うことができる。また汚染物の性状、例えば比重、含水率が変化しても選別装置である仕切板32a、32bの位置を可変可能なため汚染物を所望の濃度に区分けすることができ、さらに被選別物201の供給速度、回転ドラム11の回転速度、磁選機10の磁石部18の位置等を調節することで汚染物を所望の濃度に選別することができる。 As described above, the magnetic force sorting device 1 of the first embodiment can classify the sorted object into three or more categories according to the drop position of the sorted object, and thus can perform sorting according to the concentration of the contaminant. .. Further, since the positions of the partition plates 32a and 32b, which are sorting devices, can be changed even if the properties of the contaminants, for example, the specific gravity and the water content, change, the contaminants can be classified into desired concentrations, and the contaminant 201 By adjusting the supply speed, the rotation speed of the rotating drum 11, the position of the magnet portion 18 of the magnetic separator 10, and the like, contaminants can be sorted to a desired concentration.

第1実施形態の磁力選別装置1では、磁選機10の内側ドラム16の位置をハンドル19を用いて変更可能に構成されているが、回動軸回転用のギヤ装着モータ(図示省略)を取付け、当該モータを用いて内側ドラム16を回転させ磁石部18の位置を変更させるようにしてもよい。 The magnetic force sorting device 1 of the first embodiment is configured so that the position of the inner drum 16 of the magnetic separator 10 can be changed by using the handle 19, but a gear mounting motor (not shown) for rotating the rotating shaft is attached. The motor may be used to rotate the inner drum 16 to change the position of the magnet portion 18.

図10は、本発明の第2実施形態の磁力選別装置2の概略構成を示す図であり、(A)が側面図、(B)が正面図である。図11は、本発明の第2実施形態の磁力選別装置2の選別装置41廻りの構成図である。図1から図5に示す第1実施形態の磁力選別装置1と同一の構成には、同一の符号を付して説明を省略する。 10A and 10B are views showing a schematic configuration of a magnetic force sorting apparatus 2 according to a second embodiment of the present invention, in which FIG. 10A is a side view and FIG. 10B is a front view. FIG. 11 is a configuration diagram of the magnetic force sorting device 2 of the second embodiment of the present invention around the sorting device 41. The same configurations as those of the magnetic force sorting apparatus 1 of the first embodiment shown in FIGS. 1 to 5 are designated by the same reference numerals, and the description thereof will be omitted.

本発明の第2実施形態の磁力選別装置2の基本構成は、本発明の第1実施形態の磁力選別装置1と同じであるが、選別装置41の構造が異なる。選別装置41は、選別装置31と同様に、排出口25から落下する選別物202を落下位置に応じて3区分に区分けするものであり、機能は選別装置31と同じである。 The basic configuration of the magnetic force sorting device 2 of the second embodiment of the present invention is the same as that of the magnetic force sorting device 1 of the first embodiment of the present invention, but the structure of the sorting device 41 is different. Similar to the sorting device 31, the sorting device 41 divides the sorting object 202 falling from the discharge port 25 into three categories according to the falling position, and has the same function as the sorting device 31.

選別装置41も選別装置31と同じく排出口25の下方に配置されている。選別装置41も選別装置31と同様に、2つの仕切板42a、42bと、各仕切板42a、42bをスライド自在に支持するリニアレール36とを有する。各仕切板42a、42bは、排出口25から落下する選別物202に対応し、位置を可変させることのできる可動構造となっており、区分けする粒径を変更可能な粒径可変機構として機能する。 The sorting device 41 is also arranged below the discharge port 25 like the sorting device 31. Similar to the sorting device 31, the sorting device 41 also has two partition plates 42a and 42b and a linear rail 36 that slidably supports the partition plates 42a and 42b. Each of the partition plates 42a and 42b has a movable structure that can change the position corresponding to the sorting material 202 that falls from the discharge port 25, and functions as a particle size variable mechanism that can change the particle size to be divided. ..

仕切板42aは、仕切板32aと同じく上端を排出口25に臨ませる鉛直板33aを有し、仕切板42bは、仕切板32bと同じく上端を排出口25に臨ませる鉛直板33bを有する。仕切板42a、42bも選別装置31と同様に、係止体35a、35bを有し、係止体35a、35bが鉛直板33a、33bの両側面の端部に固定されている。 The partition plate 42a has a vertical plate 33a whose upper end faces the discharge port 25 like the partition plate 32a, and the partition plate 42b has a vertical plate 33b whose upper end faces the discharge port 25 like the partition plate 32b. Similar to the sorting device 31, the partition plates 42a and 42b also have the locking bodies 35a and 35b, and the locking bodies 35a and 35b are fixed to the ends of both side surfaces of the vertical plates 33a and 33b.

選別装置31では、仕切板32a、32bは、鉛直板33a、33bそれぞれに連結する傾斜板34a、34bを有するが、選別装置41では、仕切板42a、42bは、鉛直板33aと鉛直板33bとに跨るように連結した蛇腹体46及び傾斜板44を有する。 In the sorting device 31, the partition plates 32a and 32b have inclined plates 34a and 34b connected to the vertical plates 33a and 33b, respectively. It has a bellows body 46 and an inclined plate 44 connected so as to straddle.

蛇腹体46は、帆布などのような柔軟性を有する部材が折り畳まれ蛇腹状に形成された部材であり、一端部が鉛直板33aの下辺に、他端部が鉛直板33bの下辺に連結する。蛇腹体46は、鉛直板33a及び/又は鉛直板33bが左右に移動し、鉛直板33aと鉛直板33bとの間隔が変化しても追従し、鉛直板33aと鉛直板33bとを結ぶ。蛇腹体46は、蛇腹体46上に落下した選別物202を排出可能に傾斜して取付けられている。 The bellows body 46 is a member formed by folding a flexible member such as a canvas into a bellows shape, and one end thereof is connected to the lower side of the vertical plate 33a and the other end is connected to the lower side of the vertical plate 33b. .. The bellows body 46 follows the vertical plate 33a and / or the vertical plate 33b even if the vertical plate 33a and / or the vertical plate 33b moves left and right and the distance between the vertical plate 33a and the vertical plate 33b changes, and connects the vertical plate 33a and the vertical plate 33b. The bellows body 46 is attached so as to be inclined so that the sorting material 202 that has fallen on the bellows body 46 can be discharged.

傾斜板44は、蛇腹体46上に落下した選別物202を架台51の外に排出するための部材であり、蛇腹体46の下に傾斜して取付けられている。 The inclined plate 44 is a member for discharging the sorting material 202 that has fallen on the bellows body 46 to the outside of the gantry 51, and is attached so as to be inclined under the bellows body 46.

選別装置31では、仕切板32a、32bの傾斜板34a、34bを介して区分N及び区分Aに落下する選別物202をそれぞれ架台51の外に排出し、区分Bに落下する選別物202は架台51の内側で回収する。これに対して選別装置41では、鉛直板33a、33bを結ぶ蛇腹体46及び傾斜板44を介して区分Bに落下する選別物202を架台51の外に排出し、区分N及び区分Aに落下する選別物202は架台51の内側で回収する。 In the sorting device 31, the sorting items 202 that fall into the categories N and A via the inclined plates 34a and 34b of the partition plates 32a and 32b are discharged to the outside of the gantry 51, respectively, and the sorting items 202 that fall into the pedestal B are pedestals. Collect inside 51. On the other hand, in the sorting device 41, the sorting material 202 that falls into the category B via the bellows body 46 connecting the vertical plates 33a and 33b and the inclined plate 44 is discharged to the outside of the gantry 51 and dropped into the categories N and A. The sorted material 202 to be collected is collected inside the gantry 51.

本発明の第2実施形態の磁力選別装置2と本発明の第1実施形態の磁力選別装置1とでは、選別装置31、41の構造が異なり、これに伴い選別物202の回収位置が異なるが、被選別物201の選別原理、選別要領、及び磁力選別装置の動作、作用効果は、磁力選別装置2と本発明の第1実施形態の磁力選別装置1とで同じである。 The structure of the sorting devices 31 and 41 is different between the magnetic force sorting device 2 of the second embodiment of the present invention and the magnetic force sorting device 1 of the first embodiment of the present invention, and the collection position of the sorted object 202 is different accordingly. The sorting principle, sorting procedure, operation, and effect of the magnetic force sorting device 201 are the same in the magnetic force sorting device 2 and the magnetic force sorting device 1 of the first embodiment of the present invention.

本発明の第1及び第2実施形態の磁力選別装置1、2は、共に2つの仕切板32a、32b、42a、42bを備え、これにより被選別物201を3つの区分に区分け可能とする。さらにこの2つの仕切板32a、32b、42a、42bは、位置を左右に移動可能なため区分N、区分B及び区分Aの大きさを簡単に変えることができる。これにより所望の粒径の選別物202を得ることができることは既に説明の通りである。 The magnetic force sorting devices 1 and 2 of the first and second embodiments of the present invention both include two partition plates 32a, 32b, 42a and 42b, whereby the object to be sorted 201 can be divided into three categories. Further, since the positions of the two partition plates 32a, 32b, 42a and 42b can be moved left and right, the sizes of the division N, the division B and the division A can be easily changed. As described above, this makes it possible to obtain a selected product 202 having a desired particle size.

一方で、第1及び第2実施形態の磁力選別装置1、2の選別装置31、41は、共に仕切板32a、32b、42a、42bの高さは固定されており、高さを変更することはできない。ここで第1及び第2実施形態の磁力選別装置1、2の選別装置31、41の変形例として、仕切板32a、32b、42a、42bの高さを可変可能な構造とすれば、高さを変更することで所望の粒径の選別物202を得ることができる。つまり仕切板32a、32b、42a、42bの高さ可変構造は、区分けする粒径を変更可能な粒径可変機構として機能する。このことは図8及び図9、式(7)~式(12)からも明らかである。 On the other hand, in the sorting devices 31 and 41 of the magnetic force sorting devices 1 and 2 of the first and second embodiments, the heights of the partition plates 32a, 32b, 42a and 42b are fixed and the heights are changed. Can't. Here, as a modification of the sorting devices 31 and 41 of the magnetic force sorting devices 1 and 2 of the first and second embodiments, if the heights of the partition plates 32a, 32b, 42a and 42b are variable, the heights can be changed. By changing the above, a selected product 202 having a desired particle size can be obtained. That is, the variable height structure of the partition plates 32a, 32b, 42a, 42b functions as a particle size variable mechanism capable of changing the particle size to be divided. This is also clear from FIGS. 8 and 9, equations (7) to (12).

仕切板32a、32b、42a、42bの高さを可変させる方法としては、仕切板32a、32b、42a、42b全体の設置高さを可変させる方法、鉛直板33a、33bを伸縮構造とし、鉛直板33a、33bの高さのみを変更する方法がある。後者の場合には、回転ドラム11に近い最上端の位置が可変できればよい。鉛直板33a、33bの伸縮構造としては、例えば、鉛直板33a、33bを複数枚の板で構成し、これらをスライド可能とすればよい。このような方法は、選別装置31、41の構造をそのまま踏襲し、簡単に実施することができる。また仕切板32a、32b、42a、42bを左右に、さらに高さを可変可能とすることで、より確実に所望の粒径の選別物202を得ることができる。 As a method of changing the height of the partition plates 32a, 32b, 42a, 42b, a method of changing the installation height of the entire partition plates 32a, 32b, 42a, 42b, the vertical plates 33a, 33b have an elastic structure, and the vertical plates There is a method of changing only the heights of 33a and 33b. In the latter case, it suffices if the position of the uppermost end close to the rotating drum 11 can be changed. As the telescopic structure of the vertical plates 33a and 33b, for example, the vertical plates 33a and 33b may be composed of a plurality of plates so that they can be slidable. Such a method can be easily carried out by following the structure of the sorting devices 31 and 41 as it is. Further, by making the heights of the partition plates 32a, 32b, 42a, and 42b variable to the left and right, it is possible to more reliably obtain the selected product 202 having a desired particle size.

さらに第1及び第2実施形態の磁力選別装置1、2は、選別装置31、41を以下のように変形してもよい。第1及び第2実施形態の磁力選別装置1、2では、選別装置31、41に2つの仕切板32a、32b、42a、42bを使用し、これにより被選別物201を所望の粒径に区分けしているが、より簡便な選別装置とするのであれば、1つの仕切板を左右及び/又は上下に可変可能な構造としてもよい。このような構造も区分けする粒径を変更可能な粒径可変機構として機能する。1つの仕切板の場合、区分数は2区分となるが、位置が固定された従来の選別装置と異なり、仕切板を左右及び/又は上下に可変させることで汚染土壌など被選別物201の性状等が変化した場合であっても、それに対応した選別が可能となる。 Further, the magnetic force sorting devices 1 and 2 of the first and second embodiments may modify the sorting devices 31 and 41 as follows. In the magnetic force sorting devices 1 and 2 of the first and second embodiments, two partition plates 32a, 32b, 42a, 42b are used for the sorting devices 31 and 41, whereby the object to be sorted 201 is divided into desired particle sizes. However, if it is a simpler sorting device, one partition plate may have a structure that can be changed left and right and / or up and down. Such a structure also functions as a particle size variable mechanism capable of changing the particle size for classifying. In the case of one partition plate, the number of divisions is two, but unlike the conventional sorting device with a fixed position, by changing the partition plate left and right and / or up and down, the properties of the object to be sorted 201 such as contaminated soil 201. Even if the above changes, it is possible to sort according to the change.

図12は、本発明の第3実施形態の磁力選別装置3の概略構成を示す側面図である。図1から図5に示す第1実施形態の磁力選別装置1と同一の構成には、同一の符号を付して説明を省略する。 FIG. 12 is a side view showing a schematic configuration of the magnetic force sorting device 3 according to the third embodiment of the present invention. The same configurations as those of the magnetic force sorting apparatus 1 of the first embodiment shown in FIGS. 1 to 5 are designated by the same reference numerals, and the description thereof will be omitted.

本発明の第3実施形態の磁力選別装置3の基本構成は、本発明の第1実施形態の磁力選別装置1と同じであるが、選別装置301の構造が異なる。選別装置301は、選別装置31と同様に、排出口25から落下する選別物202を落下位置に応じて複数の区分に区分けし、さらに選別物202を回収可能に構成されている。 The basic configuration of the magnetic force sorting device 3 of the third embodiment of the present invention is the same as that of the magnetic force sorting device 1 of the first embodiment of the present invention, but the structure of the sorting device 301 is different. Similar to the sorting device 31, the sorting device 301 is configured to classify the sorted items 202 falling from the discharge port 25 into a plurality of categories according to the falling position, and to further collect the sorted items 202.

選別装置301は、6個の分別回収槽302からなり、選別装置31と同じく排出口25の下方に、これらが隙間なく並べて設置されている。本実施形態では、分別回収槽302の数が6個であるから選別物202を6区分に分別回収することができるが、分別回収槽302の数は6個に限定されるものではなく、区分けする区分数以上であればよい。好ましくは、分別回収槽302の数は3個以上である。これにより汚染物を所望の濃度に区分けすることができる。 The sorting device 301 is composed of six separate collection tanks 302, and like the sorting device 31, these are installed side by side under the discharge port 25 without any gaps. In the present embodiment, since the number of the separated collection tanks 302 is 6, the sorted material 202 can be separated and collected into 6 categories, but the number of the separated and collected tanks 302 is not limited to 6 and is divided into 6 categories. It suffices as long as it is equal to or more than the number of divisions. Preferably, the number of separate collection tanks 302 is 3 or more. This makes it possible to classify contaminants into desired concentrations.

各分別回収槽302の大きさ(幅)は、同一を基本とするが異なっていてもよい。各分別回収槽302の大きさ(幅)は、特定の幅に限定されるものではないが、幅が区分けされる選別物202の粒径を決めるため、幅の狭いものを使用すればより細かく分級することができる。つまり本実施形態の磁力選別装置3にあっては、複数個の分別回収槽302が、区分けする粒径を変更可能な粒径可変機構として機能する。 The size (width) of each separate collection tank 302 is basically the same, but may be different. The size (width) of each separate collection tank 302 is not limited to a specific width, but it is finer if a narrower one is used in order to determine the particle size of the sorted matter 202 in which the width is divided. Can be classified. That is, in the magnetic force sorting device 3 of the present embodiment, the plurality of separate collection tanks 302 function as a particle size variable mechanism capable of changing the particle size to be divided.

磁力選別装置3の選別装置301は単純な構成ではあるが、選別物202を確実に複数の区分に区分けすることができる。また各分別回収槽302の個数、各分別回収槽302の大きさ(幅)を適切に設定することで所望の粒径の選別物202を回収することができる。 Although the sorting device 301 of the magnetic force sorting device 3 has a simple configuration, the sorting object 202 can be reliably divided into a plurality of categories. Further, by appropriately setting the number of each separated collection tank 302 and the size (width) of each separated collection tank 302, the sorted product 202 having a desired particle size can be collected.

図13は、本発明の第4実施形態の磁力選別装置4の概略構成を示す側面図である。図1から図5に示す第1実施形態の磁力選別装置1、図12に示す第3実施形態の磁力選別装置3と同一の構成には、同一の符号を付して説明を省略する。 FIG. 13 is a side view showing a schematic configuration of the magnetic force sorting device 4 according to the fourth embodiment of the present invention. The same configurations as those of the magnetic force sorting device 1 of the first embodiment shown in FIGS. 1 to 5 and the magnetic force sorting device 3 of the third embodiment shown in FIG. 12 are designated by the same reference numerals and description thereof will be omitted.

本発明の第4実施形態の磁力選別装置4は、基本構成が本発明の第1実施形態の磁力選別装置1と同じであり、磁力選別装置4の選別装置311の構造が、磁力選別装置3の選別装置301と類似する。選別装置311は、分別回収槽302を用いて、排出口25から落下する選別物202を落下位置に応じて複数の区分に区分けし回収する点において、選別装置301と共通するが、選別装置311は、さらに分別回収槽302に分別された選別物202を混合する混合装置312を備える。 The magnetic force sorting device 4 of the fourth embodiment of the present invention has the same basic configuration as the magnetic force sorting device 1 of the first embodiment of the present invention, and the structure of the sorting device 311 of the magnetic force sorting device 4 is the magnetic force sorting device 3. Similar to the sorting device 301. The sorting device 311 is common to the sorting device 301 in that the sorting object 202 falling from the discharge port 25 is divided into a plurality of categories according to the falling position and collected by using the sorting and collecting tank 302, but the sorting device 311 Further includes a mixing device 312 for mixing the sorted items 202 in the separated collection tank 302.

分別回収槽302については、磁力選別装置3の選別装置301と同様に考えることができるので説明を省略する。 Since the separate collection tank 302 can be considered in the same manner as the sorting device 301 of the magnetic force sorting device 3, the description thereof will be omitted.

混合装置312は、各分別回収槽302の底部に設けられ選別物202を排出する出口管313と、各出口管313が連結する集合管314と集合管314と連結する混合調製槽315とを含む。各出口管313はそれぞれ、管路の途中にバルブ316を有し、出口部が集合管314と連結する。分別回収槽302からの選別物202の排出は重力によるものであってもよいが、分別回収槽302又は出口管313内にスクリューフィーダー等を設け定量排出を可能とすれば、所望の性状の選別物202、例えば所定の濃度の汚染物を容易に回収することができる。 The mixing device 312 includes an outlet pipe 313 provided at the bottom of each sorting and collecting tank 302 for discharging the sorted material 202, and a collecting pipe 314 to which each outlet pipe 313 is connected and a mixing preparation tank 315 connected to the collecting pipe 314. .. Each outlet pipe 313 has a valve 316 in the middle of the pipe line, and the outlet portion is connected to the collecting pipe 314. The discharge of the sorted material 202 from the separated collection tank 302 may be due to gravity, but if a screw feeder or the like is provided in the separated collection tank 302 or the outlet pipe 313 to enable quantitative discharge, selection of desired properties is possible. A substance 202, for example, a contaminant having a predetermined concentration can be easily recovered.

混合調製槽315は、集合管314から排出される選別物202を受入れるタンクである。混合調製槽315の底部にはキャスター317が設置され、選別装置311全体が一体的に移動可能に構成されている。本実施形態の選別装置311は、キャスター317を備え、移動可能に構成されているが、固定式であってもよい。 The mixing preparation tank 315 is a tank that receives the sorting material 202 discharged from the collecting pipe 314. A caster 317 is installed at the bottom of the mixing preparation tank 315, and the entire sorting device 311 is integrally movable. The sorting device 311 of the present embodiment includes casters 317 and is configured to be movable, but may be a fixed type.

選別装置311を使用する際は、選別装置301と同じく排出口25の下方に分別回収槽302が位置するように配置し、6個の分別回収槽302に選別物202を分別回収する。分別回収槽302に分別回収した選別物202の混合操作は、分別回収槽302に選別物202を分別回収しつつ行ってもよく、分別回収槽302に選別物202を分別回収した後に行ってもよい。選別物202を分別回収した後に混合操作を行う場合は、選別装置311を別の場所に移動させた後に行ってもよい。 When the sorting device 311 is used, the sorting and collecting tank 302 is arranged below the discharge port 25 as in the sorting device 301, and the sorted items 202 are sorted and collected in the six sorted and collected tanks 302. The mixing operation of the sorted items 202 separated and collected in the separated and collected tank 302 may be performed while the sorted items 202 are separated and collected in the separated and collected tank 302, or may be performed after the sorted items 202 are separated and collected in the separated and collected tank 302. good. When the mixing operation is performed after the sorted items 202 are sorted and collected, the sorting device 311 may be moved to another place.

第4実施形態の磁力選別装置4は、選別装置311が分別回収槽302の他、分別回収した選別物202を混合可能な混合装置312を備えるので、混合装置312を介して分別回収した選別物202を2種類以上混合することで所望の性状の選別物202、例えば所定の濃度の汚染土壌を容易に回収することができる。つまり本実施形態の磁力選別装置4にあっては、混合装置312が、区分けする粒径を変更可能な粒径可変機構として機能する。選別物202を混合可能な混合装置312の構成・構造については、本実施形態に限定されるものではない。また選別物202を混合する混合装置312については、他の実施形態の磁力選別装置にも適用することができる。 In the magnetic force sorting device 4 of the fourth embodiment, since the sorting device 311 includes a mixing device 312 capable of mixing the sorted and collected items 202 in addition to the separated and collected tank 302, the sorted items separated and collected via the mixing device 312. By mixing two or more kinds of 202, it is possible to easily recover a sorted product 202 having desired properties, for example, contaminated soil having a predetermined concentration. That is, in the magnetic force sorting device 4 of the present embodiment, the mixing device 312 functions as a particle size variable mechanism capable of changing the particle size to be divided. The configuration / structure of the mixing device 312 capable of mixing the sorted products 202 is not limited to this embodiment. Further, the mixing device 312 for mixing the sorting material 202 can be applied to the magnetic force sorting device of other embodiments.

図14は、本発明の第5実施形態の磁力選別装置5の概略構成を示す図であり、(A)が側面図、(B)は選別装置321の作用効果を説明するための模式図である。図1から図5に示す第1実施形態の磁力選別装置1、図12に示す第3実施形態の磁力選別装置3と同一の構成には、同一の符号を付して説明を省略する。 14A and 14B are views showing a schematic configuration of a magnetic force sorting device 5 according to a fifth embodiment of the present invention, in which FIG. 14A is a side view and FIG. 14B is a schematic diagram for explaining the action and effect of the sorting device 321. be. The same configurations as those of the magnetic force sorting device 1 of the first embodiment shown in FIGS. 1 to 5 and the magnetic force sorting device 3 of the third embodiment shown in FIG. 12 are designated by the same reference numerals and description thereof will be omitted.

本発明の第5実施形態の磁力選別装置5は、基本構成が本発明の第1実施形態の磁力選別装置1と同じであり、磁力選別装置5の選別装置321の構造が、磁力選別装置3の選別装置301と類似する。選別装置321は、分別回収槽302を用いて、排出口25から落下する選別物202を落下位置に応じて複数の区分に区分けし回収する点において、選別装置301と共通するが、選別装置321は、さらに分別回収槽302の設置高さを変更可能な高さ可変装置322を備える。 The magnetic force sorting device 5 of the fifth embodiment of the present invention has the same basic configuration as the magnetic force sorting device 1 of the first embodiment of the present invention, and the structure of the sorting device 321 of the magnetic force sorting device 5 is the magnetic force sorting device 3. Similar to the sorting device 301. The sorting device 321 is common to the sorting device 301 in that the sorting device 202 that falls from the discharge port 25 is sorted into a plurality of categories according to the falling position and collected by using the sorting and collecting tank 302, but the sorting device 321 Further includes a height variable device 322 capable of changing the installation height of the separated collection tank 302.

分別回収槽302については、磁力選別装置3の選別装置301と同様に考えることができるので説明を省略する。 Since the separate collection tank 302 can be considered in the same manner as the sorting device 301 of the magnetic force sorting device 3, the description thereof will be omitted.

高さ可変装置322は、キャスター付きのリフター323を有し、上部に分別回収槽302を支持する支持板324を備える。各分別回収槽302は、支持板324上に隙間なく並べて載置される。本実施形態ではキャスター付きのリフター323を使用するが、固定式のリフターであってもよい。 The height variable device 322 has a lifter 323 with casters, and is provided with a support plate 324 for supporting the separated collection tank 302 at the upper part. The separate collection tanks 302 are placed side by side on the support plate 324 without any gaps. In this embodiment, a lifter 323 with casters is used, but a fixed lifter may be used.

磁力選別装置5の使用方法は、第3実施形態の磁力選別装置3と基本的に同じであるが、分別回収槽302の設置高さを変更可能なため選別物202の所望の粒径への区分けがより容易に行える。つまり本実施形態の磁力選別装置5にあっては、分別回収槽302の設置高さを変更可能な高さ可変装置322が、区分けする粒径を変更可能な粒径可変機構として機能する。 The method of using the magnetic force sorting device 5 is basically the same as that of the magnetic force sorting device 3 of the third embodiment. Sorting can be done more easily. That is, in the magnetic force sorting device 5 of the present embodiment, the height variable device 322 that can change the installation height of the separate collection tank 302 functions as a particle size variable mechanism that can change the particle size to be divided.

回転ドラム11から離れ放出される粒子の推定される軌跡は、図7~図9及び式(7)~式(12)及び図14(B)に示す通りである。図14(B)に示す推定される粒子の軌跡のうち、一番右側の軌跡は、粒子が回転ドラム11上を滑り落下する場合を想定したものである。この点は、図12及び図13においても同じである。 The estimated trajectories of the particles emitted away from the rotating drum 11 are as shown in FIGS. 7 to 9 and equations (7) to (12) and 14 (B). Of the estimated particle trajectories shown in FIG. 14B, the rightmost locus assumes the case where the particles slide and fall on the rotating drum 11. This point is the same in FIGS. 12 and 13.

粒子の水平方向の軌跡は、排出口25からの距離により異なり、回転ドラム11の右端(図14(B)のA)を基準にすれば、排出口25から距離(高さ方向)が離れるほど、粒子は左側に移行し、かつ粒子粒径の空間分布幅が広がる。このため図14(B)に示すように分別回収槽302の位置を回転ドラム11に近付ける程、区分けする区分数が少なくなる。逆に分別回収槽302の位置を回転ドラム11から遠ざける程、多くの区分数に区分けすることが可能となり、さらにより粒径の小さい選別物202を回収することができる。 The horizontal trajectory of the particles differs depending on the distance from the discharge port 25, and the farther the distance (height direction) is from the discharge port 25, based on the right end of the rotating drum 11 (A in FIG. 14B). , The particles move to the left side, and the spatial distribution width of the particle size widens. Therefore, as shown in FIG. 14B, the closer the position of the separate collection tank 302 is to the rotary drum 11, the smaller the number of divisions. On the contrary, the farther the position of the separate collection tank 302 is from the rotary drum 11, the larger the number of divisions can be divided, and the smaller the particle size of the sorted object 202 can be collected.

高さ可変装置322は、本実施形態の選別装置321のほか、他の実施形態の選別装置、第4実施形態に示す混合装置312を備える選別装置311にも適用することができる。 The height variable device 322 can be applied not only to the sorting device 321 of the present embodiment, but also to the sorting device of another embodiment and the sorting device 311 including the mixing device 312 shown in the fourth embodiment.

図15は、本発明の第6実施形態の磁力選別装置6の概略構成を示す図である。図1から図5に示す第1実施形態の磁力選別装置1と同一の構成には、同一の符号を付して説明を省略する。被選別物201、選別物202のうち微細粒子は、回転ドラム11から離れ空間部に放出された後の沈降速度が遅く、風の影響を受け易い。このような微細粒子は、汚染濃度が高いため、これが汚染濃度の低い粒径の大きい選別物202を回収する分別回収槽38に混入することは好ましくない。第6実施形態の磁力選別装置6は、これを解消すべくなされたものである。 FIG. 15 is a diagram showing a schematic configuration of a magnetic force sorting device 6 according to a sixth embodiment of the present invention. The same configurations as those of the magnetic force sorting apparatus 1 of the first embodiment shown in FIGS. 1 to 5 are designated by the same reference numerals, and the description thereof will be omitted. Of the objects to be sorted 201 and the objects to be sorted 202, the fine particles have a slow settling speed after being separated from the rotating drum 11 and being discharged into the space, and are easily affected by the wind. Since such fine particles have a high contamination concentration, it is not preferable to mix them in the separate collection tank 38 for collecting the sorted material 202 having a low contamination concentration and a large particle size. The magnetic force sorting device 6 of the sixth embodiment is designed to solve this problem.

磁力選別装置6は、磁力選別装置本体の他に磁力選別装置本体を覆い収容するケーシング331と、選別物202が排出口25から排出され分別回収槽38に回収される過程でケーシング331内の空間に漂う選別物202を吸引し回収する集塵装置351とを備える。本実施形態では、磁力選別装置本体として第1実施形態の磁力選別装置1を使用するが、磁力選別装置本体は、他の実施形態の磁力選別装置であってもよい。 The magnetic force sorting device 6 includes a casing 331 that covers and accommodates the magnetic force sorting device main body in addition to the magnetic force sorting device main body, and a space inside the casing 331 in the process of discharging the sorted material 202 from the discharge port 25 and collecting it in the sorting recovery tank 38. It is provided with a dust collector 351 that sucks and collects the sorted material 202 floating in the casing. In the present embodiment, the magnetic force sorting device 1 of the first embodiment is used as the magnetic force sorting device main body, but the magnetic force sorting device main body may be the magnetic force sorting device of another embodiment.

本実施形態においてケーシング331は、磁力選別装置本体を覆い収容するが、少なくとも選別物202が排出口25から排出され分別回収槽38に回収される過程で周囲に飛散しないように、排出口25及び選別装置31を覆ってもよい。他の実施形態の磁力選別装置を使用する場合も同様である。 In the present embodiment, the casing 331 covers and accommodates the main body of the magnetic force sorting device, but at least the sorting port 25 and the discharging port 25 and the casing 331 are prevented from being scattered to the surroundings in the process of being discharged from the discharging port 25 and collected in the separated collection tank 38. The sorting device 31 may be covered. The same applies when the magnetic force sorting device of another embodiment is used.

ケーシング331の一方の側壁には、集塵装置351の吸気ダクト352が設けられている。吸気ダクト352の吸込口353を、粒径の小さい選別物202を回収する分別回収槽38に近い側壁側に配置し、ケーシング331内の空気を微細粒径の選別物202を回収する分別回収槽38側方向に吸引するのがよい。これにより吸引過程で浮遊した選別物202が沈降した場合であっても、その選別物202は、汚染濃度の低い粒径の大きい選別物202を回収する分別回収槽38には混入せず好ましい。 An intake duct 352 of the dust collector 351 is provided on one side wall of the casing 331. The suction port 353 of the intake duct 352 is arranged on the side wall side near the separated collection tank 38 for collecting the sorted material 202 having a small particle size, and the air in the casing 331 is collected in the separated collection tank 202 having a fine particle size. It is better to suck in the 38 side direction. As a result, even when the sorted product 202 suspended in the suction process is settled, the sorted product 202 is preferable because it is not mixed in the separated collection tank 38 for collecting the sorted product 202 having a low contamination concentration and a large particle size.

集塵装置351は、ケーシング331内に漂う選別物202を吸引し回収する装置であり、一端がケーシング331の側壁に取付けられた吸気ダクト352、吸気ダクト352内に配置された集塵ファン354、集塵ファン354の後流側に設置され、吸引した空気中の選別物202を吸着する集塵磁石355、脱磁集塵箱356、HEPAフィルター357等を含む。但し、集塵装置351の構成はこれに限定されるものではなく、ケーシング331内の空間に漂う選別物202を磁選分級中の選別物202に影響を与えないように吸引し回収できればよい。 The dust collector 351 is a device that sucks and collects the sorted material 202 floating in the casing 331, and has an intake duct 352 having one end attached to the side wall of the casing 331, and a dust collector fan 354 arranged in the intake duct 352. It is installed on the wake side of the dust collecting fan 354 and includes a dust collecting magnet 355 that attracts the selected material 202 in the sucked air, a demagnetized dust collecting box 356, a HEPA filter 357, and the like. However, the configuration of the dust collector 351 is not limited to this, and it is sufficient that the sorted material 202 floating in the space inside the casing 331 can be sucked and collected so as not to affect the sorted product 202 during the magnetic separation classification.

集塵ファン354は、気流が磁選分級中の選別物202に影響を与えないようにゆっくり吸気する。集塵磁石355には、サニタリー磁石などを使用可能であり、永久磁石、電磁石のいずれであってもよい。永久磁石の場合、集塵面に対して機械的に磁石表面あるいは磁石に接続するヨークを密着・離隔できるようにする。 The dust collecting fan 354 takes in air slowly so that the air flow does not affect the sorted material 202 during the magnetic separation classification. As the dust collecting magnet 355, a sanitary magnet or the like can be used, and either a permanent magnet or an electromagnet may be used. In the case of a permanent magnet, the surface of the magnet or the yoke connected to the magnet can be mechanically brought into close contact with and separated from the dust collecting surface.

集塵磁石355は、吸気ダクト352内の傾斜面に設置されており、傾斜面の下方に脱磁集塵箱356が配置されている。磁石筐体表面に選別物202が吸着した後に、永久磁石の場合は機械的離隔によって、電磁石の場合は通電電流を遮断することによって磁石筐体表面の磁場を切り、吸着した選別物202を脱磁集塵箱356に流下させ回収する。 The dust collecting magnet 355 is installed on an inclined surface in the intake duct 352, and the demagnetized dust collecting box 356 is arranged below the inclined surface. After the sorting material 202 is attracted to the surface of the magnet housing, the magnetic field on the surface of the magnet housing is cut off by mechanical separation in the case of a permanent magnet and by blocking the energizing current in the case of an electromagnet, and the adsorbed sorting material 202 is removed. It flows down to the magnetic dust box 356 and is collected.

HEPAフィルター357は、吸気ダクト352の最後流端に設置されており、図示を省略したブロワーが接続し、作業環境、安全を確保する。HEPAフィルター357に代え、バグフィルターを使用してもよい。以上のようにケーシング331及び集塵装置351を設けることで微細粒子が風の影響を受け、汚染濃度の低い粒径の大きい選別物202を回収する分別回収槽38に混入することを防止することができる。また作業環境、安全を確保することもできる。 The HEPA filter 357 is installed at the last flow end of the intake duct 352, and a blower (not shown) is connected to ensure a working environment and safety. A bag filter may be used instead of the HEPA filter 357. By providing the casing 331 and the dust collector 351 as described above, it is possible to prevent the fine particles from being affected by the wind and being mixed into the separate collection tank 38 for collecting the sorted material 202 having a low contamination concentration and a large particle size. Can be done. It is also possible to ensure the working environment and safety.

図16は、本発明の第7実施形態の汚染物乾式処理システム101の概略構成図、図17は、汚染物乾式処理システム101の磁力選別装置7に設けられる選別物排出器81の構造を説明するための図である。図1から図5に示す第1実施形態の磁力選別装置1と同一の構成には同一の符号を付して説明を省略する。 FIG. 16 is a schematic configuration diagram of the pollutant dry treatment system 101 according to the seventh embodiment of the present invention, and FIG. 17 illustrates the structure of the sorter ejector 81 provided in the magnetic force sorting device 7 of the pollutant dry treatment system 101. It is a figure to do. The same components as those of the magnetic force sorting apparatus 1 of the first embodiment shown in FIGS. 1 to 5 are designated by the same reference numerals, and the description thereof will be omitted.

汚染物乾式処理システム101は、原土である放射性物質汚染土壌を放射性物質の濃度により区分するための乾式連続処理システムであり、図1に示した磁力選別装置1と同様の構成からなる磁力選別装置7、原土と薬剤であるマグネタイト粉末とを連続的に混練する混練機103、混練機103にマグネタイト粉末を定量供給する鉄粉フィーダー(図18参照)、移送装置等を含む。 The pollutant dry treatment system 101 is a dry continuous treatment system for classifying raw soil contaminated with radioactive substances according to the concentration of radioactive substances, and has the same configuration as the magnetic force sorting device 1 shown in FIG. The apparatus 7 includes a kneader 103 that continuously kneads raw soil and a radioactive powder, an iron powder feeder (see FIG. 18) that supplies a fixed amount of radioactive powder to the kneader 103, a transfer device, and the like.

汚染物乾式処理システム101に組み込まる磁力選別装置7は、図1に示した磁力選別装置1と基本構成を同じくするが、選別装置31廻りの構成が異なる。磁力選別装置7では、仕切板32a、32bを左右に移動させるための電動シリンダ37が装着され、電動シリンダ37を介して仕切板32a、32bを左右に可変可能に構成されている。また仕切板32a、32bの傾斜板34a、34bの先端部には選別物排出器81が設けられている。 The magnetic force sorting device 7 incorporated in the pollutant dry processing system 101 has the same basic configuration as the magnetic force sorting device 1 shown in FIG. 1, but the configuration around the sorting device 31 is different. In the magnetic force sorting device 7, an electric cylinder 37 for moving the partition plates 32a and 32b to the left and right is mounted, and the partition plates 32a and 32b can be variably configured to the left and right via the electric cylinder 37. Further, a sorter discharger 81 is provided at the tip of the inclined plates 34a and 34b of the partition plates 32a and 32b.

図17(A)は、選別物排出器81の平面視における部分断面図、図17(B)は、選別物排出器81の側面断面図、図17(C)は、比較例である選別物排出器の平面視における部分断面図、図17(D)は、比較例である選別物排出器の側面断面図である。 17 (A) is a partial cross-sectional view of the sorted product ejector 81 in a plan view, FIG. 17 (B) is a side sectional view of the sorted product ejector 81, and FIG. 17 (C) is a comparative example of the sorted product. A partial cross-sectional view of the ejector in a plan view, FIG. 17 (D) is a side sectional view of the sorted product ejector as a comparative example.

選別物排出器81は、図17(A)に示すように区分A,B,Nに対応する3つの長方体形状のボックス82で構成され、各ボックス82内には排出口84に向けて傾斜したシュート83が設けられている。排出口84は大略的には長方体形状を有し、ボックス82の端部であって、入口孔85がシュート83の先端部に繋がるように設けられている。排出口84は、底板86に排出孔89が穿設され、選別物202はここから分別回収槽38に入る。 As shown in FIG. 17A, the sorter ejector 81 is composed of three rectangular parallelepiped shaped boxes 82 corresponding to the categories A, B, and N, and each box 82 is directed toward the discharge port 84. An inclined chute 83 is provided. The discharge port 84 has a roughly rectangular parallelepiped shape, and is provided at the end of the box 82 so that the inlet hole 85 is connected to the tip of the chute 83. The discharge port 84 is provided with a discharge hole 89 in the bottom plate 86, from which the sorted material 202 enters the separated collection tank 38.

排出口の底板86は、基端部87がシュート83の先端に繋がるように取付けられ、底板86の傾斜角θは、シュート83の傾斜角θと同じか大きく設定されている。また排出口84には底板86の先端部側に傾斜板90が設けられている。これにより図17(C)、(D)の比較例に示す排出口84及びシュート83上への選別物202の堆積が防止される。 The bottom plate 86 of the discharge port is attached so that the base end portion 87 is connected to the tip of the chute 83, and the inclination angle θ o of the bottom plate 86 is set to be the same as or larger than the inclination angle θ s of the chute 83. Further, the discharge port 84 is provided with an inclined plate 90 on the tip end side of the bottom plate 86. This prevents the sorting material 202 from accumulating on the discharge port 84 and the chute 83 shown in the comparative examples of FIGS. 17 (C) and 17 (D).

図17(D)の比較例に示すように排出口84の底板86が水平に設置されている場合、シュート83と底板86との連結部において角度が急激に変化するためそこに選別物202が堆積し易い。この部分に選別物202が堆積すると、長時間の運転に伴いシュート83の下部、さらにはシュート83全体に選別物202が堆積し、オーバーフローする危険がある。また比較例では、傾斜板90が設けられていないため排出口84の角に選別物202が堆積する。 As shown in the comparative example of FIG. 17D, when the bottom plate 86 of the discharge port 84 is installed horizontally, the angle of the connecting portion between the chute 83 and the bottom plate 86 changes abruptly, so that the sorted material 202 is placed there. Easy to deposit. If the sorting material 202 is deposited on this portion, the sorting material 202 is deposited on the lower part of the chute 83 and further on the entire chute 83 due to long-term operation, and there is a risk of overflow. Further, in the comparative example, since the inclined plate 90 is not provided, the sorting material 202 is deposited at the corner of the discharge port 84.

汚染物乾式処理システム101の全体構成及び処理フローは次の通りである。 The overall configuration and treatment flow of the pollutant dry treatment system 101 are as follows.

振動篩等で礫やごみ殻を取り除き、天日、風乾燥された原土は、原土ホッパー111内に一時的に貯留された後、土移送装置113を介して混練機103の上部に設けられたバイブレータ付きの混練機上ホッパー105に送られる。混練機103は、横型2軸のパドルミキサーであり、供給口及び排出口近傍はパドルに代えてスクリューが取付けられている。 The gravel and dust shells are removed with a vibrating sieve or the like, and the raw soil that has been air-dried in the sun is temporarily stored in the raw soil hopper 111 and then provided on the upper part of the kneader 103 via the soil transfer device 113. It is sent to the hopper 105 on the kneader with the vibrator. The kneader 103 is a horizontal two-axis paddle mixer, and screws are attached to the vicinity of the supply port and the discharge port in place of the paddle.

混練機103には、混練機上ホッパー105から原土が、鉄粉フィーダー108(図18参照)からマグネタイト粉末が供給され、これらが混合された後、混練機排出口104に設けられた混練機下ホッパー106に送られる。混練機103で混合されてなる原土とマグネタイト粉末との混合物が被選別物201となる。 Raw soil is supplied to the kneader 103 from the hopper 105 on the kneader, and magnetite powder is supplied from the iron powder feeder 108 (see FIG. 18). After these are mixed, the kneader is provided at the kneader discharge port 104. It is sent to the lower hopper 106. The mixture of the raw soil and the magnetite powder mixed by the kneader 103 is the object to be sorted 201.

混練機下ホッパー106には、磁力選別装置7の上部に設けられた被選別物ホッパー77に被選別物201を移送する被選別物移送装置115が連結し、被選別物移送装置115を介して被選別物ホッパー77に被選別物201が移送される。 The lower hopper 106 of the kneader is connected to the sorted object transfer device 115 for transferring the sorted object 201 to the sorted object hopper 77 provided in the upper part of the magnetic force sorting device 7, and is connected to the sorted object transfer device 115 via the sorted object transfer device 115. The object to be sorted 201 is transferred to the object to be sorted hopper 77.

被選別物ホッパー77内の被選別物201は、振動フィーダー71を介して磁力選別装置7に送られ、被選別物201を粒径により3区分に区分けされる。 The object to be sorted 201 in the object to be sorted hopper 77 is sent to the magnetic force sorting device 7 via the vibration feeder 71, and the object to be sorted 201 is classified into three categories according to the particle size.

汚染物乾式処理システム101において、土移送装置113にはチューブコンベヤを好適に使用することができる。チューブコンベヤは、チューブ内にヘリカルコイルを備え、ヘリカルコイルの回転により原土を搬送する。このとき水分や静電気等で結合した原土の2次粒子は、チューブ内を回転するヘリカルコイルにより解砕され、また原土の表面が研磨され、細粒子化される。これにより粒径に応じた分級が可能となる。 In the pollutant dry treatment system 101, a tube conveyor can be suitably used for the soil transfer device 113. The tube conveyor is provided with a helical coil in the tube, and the raw soil is conveyed by the rotation of the helical coil. At this time, the secondary particles of the raw soil bonded by moisture, static electricity, etc. are crushed by the helical coil rotating in the tube, and the surface of the raw soil is polished into fine particles. This enables classification according to the particle size.

汚染物乾式処理システム101で使用可能な磁力選別装置は、本実施形態に示す磁力選別装置7に限定されるものではなく、第1から第6実施形態に示すいずれか1の磁力選別装置を使用することができる。また本汚染物乾式処理システム101では、汚染物が放射性物質汚染土壌であるが、汚染物は放射性物質汚染土壌に限定されるものではない。 The magnetic force sorting device that can be used in the contaminant dry treatment system 101 is not limited to the magnetic force sorting device 7 shown in the present embodiment, and any one of the magnetic force sorting devices shown in the first to sixth embodiments is used. can do. Further, in the present pollutant dry treatment system 101, the pollutant is the soil contaminated with the radioactive substance, but the pollutant is not limited to the soil contaminated with the radioactive substance.

図18は、本発明の第8実施形態の汚染物乾式処理システム102の構成図及び装置・機器の配置図である。図16に示す本発明の第7実施形態の汚染物乾式処理システム101と同一の構成には同一の符号を付して説明を省略する。 FIG. 18 is a block diagram of the pollutant dry treatment system 102 according to the eighth embodiment of the present invention and a layout diagram of devices / equipment. The same components as those of the pollutant dry treatment system 101 of the seventh embodiment of the present invention shown in FIG. 16 are designated by the same reference numerals and the description thereof will be omitted.

第8実施形態の汚染物乾式処理システム102も第7実施形態の汚染物乾式処理システム101と同様に放射性物質汚染土壌(原土)を放射性物質の濃度により区分するための乾式連続処理システムであり、基本構成も汚染物乾式処理システム101とほぼ同じである。一方、汚染物乾式処理システム102は、トラックの荷台に設置可能な車載システムであり、装置・機器の配置図等が工夫されている。 The pollutant dry treatment system 102 of the eighth embodiment is also a dry continuous treatment system for classifying the pollutant-contaminated soil (raw soil) according to the concentration of the radioactive substance, like the pollutant dry treatment system 101 of the seventh embodiment. The basic configuration is also almost the same as that of the pollutant dry treatment system 101. On the other hand, the pollutant dry treatment system 102 is an in-vehicle system that can be installed on the truck bed, and the layout of the devices / devices is devised.

汚染物乾式処理システム102は、原土から礫、ごみがら等を取り除き、さらに乾燥等を行う前処理工程を実行する前処理装置と、前処理処置で得られる原土にマグネタイト粉末を添加、混合し、これを磁力選別により分級する磁選分級工程を実行する磁選分級装置と、運転を制御する制御装置とに大別される。 The pollutant dry treatment system 102 is a pretreatment device that performs a pretreatment step of removing gravel, dust, etc. from the raw soil and further drying, etc., and a magnetic material powder is added to and mixed with the raw soil obtained by the pretreatment treatment. However, it is roughly classified into a magnetic separation classifying device that executes a magnetic separation classifying process that classifies this by magnetic force sorting, and a control device that controls operation.

前処理装置は、原土から礫、ごみがら等を取り除き、さらに乾燥等を行う装置であり、解砕装置121、解砕装置121の上流に設置される第1振動篩131、解砕装置121の出口部に設けられる土移送装置113、土移送装置113の下流に設置される第2振動篩141を有する。前処理装置は、小型トラックの荷台に載置可能な大きさであり、中型トラックであれば荷台401の2割~3割程度を占める大きさである。 The pretreatment device is a device that removes gravel, debris, etc. from the raw soil and further dries, etc., and is a crushing device 121, a first vibrating sieve 131 installed upstream of the crushing device 121, and a crushing device 121. It has a soil transfer device 113 provided at the outlet portion of the above, and a second vibrating sieve 141 installed downstream of the soil transfer device 113. The pretreatment device has a size that can be mounted on the loading platform of a small truck, and in the case of a medium-sized truck, it has a size that occupies about 20% to 30% of the loading platform 401.

解砕装置121は、第1振動篩131により供給される礫、ごみがらが取り除かれた原土を解砕、乾燥する装置である。解砕装置121は、ジャケット付きの撹拌槽123を有し、撹拌槽123内にパドルタイプ撹拌機122が、ジャケット内に加熱器126が装着されている。 The crushing device 121 is a device for crushing and drying the raw soil from which gravel and debris have been removed, which is supplied by the first vibrating sieve 131. The crushing device 121 has a stirring tank 123 with a jacket, a paddle type stirring tank 122 is mounted in the stirring tank 123, and a heater 126 is mounted in the jacket.

ジャケットには、熱媒体が充填され、当該熱媒体が加熱器126により加熱されることで撹拌槽123内の原土を乾燥させる。撹拌槽123には蒸気を外部に排出する排出口(図示省略)が設けられている。また加熱器126にはヒートポンプ127が接続する。 The jacket is filled with a heat medium, and the heat medium is heated by the heater 126 to dry the raw soil in the stirring tank 123. The stirring tank 123 is provided with a discharge port (not shown) for discharging steam to the outside. A heat pump 127 is connected to the heater 126.

第1振動篩131は、篩目を20~50mm程度とし、上部に放射性物質汚染土壌の原土を受入る篩上ホッパー133、下部に篩下ホッパー135を備え、篩下ホッパー135と解砕装置121の撹拌槽123とが管路を介して結ばれる。第1振動篩131は、解砕装置121の上流に設置され、原土から礫、ごみ殻を取り除き、礫、ごみ殻が取り除かれた原土を解砕装置121に供給する。 The first vibrating sieve 131 has a mesh size of about 20 to 50 mm, is provided with an upper sieving hopper 133 for receiving raw soil contaminated with radioactive substances at the upper part, and a lower sieving hopper 135 at the lower part. The stirring tank 123 of 121 is connected via a conduit. The first vibrating sieve 131 is installed upstream of the crushing device 121, removes gravel and trash shells from the raw soil, and supplies the raw soil from which the gravel and trash shells have been removed to the crushing device 121.

解砕装置121の排出口125には、土移送装置113であるベルトコンベアが設置され、解砕装置121により解砕、乾燥された原土が第2振動篩141に送られる。 A belt conveyor, which is a soil transfer device 113, is installed at the discharge port 125 of the crushing device 121, and the raw soil crushed and dried by the crushing device 121 is sent to the second vibrating sieve 141.

第2振動篩141は、篩目を2~5mm程度とし、下部に篩下ホッパー143を備え、篩下ホッパー143と混練機103とが管路を介して連通し、解砕装置121から送られる原土からさらに礫、ごみ殻を取り除き、混練機103に供給する。 The second vibrating sieve 141 has a sieve mesh of about 2 to 5 mm, is provided with a sub-sieve hopper 143 at the bottom, and the sub-sieve hopper 143 and the kneader 103 communicate with each other via a conduit and are sent from the crushing device 121. Further, gravel and trash shells are removed from the raw soil and supplied to the kneader 103.

磁選分級装置は、前処理装置により礫、ごみ殻が取り除かれ、さらに解砕、乾燥された原土とマグネタイト粉末とを混合し、これを磁力選別し粒径により3区分に区分ける装置であり、原土とマグネタイト粉末とを混合する混練機103と、被選別物移送装置115であるベルトコンベアと磁力選別装置7とを含む。磁選分級装置は、小型トラックの荷台に載置可能な大きさであり、中型トラックであれば荷台401の2割~3割程度を占める大きさである。 The magnetic separation classification device is a device in which gravel and trash shells are removed by a pretreatment device, and then crushed and dried raw soil and magnetite powder are mixed, and the magnetic separation is performed to classify them into three categories according to the particle size. , A kneader 103 for mixing raw soil and magnetite powder, a belt conveyor which is an object transfer device 115, and a magnetic separation device 7. The magnetic separation classification device has a size that can be mounted on the loading platform of a small truck, and if it is a medium-sized truck, it occupies about 20% to 30% of the loading platform 401.

本実施形態で使用する磁力選別装置7は、分別回収槽38にフレキシブルコンテナバッグを使用するが、基本構成は第7実施形態の汚染物乾式処理システム101で使用する磁力選別装置7と同じである。 The magnetic force sorting device 7 used in the present embodiment uses a flexible container bag for the sorting and collecting tank 38, but the basic configuration is the same as the magnetic force sorting device 7 used in the pollutant dry treatment system 101 of the seventh embodiment. ..

制御装置161は、汚染物乾式処理システム102の各装置・機器の運転を制御する。これにより予め定められた処理手順により放射性物質汚染土壌を粒径で選別・回収可能に汚染物乾式処理システム102を運転することができる。 The control device 161 controls the operation of each device / device of the pollutant dry treatment system 102. As a result, the pollutant dry treatment system 102 can be operated so that the radioactively contaminated soil can be sorted and recovered by the particle size according to a predetermined treatment procedure.

汚染物乾式処理システム102の装置・機器の配置を説明する。前処理装置は、第1振動篩131、解砕装置121、ベルトコンベア113、第2振動篩141が一直線上に配置されている。さらに第1振動篩131から排出される礫、ごみ殻を貯留する粗大分貯留槽151が第1振動篩131の上流側に、第2振動篩141から排出される礫、ごみ殻を貯留する粗大分貯留槽151が第2振動篩141の下流側に配置されている。粗大分貯留槽151も前処理装置の直線上に配置されている。 The arrangement of the apparatus / equipment of the pollutant dry treatment system 102 will be described. In the pretreatment device, the first vibrating sieve 131, the crushing device 121, the belt conveyor 113, and the second vibrating sieve 141 are arranged in a straight line. Further, the coarse-sized storage tank 151 for storing the gravel and the waste shell discharged from the first vibrating sieve 131 is located upstream of the first vibrating sieve 131, and the gravel discharged from the second vibrating sieve 141 and the coarse-sized waste shell are stored. The distribution tank 151 is arranged on the downstream side of the second vibrating sieve 141. The bulky storage tank 151 is also arranged on a straight line of the pretreatment device.

磁選分級装置は、ベルトコンベア115、磁力選別装置7が一直線上に、かつ前処理装置に平行に配置されている。混練機103は、前処理装置と磁選分級装置とを結ぶように、前処理装置と磁選分級装置とに直交するように配置されている。 In the magnetic separation classification device, the belt conveyor 115 and the magnetic force sorting device 7 are arranged in a straight line and parallel to the pretreatment device. The kneading machine 103 is arranged so as to connect the pretreatment device and the magnetic separation classifying device so as to be orthogonal to the pretreatment device and the magnetic separation classifying device.

汚染物乾式処理システム102の処理手順を示す。原土は、手作業あるいはミニバックホー等の機械により第1振動篩131の篩上ホッパー133に供給され、ここで礫・ごみ殻等が除去される。礫・ごみ殻等は、シュート153から粗大分貯留槽151に落下する。礫・ごみ殻等が取り除かれた原土は、解砕装置121で解砕、乾燥された後、ベルトコンベア113から第2振動篩141に送られる。 The treatment procedure of the pollutant dry treatment system 102 is shown. The raw soil is supplied to the sieving hopper 133 of the first vibrating sieve 131 by hand or by a machine such as a mini backhoe, where gravel, garbage shells and the like are removed. The gravel, garbage shell, etc. fall from the chute 153 to the bulky storage tank 151. The raw soil from which gravel, garbage shells and the like have been removed is crushed and dried by the crushing device 121, and then sent from the belt conveyor 113 to the second vibrating sieve 141.

第2振動篩141でさらに礫・ごみ殻等が取り除かれた原土は、混練機103で鉄粉フィーダー108から供給されるマグネタイト粉末と混合され、ベルトコンベア115により磁力選別装置7に送られ3区分に選別される。 The raw soil from which gravel, waste shells, etc. have been further removed by the second vibrating sieve 141 is mixed with the magnetite powder supplied from the iron powder feeder 108 by the kneader 103, and sent to the magnetic force sorting device 7 by the belt conveyor 115 3 Sorted into categories.

以上からなる汚染物乾式処理システム102は、1~2台の車上に架装できるため一般住宅等の庭先など仮々置場に埋設されている除染土を現地にて分級減容化するのに適している。具体的には庭先等に埋設された除染土など、小口の汚染土をその場でごみ等粗大分の除去と乾燥、解砕などの前処理を行い、磁選処理し、大粒径区分に分級された低濃度土を現地埋め戻し材とすることができる。 Since the pollutant dry treatment system 102 consisting of the above can be mounted on one or two vehicles, the decontaminated soil buried in the temporary storage area such as the garden of a general house is classified and reduced in volume locally. Suitable for. Specifically, small contaminated soil such as decontaminated soil buried in the garden, etc. is removed on the spot, and pretreatment such as drying and crushing is performed, and magnetic separation is performed to classify the large particle size. The classified low-concentration soil can be used as the on-site backfill material.

これにより、健全な山を切り崩すことで調達しなくてはならない埋め戻し土の必要量を低減させ、自然環境破壊を低減化するとともに、除染土の移送量を削減することで、輸送中の2次汚染拡大の抑制、化石燃料消費低減に伴う二酸化炭素排出量の抑制など、環境負荷の低減にも資する。 This will reduce the amount of backfill soil that must be procured by cutting down healthy mountains, reduce the destruction of the natural environment, and reduce the amount of decontaminated soil transferred during transportation. It also contributes to the reduction of environmental load, such as the control of the spread of secondary pollution and the control of carbon dioxide emissions associated with the reduction of fossil fuel consumption.

以上、第1~第6実施形態の磁力選別装置に示すように本発明の磁力選別装置は、磁選機が回転ドラムの磁石部の位置を変更可能な位置可変機構を備え、さらに選別装置が区分けする粒径を変更可能な粒径可変機構を備えるので汚染物の濃度に対応した分別が可能となる。粒径可変機構は、単純な構成からなるのでこのような粒径可変機構を備える磁力選別装置は、実用的で使い勝手に優れる。 As described above, as shown in the magnetic force sorting devices of the first to sixth embodiments, the magnetic force sorting device of the present invention is provided with a position variable mechanism capable of changing the position of the magnet portion of the rotating drum, and the sorting device is further divided. Since it is equipped with a particle size variable mechanism that can change the particle size, it is possible to separate the particles according to the concentration of the contaminants. Since the particle size variable mechanism has a simple structure, a magnetic force sorting device provided with such a particle size variable mechanism is practical and easy to use.

また本発明の磁力選別装置は、被選別物を供給する供給装置が被選別物を薄層化する薄層化手段を備えるので優れた分級性能を発揮することができる。さらに薄層化手段は構成が簡単であるので既設の供給装置にも容易に適用できる。 Further, the magnetic force sorting device of the present invention can exhibit excellent classification performance because the supply device for supplying the sorted object is provided with a thinning means for thinning the sorted object. Further, since the thinning means has a simple structure, it can be easily applied to an existing supply device.

本発明の磁力選別装置は、被選別物の供給速度、回転ドラムの回転速度などの運転条件、磁選機の回転ドラムに対する磁石の位置、回転ドラム表面磁束密度などの装置特性、被選別物の含水率等の被選別物の磁着特性を変更可能なため、これを調節することで所望の区分けが可能となる。 The magnetic force sorting device of the present invention has operating conditions such as the supply speed of the object to be sorted, the rotational speed of the rotating drum, the position of the magnet with respect to the rotating drum of the magnetic separator, the device characteristics such as the magnetic flux density on the surface of the rotating drum, and the water content of the object to be sorted. Since it is possible to change the magnetic flux characteristics of the object to be sorted, such as the rate, it is possible to perform the desired classification by adjusting this.

本発明の磁力選別装置は、粉粒体状の汚染物を被選別物とするため幅広く利用することができる。放射性物質汚染土壌を被選別物とし、本発明の磁力選別装置、汚染物乾式処理システムを用いて処理すれば効率的な除染、減容化が実現できる。 The magnetic force sorting apparatus of the present invention can be widely used because the contaminants in the form of powder or granular material are used as the object to be sorted. Efficient decontamination and volume reduction can be realized by using the radioactive material-contaminated soil as the object to be sorted and treating it using the magnetic force sorting device and the pollutant dry treatment system of the present invention.

図面を参照しながら好適な磁力選別装置、磁力選別装置の使用方法、汚染物乾式処理システムを説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更及び修正を容易に想定するであろう。従って、そのような変更及び修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 A suitable magnetic force sorting device, a method of using the magnetic force sorting device, and a pollutant dry treatment system have been described with reference to the drawings. It would be easy to assume a fix. Therefore, such changes and amendments are construed as being within the scope of the invention as defined by the claims.

吐出層厚低減器具:三角歯効果確認試験
乾燥真砂土(含水率0.5wt%未満)2mm目篩通過分に対して磁性鉄粉を0.5wt%坦持したものを供試体とし、第1実施形態に示す磁力選別装置1を用いて選別実験を行った。回転ドラム11の直径は300mm、幅は300mmであり、表面磁束密度は3,000G、周速度は28.2m/minとした。回転ドラム11の回転方向は時計廻りである。回転ドラム11の磁石部18の傾斜角度θは0°である。
Discharge layer thickness reduction device: Triangular tooth effect confirmation test Dry decomposed granite soil (moisture content less than 0.5 wt%) 2 mm mesh A test piece with 0.5 wt% of magnetic iron powder for passing through a sieve is used as the first specimen. A sorting experiment was performed using the magnetic force sorting device 1 shown in the embodiment. The diameter of the rotating drum 11 was 300 mm, the width was 300 mm, the surface magnetic flux density was 3,000 G, and the peripheral speed was 28.2 m / min. The rotation direction of the rotating drum 11 is clockwise. The inclination angle θ 1 of the magnet portion 18 of the rotating drum 11 is 0 °.

図19に仕切板32a、32bの位置及び区分を示した。仕切板32a、32bの左右方向の位置は、回転ドラム11の中心点を基準に鉛直板33bの位置を回転ドラム11の中心点の真下に、鉛直板33aの位置を回転ドラム11の中心点から右に120mmとした。また鉛直板33a、33bの上端の位置は、回転ドラム11の下端からΔH=40mmとした。 FIG. 19 shows the positions and divisions of the partition plates 32a and 32b. The positions of the partition plates 32a and 32b in the left-right direction are such that the position of the vertical plate 33b is directly below the center point of the rotary drum 11 and the position of the vertical plate 33a is from the center point of the rotary drum 11 with respect to the center point of the rotary drum 11. It was set to 120 mm on the right. The positions of the upper ends of the vertical plates 33a and 33b were set to ΔH = 40 mm from the lower end of the rotary drum 11.

区分Aは、小粒径主体の磁着区分である。鉛直板33aと鉛直板33bとの間に挟まれる区分Bは、中粒径主体の磁着区分である。区分Nは、大粒径主体の未着区分である。以降、区分Aと区分Bとを仕切る仕切板を小粒径側仕切、区分Bと区分Nとを仕切る仕切板を大粒径側仕切と呼ぶ。 Category A is a magnetized category mainly composed of small particle sizes. The category B sandwiched between the vertical plate 33a and the vertical plate 33b is a magnetized category mainly composed of a medium particle size. Category N is a non-arrival category mainly composed of large particle sizes. Hereinafter, the partition plate that separates the division A and the division B is referred to as a small particle size side partition, and the partition plate that separates the division B and the division N is referred to as a large particle size side partition.

本実験では振動フィーダー71のトラフ先端73に三角歯状の板材74を装着した場合と、それを装着しなかった場合について、供試体の供給速度(処理速度)を385~1,300kg/hとし、分級状況を確認した。三角歯状の板材74を未装着の場合、振動フィーダー71のトラフ先端73は、一直線状で平坦なため以降、平歯と記す。各区分について106、212、425、850μm開きの土木試験用篩で分級し、評価を行った。 In this experiment, the supply speed (processing speed) of the specimen was set to 385 to 1,300 kg / h when the triangular tooth-shaped plate 74 was attached to the trough tip 73 of the vibration feeder 71 and when it was not attached. , Confirmed the classification status. When the triangular tooth-shaped plate 74 is not attached, the trough tip 73 of the vibration feeder 71 is straight and flat, and is hereinafter referred to as flat teeth. Each category was classified by a sieve for civil engineering test having an opening of 106, 212, 425, and 850 μm, and evaluated.

図20~図22に、供試体の供給速度と各磁着区分における粒径範囲の質量率(処理前原土を100%とする)との関係を示した。 FIGS. 20 to 22 show the relationship between the supply rate of the specimen and the mass ratio of the particle size range in each magnetizing category (the raw soil before treatment is 100%).

区分Aについては、平歯では、粒径0~106μm、0~212μm、0~425μm分の質量率はいずれにおいても供給速度に対し変化が小さく、また質量率は1.1wt%以下であった。これに対し三角歯ではいずれの範囲の質量率も供給速度に対し単調増加の傾向が見られた。このことは供給速度の増加に伴い、粒子間の分離が進んでいることを示唆し、供給速度が大きいほど三角歯が良く作用していることが伺える。 Regarding Category A, in the case of flat teeth, the mass ratios of 0 to 106 μm, 0 to 212 μm, and 0 to 425 μm had little change with respect to the supply rate, and the mass ratio was 1.1 wt% or less. .. On the other hand, in the case of triangular teeth, the mass ratio in any range tended to increase monotonically with respect to the supply rate. This suggests that the separation between particles progresses as the supply rate increases, and it can be seen that the higher the supply rate, the better the triangular teeth work.

区分Bについては、平歯、三角歯ともに供給速度に対し、粒径0~212μm、0~425μmの質量率が単調増加した。そのトレンドから供給速度500~1,000kg/hの範囲において、粒径0~425μm分は平歯で8~10wt%、三角歯で10~12wt%であり後者が多く、粒径0~212μm分は平歯が7~8wt%であるのに対し、三角歯が9~10wt%であり後者の方が多い。粒径0~106μm分は、両者とも単調減少しているが、特に後者が著しい。これは供給量が大きいほど、区分Bから区分Aへ細粒分の移動が多くなるためと考えられる。 In Category B, the mass ratios of particle size 0 to 212 μm and 0 to 425 μm monotonically increased with respect to the supply rate for both flat teeth and triangular teeth. From that trend, in the range of supply speed of 500 to 1,000 kg / h, the particle size of 0 to 425 μm is 8 to 10 wt% for flat teeth and 10 to 12 wt% for triangular teeth, and the latter is more common, and the particle size is 0 to 212 μm. The ratio of flat teeth is 7 to 8 wt%, while that of triangular teeth is 9 to 10 wt%, and the latter is more common. The particle size of 0 to 106 μm decreases monotonically in both cases, but the latter is particularly remarkable. It is considered that this is because the larger the supply amount, the larger the movement of the fine particles from the category B to the category A.

区分A+Bは、平歯、三角歯ともに供給速度に対し、粒径0~212μm、0~425μm分の質量率が単調増加したが後者の方が顕著であり、粒径0~106μm分は、平歯は横ばい、三角歯は若干の増加傾向であった。供給速度500~1,000kg/hの範囲で粒径0~425μm分では平歯は9~11wt%に対し、三角歯は10~14wt%、粒径0~212μm分は平歯は8~9wt%に対し、三角歯は10~11wt%とともに後者の方が多い。 In categories A + B, the mass ratios of 0 to 212 μm and 0 to 425 μm of particle size increased monotonically with respect to the supply rate for both flat teeth and triangular teeth, but the latter was more remarkable, and the particle size of 0 to 106 μm was flat. Teeth were flat and triangular teeth tended to increase slightly. When the particle size is 0 to 425 μm in the supply speed range of 500 to 1,000 kg / h, the flat tooth is 9 to 11 wt%, while the triangular tooth is 10 to 14 wt% and the particle size is 0 to 212 μm, the flat tooth is 8 to 9 wt%. The percentage of triangular teeth is 10 to 11 wt%, and the latter is more common.

以上より、粒径0~425μmの比較的小粒径分を総磁着分A+Bとして回収する、及び粒径0~106μmの微細粒分を区分Aとして濃縮するためには三角歯を付加した方が効率がよく、とくに供給速度が大きいときに有効であるといえる。 Based on the above, those with triangular teeth added to recover relatively small particles with a particle size of 0 to 425 μm as total magnetic deposition A + B and to concentrate fine particles with a particle size of 0 to 106 μm as Category A. Is efficient, and can be said to be particularly effective when the supply speed is high.

汚染物乾式処理システム試験
図16及び図17に示す汚染物乾式処理システム101と同様の設備を用い、選別試験を行った。土移送装置113及び被選別物移送装置115には、チューブ式コンベア(日本興産株式会社製TS-10型)を使用した。
Pollutant dry treatment system test A sorting test was conducted using the same equipment as the pollutant dry treatment system 101 shown in FIGS. 16 and 17. A tube type conveyor (TS-10 type manufactured by Nippon Kosan Co., Ltd.) was used for the soil transfer device 113 and the object transfer device 115.

汚染土壌として現場原土(含水率4.7wt%以上)を使用し、これに対して磁性鉄粉を0.2wt%添加し、処理速度1,000kg/h、回転ドラム11の表面磁束密度5,000G、ドラム周速度71m/minで試験を行った。回転ドラム11の直径は300mm、幅は300mmであり、回転ドラム11の磁石部18の傾斜角度θは12°とした。また振動フィーダー71のトラフ先端73に三角歯状の板材74を装着した。 On-site raw soil (moisture content of 4.7 wt% or more) is used as contaminated soil, 0.2 wt% of magnetic iron powder is added to it, the processing speed is 1,000 kg / h, and the surface magnetic flux density of the rotating drum 11 is 5. The test was conducted at 000 G and a drum peripheral speed of 71 m / min. The diameter of the rotary drum 11 is 300 mm, the width is 300 mm, and the inclination angle θ 1 of the magnet portion 18 of the rotary drum 11 is 12 °. Further, a triangular tooth-shaped plate material 74 was attached to the trough tip 73 of the vibration feeder 71.

図23に小粒径側仕切位置及び大粒径側仕切位置を示した。図23は、回転ドラム11を裏側から見た図であり、図19の回転ドラム11と見る方向が逆であるため回転方向が反時計廻りとなっている。小粒径側仕切位置は、回転ドラム中心点から52mm(水平方向)、回転ドラム11の下端からΔH2=150mm、大粒径側仕切位置は、回転ドラム中心点から-150mm(水平方向)、回転ドラム11の下端からΔH1=50mmとした。 FIG. 23 shows the partition position on the small particle size side and the partition position on the large particle size side. FIG. 23 is a view of the rotating drum 11 as viewed from the back side, and the direction of rotation is counterclockwise because the direction of viewing is opposite to that of the rotating drum 11 of FIG. The small particle size side partition position is 52 mm (horizontal direction) from the center point of the rotating drum, ΔH2 = 150 mm from the lower end of the rotating drum 11, and the large particle size side partition position is -150 mm (horizontal direction) from the rotating drum center point. ΔH1 = 50 mm from the lower end of the drum 11.

現場原土の粒径分布及び放射能濃度分布を図24に示した。放射能濃度は、ゲルマニウム検出器による放射線分光分析による値である。小粒径ほど放射能濃度が高くなっている。現場原土の放射能濃度のオーバーオール平均値(全体平均)は、42,600Bq/kgであった。 The particle size distribution and the radioactivity concentration distribution of the field raw soil are shown in FIG. 24. The radioactivity concentration is a value obtained by radiation spectroscopic analysis with a germanium detector. The smaller the particle size, the higher the radioactivity concentration. The overall average value (overall average) of the radioactivity concentration in the field raw soil was 42,600 Bq / kg.

図25に分級結果を示した。図25において実験データは、106μmの篩下成分は53μm、106~212μm成分は159μm、212~425μm成分は318.5μm、425~850μm成分は637.5μm、850~2000μm成分は1425μmの位置にプロット(各隣接篩間の目開きの平均値)している。これについては、以降の図においても同じである。 FIG. 25 shows the classification results. In FIG. 25, the experimental data is plotted at positions of 53 μm for the 106 μm subsieving component, 159 μm for the 106 to 212 μm component, 318.5 μm for the 212 to 425 μm component, 637.5 μm for the 425 to 850 μm component, and 1425 μm for the 850 to 2000 μm component. (Average value of the opening between each adjacent sieve). This also applies to the following figures.

分級後の質量比率(オーバーオール)は、区分A(小粒径分):区分B(中粒径分):区分N(大粒径分)=1:43:56であり、放射能濃縮比は、原土のオーバーオール平均値42,600Bq/kgを1とし、処理後の濃度を規格化して示した場合、区分A:区分B:区分N=2.21:1.52:0.62であった。以上より原土から低濃度分である区分Nへ区分される量を減質量率と定義すると、減質量率は56%、12,900Bq/kgの原土を8,000Bq/kg未満へ、4,800Bq/kgの原土を3,000Bq/kg未満へ、低濃度分として得ることが可能であると予測される。 The mass ratio (overall) after classification is Category A (small particle size): Category B (medium particle size): Category N (large particle size) = 1: 43: 56, and the radioactivity concentration ratio is When the overall average value of 42,600 Bq / kg of the raw soil is set to 1 and the concentration after treatment is standardized and shown, it is Category A: Category B: Category N = 2.21: 1.52: 0.62. rice field. Based on the above, if the amount classified from the raw soil into the low concentration category N is defined as the mass loss rate, the mass loss rate is 56%, and the raw soil of 12,900 Bq / kg is reduced to less than 8,000 Bq / kg, 4 It is predicted that 800 Bq / kg of raw soil can be obtained as a low concentration to less than 3,000 Bq / kg.

また図25に示すように現場原土と、各区分に区分けされた土壌の合算分である区分A+B+Nとを比較すると、後者は粒径600μm以上の土壌が減少し、逆に粒径600μm以下の土壌が増加していることが分かる。このことは土移送装置113及び被選別物移送装置115において、旋回するヘリカルコイルと土粒子、土粒子同士が衝突することにより、大粒径表面に付着した小粒径分が解砕分離され、また大粒径表面が研削されたことを示唆していると言える。 Further, as shown in FIG. 25, when the on-site raw soil and the category A + B + N, which is the sum of the soils divided into each category, are compared, the latter has a decrease in soil having a particle size of 600 μm or more, and conversely, a soil having a particle size of 600 μm or less. It can be seen that the soil is increasing. This means that in the soil transfer device 113 and the object transfer device 115, the swirling helical coil collides with the soil particles and the soil particles, so that the small particle size adhering to the large particle size surface is crushed and separated. It can also be said that it suggests that the surface with a large particle size was ground.

図26は、土移送装置113にチューブ式コンベア(日本興産株式会社製TS-10型)を使用し、真砂土(含水率0.5wt%未満)を通過させたときの粒径分布である。真砂土は、硬度の高い石英や長石類を多く含み、研磨しにくいと予想されるが、チューブ式コンベアを通過させることで粒径300μm以上の真砂土が減少し、逆に粒径300μm以下の真砂土が増加していることが分かる。 FIG. 26 shows the particle size distribution when a tubular conveyor (TS-10 type manufactured by Nippon Kosan Co., Ltd.) is used for the soil transfer device 113 and the decomposed granite soil (moisture content is less than 0.5 wt%) is passed through. Decomposed granite soil contains a large amount of high-hardness quartz and feldspar, and is expected to be difficult to polish. It can be seen that the decomposed granite soil is increasing.

模擬原土を用いた運転条件比較試験(ドラム周速度)
三角歯効果確認試験と同様に第1実施形態に示す磁力選別装置1を用いて選別実験を行った。供試体には、以下の要領で得られた模擬原土を使用した。市販の真砂土、黒土、田土を質量比で真砂土:黒土:田土=86:7:7の割合で調合後、2mm目篩に通し、通過分を使用した。模擬原土の含水率は1.4wt%未満である。
Operating condition comparison test using simulated raw soil (drum peripheral speed)
Similar to the triangular tooth effect confirmation test, a sorting experiment was performed using the magnetic force sorting device 1 shown in the first embodiment. For the specimen, the simulated raw soil obtained as follows was used. Commercially available decomposed granite soil, black soil, and rice soil were mixed in a mass ratio of decomposed granite soil: black soil: rice soil = 86: 7: 7, and then passed through a 2 mm sieve, and the passed material was used. The moisture content of the simulated raw soil is less than 1.4 wt%.

模擬原土に対して磁性鉄粉を0.2wt%添加し、処理速度2,200kg/h、回転ドラム11の周速度を56,71,87m/min、回転ドラムの磁石部18の傾斜角度θを12°とし、試験を行った。回転ドラム11の直径は300mm、幅は300mm、回転ドラム11の表面磁束密度は5,000Gである。また振動フィーダー71のトラフ先端73に三角歯状の板材74を装着した。 0.2 wt% of magnetic iron powder was added to the simulated raw soil, the processing speed was 2,200 kg / h, the peripheral speed of the rotating drum 11 was 56,71,87 m / min, and the inclination angle θ of the magnet portion 18 of the rotating drum was θ. The test was performed with 1 set to 12 °. The diameter of the rotary drum 11 is 300 mm, the width is 300 mm, and the surface magnetic flux density of the rotary drum 11 is 5,000 G. Further, a triangular tooth-shaped plate material 74 was attached to the trough tip 73 of the vibration feeder 71.

小粒径側仕切位置は、図23において回転ドラム中心点から6mm(水平方向)、回転ドラム11の下端からΔH2=135mm、大粒径側仕切位置は、図23において回転ドラム中心点から-150mm(水平方向)、回転ドラム11の下端からΔH1=50mmとした。回転ドラム11の回転方向は、図23において半時計廻りである。 The partition position on the small particle size side is 6 mm (horizontal direction) from the center point of the rotating drum in FIG. 23, ΔH2 = 135 mm from the lower end of the rotating drum 11, and the partition position on the large particle size side is -150 mm from the center point of the rotating drum in FIG. (Horizontal direction), ΔH1 = 50 mm from the lower end of the rotating drum 11. The rotation direction of the rotating drum 11 is counterclockwise in FIG. 23.

回転ドラム11の周速度を大きくすると次の効果が生じると考えられる。
(1-1)粒径区分別分級に有利:回転ドラム単位断面積に落着する土粒子の量が減じるので回転ドラム上に広く土粒子が分散され、粒子同士の分離が促進される。
(1-2)粒径区分別分級に有利:回転ドラムとこれに落着する土粒子との相対速度が大きくなるので、解砕による粒子同士の分離が促進される。
(1-3)中~大粒径分は早期に脱着する:回転ドラムに付着した土粒子の受ける遠心力(回転ドラムから引きはがす力)が大きくなるため、着磁力の不十分な土粒子がドラム表面から離脱するタイミングが早くなる。また、磁着力が十分な土粒子は、周速度上昇により大きな水平速度を得るため、回転ドラムからより遠くへ投射される。
It is considered that the following effects are produced by increasing the peripheral speed of the rotating drum 11.
(1-1) Advantageous for classification by particle size classification: Since the amount of soil particles settled in the unit cross-sectional area of the rotating drum is reduced, the soil particles are widely dispersed on the rotating drum, and the separation of the particles is promoted.
(1-2) Advantageous for classification by particle size classification: Since the relative velocity between the rotating drum and the soil particles settling on the rotating drum increases, the separation of the particles by crushing is promoted.
(1-3) Medium to large particle size desorbs at an early stage: Since the centrifugal force (force to peel off from the rotating drum) received by the soil particles adhering to the rotating drum increases, the soil particles with insufficient magnetic force can be removed. The timing of detaching from the drum surface is earlier. In addition, soil particles with sufficient magnetic force are projected farther from the rotating drum in order to obtain a large horizontal velocity by increasing the peripheral velocity.

図27~図29に質量率分布を示した。図中、区分A+Bは磁着分を示し、これの質量率を磁着率と呼ぶ。ここで磁着分は、回転ドラム11に落着後すぐには脱着しない粒径成分である。回転ドラム11の周速度と磁着率との関係は表1の通りであり、周速度の低下により磁着率が増加している。これは主に上記(1-3)の効果によるものと思われる。 The mass ratio distribution is shown in FIGS. 27 to 29. In the figure, categories A + B indicate the magnetized component, and the mass ratio of this is called the magnetized component. Here, the magnetized component is a particle size component that does not desorb immediately after being settled on the rotating drum 11. The relationship between the peripheral speed of the rotating drum 11 and the magnetizing rate is as shown in Table 1, and the magnetizing rate increases as the peripheral speed decreases. This seems to be mainly due to the effect of (1-3) above.

Figure 0007038372000004
Figure 0007038372000004

回転ドラム11の周速度と区分A、区分B、区分A+Bの質量率の分布との関係を見ると、周速度の最も速い87m/minの場合が、もっとも小粒径側へシフトしている。これは主に上記(1-1)(1-2)の効果によるものと思われる。 Looking at the relationship between the peripheral speed of the rotating drum 11 and the distribution of the mass ratios of the categories A, B, and A + B, the case of 87 m / min, which has the fastest peripheral speed, shifts to the smallest particle size side. It seems that this is mainly due to the effects of (1-1) and (1-2) above.

磁着分(区分A+B)について0~212μmの質量率(細粒分磁着収集率、試験体模擬原土を100wt%とする)に着目すると、表1に示すように回転ドラム11の周速度が遅いほど細粒分磁着収集率が大きかった。 Focusing on the mass ratio of 0 to 212 μm for the magnetized component (Category A + B) (fine particle size magnetic collection collection rate, 100 wt% of the sample simulated raw soil), as shown in Table 1, the rotating drum 11 The slower the peripheral speed, the higher the fine particle polarization collection rate.

以上の結果から、細粒分をより多く収集し、低濃度分である区分Nの放射能濃度(濃縮比)を下げるためには、周速度が遅い方がよく、高濃度分である区分A+Bの放射能濃度(濃縮比)を上げ、これを減量するためには、周速度が速いほどよい。現場の状況により、低濃度分を土木建設用土として再生利用するためになるべく濃縮比を下げ希釈したい、又は高濃度分は管理する費用がかさむので可能な限り減量したい場合が生じると推察する。現場の要望により、ドラム周速度を適宜変化させ運転することでこれらの要望に柔軟に応えることができる。 From the above results, in order to collect more fine particles and reduce the radioactivity concentration (concentration ratio) of Category N, which is a low concentration component, it is better to have a slower peripheral speed, and Category A + B, which is a high concentration component. In order to increase the radioactivity concentration (concentration ratio) and reduce it, the faster the peripheral speed is, the better. Depending on the situation at the site, it is presumed that there may be cases where it is desirable to reduce the concentration ratio as much as possible in order to recycle the low concentration content as civil engineering construction soil, or to reduce the weight as much as possible because the management cost is high for the high concentration content. It is possible to flexibly respond to these demands by appropriately changing the drum peripheral speed according to the demands of the site.

模擬原土を用いた運転条件比較試験(大粒径側仕切位置)
模擬原土を用いた運転条件比較試験(ドラム周速度)と同じ要領で、大粒径側仕切位置を変化させ選別実験を行った。回転ドラム11の周速度は71m/minとし、小粒径側仕切位置及び大粒径側仕切位置を以下のように設定した。他の条件は、模擬原土を用いた運転条件比較試験(ドラム周速度)と同じである。
Operating condition comparison test using simulated raw soil (partition position on the large particle size side)
A sorting experiment was conducted by changing the partition position on the large particle size side in the same manner as in the operating condition comparison test (drum peripheral speed) using simulated raw soil. The peripheral speed of the rotating drum 11 was 71 m / min, and the small particle size side partition position and the large particle size side partition position were set as follows. Other conditions are the same as the operating condition comparison test (drum peripheral speed) using simulated raw soil.

小粒径側仕切位置は、図23において回転ドラム中心点から6mm(水平方向)、回転ドラム11の下端からΔH2=135mm、大粒径側仕切位置は、図24において回転ドラム中心点から-150mm、-100mm、-60mm(水平方向)の3点とした。大粒径側仕切の高さは、回転ドラム11の下端からΔH1=50mmとした。 The partition position on the small particle size side is 6 mm (horizontal direction) from the center point of the rotating drum in FIG. 23, ΔH2 = 135 mm from the lower end of the rotating drum 11, and the partition position on the large particle size side is −150 mm from the center point of the rotating drum in FIG. 24. , -100 mm and -60 mm (horizontal direction). The height of the partition on the large particle size side was set to ΔH1 = 50 mm from the lower end of the rotary drum 11.

大粒径側仕切位置が変化することで以下が予想される。
(2-1)大粒径側仕切位置がドラム水平中心位置0mmへ近く位置するほど、低濃度分Nの質量率(オーバーオール)が増加し、その中に占める小中粒径分の割合が増加する。
(2-2)(2-1)と相反して大粒径側仕切位置がドラム水平中心位置0mmへ近く位置するほど、中粒径区分Bの質量率(オーバーオール)が減少し、その中に占める大粒径成分の割合が減少する。
The following is expected due to the change in the partition position on the large particle size side.
(2-1) The closer the partition position on the large particle size side is to the horizontal center position of the drum, 0 mm, the more the mass ratio (overall) of the low concentration N increases, and the proportion of the small and medium particle size in it increases. do.
(2-2) Contrary to (2-1), the closer the partition position on the large particle size side is to the horizontal center position of the drum, the closer the mass ratio (overall) of the medium particle size category B is, and the more the mass ratio (overall) of the medium particle size category B decreases. The proportion of large particle size components occupying is reduced.

図30に大粒径側仕切位置の変化による質量率(オーバーオール:全粒径帯域)の変化を示した。大粒径側仕切位置が回転ドラム11の水平中心位置0mmへ近く位置するほど、低濃度分Nの質量率(オーバーオール)が増加し、中粒径区分Bや区分A+Bの質量率(オーバーオール)が減少した。これは主に上記(2-1)、(2-2)の効果によるものと思われる。 FIG. 30 shows the change in mass ratio (overall: whole grain size band) due to the change in the partition position on the large particle size side. As the partition position on the large particle size side is closer to the horizontal center position 0 mm of the rotating drum 11, the mass ratio (overall) of the low concentration N increases, and the mass ratio (overall) of the medium particle size category B and the category A + B increases. Diminished. It seems that this is mainly due to the effects of (2-1) and (2-2) above.

図31~図33に質量率分布を示した。区分A、区分B、区分A+Bの分布を見ると大粒径側仕切位置が回転ドラム11の水平中心位置0mmへ近く位置するほど小粒径側へシフトし、磁着率が低下している。区分Nの分布を見ると大粒径側仕切位置が回転ドラム11の水平中心位置0mmへ近く位置するほどその中に占める小中粒径成分の割合が増加した。これは主に上記(2-1)、(2-2)の効果によるものと考えられる。 The mass ratio distribution is shown in FIGS. 31 to 33. Looking at the distributions of Category A, Category B, and Category A + B, the closer the partition position on the large particle size side is to the horizontal center position 0 mm of the rotating drum 11, the smaller the particle size shifts to the smaller particle size side, and the magnetizing rate decreases. Looking at the distribution of the category N, the closer the partition position on the large particle size side was to the horizontal center position 0 mm of the rotating drum 11, the more the proportion of the small and medium particle size components in the partition increased. It is considered that this is mainly due to the effects of (2-1) and (2-2) above.

なお大粒径側仕切位置が回転ドラム11の水平中心位置0mmへ近く位置するほど区分Nの分布の大粒径成分が減じているが、これは、仕切位置が0mmに近づくほど、区分Nに区分される土粒子の水平速度成分が大きくなった状況で仕切板32aと衝突し跳ね返されて落着するために、解砕が進んだためと考えられる。 The closer the partition position on the large particle size side is to the horizontal center position of the rotating drum 11 to 0 mm, the smaller the large particle size component in the distribution of category N. It is probable that the crushing proceeded because the soil particles to be classified collided with the partition plate 32a and were bounced off and settled in the situation where the horizontal velocity component became large.

磁着分(区分A+B)について比較的汚染濃度の高い0~212μmの質量率(細粒分磁着収集率)に着目すると、大粒径側仕切位置と細粒分磁着収集率との関係は表2で示される。大粒径側仕切位置が回転ドラム11の水平中心位置0mmへ近く位置するほど、細粒分磁着収集率が低下した。 Focusing on the mass ratio (fine particle size distribution collection rate) of 0 to 212 μm, which has a relatively high contamination concentration, regarding the magnetized component (Category A + B), the relationship between the large particle size side partition position and the fine particle size magnetism collection rate. Is shown in Table 2. The closer the partition position on the large particle size side was to the horizontal center position of the rotary drum 11 to 0 mm, the lower the fine particle polarization collection rate.

Figure 0007038372000005
Figure 0007038372000005

大粒径側仕切位置が回転ドラム11の水平中心位置0mmへ近く位置するほど、磁着分の分布が小粒径側へシフトする。細粒分をより多く収集し、低濃度分である区分Nの放射能濃度(濃縮比)を下げるためには、大粒径側仕切位置が回転ドラム11の水平中心位置0mmから遠い方がよい。高濃度分である区分A+Bの放射能濃度(濃縮比)を上げ、これを減量するためには、大粒径側仕切位置が回転ドラム11の水平中心位置0mmから近いほどよい。 The closer the partition position on the large particle size side is to the horizontal center position 0 mm of the rotating drum 11, the more the distribution of the magnetically deposited component shifts to the smaller particle size side. In order to collect more fine particles and reduce the radioactivity concentration (concentration ratio) of the low concentration category N, it is better that the partition position on the large particle size side is far from the horizontal center position 0 mm of the rotating drum 11. .. In order to increase the radioactivity concentration (concentration ratio) of the category A + B, which is a high concentration component, and to reduce the concentration, it is better that the partition position on the large particle size side is closer to the horizontal center position 0 mm of the rotating drum 11.

現場の状況により、低濃度分を土木建設用土として再生利用するためになるべく濃縮比を下げ希釈したい、又は高濃度分は管理する費用がかさむので可能な限り減量したい場合が生じると推察される。現場の要望により、大粒径側仕切位置を適宜変化させ運転することでこれらの要望に柔軟に応えることができる。 Depending on the situation at the site, it is presumed that there may be cases where it is desired to reduce the concentration ratio as much as possible in order to recycle the low concentration content as civil engineering construction soil, or to reduce the weight as much as possible because the management cost is high for the high concentration content. It is possible to flexibly meet these demands by appropriately changing the partition position on the large particle size side according to the demands of the site.

大粒径側仕切位置により、質量率分布に大きな影響を受ける区分Bについて、その分布の最頻値で規格化(最頻値規格化質量率)したグラフを図34に示す。大粒径側仕切位置が回転ドラム11の水平中心位置0mmに近づくほど、規格化された粒径分布が小粒径側へシフトしている。ここで、最頻値の0.8となる粒径をd80とし、0.2となる粒径をd20と定義し、これらを分級指標粒径(B)と称す。d80は、各曲線に2点存在するが、大粒径側の値を採用した。これを図35に示す。分級指標粒径(B)は、大粒径側仕切位置が回転ドラム11の水平中心位置0mmへ近く位置するほど低下した。 FIG. 34 shows a graph in which category B, which is greatly affected by the mass ratio distribution due to the partition position on the large particle size side, is normalized by the mode of the distribution (mode normalized mass ratio). As the partition position on the large particle size side approaches the horizontal center position 0 mm of the rotating drum 11, the standardized particle size distribution shifts to the small particle size side. Here, the particle size having the mode value of 0.8 is defined as d 80 , the particle size having 0.2 is defined as d 20 , and these are referred to as the classification index particle size (B). Although there are two d 80 points on each curve, the value on the large particle size side is adopted. This is shown in FIG. The classification index particle size (B) decreased as the partition position on the large particle size side was closer to the horizontal center position 0 mm of the rotary drum 11.

模擬原土を用いた運転条件比較試験(小粒径側仕切位置)
模擬原土を用いた運転条件比較試験(大粒径側仕切位置)と同じ要領で、小粒径側仕切位置を変化させ選別実験を行った。小粒径側仕切位置及び大粒径側仕切位置は以下のように設定した。他の条件は、模擬原土を用いた運転条件比較試験(大粒径側仕切位置)と同じである。
Operating condition comparison test using simulated raw soil (partition position on the small particle size side)
A sorting experiment was conducted by changing the partition position on the small particle size side in the same manner as in the operation condition comparison test (partition position on the large particle size side) using simulated raw soil. The partition position on the small particle size side and the partition position on the large particle size side were set as follows. Other conditions are the same as the operating condition comparison test (large particle size side partition position) using simulated raw soil.

処理速度は、約400、600、2,200kg/hとし、回転ドラム11の磁石部18の傾斜角度θは0°とした。また振動フィーダー71のトラフ先端73は、三角歯状の板材74を装着した。小粒径側仕切位置及び大粒径側仕切位置を以下のように設定した。他の条件は、模擬原土を用いた運転条件比較試験(大粒径側仕切位置)と同じである。 The processing speed was set to about 400, 600, and 2,200 kg / h, and the inclination angle θ 1 of the magnet portion 18 of the rotating drum 11 was set to 0 °. Further, the trough tip 73 of the vibration feeder 71 is equipped with a triangular tooth-shaped plate member 74. The small particle size side partition position and the large particle size side partition position were set as follows. Other conditions are the same as the operating condition comparison test (large particle size side partition position) using simulated raw soil.

小粒径側仕切の水平方向の位置は、図23において回転ドラム中心点から100mm、150mm、200mm、250mm、小粒径側仕切の高さ方向の位置は、回転ドラム11の下端からΔH2=135mmとした。但し、小粒径側仕切の水平方向の位置が250mmの場合、小粒径側仕切の高さ方向の位置は、回転ドラム11の下端からΔH2=150mmとした。大粒径側仕切水平方向の位置は、図23において回転ドラム中心点から-150mm、大粒径側仕切の高さは、回転ドラム11の下端からΔH1=150mmとした。また、図23においてθ=0°としている。 In FIG. 23, the horizontal position of the small particle size side partition is 100 mm, 150 mm, 200 mm, 250 mm from the center point of the rotating drum, and the height position of the small particle size side partition is ΔH2 = 135 mm from the lower end of the rotating drum 11. And said. However, when the horizontal position of the small particle size side partition is 250 mm, the height direction position of the small particle size side partition is ΔH2 = 150 mm from the lower end of the rotary drum 11. The horizontal position of the large particle size side partition was −150 mm from the center point of the rotating drum in FIG. 23, and the height of the large particle size side partition was ΔH1 = 150 mm from the lower end of the rotating drum 11. Further, in FIG. 23, θ 1 = 0 °.

小粒径側仕切位置が変化することで以下が予想される。
(3-1)小粒径側仕切位置がドラム水平中心位置0mmから遠く位置するほど、区分Bの質量率(オーバーオール)が増加し、その中に占める小粒径成分の割合が増加する。
(3-2)(3-1)と相反して小粒径側仕切位置がドラム水平中心位置0mmから遠く位置するほど、区分Aの質量率(オーバーオール)が減少し、その中に占める中粒径成分の割合が減少する。
The following is expected due to changes in the partition position on the small particle size side.
(3-1) As the partition position on the small particle size side is located farther from the horizontal center position of the drum of 0 mm, the mass ratio (overall) of the category B increases, and the proportion of the small particle size component in the overall increases.
(3-2) Contrary to (3-1), the farther the small particle size side partition position is from the drum horizontal center position 0 mm, the smaller the mass ratio (overall) of category A, and the medium grain occupied in it. The proportion of the diameter component decreases.

図36に処理速度約2,200kg/hにおける、小粒径側仕切位置の変化による質量率(オーバーオール:全粒径帯域)の変化を示した。小粒径側仕切位置が回転ドラム11の水平中心位置0mmから遠く位置するほど、区分Bの質量率(オーバーオール)が増加し、区分Aの質量率(オーバーオール)が減少した。 FIG. 36 shows the change in mass ratio (overall: whole grain size band) due to the change in the partition position on the small particle size side at a processing speed of about 2,200 kg / h. As the small particle size side partition position was located farther from the horizontal center position 0 mm of the rotating drum 11, the mass ratio (overall) of the category B increased and the mass ratio (overall) of the category A decreased.

図37に小粒径側仕切位置200mmにおける、処理速度による質量率の変化を示した。各質量率は600kg/h付近で極値をとるものの、大きな変化は見受けられなかった。 FIG. 37 shows the change in mass ratio depending on the processing speed at the partition position on the small particle size side of 200 mm. Although each mass ratio took an extreme value at around 600 kg / h, no significant change was observed.

図38に小粒径側仕切位置による質量率(オーバーオール)の変化を示した。区分A、区分B、区分A+Bの変化はほとんどないので、小粒径側仕切位置が回転ドラム11の水平中心位置から200mm以上ではほぼ平衡状態となると考えられる。 FIG. 38 shows the change in mass ratio (overall) depending on the partition position on the small particle size side. Since there is almost no change in the division A, the division B, and the division A + B, it is considered that the equilibrium state is obtained when the small particle size side partition position is 200 mm or more from the horizontal center position of the rotating drum 11.

図39~図44に質量率分布を示した。 The mass ratio distribution is shown in FIGS. 39 to 44.

図39、図40、図42に処理速度約2,200kg/hにて、小粒径側仕切位置を100、150、200mmと変化させたときの質量率分布を示した。区分A、区分B、区分A+Bの分布を見ると小粒径側仕切位置が回転ドラム11の水平中心位置0mmから遠く位置するほど小粒径側へシフトしている。小粒径側仕切位置と磁着率との関係を表3に示した。表3に示すように小粒径側仕切の位置が変わっても磁着率は特に顕著に低下しなかった。 39, 40, and 42 show the mass ratio distribution when the partition position on the small particle size side was changed to 100, 150, and 200 mm at a processing speed of about 2,200 kg / h. Looking at the distributions of Category A, Category B, and Category A + B, the partition position on the small particle size side shifts to the small particle size side as it is located farther from the horizontal center position 0 mm of the rotary drum 11. Table 3 shows the relationship between the partition position on the small particle size side and the magnetization rate. As shown in Table 3, the magnetizing rate did not decrease significantly even if the position of the partition on the small particle size side was changed.

Figure 0007038372000006
Figure 0007038372000006

区分Nの分布を見ると小粒径側仕切位置が回転ドラム11の水平中心位置0mmへ近く位置するほどその中に占める小中粒径成分の割合が増加する。これは主に上記(3-1)、(3-2)の効果によるものと考えられる。 Looking at the distribution of the category N, the closer the partition position on the small particle size side is to the horizontal center position 0 mm of the rotating drum 11, the greater the proportion of the small and medium particle size components in the partition. It is considered that this is mainly due to the effects of (3-1) and (3-2) above.

磁着分(区分A+B)について比較的汚染濃度の高い0~212μmの質量率(細粒分磁着収集率)を表3に示した。小粒径側仕切位置が回転ドラム11の水平中心位置0mmから遠くへ位置するほど、磁着分の分布が小粒径側へシフトする。これから細粒分をより多く収集し、低濃度分である区分Nの放射能濃度(濃縮比)を下げるためには、小粒径側仕切位置が回転ドラム11の水平中心位置0mmから遠い方がよいことが分かる。 Table 3 shows the mass ratio (fine particle content magnetic collection rate) of 0 to 212 μm, which has a relatively high contamination concentration, for the magnetized components (Category A + B). As the partition position on the small particle size side is located farther from the horizontal center position 0 mm of the rotating drum 11, the distribution of the magnetically deposited component shifts to the small particle size side. In order to collect more fine particles from this and reduce the radioactivity concentration (concentration ratio) of the low concentration category N, the partition position on the small particle size side should be far from the horizontal center position 0 mm of the rotating drum 11. It turns out to be good.

図41、図42、図43に小粒径側仕切位置200mmにて処理速度を約600、2,200、400kg/hと変化させたときの質量率分布を示した。処理速度にかかわらず、ほぼ同様の傾向を示すが、処理速度約600kg/hのとき、区分Aの質量率が他より大きくなり、区分Bは相反して小さくなっている。 41, 42, and 43 show the mass ratio distribution when the processing speed was changed to about 600, 2,200, and 400 kg / h at the partition position on the small particle size side of 200 mm. Regardless of the processing speed, almost the same tendency is shown, but when the processing speed is about 600 kg / h, the mass ratio of the category A is larger than the others, and the category B is contradictory to be smaller.

処理速度と磁着率(区分A+B)との関係を表4に示した。表4に示すように処理速度が変わっても磁着率はあまり大きく変化しなかった。また磁着分(区分A+B)について比較的汚染濃度の高い0~212μmの質量率(細粒分磁着収集率)と処理速度との関係についても、表4に示すように処理速度が変わっても細粒分磁着収集率は、あまり変化しなかった。 Table 4 shows the relationship between the processing speed and the magnetizing rate (Category A + B). As shown in Table 4, the magnetizing rate did not change so much even if the processing speed changed. As for the relationship between the mass ratio (fine particle size distribution collection rate) of 0 to 212 μm, which has a relatively high contamination concentration, and the processing speed for the magnetically deposited content (Category A + B), the processing speed has changed as shown in Table 4. However, the collection rate of fine-grained magnetism did not change much.

Figure 0007038372000007
Figure 0007038372000007

図43及び図44に、三角歯、処理速度約400kg/hにおける小粒径側仕切位置200mm、及び250mmの質量率分布を示した。図43及び図44に示すように三角歯装着時の小粒径側仕切位置200mm、250mmの質量率曲線を比較するとほとんど差がなく、小粒径側仕切位置200mm以上は平衡状態と考えられる。 43 and 44 show the mass ratio distribution of the triangular teeth, the partition position on the small particle size side at a processing speed of about 400 kg / h, and the partition position of 250 mm. As shown in FIGS. 43 and 44, when the mass ratio curves of the small particle size side partition positions of 200 mm and 250 mm when the triangular teeth are attached are compared, there is almost no difference, and the small particle size side partition positions of 200 mm or more are considered to be in an equilibrium state.

小粒径側仕切位置により、質量率分布に大きな影響を受ける区分Aについて、その分布の最頻値で規格化(最頻値規格化質量率)したグラフを図45、図47、図49に示す。ここで、最頻値の0.8となる粒径をd80とし、0.2となる粒径をd20と定義し、これらを分級指標粒径(A)と称す。これを図46、図48、図50に示した。 Graphs of Category A, which is greatly affected by the mass ratio distribution due to the partition position on the small particle size side, are normalized by the mode of the distribution (mode normalized mass ratio) in FIGS. 45, 47, and 49. show. Here, the particle size having the mode value of 0.8 is defined as d 80 , the particle size having 0.2 is defined as d 20 , and these are referred to as the classification index particle size (A). This is shown in FIGS. 46, 48 and 50.

図45より、約2,200kg/h処理のとき、小粒径側仕切位置が回転ドラム11の水平中心位置0mmより遠ざかるほど、規格化された粒径分布が小粒径側へシフトしている。このことは高濃度分である小粒径分を選択的に回収するのに有利であることを示す。図46には、上記条件下での最頻値規格化質量曲線の分布の目安である分級指標粒径(A)の変化を示した。小粒径側仕切位置が回転ドラム11の水平中心位置0mmより遠ざかるほど、d80、d20ともに単調減少し、これらの粒径間隔が狭くなる。 From FIG. 45, at the time of about 2,200 kg / h processing, the normalized particle size distribution shifts to the small particle size side as the partition position on the small particle size side moves away from the horizontal center position 0 mm of the rotating drum 11. .. This indicates that it is advantageous to selectively recover the small particle size component, which is a high concentration component. FIG. 46 shows changes in the classification index particle size (A), which is a guideline for the distribution of the most frequent normalized mass curve under the above conditions. As the partition position on the small particle size side becomes farther from the horizontal center position 0 mm of the rotary drum 11, both d 80 and d 20 decrease monotonically, and the interval between these particle sizes becomes narrower.

図47より、小粒径側仕切位置200mmにおいて約400、600、2,200kg/h処理速度を変化させた場合、約600kg/hを除いて規格化された粒径分布はほぼ同じであった。図48には、上の条件下での最頻値規格化質量曲線の分布の目安である分級指標粒径(A)の変化を示した。処理速度によらずd80、d20、これらの粒径間隔がほとんど変わらなかった。 From FIG. 47, when the processing speed was changed at about 400, 600, 2,200 kg / h at the partition position on the small particle size side of 200 mm, the standardized particle size distribution was almost the same except for about 600 kg / h. .. FIG. 48 shows the change in the classification index particle size (A), which is a guideline for the distribution of the most frequent normalized mass curve under the above conditions. Regardless of the treatment speed, d 80 and d 20 , these particle size intervals were almost unchanged.

図49より、処理速度約400kg/h処理のとき、小粒径側仕切位置が回転ドラム11の水平中心位置0mmより遠ざかるほど、規格化された粒径分布が小粒径側へシフトしている。このことは高濃度分である小粒径分を選択的に回収するのに有利であることを示す。ここでは、図45に示したものよりもさらに小粒径側へシフトしている。図50には、上記条件下での最頻値規格化質量曲線の分布の目安である分級指標粒径(A)の変化を示した。小粒径側仕切位置が回転ドラム11の水平中心位置0mmより遠ざかるほど、d80は減少したが、d20はほぼ一定であった。 From FIG. 49, when the processing speed is about 400 kg / h, the normalized particle size distribution shifts to the small particle size side as the partition position on the small particle size side moves away from the horizontal center position 0 mm of the rotating drum 11. .. This indicates that it is advantageous to selectively recover the small particle size component, which is a high concentration component. Here, the particle size is further shifted to the smaller particle size side than that shown in FIG. 45. FIG. 50 shows changes in the classification index particle size (A), which is a guideline for the distribution of the most frequent normalized mass curve under the above conditions. As the partition position on the small particle size side became farther from the horizontal center position 0 mm of the rotating drum 11, d 80 decreased, but d 20 was almost constant.

1、2、3、4、5、6、7 磁力選別装置
10 磁選機
11 回転ドラム
12 回転ドラム表面
18 磁石部
21 ケーシング
25 排出口
31、41、301、311、321 選別装置
32a、32b、42a、42b 仕切板
33a、33b 鉛直板
38、302 分別回収槽
51 架台
61 駆動装置
66 固定治具
71 供給装置
73 トラフ先端
74 三角歯形状の板材
101、102 汚染物乾式処理システム
103 混練機
113 土移送装置
115 被選別物移送装置
121 解砕装置
201 被選別物
202 選別物
312 混合装置
322 高さ可変装置
323 キャスター付リフター
331 ケーシング
351 集塵装置
401 トラックの荷台
1, 2, 3, 4, 5, 6, 7 Magnetic separation device 10 Magnetic separator 11 Rotating drum 12 Rotating drum surface 18 Magnet part 21 Casing 25 Discharge port 31, 41, 301, 311, 321 Sorting device 32a, 32b, 42a , 42b Partition plate 33a, 33b Vertical plate 38, 302 Separation recovery tank 51 Casing 61 Driver 66 Fixing jig 71 Supply device 73 Traf tip 74 Triangular tooth-shaped plate 101, 102 Contaminant dry treatment system 103 Kneader 113 Soil transfer Device 115 Sorted object transfer device 121 Crushing device 201 Sorted object 202 Sorted object 312 Mixing device 322 Height variable device 323 Lifter with casters 331 Casing 351 Dust collecting device 401 Truck bed

Claims (13)

粉粒体状の汚染物と強磁性粉末及び/又は常磁性粉末とが混合されてなる被選別物を選別する磁力選別装置であって、
内側に磁石が配置された回転ドラム式の磁選機と、
前記磁選機の選別物排出口に設置され選別物をN以上(Nは2以上の整数)の粒径に区分けする選別装置と、
前記磁選機に被選別物を供給する、排出口に排出される被選別物を薄層化する薄層化手段を備える供給装置と、
を備え、
前記磁選機は、前記回転ドラムに対する前記磁石の位置を変更可能な位置可変機構を備え、
前記選別装置は、区分けする粒径を変更可能な粒径可変機構を備え、
前記薄層化手段が、平面視において先端部が三角歯形状又は櫛歯形状又は波型形状又は台形状のトラフであり、
又は前記薄層化手段が、平面視において三角歯形状又は櫛歯形状又は波型形状又は台形状の部材が先端部に取付けられたトラフであることを特徴とする磁力選別装置。
A magnetic force sorting device that sorts an object to be sorted, which is a mixture of powdery contaminants and ferromagnetic powder and / or paramagnetic powder.
A rotating drum type magnetic separator with a magnet placed inside,
A sorting device installed at the sorting material discharge port of the magnetic separator and classifying the sorted items into particle sizes of N or more (N is an integer of 2 or more).
A supply device provided with a thinning means for thinning the material to be sorted discharged to the discharge port, which supplies the material to be sorted to the magnetic separator.
Equipped with
The magnetic separator includes a position-variable mechanism that can change the position of the magnet with respect to the rotating drum.
The sorting device is provided with a particle size variable mechanism capable of changing the particle size to be classified.
The thinning means is a trough having a triangular tooth shape, a comb tooth shape, a wavy shape, or a trapezoidal shape at the tip in a plan view.
Alternatively, the magnetic force sorting device is characterized in that the thinning means is a trough having a triangular tooth-shaped or comb-shaped or corrugated or trapezoidal member attached to a tip portion in a plan view .
前記選別装置は、選別物を2以上の粒径に区分けする仕切板又は選別物を2以上の粒径に区分し回収する2個以上の分別回収槽と、
前記仕切板又は前記分別回収槽を上下及び/又は左右に移動させる移動手段と、
を備えることを特徴とする請求項1に記載の磁力選別装置。
The sorting device includes a partition plate that divides the sorted material into two or more particle sizes, or two or more separate collection tanks that divide the sorted material into two or more particle sizes and collect them.
A moving means for moving the partition plate or the separated collection tank up and down and / or left and right.
The magnetic force sorting apparatus according to claim 1, wherein the magnetic force sorting apparatus is provided.
前記選別装置は、選別物を2以上の粒径に区分けする可動仕切板を備え、
前記可動仕切板は、左右に移動可能に構成され及び/又は高さが可変可能に構成されていることを特徴とする請求項1に記載の磁力選別装置。
The sorting device includes a movable partition plate that divides the sorted object into two or more particle sizes.
The magnetic force sorting device according to claim 1, wherein the movable partition plate is configured to be movable left and right and / or is configured to have a variable height.
前記選別装置は、選別物を3以上の粒径に区分けする仕切板又は選別物を3以上の粒径に区分し回収する3個以上の分別回収槽を有することを特徴とする請求項1に記載の磁力選別装置。 The first aspect of the present invention is characterized in that the sorting device has a partition plate for classifying the sorted items into 3 or more particle sizes or a separate collection tank having 3 or more sorting items for sorting and collecting the sorted items into 3 or more particle sizes . The magnetic force sorting device described. 前記選別装置は、さらに3区分以上に区分けされた選別物のうち2区分以上を混合する混合手段を備えることを特徴とする請求項1から請求項のいずれか1項に記載の磁力選別装置。 The magnetic force sorting device according to any one of claims 1 to 4 , wherein the sorting device includes a mixing means for mixing two or more of the sorted items further divided into three or more categories. .. さらに、少なくとも前記磁選機の選別物排出口及び前記選別装置を覆うケーシングと、
前記ケーシング内に浮遊する前記選別物を吸引し回収する集塵装置と、
を備え、
前記集塵装置の吸込口は、前記選別装置が区分けする粒径の小さい選別物の側に設けられていることを特徴とする請求項1から請求項のいずれか1項に記載の磁力選別装置。
Further, at least, a casing that covers the sorter discharge port of the magnetic separator and the sorter,
A dust collector that sucks and collects the sorted material floating in the casing,
Equipped with
The magnetic force sorting according to any one of claims 1 to 5 , wherein the suction port of the dust collector is provided on the side of the sorting object having a small particle size to be sorted by the sorting device. Device.
さらに前記回転ドラムの回転速度を可変可能な速度可変手段を備えることを特徴とする請求項1から請求項のいずれか1項に記載の磁力選別装置。 The magnetic force sorting apparatus according to any one of claims 1 to 6 , further comprising a speed variable means capable of varying the rotational speed of the rotary drum. さらに被選別物の含水率を調節する含水率調節手段を備え、
前記磁力選別装置は、前記含水率調節手段により含水率が調節された被選別物を選別することを特徴とする請求項1から請求項のいずれか1項に記載の磁力選別装置。
Further, it is provided with a water content adjusting means for adjusting the water content of the object to be sorted.
The magnetic force sorting device according to any one of claims 1 to 7 , wherein the magnetic force sorting device sorts objects to be sorted whose water content has been adjusted by the water content adjusting means.
前記強磁性粉末が、酸化鉄を主成分とする強磁性粉末であることを特徴とする請求項1から請求項のいずれか1項に記載の磁力選別装置。 The magnetic force sorting apparatus according to any one of claims 1 to 8 , wherein the ferromagnetic powder is a ferromagnetic powder containing iron oxide as a main component. 前記粉粒体状の汚染物が、放射性物質汚染土壌であることを特徴とする請求項1から請求項のいずれか1項に記載の磁力選別装置。 The magnetic force sorting apparatus according to any one of claims 1 to 9 , wherein the powdery or granular contaminant is soil contaminated with radioactive substances. 請求項1から請求項10のいずれか1項に記載の磁力選別装置の使用方法であって、
下記(A)群の少なくともいずれかの使用方法を調節することで前記選別物を所望の粒径に選別することを特徴とする磁力選別装置の使用方法。
(A)磁選機の回転ドラムに対する磁石の位置,回転ドラム表面磁束密度,被選別物の供給速度,回転ドラムの回転速度,粉粒体状の汚染物と強磁性粉末及び/又は常磁性粉末との混合割合,被選別物の含水率
The method of using the magnetic force sorting device according to any one of claims 1 to 10 .
A method of using a magnetic force sorting device, characterized in that the sorted product is sorted to a desired particle size by adjusting the usage method of at least one of the following groups (A).
(A) The position of the magnet with respect to the rotating drum of the magnetic separator, the magnetic flux density on the surface of the rotating drum, the supply speed of the object to be sorted, the rotation speed of the rotating drum, the particulate contaminants and the ferromagnetic powder and / or the paramagnetic powder. Mixing ratio, water content of the material to be sorted
粉粒体状の汚染物を汚染濃度により分別する汚染物乾式処理システムであって、
請求項1から請求項10のいずれか1項に記載の磁力選別装置と
粒体状の汚染物と強磁性粉末及び/又は常磁性粉末とを混合する混合装置と、
前記混合装置に強磁性粉末及び/又は常磁性粉末を供給する磁性粉末供給装置と、
貯蔵された粉粒体状の汚染物を前記混合装置に移送する汚染物移送装置と、
前記混合装置から前記供給装置に粉粒体状の汚染物と強磁性粉末及び/又は常磁性粉末との混合物を移送する被選別物移送装置と、
を備え、
前記汚染物移送装置及び/又は前記被選別物移送装置は、移送中に移送物に対して2次粒子の解砕、粉粒体状の汚染物の表面研磨、粉粒体状の汚染物の微細化のうちいずれか1以上の作用を及ぼすことを特徴とする汚染物乾式処理システム。
It is a pollutant dry treatment system that separates powdery contaminants according to the contamination concentration.
The magnetic force sorting device according to any one of claims 1 to 10 .
A mixing device that mixes powdery contaminants with ferromagnetic powder and / or paramagnetic powder,
A magnetic powder supply device that supplies ferromagnetic powder and / or paramagnetic powder to the mixing device,
A contaminant transfer device that transfers stored powdery contaminants to the mixing device, and
An object transfer device for transferring a mixture of a powdery contaminant and a ferromagnetic powder and / or a paramagnetic powder from the mixing device to the supply device.
Equipped with
The contaminant transfer device and / or the sorted material transfer device crushes secondary particles, polishes the surface of powder-like contaminants, and powder-grain-like contaminants during transfer. A pollutant dry treatment system characterized by exerting one or more of the actions of miniaturization.
車両に載置され、車両に載せたまま分別運転が可能に構成されてなる請求項12に記載の汚染物乾式処理システム。 The pollutant dry treatment system according to claim 12 , which is mounted on a vehicle and is configured to enable separate operation while mounted on the vehicle.
JP2017197419A 2017-10-11 2017-10-11 Magnetic force sorting device, usage of magnetic force sorting device and pollutant dry treatment system Active JP7038372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017197419A JP7038372B2 (en) 2017-10-11 2017-10-11 Magnetic force sorting device, usage of magnetic force sorting device and pollutant dry treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017197419A JP7038372B2 (en) 2017-10-11 2017-10-11 Magnetic force sorting device, usage of magnetic force sorting device and pollutant dry treatment system

Publications (2)

Publication Number Publication Date
JP2019069423A JP2019069423A (en) 2019-05-09
JP7038372B2 true JP7038372B2 (en) 2022-03-18

Family

ID=66440401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017197419A Active JP7038372B2 (en) 2017-10-11 2017-10-11 Magnetic force sorting device, usage of magnetic force sorting device and pollutant dry treatment system

Country Status (1)

Country Link
JP (1) JP7038372B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7208869B2 (en) * 2019-07-23 2023-01-19 鹿島建設株式会社 SOIL SEPARATION METHOD, SOIL SEPARATION DEVICE
JP7384351B2 (en) 2019-09-04 2023-11-21 国立大学法人福島大学 Method for determining operating conditions for magnetic sorting and method for calculating classification characteristics of magnetic sorting equipment
CN111547471A (en) * 2020-06-11 2020-08-18 安徽马钢矿业资源集团南山矿业有限公司 Iron-containing surrounding rock multi-process flexible component flow distribution device and flow distribution method thereof
CN112718240B (en) * 2020-12-15 2022-12-30 安徽砺剑防务科技有限公司 Powder detection device
CN113560035B (en) * 2021-08-11 2023-05-12 湖南省天心博力科技有限公司 Purification device of copper powder catalyst
CN114251925A (en) * 2022-01-18 2022-03-29 无锡恒诚硅业有限公司 White carbon black processing drying device with heating pretreatment function

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009005A (en) 2002-06-10 2004-01-15 Seihoo:Kk Magnetic sorting mechanism and sorting system
JP2004230330A (en) 2003-01-31 2004-08-19 Hitachi Constr Mach Co Ltd Self-traveling crusher and sorting/ transporting apparatus used for the same
JP2007050344A (en) 2005-08-18 2007-03-01 Yoichi Sato Empty can treating car
US20080202891A1 (en) 2007-02-22 2008-08-28 Key Technology, Inc. Vibratory system for distributing articles
JP2011159490A (en) 2010-02-01 2011-08-18 Nissan Motor Co Ltd Aggregated particle decomposing apparatus, contamination separating apparatus, and aggregated particle decomposing method
US20130146512A1 (en) 2010-04-12 2013-06-13 Nicholas Reynolds Orienting device/apparatus and orienting method
US20130240413A1 (en) 2012-03-19 2013-09-19 Mid-American Gunite, Inc. Adjustable magnetic separator
JP2013242300A (en) 2013-04-15 2013-12-05 Prefectural Univ Of Hiroshima Method and device for treating radioactive substance contaminant
JP2017039123A (en) 2015-08-17 2017-02-23 公立大学法人県立広島大学 Treatment method of contaminant
WO2017094803A1 (en) 2015-11-30 2017-06-08 Jfeスチール株式会社 Magnetic separator, magnetic separation method, and method for manufacturing iron source
JP2017113744A (en) 2015-12-17 2017-06-29 公立大学法人県立広島大学 Magnetic force selector, method of application of magnetic force selector, and dry processing system of pollutant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2629009B2 (en) * 1987-09-28 1997-07-09 園部 尚俊 Vibration feeder

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009005A (en) 2002-06-10 2004-01-15 Seihoo:Kk Magnetic sorting mechanism and sorting system
JP2004230330A (en) 2003-01-31 2004-08-19 Hitachi Constr Mach Co Ltd Self-traveling crusher and sorting/ transporting apparatus used for the same
JP2007050344A (en) 2005-08-18 2007-03-01 Yoichi Sato Empty can treating car
US20080202891A1 (en) 2007-02-22 2008-08-28 Key Technology, Inc. Vibratory system for distributing articles
JP2011159490A (en) 2010-02-01 2011-08-18 Nissan Motor Co Ltd Aggregated particle decomposing apparatus, contamination separating apparatus, and aggregated particle decomposing method
US20130146512A1 (en) 2010-04-12 2013-06-13 Nicholas Reynolds Orienting device/apparatus and orienting method
US20130240413A1 (en) 2012-03-19 2013-09-19 Mid-American Gunite, Inc. Adjustable magnetic separator
JP2013242300A (en) 2013-04-15 2013-12-05 Prefectural Univ Of Hiroshima Method and device for treating radioactive substance contaminant
JP2017039123A (en) 2015-08-17 2017-02-23 公立大学法人県立広島大学 Treatment method of contaminant
WO2017094803A1 (en) 2015-11-30 2017-06-08 Jfeスチール株式会社 Magnetic separator, magnetic separation method, and method for manufacturing iron source
JP2017113744A (en) 2015-12-17 2017-06-29 公立大学法人県立広島大学 Magnetic force selector, method of application of magnetic force selector, and dry processing system of pollutant

Also Published As

Publication number Publication date
JP2019069423A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP7038372B2 (en) Magnetic force sorting device, usage of magnetic force sorting device and pollutant dry treatment system
JP6916421B2 (en) How to use the pollutant dry treatment system and the pollutant dry treatment system
US8517177B2 (en) Systems and methods for recovering materials from soil
JP5770780B2 (en) Debris treatment equipment
EP0635307B1 (en) Nonferrous material sorting apparatus
US7886913B1 (en) Process, method and system for recovering weakly magnetic particles
KR830002053B1 (en) Air elutriation device for recovering char fines in discharge waste from iron oxido reclucing kiln
AU2010313421B2 (en) Magnetic separator
KR100953665B1 (en) Equipment for separating and classifing of impurity content of constructional waste materials in recycling system
JP6797593B2 (en) How to treat pollutants
US20050000864A1 (en) Method and apparatus for cleaning coal
KR100872643B1 (en) A wind power sorted device
Marino et al. Heavy metal soil remediation: The effects of attrition scrubbing on a wet gravity concentration process
US6102053A (en) Process for separating radioactive and hazardous metal contaminants from soils
JP3342851B2 (en) Mixed waste separation system
KR101053216B1 (en) Physical processing apparatus for being innocuous waste tailing
Mattigod et al. Scheme for density separation and identification of compound forms in size-fractionated fly ash
KR100493249B1 (en) Automatic separating machine from complex waste
JPH07222938A (en) Crusher and crushing apparatus
WO2023087078A1 (en) Processes and apparatus for separating target material from particulate mixture
JP2018143908A (en) Magnetic separator
CN210632275U (en) Hierarchical magnetic separation system
CN111085325B (en) Integrated equipment for crushing, grinding and screening laboratory catalyst
JP3952469B2 (en) Separation and recovery method of metal and resin material of metal-coated resin material and metal and resin separation and recovery device
Papelis et al. Evaluation of technologies for volume reduction of Plutonium-contaminated soils from the Nevada Test Site

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7038372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150