JP7038275B2 - Inductors and their manufacturing methods - Google Patents

Inductors and their manufacturing methods Download PDF

Info

Publication number
JP7038275B2
JP7038275B2 JP2017249755A JP2017249755A JP7038275B2 JP 7038275 B2 JP7038275 B2 JP 7038275B2 JP 2017249755 A JP2017249755 A JP 2017249755A JP 2017249755 A JP2017249755 A JP 2017249755A JP 7038275 B2 JP7038275 B2 JP 7038275B2
Authority
JP
Japan
Prior art keywords
conductor portion
main surface
metal plate
inductor
external electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017249755A
Other languages
Japanese (ja)
Other versions
JP2019117823A (en
Inventor
睦泰 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017249755A priority Critical patent/JP7038275B2/en
Publication of JP2019117823A publication Critical patent/JP2019117823A/en
Application granted granted Critical
Publication of JP7038275B2 publication Critical patent/JP7038275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

本発明は、各種電子機器に用いられるインダクタおよびその製造方法に関するものである。 The present invention relates to an inductor used in various electronic devices and a method for manufacturing the same.

従来から、DC-DCコンバータ装置等の電子装置に、電源電圧の昇降圧、直流電流の平滑化等を目的にインダクタが広く用いられている。 Conventionally, inductors have been widely used in electronic devices such as DC-DC converter devices for the purpose of raising and lowering the power supply voltage, smoothing DC current, and the like.

そして近年では、DC-DCコンバータの駆動回路におけるスイッチング周波数が高周波側に移行してきており、スイッチング周波数の高周波化によりインダクタのインダクタンス値が小さくなってきている。 In recent years, the switching frequency in the drive circuit of the DC-DC converter has shifted to the high frequency side, and the inductance value of the inductor has become smaller due to the higher frequency of the switching frequency.

このような低インダクタンス値のインダクタとしては、コア部材と、コア部材の内部に設けられ、直線状に延伸する平板状の導体と、コア部材の外面に設けられ、導体に対して電気的に接続されると共に、実装される実装基板に対しても電気的に接続される端子電極を備えたインダクタが知られている。 Such low inductance value inductors include a core member, a flat plate-shaped conductor provided inside the core member and extending linearly, and an inductor provided on the outer surface of the core member and electrically connected to the conductor. At the same time, an inductor having a terminal electrode that is electrically connected to a mounting board to be mounted is known.

国際公開第2006/070544号International Publication No. 2006/070544

上記のように従来のインダクタの構成では、コア部材の内部に設けられた導体を、平板状の導体としているため、導体を平板状にすると、導体の周囲を周回する磁束の磁路長が長くなって磁気効率が低下しやすくなるという問題点を有していた。 As described above, in the conventional inductor configuration, the conductor provided inside the core member is a flat plate-shaped conductor. Therefore, if the conductor is flat-shaped, the magnetic flux path length circulating around the conductor becomes long. Therefore, there is a problem that the magnetic efficiency tends to decrease.

本発明は上記従来の課題を解決するものであり、直線状に延伸した導体を用いたインダクタであっても、磁気効率が低下することを抑制した磁気効率の良いインダクタとその製造方法を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and provides an inductor having high magnetic efficiency and a method for manufacturing the same, which suppresses a decrease in magnetic efficiency even in an inductor using a conductor stretched in a straight line. The purpose is.

上記目的を達成するために、本発明の一態様は、金属板からなり直線状に延伸された導体部と、磁性材料からなり導体部を覆う外装体と、導体部と接続され外装体から露出した外部電極を備え、導体部は幅方向に蛇腹折りに折り曲げられているものである。 In order to achieve the above object, one aspect of the present invention includes a conductor portion made of a metal plate and stretched linearly, an exterior body made of a magnetic material and covering the conductor portion, and an exterior body connected to the conductor portion and exposed from the exterior body. The conductor portion is bent in a bellows fold in the width direction.

また、本発明の別の態様は、金属板からなり直線状に延伸された導体部と、磁性材料からなり導体部を覆う外装体と、導体部と接続され外装体から露出した外部電極を備えたインダクタの製造方法であって、導体部を形成する工程は、直線状に延伸した金属板を準備する金属板準備工程と、この金属板を幅方向に蛇腹折りに折り曲げる折り曲げ導体部形成工程を有するものである。 Further, another aspect of the present invention includes a conductor portion made of a metal plate and stretched linearly, an exterior body made of a magnetic material and covering the conductor portion, and an external electrode connected to the conductor portion and exposed from the exterior body. In the method of manufacturing the conductor, the process of forming the conductor part includes a metal plate preparation step of preparing a linearly stretched metal plate and a bending conductor part forming step of bending the metal plate in a bellows fold in the width direction. Have.

本発明の一態様によれば、導体部は幅方向に蛇腹折りに折り曲げられているので、インダクタの磁気効率を向上できるという効果を得ることができる。 According to one aspect of the present invention, since the conductor portion is bent in a bellows shape in the width direction, it is possible to obtain the effect that the magnetic efficiency of the inductor can be improved.

また本発明の別の態様によれば、導体部を形成する工程は、直線状に延伸した金属板を
準備する金属板準備工程と、この金属板を幅方向に蛇腹折りに折り曲げる折り曲げ導体部形成工程を有するので、インダクタの磁気効率を向上できるという効果を得ることができる。
Further, according to another aspect of the present invention, the steps of forming the conductor portion include a metal plate preparation step of preparing a linearly stretched metal plate and a bent conductor portion forming in which the metal plate is bent in a bellows fold in the width direction. Since it has a process, it is possible to obtain the effect that the magnetic efficiency of the inductor can be improved.

本発明の一実施の形態におけるインダクタの斜視図Perspective view of the inductor according to the embodiment of the present invention. 本発明の一実施の形態におけるインダクタの透過斜視図A transmission perspective view of an inductor according to an embodiment of the present invention. 図1におけるA-A線の断面図Sectional drawing of line AA in FIG. 図1におけるB-B線の断面図Sectional drawing of line BB in FIG. 本発明の一実施の形態におけるインダクタの製造工程を説明する図The figure explaining the manufacturing process of the inductor in one Embodiment of this invention. 本発明の一実施の形態におけるインダクタの製造工程を説明する図The figure explaining the manufacturing process of the inductor in one Embodiment of this invention. 本発明の一実施の形態におけるインダクタの製造工程を説明する図The figure explaining the manufacturing process of the inductor in one Embodiment of this invention. 本発明の一実施の形態におけるインダクタの製造工程を説明する図The figure explaining the manufacturing process of the inductor in one Embodiment of this invention. 本発明の一実施の形態におけるインダクタの別の例を示す断面図Sectional drawing which shows another example of the inductor in one Embodiment of this invention. 本発明の一実施の形態におけるインダクタの他の別の例を示す金属板の斜視図Perspective view of a metal plate showing another example of an inductor in one embodiment of the present invention. 本発明の一実施の形態におけるインダクタの他の別の例を示す透過斜視図Transmissive perspective view showing another example of the inductor in one embodiment of the present invention.

以下、本発明の一実施の形態におけるインダクタについて、図1~4を参照して説明する。 Hereinafter, the inductor according to the embodiment of the present invention will be described with reference to FIGS. 1 to 4.

図1は本発明の一実施の形態におけるインダクタの斜視図であり、図2は同インダクタの透過斜視図であり、図3は図1におけるA-A線の断面図、図4は図1におけるB-B線の断面図である。 1 is a perspective view of an inductor according to an embodiment of the present invention, FIG. 2 is a transmission perspective view of the inductor, FIG. 3 is a sectional view taken along line AA in FIG. 1, and FIG. 4 is FIG. It is sectional drawing of BB line.

なお、図2は、後述する外装体20を透過した透過斜視図であり、外装体20の輪郭を破線で示している。 Note that FIG. 2 is a transparent perspective view through the exterior body 20 described later, and the outline of the exterior body 20 is shown by a broken line.

図1~図4に示すように、本実施の形態のインダクタ100は、金属板からなり直線状に延伸された導体部10と、磁性材料からなり導体部10を覆う外装体20と、導体部10と接続され外装体20から露出した外部電極30を備えている。 As shown in FIGS. 1 to 4, the inductor 100 of the present embodiment has a conductor portion 10 made of a metal plate and linearly stretched, an exterior body 20 made of a magnetic material and covering the conductor portion 10, and a conductor portion. An external electrode 30 connected to 10 and exposed from the exterior body 20 is provided.

ここで、本明細書においては、図1に示すように、導体部10が直線状に延伸する方向を第一方向201と規定し、矢印の先端方向を奥側、矢印の先端と反対側を手前側と称することがある。 Here, in the present specification, as shown in FIG. 1, the direction in which the conductor portion 10 extends linearly is defined as the first direction 201, the tip direction of the arrow is the back side, and the side opposite to the tip of the arrow is the back side. Sometimes referred to as the front side.

また、第一方向201と直交し、導体部10や外部電極30の幅方向に沿った方向を第二方向202と規定し、矢印の先端方向を奥側、矢印の先端と反対側を手前側と称することがある。 Further, the direction orthogonal to the first direction 201 and along the width direction of the conductor portion 10 and the external electrode 30 is defined as the second direction 202, the tip direction of the arrow is the back side, and the side opposite to the tip of the arrow is the front side. May be called.

そして、第一方向201と第二方向202と直交する方向を第三方向203と規定し、矢印の先端方向を上側、矢印の先端と反対側を下側と称することがある。 The direction orthogonal to the first direction 201 and the second direction 202 may be defined as the third direction 203, the tip direction of the arrow may be referred to as the upper side, and the side opposite to the tip of the arrow may be referred to as the lower side.

なお、第一、第二、第三の方向については図1以降の図面においても同様である。 The first, second, and third directions are the same in the drawings after FIG. 1.

本実施の形態のインダクタ100の内、外装体20は、磁性体粉末と結合材を混合した磁性材料からなり、この磁性材料を顆粒状の造粒粉にして、造粒粉に導体部10を埋め込んで加圧成形されたものである。 In the inductor 100 of the present embodiment, the exterior body 20 is made of a magnetic material in which a magnetic material powder and a binder are mixed. The magnetic material is made into granular granulated powder, and the conductor portion 10 is added to the granulated powder. It is embedded and pressure molded.

このように外装体20は、導体部10を覆い、インダクタ100の閉磁路の磁心と、インダクタ100の本体部分となる外装体20を兼ねている。 In this way, the exterior body 20 covers the conductor portion 10 and serves both as the magnetic core of the closed magnetic path of the inductor 100 and the exterior body 20 which is the main body portion of the inductor 100.

外装体20を構成する磁性体粉末と結合材の内、磁性体粉末は、軟磁性材料の中でも飽和磁束密度が高い鉄や鉄を主体とした金属磁性体、例えば鉄-ニッケル系合金、鉄-シリコン系合金、鉄-シリコン-アルミ系合金、鉄-シリコン-クロム系合金などの結晶質組成や、鉄-シリコン-ボロン系合金等の非晶質組成の金属磁性体を、粉砕法やアトマイズ法などで粉末にしたものである。 Among the magnetic material powder and the binder constituting the exterior body 20, the magnetic material powder is a metal magnetic material mainly composed of iron or iron, which has a high saturation magnetic flux density among soft magnetic materials, for example, iron-nickel alloy, iron-. A metal magnetic material having a crystalline composition such as a silicon alloy, an iron-silicon-aluminum alloy, an iron-silicon-chromium alloy, or an amorphous composition such as an iron-silicon-boron alloy can be pulverized or atomized. It is powdered with iron.

結合材は、磁性体粉末の粒子を被覆し粒子間に介在して、粒子同士を結合するとともに粒子間に渦電流が流れることを絶縁し、外装体20の渦電流損失が大きくなることを抑制するものである。 The binder coats the particles of the magnetic powder and intervenes between the particles to bond the particles to each other and insulate the flow of eddy currents between the particles, thereby suppressing an increase in the eddy current loss of the exterior body 20. It is something to do.

結合材は好適には、エポキシ樹脂や、シリコーン樹脂などの絶縁性の熱硬化性樹脂にすることがよく、金属磁性体粉末と混合して粒子間を絶縁し、加圧成形後の熱処理によって結合材を熱硬化して粒子同士を結合させることができるので好ましい。 The binder is preferably an insulating thermosetting resin such as an epoxy resin or a silicone resin, which is mixed with a metal magnetic powder to insulate the particles and bonded by heat treatment after pressure molding. It is preferable because the material can be thermoset to bond the particles to each other.

そしてこの外装体20は、第三方向203の下側の底面21と、この底面21と反対側の天面22と、第一方向201手前側で底面21と天面22を連接した第一側面23と、この第一側面23と反対側の第二側面24と、第二方向202の奥側で第一側面23と第二側面24を連接した第三側面25と、第三側面25の反対側で第一側面23と第二側面24を連接した第四側面26を有しており、本実施の形態では外装体20の外形寸法を4.0mm×4.0mm×2.6mmの略四角柱形状にしている。 The exterior body 20 has a bottom surface 21 on the lower side of the third direction 203, a top surface 22 on the opposite side of the bottom surface 21, and a first side surface connecting the bottom surface 21 and the top surface 22 on the front side of the first direction 201. 23, the second side surface 24 on the opposite side of the first side surface 23, the third side surface 25 connecting the first side surface 23 and the second side surface 24 on the back side of the second direction 202, and the opposite of the third side surface 25. It has a fourth side surface 26 in which the first side surface 23 and the second side surface 24 are connected to each other on the side, and in the present embodiment, the external dimensions of the exterior body 20 are approximately 4 of 4.0 mm × 4.0 mm × 2.6 mm. It has a prismatic shape.

外部電極30は、外装体20の内部に埋設された導体部10と接続されており、外装体20の第一側面23と第二側面24のそれぞれから外装体20の外部に露出され、外部回路(図示せず)との接続に用いられる。 The external electrode 30 is connected to a conductor portion 10 embedded inside the exterior body 20, and is exposed to the outside of the exterior body 20 from each of the first side surface 23 and the second side surface 24 of the exterior body 20, and is an external circuit. Used for connection with (not shown).

この外部電極30は、銅材などの金属板11からなり、本実施の形態では、厚さが0.15mm、幅寸法が2.4mmの銅板を、その幅方向が第二方向202に沿った向きで外装体20の外部に露出され、第一側面23から底面21、第二側面24から底面21に沿わせてそれぞれ折り曲げられて、面実装型の外部電極30に加工されている。 The external electrode 30 is made of a metal plate 11 such as a copper material, and in the present embodiment, a copper plate having a thickness of 0.15 mm and a width dimension of 2.4 mm is formed, and the width direction thereof is along the second direction 202. It is exposed to the outside of the exterior body 20 in the orientation, and is bent along the bottom surface 21 from the first side surface 23 and the bottom surface 21 from the second side surface 24 to be processed into a surface mount type external electrode 30.

導体部10は、直線状に延伸された銅材などの金属板11からなり、本実施の形態では、厚さが0.15mm、幅寸法が2.4mmの銅板を第一方向201の方向に2.0mmの長さで直線状に延伸されたものである。 The conductor portion 10 is made of a metal plate 11 such as a linearly stretched copper material, and in the present embodiment, a copper plate having a thickness of 0.15 mm and a width dimension of 2.4 mm is placed in the direction of the first direction 201. It is linearly stretched to a length of 2.0 mm.

そして、導体部10は幅方向(第二方向202)に蛇腹折りに折り曲げられている。 The conductor portion 10 is bent in a bellows fold in the width direction (second direction 202).

ここで、幅方向に蛇腹折りに折り曲げるとは、図3に示すように、導体部10の幅方向に山折りと谷折り、または谷折りと山折りが交互に繰り返され、導体部10の幅方向にジグザグになるように折り曲げられていることを意味している。 Here, folding in a bellows fold in the width direction means that, as shown in FIG. 3, mountain folds and valley folds, or valley folds and mountain folds are alternately repeated in the width direction of the conductor portion 10, and the width of the conductor portion 10 is bent. It means that it is bent so as to be zigzag in the direction.

図1~図4に示した例では、導体部10は、幅寸法が2.4mmの金属板11を0.6mmの幅寸法で均等に四分割して蛇腹折りに折り曲げられ、第一方向201に2.0mmの長さで直線状に延伸されたものである。 In the example shown in FIGS. 1 to 4, the conductor portion 10 is formed by dividing a metal plate 11 having a width dimension of 2.4 mm into four evenly with a width dimension of 0.6 mm and bending it into a bellows fold. It is linearly stretched to a length of 2.0 mm.

以上のように本実施のインダクタ100が構成されている。 As described above, the inductor 100 of this embodiment is configured.

上記した本実施の形態のインダクタ100によれば、上記構成により、導体部10は幅
方向に蛇腹折りに折り曲げられているので、導体部10を形成する金属板11が平板状の場合に比べて、導体部10の周囲を周回する磁束の磁路長を短くすることができ、磁気効率を向上できるという効果を得ることができる。
According to the inductor 100 of the present embodiment described above, the conductor portion 10 is bent in a bellows shape in the width direction according to the above configuration, so that the metal plate 11 forming the conductor portion 10 has a flat plate shape as compared with the case where the conductor portion 10 is formed in a flat plate shape. The magnetic path length of the magnetic flux orbiting around the conductor portion 10 can be shortened, and the effect of improving the magnetic efficiency can be obtained.

この磁路長が短できることについてさらに詳しく説明する。最短の磁路長を導体部10の外周の寸法と仮定し、従来のインダクタのように導体部が平板状の金属板11の場合と本実施の形態のインダクタ100のように、導体部10の金属板11が幅方向に蛇腹折りに折り曲げられたものを比較する。 The fact that this magnetic path length can be shortened will be described in more detail. Assuming that the shortest magnetic path length is the outer peripheral dimension of the conductor portion 10, the conductor portion 10 has a metal plate 11 having a flat conductor portion as in a conventional inductor and an inductor 100 in the present embodiment. A metal plate 11 bent in a bellows fold in the width direction is compared.

従来のインダクタの場合では、金属板11の幅寸法が2.4mm、厚み寸法が0.15mmなので、導体部の外周の寸法は、幅寸法2.4mmの二倍と厚み寸法0.15mmの二倍を合算した寸法の5.1mmとなる。 In the case of the conventional inductor, the width dimension of the metal plate 11 is 2.4 mm and the thickness dimension is 0.15 mm, so that the outer peripheral dimension of the conductor portion is twice the width dimension of 2.4 mm and the thickness dimension of 0.15 mm. The total dimension of the doubles is 5.1 mm.

これに対して、本実施の形態の導体部10では、金属板11の幅寸法を均等に四分割した0.6mmの二倍と、金属板11の四枚分の厚み寸法(0.15mmの四倍)0.6mmの二倍を合算した寸法の2.4mmとなり、従来のインダクタに比べて本実施の形態のインダクタ100は、導体部10の外周寸法、すなわち最短の磁路長を5.1mmから2.4mmに短くすることができる。 On the other hand, in the conductor portion 10 of the present embodiment, the width dimension of the metal plate 11 is twice equal to 0.6 mm, which is evenly divided into four, and the thickness dimension of four metal plates 11 (0.15 mm). (4 times) The total dimension of 0.6 mm is 2.4 mm. Compared to the conventional inductor, the inductor 100 of this embodiment has the outer peripheral dimension of the conductor portion 10, that is, the shortest magnetic path length. It can be shortened from 1 mm to 2.4 mm.

インダクタの透磁率は磁路長と反比例の関係にあるので、磁路長が短くなると透磁率が大きくなり、インダクタ100の磁気効率を向上することができ、さらにはインダクタ100の小型化も可能とすることができるものである。 Since the magnetic permeability of the inductor is inversely proportional to the magnetic path length, the magnetic permeability increases as the magnetic path length becomes shorter, the magnetic efficiency of the inductor 100 can be improved, and the inductor 100 can be made smaller. Is something that can be done.

なお、本実施の形態では、図2、図3に示すように、導体部10は、導体部10の金属板11が導体部10の幅方向に積層させることが好ましい。この導体部10の幅方向に積層させるとは、蛇腹折りに折り曲げられて隣り合う金属板11が接触するまで近接していることを意味している。 In the present embodiment, as shown in FIGS. 2 and 3, it is preferable that the metal plate 11 of the conductor portion 10 is laminated in the width direction of the conductor portion 10 in the conductor portion 10. Laminating in the width direction of the conductor portion 10 means that the conductor portions 10 are bent in a bellows fold and are close to each other until the adjacent metal plates 11 come into contact with each other.

これにより、磁路長をより短くすることができ、インダクタ100の磁気効率をより向上することができる。 As a result, the magnetic path length can be shortened, and the magnetic efficiency of the inductor 100 can be further improved.

この場合、導体部10の少なくとも積層面12に絶縁層(図示せず)を有することが好ましい。 In this case, it is preferable to have an insulating layer (not shown) on at least the laminated surface 12 of the conductor portion 10.

この積層面12とは、接触した金属板11の面を意味している。 The laminated surface 12 means the surface of the metal plate 11 in contact with the laminated surface 12.

また、この絶縁層は、例えば、ポリウレタン樹脂、ポリエステル樹脂、エナメル樹脂、またはポリアミドイミド樹脂等の絶縁樹脂を、5~50μmの所望の厚さで、積層面12となる部分に転写などの技術を用いて塗布し、熱処理して硬化されたものである。 Further, for this insulating layer, for example, a technique such as transfer of an insulating resin such as polyurethane resin, polyester resin, enamel resin, or polyamide-imide resin to a portion to be a laminated surface 12 with a desired thickness of 5 to 50 μm is applied. It was applied using and cured by heat treatment.

これにより、蛇腹折りに折り曲げられて隣り合う金属板11同士が接触しても、絶縁層により絶縁されているので、インダクタ100に通電する電流が高周波電流であっても表皮効果の影響を抑制することができるという効果を得ることができる。 As a result, even if the metal plates 11 that are bent in a bellows fold and are adjacent to each other come into contact with each other, they are insulated by the insulating layer, so that the influence of the skin effect is suppressed even if the current energizing the inductor 100 is a high frequency current. You can get the effect that you can.

絶縁層は、少なくとも積層面12に介在されていればよいが、導体部10の全体を覆うように絶縁層を有していてもよい。 The insulating layer may be interposed at least in the laminated surface 12, but may have an insulating layer so as to cover the entire conductor portion 10.

また、本実施の形態では、導体部10と外部電極30が連結部40を介して一体に形成させることができる。 Further, in the present embodiment, the conductor portion 10 and the external electrode 30 can be integrally formed via the connecting portion 40.

連結部40は、一枚の金属板11で、導体部10と、導体部10の両側に連接された連結部40と、連結部40に連接された外部電極30を一体に形成されたものである。 The connecting portion 40 is a single metal plate 11, and is formed by integrally forming a conductor portion 10, a connecting portion 40 connected to both sides of the conductor portion 10, and an external electrode 30 connected to the connecting portion 40. be.

この連結部40は、導体部10を蛇腹折りに折り曲げたことにより、導体部10と外部電極30との間で、塑性変形して導体部10と外部電極30との間を接続している。 The connecting portion 40 is plastically deformed between the conductor portion 10 and the external electrode 30 by bending the conductor portion 10 into a bellows fold to connect the conductor portion 10 and the external electrode 30.

これにより、導体部10と外部電極30との接続を省略することができ、導体部10と外部電極30を溶接などで接続した場合と比べて、溶接した部分が外れるなどの恐れがなく、導体部10と外部電極30の接続信頼性を向上するという効果を得ることができる。 As a result, the connection between the conductor portion 10 and the external electrode 30 can be omitted, and there is no risk that the welded portion will come off as compared with the case where the conductor portion 10 and the external electrode 30 are connected by welding or the like, and the conductor The effect of improving the connection reliability between the unit 10 and the external electrode 30 can be obtained.

この場合、連結部40は第三方向203の上側に第一主面41と、第三方向203の下側で第一主面41の裏側に第二主面42を有し、第一主面41と第二主面42のいずれか一方、または第一主面41と第二主面42の両方に導体部10の幅方向に沿って延伸した凹部43を有することが好ましい。 In this case, the connecting portion 40 has a first main surface 41 on the upper side of the third direction 203 and a second main surface 42 on the lower side of the third direction 203 on the back side of the first main surface 41. It is preferable that either one of the 41 and the second main surface 42, or both the first main surface 41 and the second main surface 42, have a recess 43 extending along the width direction of the conductor portion 10.

この凹部43は、導体部10を蛇腹折りに折り曲げるときに、金属板11を保持する保持金型に設けられた導体部10の幅方向に沿って延伸した凸部が、連結部40の外部電極30側における縁端部分に、食い込むまで押し付けられたときにできるものである。 When the conductor portion 10 is bent into a bellows fold, the concave portion 43 has a convex portion extending along the width direction of the conductor portion 10 provided in the holding mold for holding the metal plate 11 and has an external electrode of the connecting portion 40. It is formed when it is pressed against the edge portion on the 30 side until it bites into it.

これにより、導体部10を蛇腹折りに折り曲げるときに、連結部40の塑性変形が外部電極30にまでおよぶことを抑制して、外部電極30の平坦性が悪くなることを抑制することができ、外部電極30と外部回路との接続信頼性を損なうことを抑制することができるという効果硬化を得ることができる。 As a result, when the conductor portion 10 is bent in a bellows fold, it is possible to suppress the plastic deformation of the connecting portion 40 from extending to the external electrode 30, and it is possible to suppress the deterioration of the flatness of the external electrode 30. It is possible to obtain the effect curing that it is possible to suppress the deterioration of the connection reliability between the external electrode 30 and the external circuit.

この凹部43の深さ寸法は、特に限定されるものではないが、5~20μm程度の深さがよく、5μmより小さいと金属板11を保持する保持力が弱くなるので好ましくなく、20μmよりも大きいと、金属板11の断面積が小さくなる影響が大きくなるので好ましくない。より好ましくは10~15μmとすることがよい。 The depth dimension of the recess 43 is not particularly limited, but a depth of about 5 to 20 μm is preferable, and if it is smaller than 5 μm, the holding force for holding the metal plate 11 is weakened, which is not preferable, and is more than 20 μm. If it is large, the influence that the cross-sectional area of the metal plate 11 becomes small becomes large, which is not preferable. It is more preferably 10 to 15 μm.

次に、上記した本実施の形態のインダクタ100の製造方法について図5~図8を参照して説明する。 Next, the manufacturing method of the inductor 100 of the present embodiment described above will be described with reference to FIGS. 5 to 8.

まず、導体部10を形成する導体部形成工程を説明する。 First, the conductor portion forming step for forming the conductor portion 10 will be described.

導体部形成工程は、直線状に延伸した金属板11を準備する金属板準備工程と、金属板11を幅方向に蛇腹折りに折り曲げる折り曲げ導体部形成工程を有する。 The conductor portion forming step includes a metal plate preparing step of preparing a linearly stretched metal plate 11 and a bent conductor portion forming step of bending the metal plate 11 into a bellows fold in the width direction.

この内、金属板準備工程では、図5に示すように、直線状に延伸した金属板11を準備する。 Among these, in the metal plate preparation step, as shown in FIG. 5, a linearly stretched metal plate 11 is prepared.

この場合、金属板11は、厚さが0.15m、幅寸法が2.4mmの銅板を、あらかじめ、導体部10と、導体部10の両側にそれぞれ連接される連結部40と、連結部に連接される外部電極30の寸法を合算した長さにしておくことがよく、導体部10と連結部40および外部電極30を一体にした金属板11を準備するのがこの好ましい。 In this case, the metal plate 11 is a copper plate having a thickness of 0.15 m and a width dimension of 2.4 mm, which is previously connected to the conductor portion 10, the connecting portions 40 connected to both sides of the conductor portion 10, and the connecting portion. The length may be the sum of the dimensions of the external electrodes 30 to be connected, and it is preferable to prepare a metal plate 11 in which the conductor portion 10, the connecting portion 40, and the external electrode 30 are integrated.

ここで、図5では、第三方向203の上側から見たときに、金属板11の延伸方向の中間部分に、導体部10を蛇腹折りに折り曲げるときの折り曲げ線の仮想線を示しており、一点鎖線で示した折り曲げ線13は山折り線であり、二点鎖線で示した折り曲げ線14は谷折り線を示している。 Here, FIG. 5 shows an imaginary line of a bending line when the conductor portion 10 is bent into a bellows fold in the middle portion in the extending direction of the metal plate 11 when viewed from the upper side of the third direction 203. The bent line 13 indicated by the alternate long and short dash line is a mountain fold line, and the bent line 14 indicated by the alternate long and short dash line indicates a valley fold line.

このように、折り曲げ線13、14は金属板11の直線状の延伸方向に沿って、山折り線と谷折り線が交互に配置されている。 As described above, in the bending lines 13 and 14, mountain fold lines and valley fold lines are alternately arranged along the linear stretching direction of the metal plate 11.

次に、折り曲げ導体部形成工程では、図6に示すように、プレス加工することにより折り曲げ線13、14に沿って、折り曲げ線13を山折りに、折り曲げ線14を谷折りに折り曲げて、金属板11を延伸方向に沿って蛇腹折りに折り曲げる。 Next, in the folding conductor portion forming step, as shown in FIG. 6, the bending line 13 is bent into a mountain fold and the bending line 14 is bent into a valley fold along the bending lines 13 and 14 by press working, and the metal is formed. The plate 11 is bent in a bellows fold along the stretching direction.

この場合、折り曲げられた隣り合う金属板11同士の内角が180°から小さくなるにつれて、第三方向203の上側から見たときに、山折りと谷折りの間隔が徐々に狭くなる。 In this case, as the internal angle between the bent adjacent metal plates 11 decreases from 180 °, the interval between the mountain fold and the valley fold gradually narrows when viewed from the upper side of the third direction 203.

このため、隣り合う金属板11同士の内角が徐々に小さくなるように、例えば内角を150°、120°、90°のように複数回に分けて折り曲げることが好ましい。 Therefore, it is preferable to bend the internal angles in a plurality of times, for example, 150 °, 120 °, 90 °, so that the internal angles of the adjacent metal plates 11 gradually become smaller.

図6に示した例では、折り曲げられた隣り合う金属板11同士の内角が90°まで折り曲げられた状態の例を示している。 The example shown in FIG. 6 shows an example in which the internal angles of the folded adjacent metal plates 11 are bent to 90 °.

次に、導体部形成工程では、折り曲げ導体部形成工程の後に、導体部圧縮工程を行うことが好ましい。 Next, in the conductor portion forming step, it is preferable to perform the conductor portion compression step after the bent conductor portion forming step.

導体部圧縮工程では、図7に示すように、導体部10を、導体部10の幅方向(第二方向202)の両側から圧縮金型50を用いて、導体部10の幅方向に圧縮することにより、導体部10の幅方向に隣り合う金属板11同士が積層される。 In the conductor portion compression step, as shown in FIG. 7, the conductor portion 10 is compressed in the width direction of the conductor portion 10 from both sides in the width direction (second direction 202) of the conductor portion 10 by using the compression mold 50. As a result, the metal plates 11 adjacent to each other in the width direction of the conductor portion 10 are laminated.

この場合、金属板準備工程と折り曲げ導体部形成工程の間に、絶縁層形成工程を行うことが好ましい。 In this case, it is preferable to perform an insulating layer forming step between the metal plate preparation step and the bent conductor portion forming step.

この絶縁層形成工程では、金属板11が積層された導体部10の少なくとも積層面12に絶縁層(図示せず)を形成するものであり、例えば、ポリウレタン樹脂、ポリエステル樹脂、エナメル樹脂、またはポリアミドイミド樹脂等の絶縁樹脂を、5~50μmの所望の厚さで、積層面12となる部分に転写などの技術を用いて塗布し、熱処理して硬化するものである。 In this insulating layer forming step, an insulating layer (not shown) is formed on at least the laminated surface 12 of the conductor portion 10 on which the metal plate 11 is laminated. For example, polyurethane resin, polyester resin, enamel resin, or polyamide is formed. An insulating resin such as an imide resin is applied to a portion to be a laminated surface 12 with a desired thickness of 5 to 50 μm by using a technique such as transfer, and is heat-treated to be cured.

なお、絶縁層は導体部10の全体に形成するものでもよい。 The insulating layer may be formed on the entire conductor portion 10.

ここで、上記した導体部10と連結部40および外部電極30が金属板11で一体に形成する場合において、連結部40は第三方向203の上側に第一主面41と、第三方向203の下側で第一主面41の裏側に第二主面42を有している。 Here, when the conductor portion 10, the connecting portion 40, and the external electrode 30 are integrally formed by the metal plate 11, the connecting portion 40 has the first main surface 41 and the third direction 203 on the upper side of the third direction 203. It has a second main surface 42 on the lower side and behind the first main surface 41.

そして、導体部形成工程における、折り曲げ導体部形成工程と導体部圧縮工程では、連結部40における外部電極30側の縁端部分を、第一主面41と第二主面42の両側から保持金型(図示せず)で挟んで保持した状態で、導体部10を蛇腹折りに折り曲げることが好ましい。 Then, in the bending conductor portion forming step and the conductor portion compression step in the conductor portion forming step, the edge portion of the connecting portion 40 on the external electrode 30 side is held by the holding metal from both sides of the first main surface 41 and the second main surface 42. It is preferable to bend the conductor portion 10 into a bellows fold while sandwiching and holding the conductor portion 10 with a mold (not shown).

さらには、第一主面41側と第二主面42側のいずれか一方、または第一主面41側と第二主面42側の両方の保持金型の保持面に、導体部10の幅方向に延伸した凸部(図示せず)を設け、凸部を連結部40に食い込む力で保持することがより好ましい。 Further, the conductor portion 10 is placed on the holding surface of either the first main surface 41 side and the second main surface 42 side, or both the first main surface 41 side and the second main surface 42 side of the holding mold. It is more preferable to provide a convex portion (not shown) extended in the width direction and hold the convex portion by a force that bites into the connecting portion 40.

これにより、導体部10を蛇腹折りに折り曲げるときに、連結部40の塑性変形が外部電極30にまでおよぶことを抑制することができる。 As a result, when the conductor portion 10 is bent in a bellows fold, it is possible to prevent the plastic deformation of the connecting portion 40 from extending to the external electrode 30.

次に、外装体形成工程を行う。 Next, the exterior body forming step is performed.

外装体形成工程では、図8に示すように、外装体20を成形する成形金型のキャビティ60の中に、磁性体粉末と結合材を混合した磁性材料と、導体部10および連結部40を入れ、キャビティ60の外に外部電極30を突出させ、磁性材料を加圧成形した後に結合材を硬化させることにより外装体20を得る。 In the exterior body forming step, as shown in FIG. 8, a magnetic material in which a magnetic material powder and a binder are mixed, a conductor portion 10 and a connecting portion 40 are placed in a cavity 60 of a molding die for molding the exterior body 20. The outer body 20 is obtained by putting the external electrode 30 out of the cavity 60, pressure-molding the magnetic material, and then curing the binder.

そして最後に、必要に応じて外部電極30の表面にはんだめっきを施したり、外部電極を所望の長さに切断したり、また外部電極30を折り曲げ加工したりするなどして、図1、図2に示したインダクタ100を得ることができる。 Finally, if necessary, the surface of the external electrode 30 is solder-plated, the external electrode is cut to a desired length, and the external electrode 30 is bent. The inductor 100 shown in 2 can be obtained.

上記した本実施の形態のインダクタの製造方法によれば、上記の製造方法により、前述した本実施の形態のインダクタ100で説明した作用効果と、同様の作用効果を得ることができるものである。 According to the above-described method for manufacturing an inductor of the present embodiment, the same action and effect as those described for the above-mentioned inductor 100 of the present embodiment can be obtained by the above-mentioned manufacturing method.

なお、本実施の形態では、導体部10が幅方向に蛇腹折りに折り曲げられて積層された例で説明したが、本実施の形態のインダクタの別の例を示す図9のように、単に、導体部10が幅方向に蛇腹折りに折り曲げられたものでもよい。 In the present embodiment, the conductor portion 10 is bent in a bellows direction in the width direction and laminated, but as shown in FIG. 9 showing another example of the inductor of the present embodiment, simply, The conductor portion 10 may be bent in a bellows fold in the width direction.

図9に示した例は、図6に示した導体部10を外装体20で覆い、図3の断面図と同様に導体部10の直線状に延伸した方向と直交する断面を見たものであり、前述した本実施の形態と同様の作用効果を得ることができる。 In the example shown in FIG. 9, the conductor portion 10 shown in FIG. 6 is covered with the exterior body 20, and the cross section orthogonal to the linearly extending direction of the conductor portion 10 is seen as in the cross-sectional view of FIG. Yes, it is possible to obtain the same effect as that of the present embodiment described above.

また、本実施の形態では、導体部10の金属板11の幅寸法と、外部電極30の金属板11の幅寸法を同じ寸法にして、導体部10と外部電極30の断面積を同じ面積にした例で説明したが、導体部10の延伸方向と直交する断面において、導体部10の断面積が外部電極30の断面積より大きくしてもよい。 Further, in the present embodiment, the width dimension of the metal plate 11 of the conductor portion 10 and the width dimension of the metal plate 11 of the external electrode 30 are the same, and the cross-sectional area of the conductor portion 10 and the external electrode 30 is the same area. As described above, the cross-sectional area of the conductor portion 10 may be larger than the cross-sectional area of the external electrode 30 in the cross section orthogonal to the stretching direction of the conductor portion 10.

このような本実施の形態のインダクタの他の別の例を図10、図11に示す。 Other examples of such an inductor of this embodiment are shown in FIGS. 10 and 11.

図10に示すように、金属板準備工程では、導体部10を形成する部分の幅寸法を連結部40および外部電極30を形成する部分の幅寸法より大きくした金属板を準備する。 As shown in FIG. 10, in the metal plate preparation step, a metal plate is prepared in which the width dimension of the portion forming the conductor portion 10 is larger than the width dimension of the portion forming the connecting portion 40 and the external electrode 30.

そして、図11に示すように、導体部10の連結部40および外部電極30幅寸法よりも大きくされた部分にも、谷折りの折り曲げ線14が配置されて蛇腹折りに折り曲げることによって、導体部10の延伸方向と直交する断面において、導体部10の断面積が外部電極30の断面積より大きくされたものである。 Then, as shown in FIG. 11, the valley fold bending line 14 is also arranged in the connecting portion 40 of the conductor portion 10 and the portion larger than the width dimension of the external electrode 30, and the conductor portion is bent into a bellows fold. In the cross section orthogonal to the stretching direction of 10, the cross-sectional area of the conductor portion 10 is larger than the cross-sectional area of the external electrode 30.

この図10、図11に示したインダクタとその製造方法においても、前述した本実施の形態のインダクタ100とその製造方法と同様の作用効果を得ることができ、さらに、導体部10の断面積が大きくなることによって導体部10の直流抵抗が減少してインダクタとしての損失を削減することができるという効果を得ることができるものである。 Also in the inductors shown in FIGS. 10 and 11 and the manufacturing method thereof, the same operation and effect as those of the inductor 100 of the present embodiment described above and the manufacturing method thereof can be obtained, and further, the cross-sectional area of the conductor portion 10 is increased. By increasing the size, the DC resistance of the conductor portion 10 can be reduced, and the effect that the loss as an inductor can be reduced can be obtained.

本発明に係るインダクタの構成およびその製造方法は、直線状に延伸した導体を用いたインダクタであっても、磁気効率の良いインダクタとすることができ、産業上有用である。 The inductor configuration and the manufacturing method thereof according to the present invention are industrially useful because even an inductor using a linearly stretched conductor can be an inductor with good magnetic efficiency.

10 導体部
11 金属板
12 積層面
13 折り曲げ線
14 折り曲げ線
20 外装体
21 底面
22 天面
23 第一側面
24 第二側面
25 第三側面
26 第四側面
30 外部電極
40 連結部
41 第一主面
42 第二主面
43 凹部
50 圧縮金型
60 キャビティ
100 インダクタ
201 第一方向
202 第二方向
203 第三方向
10 Conductor 11 Metal plate 12 Laminated surface 13 Folded line 14 Folded line 20 Exterior body 21 Bottom surface 22 Top surface 23 First side surface 24 Second side surface 25 Third side surface 26 Fourth side surface 30 External electrode 40 Connecting part 41 First main surface 42 Second main surface 43 Recess 50 Compression mold 60 Cavity 100 Inductor 201 First direction 202 Second direction 203 Third direction

Claims (8)

金属板からなり直線状に延伸された導体部と、磁性材料からなり前記導体部を覆う外装体と、前記導体部と接続され前記外装体から露出した外部電極を備え、前記導体部は幅方向に蛇腹折りに折り曲げられており、前記導体部と前記外部電極が連結部を介して一体に形成され、前記連結部は第一主面と前記第一主面の裏側の第二主面を有し、前記第一主面と前記第二主面のいずれか一方、または前記第一主面と前記第二主面の両方に前記導体部の幅方向に沿って延伸した凹部を有することを特徴とするインダクタ。 It is provided with a conductor portion made of a metal plate and linearly stretched, an exterior body made of a magnetic material covering the conductor portion, and an external electrode connected to the conductor portion and exposed from the exterior body, and the conductor portion is provided in the width direction. The conductor portion and the external electrode are integrally formed via a connecting portion, and the connecting portion has a first main surface and a second main surface on the back side of the first main surface. The first main surface and the second main surface, or both the first main surface and the second main surface, have recesses extending along the width direction of the conductor portion. An inductor characterized by. 前記導体部は、前記導体部の前記金属板が幅方向に積層されていることを特徴とする請求項1記載のインダクタ。 The inductor according to claim 1, wherein the conductor portion is formed by laminating the metal plates of the conductor portion in the width direction. 前記導体部の少なくとも積層面に絶縁層を有することを特徴とする請求項2記載のインダクタ。 The inductor according to claim 2, wherein the inductor has an insulating layer on at least the laminated surface of the conductor portion. 金属板からなり直線状に延伸された導体部と、磁性材料からなり前記導体部を覆う外装体と、前記導体部と接続され前記外装体から露出した外部電極を備え、前記導体部は幅方向に蛇腹折りに折り曲げられており、前記導体部の延伸方向と直交する断面において、前記導体部の断面積が前記外部電極の断面積より大きいことを特徴とするインダクタ。 It is provided with a conductor portion made of a metal plate and linearly stretched, an exterior body made of a magnetic material covering the conductor portion, and an external electrode connected to the conductor portion and exposed from the exterior body, and the conductor portion is provided in the width direction. An inductor characterized in that the cross-sectional area of the conductor portion is larger than the cross-sectional area of the external electrode in a cross section orthogonal to the stretching direction of the conductor portion. 金属板からなり直線状に延伸された導体部と、磁性材料からなり前記導体部を覆う外装体と、前記導体部と接続され前記外装体から露出した外部電極を備えたインダクタの製造方法であって、前記導体部を形成する工程は、直線状に延伸した金属板を準備する金属板準備工程と、前記金属板を幅方向に蛇腹折りに折り曲げる折り曲げ導体部形成工程を有し、前記金属板準備工程は、前記導体部と前記導体部の延伸方向の両側それぞれに連接される連結部、および前記連結部と連接される前記外部電極を一体に形成する長さを有する前記金属板を準備するものであり、前記連結部は第一主面と前記第一主面の裏側の第二主面を有し、前記折り曲げ導体部形成工程は、前記連結部を前記第一主面と前記第二主面の両側から金型で挟んで保持した状態で、前記導体部を蛇腹折りに折り曲げるものであり、前記第一主面側と前記第二主面側のいずれか一方、または前記第一主面側と前記第二主面側の両方の前記金型の保持面に、前記導体部の幅方向に延伸した凸部を設け、前記凸部を前記連結部に食い込ませて保持することを特徴とするインダクタの製造方法。 It is a method for manufacturing an inductor having a conductor portion made of a metal plate and linearly stretched, an exterior body made of a magnetic material covering the conductor portion, and an external electrode connected to the conductor portion and exposed from the exterior body. The step of forming the conductor portion includes a metal plate preparation step of preparing a linearly stretched metal plate and a bent conductor portion forming step of bending the metal plate in a bellows fold in the width direction. In the preparation step, the metal plate having a length for integrally forming the connecting portion connected to each of the conductor portion and both sides of the conductor portion in the stretching direction and the external electrode connected to the connecting portion is prepared. The connecting portion has a first main surface and a second main surface on the back side of the first main surface, and in the bending conductor portion forming step, the connecting portion is connected to the first main surface and the second main surface. The conductor portion is bent into a bellows fold while being sandwiched and held by a mold from both sides of the main surface, and either one of the first main surface side and the second main surface side, or the first main surface. It is characterized in that a convex portion extending in the width direction of the conductor portion is provided on the holding surface of the mold on both the surface side and the second main surface side, and the convex portion is made to bite into the connecting portion and held . How to manufacture the inductor. 前記導体部形成工程は、前記折り曲げ導体部形成工程の後に、前記導体部を幅方向に圧縮することにより、前記導体部の前記金属板を幅方向に積層する導体部圧縮工程を有することを特徴とする請求項記載のインダクタの製造方法。 The conductor portion forming step is characterized by having a conductor portion compression step of laminating the metal plate of the conductor portion in the width direction by compressing the conductor portion in the width direction after the bending conductor portion forming step. 5. The method for manufacturing an inductor according to claim 5 . 前記金属板準備工程と前記折り曲げ導体部形成工程の間に、前記導体部の少なくとも積層面に絶縁層を形成する絶縁層形成工程を有することを特徴とする請求項記載のインダクタの製造方法。 The method for manufacturing an inductor according to claim 6 , further comprising an insulating layer forming step of forming an insulating layer on at least a laminated surface of the conductor portion between the metal plate preparation step and the bent conductor portion forming step. 前記金属板準備工程は、前記導体部を形成する部分の幅寸法を前記連結部および前記外部電極を形成する部分の幅寸法より大きくしたことを特徴とする請求項記載のインダクタの製造方法。 The method for manufacturing an inductor according to claim 5 , wherein in the metal plate preparation step, the width dimension of the portion forming the conductor portion is made larger than the width dimension of the connecting portion and the portion forming the external electrode. ..
JP2017249755A 2017-12-26 2017-12-26 Inductors and their manufacturing methods Active JP7038275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017249755A JP7038275B2 (en) 2017-12-26 2017-12-26 Inductors and their manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017249755A JP7038275B2 (en) 2017-12-26 2017-12-26 Inductors and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2019117823A JP2019117823A (en) 2019-07-18
JP7038275B2 true JP7038275B2 (en) 2022-03-18

Family

ID=67305373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017249755A Active JP7038275B2 (en) 2017-12-26 2017-12-26 Inductors and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP7038275B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111243814A (en) * 2020-01-17 2020-06-05 深圳市铂科新材料股份有限公司 Copper sheet embedded soft magnetic powder core inductor and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087607A (en) 2002-08-23 2004-03-18 Alps Electric Co Ltd Magnetic element
JP2005310865A (en) 2004-04-19 2005-11-04 Matsushita Electric Ind Co Ltd Coil component
WO2009075110A1 (en) 2007-12-12 2009-06-18 Panasonic Corporation Inductance part and method for manufacturing the same
JP2011176947A (en) 2010-02-24 2011-09-08 Aisin Seiki Co Ltd Electric equipment coil
JP2013105641A (en) 2011-11-15 2013-05-30 Toyota Motor Corp Collective conductor and method of manufacturing collective conductor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084652Y2 (en) * 1989-12-26 1996-02-07 古河電気工業株式会社 Band-shaped insulated conductor for coil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087607A (en) 2002-08-23 2004-03-18 Alps Electric Co Ltd Magnetic element
JP2005310865A (en) 2004-04-19 2005-11-04 Matsushita Electric Ind Co Ltd Coil component
WO2009075110A1 (en) 2007-12-12 2009-06-18 Panasonic Corporation Inductance part and method for manufacturing the same
US20100253463A1 (en) 2007-12-12 2010-10-07 Shimomura Satoru Inductance part and method for manufacturing the same
JP2011176947A (en) 2010-02-24 2011-09-08 Aisin Seiki Co Ltd Electric equipment coil
JP2013105641A (en) 2011-11-15 2013-05-30 Toyota Motor Corp Collective conductor and method of manufacturing collective conductor

Also Published As

Publication number Publication date
JP2019117823A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
US10847298B2 (en) Coil device
JP4795489B1 (en) Coil parts
US9136050B2 (en) Magnetic device and method of manufacturing the same
JP6695036B2 (en) Coil parts
TWI389150B (en) A surface-mount inductor and a method of producing the same
TWI459413B (en) Inductance element and manufacturing method thereof
TWI362047B (en) Inductor and manufacture method thereof
JP5740339B2 (en) Surface mount multiphase inductor and method of manufacturing the same
JP6606669B2 (en) Coil component and manufacturing method thereof
CN102290208B (en) Coil-embedded dust magnetic core and its manufacturing method
CN105989990A (en) Wire wound inductor and method of manufacturing the same
JP6388015B2 (en) Coil parts and coil equipment
CN107039158A (en) Coil component and its manufacture method
JP7229056B2 (en) Laminated coil parts
TW200414237A (en) Pressed powder inductance member and its manufacturing method
US20160217903A1 (en) Electronic component
CN111834106A (en) Coil component
JP2020155702A (en) Laminated coil component
KR101761944B1 (en) Wire wound inductor
JP7038275B2 (en) Inductors and their manufacturing methods
JP2017220573A (en) Coil part and coil device
JP6456729B2 (en) Inductor element and manufacturing method thereof
WO2022085511A1 (en) Inductor and method for manufacturing inductor
JP6927115B2 (en) Surface mount inductor and its manufacturing method
JP6839037B2 (en) Inductance elements, their manufacturing methods, and electronic and electrical equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R151 Written notification of patent or utility model registration

Ref document number: 7038275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151