JP7035338B2 - Manufacturing method of bonded body - Google Patents

Manufacturing method of bonded body Download PDF

Info

Publication number
JP7035338B2
JP7035338B2 JP2017100781A JP2017100781A JP7035338B2 JP 7035338 B2 JP7035338 B2 JP 7035338B2 JP 2017100781 A JP2017100781 A JP 2017100781A JP 2017100781 A JP2017100781 A JP 2017100781A JP 7035338 B2 JP7035338 B2 JP 7035338B2
Authority
JP
Japan
Prior art keywords
phosphor
base material
bonded body
powder
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017100781A
Other languages
Japanese (ja)
Other versions
JP2018193283A (en
Inventor
彰太郎 福本
忠仁 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2017100781A priority Critical patent/JP7035338B2/en
Publication of JP2018193283A publication Critical patent/JP2018193283A/en
Application granted granted Critical
Publication of JP7035338B2 publication Critical patent/JP7035338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Glass Compositions (AREA)

Description

本発明は、封着材、及びそれを用いた接合体の製造方法に関する。 The present invention relates to a sealing material and a method for manufacturing a bonded body using the same.

従来、LED(Light Emitting Diode)等の素子を搭載して封止するために、気密パッケージが用いられている。このような気密パッケージは、素子を搭載することができる容器と、容器内を封止するためのカバー部材が接合されることにより構成されている。 Conventionally, an airtight package has been used for mounting and sealing an element such as an LED (Light Emitting Diode). Such an airtight package is configured by joining a container on which an element can be mounted and a cover member for sealing the inside of the container.

下記の特許文献1には、ガラスセラミックス基板と、ガラス蓋が、封着材料を介して接合されてなる気密パッケージが開示されている。特許文献1では、上記封着材料として、低融点ガラスからなるガラスフリットが用いられている。また、特許文献1では、上記ガラスフリットを焼成して、溶融させることにより、ガラスセラミックス基板とガラス蓋が接合されている。 Patent Document 1 below discloses an airtight package in which a glass-ceramic substrate and a glass lid are joined via a sealing material. In Patent Document 1, a glass frit made of low melting point glass is used as the sealing material. Further, in Patent Document 1, the glass ceramic substrate and the glass lid are joined by firing and melting the glass frit.

しかしながら、耐熱性の低い素子が搭載される場合、特許文献1のようにガラスフリットを焼成して溶融させると、焼成の際の加熱により素子特性が熱劣化するおそれがある。これを解消する方法として、ガラスフリットにレーザーを照射し局所的に加熱することでガラスフリットを溶融する方法(レーザーシール)が考えられる。上記のレーザー照射による封着を採用することにより、搭載される素子の熱劣化を防止することができる。 However, when an element having low heat resistance is mounted, if the glass frit is fired and melted as in Patent Document 1, the element characteristics may be thermally deteriorated by the heating at the time of firing. As a method for solving this, a method of melting the glass frit by irradiating the glass frit with a laser and locally heating it (laser seal) can be considered. By adopting the above-mentioned sealing by laser irradiation, it is possible to prevent thermal deterioration of the mounted element.

特開2014-236202号公報Japanese Unexamined Patent Publication No. 2014-236202

レーザー照射による封着を行う場合、通常、ガラス等のレーザー光を透過させる基材を介してガラスフリットにレーザー光が照射される。従来の封着材は、概ね1000nmより大きい波長の赤外線レーザーを用いて封着が行われるが、当該波長域のレーザー光を照射すると、基材がレーザー光により加熱され、熱応力によりガラス基材にクラックが発生するおそれがある。 When sealing by laser irradiation, the laser beam is usually irradiated to the glass frit through a base material such as glass that transmits the laser beam. Conventional sealing materials are sealed using an infrared laser with a wavelength larger than approximately 1000 nm, but when irradiated with laser light in the wavelength range, the base material is heated by the laser light, and the base material is a glass base material due to thermal stress. There is a risk of cracking.

本発明の目的は、ガラス等の基材を介して封着材にレーザー光を照射して封着を行うに際し、レーザー光の照射によって生じる熱応力を低減し、基材にクラック等が発生するのを抑制することができる封着材、及びそれを用いた接合体の製造方法を提供することにある。 An object of the present invention is to reduce thermal stress generated by irradiation of a laser beam when the sealing material is irradiated with a laser beam through a substrate such as glass to perform sealing, and cracks or the like are generated in the substrate. It is an object of the present invention to provide a sealing material capable of suppressing the above-mentioned conditions, and a method for producing a bonded body using the same.

本発明の封着材は、熱により軟化流動する無機粉末、及び、蛍光体粉末を含有することを特徴とする。本発明の封着材は、蛍光体粉末の励起光を照射することにより蛍光体粉末から熱が発生し、この熱により無機粉末が軟化流動し、封着材として機能するものである。ここで、蛍光体粉末は例えば1000nm以下という比較的低波長域で励起される。例えばガラスからなる基材は当該波長域の光に対する透過率が高く、励起光が基材に吸収される割合が小さい。その結果、基材を介して封着材に励起光を照射しても、基材が加熱されにくく、クラックの発生を抑制することができる。 The sealing material of the present invention is characterized by containing an inorganic powder that softens and flows by heat and a phosphor powder. In the sealing material of the present invention, heat is generated from the fluorescent material powder by irradiating the excitation light of the fluorescent material powder, and the inorganic powder softens and flows by this heat, and functions as a sealing material. Here, the phosphor powder is excited in a relatively low wavelength region of, for example, 1000 nm or less. For example, a base material made of glass has a high transmittance for light in the wavelength range, and the ratio of excitation light absorbed by the base material is small. As a result, even if the sealing material is irradiated with the excitation light via the base material, the base material is not easily heated and the generation of cracks can be suppressed.

本発明の封着材において、無機粉末がガラスからなることが好ましい。ガラスは軟化点が比較的低く、軟化流動しやすいため、封着材として好適である。 In the sealing material of the present invention, it is preferable that the inorganic powder is made of glass. Glass has a relatively low softening point and easily softens and flows, so that it is suitable as a sealing material.

本発明の封着材において、無機粉末の最大粒子径Dmaxが200μm以下であることが好ましい。このようにすれば、焼結または溶融固化しやすく、緻密な封着層が得やすくなる。 In the sealing material of the present invention, the maximum particle size D max of the inorganic powder is preferably 200 μm or less. By doing so, it is easy to sinter or melt and solidify, and it is easy to obtain a dense sealing layer.

本発明の封着材は、蛍光体粉末を0.01体積%以上含有することが好ましい。このようにすれば、励起光を照射した際に発生する熱量が大きくなり、無機粉末が十分に軟化流動しやすくなる。 The sealing material of the present invention preferably contains 0.01% by volume or more of the fluorescent substance powder. By doing so, the amount of heat generated when the excitation light is irradiated becomes large, and the inorganic powder becomes sufficiently softened and flows easily.

本発明の封着材において、蛍光体粉末が、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体及びガーネット系化合物蛍光体から選択される少なくとも1種を使用することができる。 In the sealing material of the present invention, the fluorescent substance powder is an oxide fluorescent substance, a nitride fluorescent substance, an oxynitride fluorescent substance, a chloride fluorescent substance, a halide fluorescent substance, a sulfide fluorescent substance, and an acid sulfide fluorescent substance. , At least one selected from a halide fluoresceide, a chalcogenide fluorescein, an aluminate fluorescein, a halophosphate fluorinated phosphor and a garnet compound fluorescee can be used.

本発明の封着材は、レーザーシール用として好適である。 The sealing material of the present invention is suitable for laser sealing.

本発明の接合体の製造方法は、第一の基材及び第二の基材が封着層を介して接合されてなる接合体の製造方法であって、第一の基材上に、上記の封着材からなる封着材層を形成する工程、封着材層に接するように第二の基材を配置する工程、及び、第一の基材または第二の基材を介して、蛍光体粉末の励起光を封着材層に対して照射することにより、蛍光体粉末から発生する熱を利用して無機粉末を焼結または溶融固化させ、封着層を形成する工程、を備えることを特徴とする。 The method for producing a bonded body of the present invention is a method for producing a bonded body in which a first base material and a second base material are bonded via a sealing layer, and is described above on the first base material. The step of forming the sealing material layer made of the sealing material, the step of arranging the second base material in contact with the sealing material layer, and the step of arranging the second base material, and through the first base material or the second base material, The present invention comprises a step of irradiating the sealing material layer with the excitation light of the phosphor powder to sinter or melt and solidify the inorganic powder by utilizing the heat generated from the phosphor powder to form the sealing layer. It is characterized by that.

本発明の接合体の製造方法において、励起光の波長が250~1000nmであることが好ましい。 In the method for producing a bonded body of the present invention, the wavelength of the excitation light is preferably 250 to 1000 nm.

本発明の接合体の製造方法において、励起光がレーザー光であることが好ましい。 In the method for producing a bonded body of the present invention, it is preferable that the excitation light is laser light.

本発明の接合体の製造方法において、励起光を封着材層に対して走査して照射することが好ましい。このようにすれば、封着材層全体に励起光を照射することができる。 In the method for producing a bonded body of the present invention, it is preferable to scan and irradiate the sealing material layer with excitation light. In this way, the entire sealing material layer can be irradiated with the excitation light.

本発明の接合体の製造方法において、励起光の照射により、無機粉末及び蛍光体粉末を溶融一体化させてもよい。このようにすれば、封着部における光散乱が低減され、透明性が高くなる。 In the method for producing a bonded body of the present invention, the inorganic powder and the phosphor powder may be melted and integrated by irradiation with excitation light. By doing so, light scattering at the sealing portion is reduced and transparency is increased.

本発明の接合体の製造方法において、封着層が透明であることが好ましい。このようにすれば、封着層が目立ちにくくなり、接合体の意匠性を高めることができる。 In the method for producing a bonded body of the present invention, it is preferable that the sealing layer is transparent. By doing so, the sealing layer becomes inconspicuous, and the design of the bonded body can be enhanced.

本発明の接合体の製造方法において、第一の基材及び/または第二の基材がガラスまたはセラミックからなることが好ましい。このようにすれば、励起光が透過しやすくなり、封着材層に対して励起光が十分に照射されやすくなる。 In the method for producing a bonded body of the present invention, it is preferable that the first base material and / or the second base material is made of glass or ceramic. By doing so, the excitation light is easily transmitted, and the excitation light is sufficiently easily applied to the sealing material layer.

本発明によれば、ガラス等の基材を介して封着材にレーザー光を照射して封着を行うに際し、レーザー光の照射によって生じる熱応力を低減し、基材にクラック等が発生するのを抑制することができる封着材、及びそれを用いた接合体の製造方法を提供することが可能となる。 According to the present invention, when the sealing material is irradiated with laser light through a base material such as glass to perform sealing, the thermal stress generated by the irradiation of the laser light is reduced, and cracks or the like are generated in the base material. It becomes possible to provide a sealing material capable of suppressing the above-mentioned factors and a method for producing a bonded body using the same.

本発明の一実施形態に係る接合体の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the bonded body which concerns on one Embodiment of this invention.

本発明の封着材は、熱により軟化流動する無機粉末、及び、蛍光体粉末を含有することを特徴とする。 The sealing material of the present invention is characterized by containing an inorganic powder that softens and flows by heat and a phosphor powder.

無機粉末としてはガラスやセラミックからなるものを使用することができる。特にガラスは軟化点が比較的低く、軟化流動しやすいため、封着材として好適である。ガラスとしては、ケイ酸塩ガラス、シリカガラス、ホウケイ酸塩ガラス、スズリン酸塩ガラス、ビスマス酸塩ガラス、ホウケイ酸亜鉛ガラス及びホウケイ酸鉛ガラスからなるものが挙げられる。これらは単独で使用してもよく、2種以上を混合して使用しても良い。なかでも、ケイ酸塩ガラス及びホウケイ酸塩ガラスは耐候性や耐熱性に優れているため好ましい。 As the inorganic powder, one made of glass or ceramic can be used. In particular, glass has a relatively low softening point and easily softens and flows, so that it is suitable as a sealing material. Examples of the glass include silicate glass, silica glass, borosilicate glass, tin phosphate glass, bismuthate glass, zinc borosilicate glass and lead borosilicate glass. These may be used alone or in combination of two or more. Among them, silicate glass and borosilicate glass are preferable because they are excellent in weather resistance and heat resistance.

無機粉末の軟化点は、軟化流動性を高める観点から、1000℃以下、950℃以下、特に900℃以下であることが好ましい。なお、無機粉末の軟化点が低すぎると、封着層の機械的強度、化学的耐久性、耐熱性に劣る傾向がある。そのため、無機粉末の軟化点は250℃以上、300℃以上、特に500℃以上であることが好ましい。 The softening point of the inorganic powder is preferably 1000 ° C. or lower, 950 ° C. or lower, particularly 900 ° C. or lower, from the viewpoint of enhancing the softening fluidity. If the softening point of the inorganic powder is too low, the mechanical strength, chemical durability, and heat resistance of the sealing layer tend to be inferior. Therefore, the softening point of the inorganic powder is preferably 250 ° C. or higher, 300 ° C. or higher, and particularly preferably 500 ° C. or higher.

無機粉末の粒度は特に限定されないが、例えば、最大粒子径Dmaxは200μm以下、150μm以下、特に105μm以下であることが好ましい。また、無機粉末の平均粒子径D50は50μm以下、特に20μm以下であることが好ましい。最大粒子径Dmaxまたは平均粒子径D50が大きすぎると、焼結や溶融固化が不十分になり、緻密な封着層が得にくくなる。平均粒子径D50の下限は特に限定されないが、現実的には1μm以上である。 The particle size of the inorganic powder is not particularly limited, but for example, the maximum particle size D max is preferably 200 μm or less, 150 μm or less, and particularly preferably 105 μm or less. Further, the average particle diameter D 50 of the inorganic powder is preferably 50 μm or less, particularly preferably 20 μm or less. If the maximum particle diameter D max or the average particle diameter D 50 is too large, sintering and melt solidification will be insufficient, and it will be difficult to obtain a dense sealing layer. The lower limit of the average particle diameter D 50 is not particularly limited, but is actually 1 μm or more.

なお、本発明において、最大粒子径Dmax及び平均粒子径D50はレーザー回折法により測定した値を指す。 In the present invention, the maximum particle diameter D max and the average particle diameter D 50 refer to the values measured by the laser diffraction method.

蛍光体粉末としては、例えば酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体及びガーネット系化合物蛍光体等からなる無機蛍光体粉末および量子ドット蛍光体が挙げられる。これらは単独で使用してもよく、2種以上を混合して使用してもよい。 Examples of the fluorescent substance powder include oxide fluorescent substances, nitride fluorescent substances, oxynitride phosphors, chloride fluorescent substances, acidified fluorescent substances, sulfide fluorescent substances, acid sulfide phosphors, and halide fluorescent substances. Examples thereof include an inorganic phosphor powder composed of a chalcogenide fluorescent substance, an aluminate fluorescent substance, a halophosphate-based fluorescent substance, a garnet-based compound fluorescent substance, and the like, and a quantum dot fluorescent substance. These may be used alone or in combination of two or more.

上記の蛍光体粉末は、概ね波長250~1000nmに励起帯を有する。具体例としては以下のものが挙げられる。 The above fluorescent powder has an excitation band at a wavelength of approximately 250 to 1000 nm. Specific examples include the following.

波長300~440nmの紫外~近紫外の励起帯を有する蛍光体としては、(Sr,Ba)MgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+、SrAl:Eu2+、SrBaSiO:Eu2+、Y(Al,Gd)12:Ce3+、SrSiON:Eu2+、BaMgAl1017:Eu2+,Mn2+、BaMgSi:Eu2+、BaSiO:Eu2+、BaLiSi:Eu2+、BaAl:Eu2+、LaSi11:Ce3+(略称:LSN)、MgSrSi:Eu2+,Mn2+、CaMgSi:Eu2+,Mn2+等が挙げられる。 As a phosphor having an ultraviolet to near-ultraviolet excitation band having a wavelength of 300 to 440 nm, (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ , SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , SrSiON: Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , Ba 2 MgSi 2 O 7 : Eu 2+ Ba 2 SiO 4 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Eu 2+ , BaAl 2 O 4 : Eu 2+ , La 3 Si 6 N 11 : Ce 3+ (abbreviation: LSN), MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , Ca 2 MgSi 2 O 7 : Eu 2+ , Mn 2+ and the like can be mentioned.

波長440~480nmの青色の励起帯を有する蛍光体としては、SrAl:Eu2+、SrBaSiO:Eu2+、Y(Al,Gd)12:Ce3+、SrSiON:Eu2+、β-SiAlON:Eu2+、Y(Al,Gd)12:Ce3+、SrSiO:Eu2+、CaAlSiN:Eu2+(略称CASN)、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、α-SiAlON:Eu2+等が挙げられる。 Fluorescent materials having a blue excitation band with a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , SrSiO N: Eu 2+ , β. -SiAlON: Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , Sr 2 SiO 4 : Eu 2+ , CaAlSiN 3 : Eu 2+ (abbreviated as CASN), CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Examples thereof include Si 5 N 8 : Eu 2+ and α-SiAlON: Eu 2+ .

蛍光体粉末の平均粒子径D50は100μm以下、50μm以下、特に30μmであることが好ましい。蛍光体粉末の平均粒子径D50が大きすぎると、緻密な封着層が得にくくなる。平均粒子径D50の下限は特に限定されないが、現実的には0.1μm以上、さらには1μm以上である。 The average particle size D 50 of the fluorescent powder is preferably 100 μm or less, 50 μm or less, and particularly preferably 30 μm. If the average particle size D 50 of the fluorescent material powder is too large, it becomes difficult to obtain a dense sealing layer. The lower limit of the average particle diameter D 50 is not particularly limited, but is actually 0.1 μm or more, and further 1 μm or more.

封着材中における蛍光体粉末の含有量は0.01体積%以上、特に0.05体積%以上であることが好ましい。蛍光体粉末の含有量が少なすぎると、励起光を照射した際に発生する熱量が小さくなり、無機粉末が十分に軟化流動しにくくなる。一方、蛍光体粉末の含有量が多すぎると、無機粉末の焼結や溶融固化が不十分になるおそれがある。また、得られる封着層の気孔率が大きくなって、機械的強度が低下しやすくなる等の問題が生じるおそれがある。よって、蛍光体粉末の含有量は30体積%以下、20体積%以下、10体積%以下、5体積%以下、特に3体積%以下であることが好ましい。 The content of the fluorescent powder in the sealing material is preferably 0.01% by volume or more, particularly preferably 0.05% by volume or more. If the content of the phosphor powder is too small, the amount of heat generated when the excitation light is irradiated becomes small, and the inorganic powder becomes difficult to sufficiently soften and flow. On the other hand, if the content of the fluorescent powder is too large, the sintering and melt solidification of the inorganic powder may be insufficient. In addition, the porosity of the obtained sealing layer may increase, which may cause problems such as a tendency for the mechanical strength to decrease. Therefore, the content of the fluorescent substance powder is preferably 30% by volume or less, 20% by volume or less, 10% by volume or less, 5% by volume or less, and particularly preferably 3% by volume or less.

以下に、上記の封着材を用いた本発明の接合体の製造方法について説明する。 Hereinafter, a method for manufacturing the bonded body of the present invention using the above-mentioned sealing material will be described.

図1は、本発明の一実施形態に係る接合体の製造方法を示す断面図である。まず、接合体を構成する第一の基材1及び第二の基材2を準備する。次に、第一の基材1上に、上記の封着材からなる封着材層3を形成する。封着材層3は、例えば封着材に樹脂と溶剤を含むビークルを添加してペースト化した後、得られたペーストを第一の基材1表面に塗布することにより形成することができる。さらに、第一の基材1上に形成された封着材層3に接するように第二の基材2を配置する。続いて、第一の基材1または第二の基材2を介して、光源4から蛍光体粉末の励起光Eを封着材層3に対して照射することにより、蛍光体粉末から発生する熱を利用して無機粉末を焼結または溶融固化させ、封着層3’を形成する。必要に応じて、励起光Eを封着材層3に対して走査して照射することにより、封着材層3全体に励起光Eを照射する。このようにして、第一の基材1及び第二の基材2が封着層3’を介して接合されてなる接合体5を得る。 FIG. 1 is a cross-sectional view showing a method for manufacturing a bonded body according to an embodiment of the present invention. First, the first base material 1 and the second base material 2 constituting the bonded body are prepared. Next, the sealing material layer 3 made of the above-mentioned sealing material is formed on the first base material 1. The sealing material layer 3 can be formed, for example, by adding a vehicle containing a resin and a solvent to the sealing material to form a paste, and then applying the obtained paste to the surface of the first base material 1. Further, the second base material 2 is arranged so as to be in contact with the sealing material layer 3 formed on the first base material 1. Subsequently, the excitation light E of the phosphor powder is irradiated from the light source 4 to the sealing material layer 3 via the first base material 1 or the second base material 2, so that the phosphor powder is generated. The heat is used to sintered or melt and solidify the inorganic powder to form a sealing layer 3'. If necessary, the excitation light E is irradiated to the entire sealing material layer 3 by scanning and irradiating the sealing material layer 3. In this way, a bonded body 5 is obtained in which the first base material 1 and the second base material 2 are joined via the sealing layer 3'.

励起光Eを照射する光源4としてはレーザー光源を使用することが好ましい。レーザー光源はハイパワーであるため、蛍光体粉末から発生する熱量を大きくすることができ、無機粉末を短時間で焼結または溶融固化することができる。また、レーザー光はスポット径を小さくすることができ、封着材層3に対して局所的に励起光Eを照射することができるため、線幅の小さい封着材層3に対しても精度よく照射することが可能となる。なお、必要に応じて励起光Eをレンズ等を用いて集光して封着材層3に照射してもよい。このようにすれば、封着材層3に照射される励起光Eのエネルギーを大きくできるため、単時間で接合体5を形成することができる。 It is preferable to use a laser light source as the light source 4 for irradiating the excitation light E. Since the laser light source has high power, the amount of heat generated from the phosphor powder can be increased, and the inorganic powder can be sintered or melt-solidified in a short time. Further, since the laser beam can reduce the spot diameter and locally irradiate the sealing material layer 3 with the excitation light E, the accuracy is also applied to the sealing material layer 3 having a small line width. It becomes possible to irradiate well. If necessary, the excitation light E may be condensed using a lens or the like and irradiated to the sealing material layer 3. By doing so, the energy of the excitation light E applied to the sealing material layer 3 can be increased, so that the bonded body 5 can be formed in a single time.

励起光Eの波長は使用する蛍光体粉末に応じて適宜選択すればよく、例えば250~1000nm(特に300~440nmまたは440~480nm)の範囲のものを使用することができる。 The wavelength of the excitation light E may be appropriately selected depending on the phosphor powder to be used, and for example, a wavelength in the range of 250 to 1000 nm (particularly 300 to 440 nm or 440 to 480 nm) can be used.

励起光Eの走査速度は、励起光Eの出力や封着材層3の厚み等に応じて適宜選択すればよく、例えば0.01~50mm/s、さらには0.1~10mm/sとすることができる。 The scanning speed of the excitation light E may be appropriately selected depending on the output of the excitation light E, the thickness of the sealing material layer 3, and the like, for example, 0.01 to 50 mm / s, and further 0.1 to 10 mm / s. can do.

第一の基材1及び第二の基材2の材質としては、ガラス及びセラミック(透明セラミック)が挙げられる。第一の基材1及び/または第二の基材2がガラスまたはセラミックからなることにより、励起光Eが透過しやすくなり、封着材層3に対して励起光Eが十分に照射されやすくなる。ガラスとしては、例えば、SiO-B-RO(RはMg、Ca、SrまたはBa)系ガラス、SiO-B-R’O(R’はLi、NaまたはK)系ガラスまたはSiO-B-RO-R’O系ガラス等が挙げられる。セラミックとしては、酸化アルミニウム系セラミック、窒化アルミニウム系セラミック、炭化ケイ素系セラミック、窒化ホウ素系セラミック、酸化マグネシウム系セラミック、酸化チタン系セラミック、酸化ニオビウム系セラミック、酸化亜鉛系セラミック、酸化イットリウム系セラミック等が挙げられる。 Examples of the material of the first base material 1 and the second base material 2 include glass and ceramic (transparent ceramic). Since the first base material 1 and / or the second base material 2 is made of glass or ceramic, the excitation light E is easily transmitted, and the excitation light E is easily sufficiently irradiated to the sealing material layer 3. Become. Examples of the glass include SiO 2 -B 2 O 3 -RO (R is Mg, Ca, Sr or Ba) glass, SiO 2 -B 2 O 3 - R'2 O (R'is Li, Na or K). ) -Based glass or SiO 2 -B 2 O 3 -RO- R'2 O-based glass. Examples of ceramics include aluminum oxide-based ceramics, aluminum nitride-based ceramics, silicon carbide-based ceramics, boron nitride-based ceramics, magnesium oxide-based ceramics, titanium oxide-based ceramics, niobium-based ceramics, zinc oxide-based ceramics, and yttrium oxide-based ceramics. Can be mentioned.

なお、励起光Eの照射により、無機粉末及び蛍光体粉末を溶融一体化させてもよい。このようにすれば、得られる封着層3’の均質性が高まり透明(可視域に対して透明)にすることができる。封着層3’が透明になると目立ちにくくなり、接合体5の意匠性を高めることができる。 Inorganic powder and phosphor powder may be melted and integrated by irradiation with excitation light E. By doing so, the homogeneity of the obtained sealing layer 3'is enhanced and it can be made transparent (transparent to the visible region). When the sealing layer 3'becomes transparent, it becomes less noticeable, and the design of the bonded body 5 can be enhanced.

接合体5の具体例としては、LED等の素子を搭載して封止してなる気密パッケージが挙げられる。このような気密パッケージは、素子を搭載することができる容器と、容器内を封止するためのカバー部材が、上記の封着材で接合されることにより構成されている。 Specific examples of the bonded body 5 include an airtight package in which an element such as an LED is mounted and sealed. Such an airtight package is configured by joining a container on which an element can be mounted and a cover member for sealing the inside of the container with the above-mentioned sealing material.

以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on specific examples, but the present invention is not limited to the following examples.

表1は実施例1~5を示す。 Table 1 shows Examples 1 to 5.

Figure 0007035338000001
Figure 0007035338000001

(実施例1)
ホウケイ酸塩系ガラス粉末(軟化点850℃、最大粒子径Dmax=10μm、平均粒子径D50=3μm)とYAG蛍光体粉末(平均粒子径D50=17μm)を混合し、封着材を得た。封着材中のYAG蛍光体粉末の含有量は0.1体積%とした。封着材1gを2枚のホウケイ酸系ガラス基板で挟み、ガラス基板を介して、封着材に対して励起光である青色レーザー光(波長445nm)を出力1Wで0.1秒間照射した。これにより、封着材が溶融固化し、2枚のガラス板が封着層により接合されてなる接合体を得た。封着層はガラス粉末と蛍光体粉末の両者が溶融一体化して均質な透明層となっていた。
(Example 1)
Borosilicate-based glass powder (softening point 850 ° C., maximum particle size D max = 10 μm, average particle size D 50 = 3 μm) and YAG phosphor powder (average particle size D 50 = 17 μm) are mixed to form a sealing material. Obtained. The content of the YAG phosphor powder in the sealing material was 0.1% by volume. 1 g of the sealing material was sandwiched between two borosilicate glass substrates, and the sealing material was irradiated with blue laser light (wavelength 445 nm), which is an excitation light, for 0.1 seconds at an output of 1 W. As a result, the sealing material was melted and solidified, and two glass plates were joined by the sealing layer to obtain a bonded body. In the sealing layer, both the glass powder and the phosphor powder were melted and integrated to form a homogeneous transparent layer.

(実施例2)
ホウケイ酸塩系ガラス粉末(軟化点700℃、最大粒子径Dmax=15μm、平均粒子径D50=5μm)とYAG蛍光体粉末(平均粒子径D50=17μm)を混合し、封着材を得た。封着材中のYAG蛍光体粉末の含有量は0.1体積%とした。封着材1gを2枚のホウケイ酸系ガラス基板で挟み、ガラス基板を介して、封着材に対して励起光である青色レーザー光(波長445nm)を出力0.8Wで0.1秒間照射した。これにより、封着材が溶融固化し、2枚のガラス板が封着層により接合されてなる接合体を得た。封着層はガラス粉末と蛍光体粉末の両者が溶融一体化して均質な透明層となっていた。
(Example 2)
Borosilicate-based glass powder (softening point 700 ° C., maximum particle size D max = 15 μm, average particle size D 50 = 5 μm) and YAG phosphor powder (average particle size D 50 = 17 μm) are mixed to form a sealing material. Obtained. The content of the YAG phosphor powder in the sealing material was 0.1% by volume. 1 g of the sealing material is sandwiched between two borosilicate glass substrates, and the sealing material is irradiated with blue laser light (wavelength 445 nm), which is excitation light, for 0.1 seconds at an output of 0.8 W. did. As a result, the sealing material was melted and solidified, and two glass plates were joined by the sealing layer to obtain a bonded body. In the sealing layer, both the glass powder and the phosphor powder were melted and integrated to form a homogeneous transparent layer.

(実施例3)
スズリン酸塩系ガラス粉末(軟化点330℃、最大粒子径Dmax=20μm、平均粒子径D50=8μm)とYAG蛍光体粉末(平均粒子径D50=17μm)を混合し、封着材を得た。封着材中のYAG蛍光体粉末の含有量は0.1体積%とした。封着材1gを2枚のホウケイ酸系ガラス基板で挟み、ガラス基板を介して、封着材に対して励起光である青色レーザー光(波長445nm)を出力0.4Wで0.1秒間照射した。これにより、封着材が溶融固化し、2枚のガラス板が封着層により接合されてなる接合体を得た。封着層はガラス粉末と蛍光体粉末の両者が溶融一体化して均質な透明層となっていた。
(Example 3)
YAG phosphor powder (average particle size D 50 = 17 μm) is mixed with yttrium phosphate-based glass powder (softening point 330 ° C., maximum particle size D max = 20 μm, average particle size D 50 = 8 μm) to form a sealing material. Obtained. The content of the YAG phosphor powder in the sealing material was 0.1% by volume. 1 g of the sealing material is sandwiched between two borosilicate glass substrates, and the sealing material is irradiated with blue laser light (wavelength 445 nm), which is excitation light, for 0.1 seconds at an output of 0.4 W. did. As a result, the sealing material was melted and solidified, and two glass plates were joined by the sealing layer to obtain a bonded body. In the sealing layer, both the glass powder and the phosphor powder were melted and integrated to form a homogeneous transparent layer.

(実施例4)
ホウケイ酸塩系ガラス粉末(軟化点850℃、最大粒子径Dmax=10μm、平均粒子径D50=3μm)とLSN蛍光体粉末(平均粒子径D50=12μm)を混合し、封着材を得た。封着材中のLSN蛍光体粉末の含有量は0.1体積%とした。封着材1gを2枚のホウケイ酸系ガラス基板で挟み、ガラス基板を介して、封着材に対して励起光である青色レーザー光(波長445nm)を出力1Wで0.1秒間照射した。これにより、封着材が溶融固化し、2枚のガラス板が封着層により接合されてなる接合体を得た。封着層はガラス粉末と蛍光体粉末の両者が溶融一体化して均質な透明層となっていた。
(Example 4)
Borosilicate-based glass powder (softening point 850 ° C., maximum particle size D max = 10 μm, average particle size D 50 = 3 μm) and LSN phosphor powder (average particle size D 50 = 12 μm) are mixed to form a sealing material. Obtained. The content of the LSN fluorescent powder in the sealing material was 0.1% by volume. 1 g of the sealing material was sandwiched between two borosilicate glass substrates, and the sealing material was irradiated with blue laser light (wavelength 445 nm), which is an excitation light, for 0.1 seconds at an output of 1 W. As a result, the sealing material was melted and solidified, and two glass plates were joined by the sealing layer to obtain a bonded body. In the sealing layer, both the glass powder and the phosphor powder were melted and integrated to form a homogeneous transparent layer.

(実施例5)
ホウケイ酸塩系ガラス粉末(軟化点850℃、最大粒子径Dmax=10μm、平均粒子径D50=3μm)とCASN蛍光体粉末(平均粒子径D50=15μm)を混合し、封着材を得た。封着材中のCASN蛍光体粉末の含有量は0.1体積%とした。封着材1gを2枚のホウケイ酸系ガラス基板で挟み、ガラス基板を介して、封着材に対して励起光である青色レーザー光(波長445nm)を出力1Wで0.1秒間照射した。これにより、封着材が溶融固化し、2枚のガラス板が封着層により接合されてなる接合体を得た。封着層はガラス粉末と蛍光体粉末の両者が溶融一体化して均質な透明層となっていた。
(Example 5)
Borosilicate-based glass powder (softening point 850 ° C., maximum particle size D max = 10 μm, average particle size D 50 = 3 μm) and CASN phosphor powder (average particle size D 50 = 15 μm) are mixed to form a sealing material. Obtained. The content of the CASN fluorescent powder in the sealing material was 0.1% by volume. 1 g of the sealing material was sandwiched between two borosilicate glass substrates, and the sealing material was irradiated with blue laser light (wavelength 445 nm), which is an excitation light, for 0.1 seconds at an output of 1 W. As a result, the sealing material was melted and solidified, and two glass plates were joined by the sealing layer to obtain a bonded body. In the sealing layer, both the glass powder and the phosphor powder were melted and integrated to form a homogeneous transparent layer.

1 第一の基材
2 第二の基材
3 封着材層
3’ 封着層
4 光源
5 接合体
E 励起光
1 First base material 2 Second base material 3 Sealing material layer 3'Sealing layer 4 Light source 5 Bonded body E Excitation light

Claims (9)

第1の基材及び第2の基材が封着層を介して接合されてなる接合体の製造方法であって、
第1の基材上に、封着材からなる封着材層を形成する工程、
封着材層に接するように第2の基材を配置する工程、及び、
第1の基材と第2の基材を封着する工程とを含み、
封着材層は、熱により軟化流動する無機粉末、及び、蛍光体粉末を含有する封着材からなり、
第1の基材または第2の基材を介して、蛍光体粉末の励起光を封着材層に対して照射することにより、蛍光体粉末から発生する熱を利用して無機粉末及び蛍光体粉末を溶融一体化させ、第1の基材と第2の基材とが封着層により接合した接合体を得ることを特徴とする接合体の製造方法。
A method for manufacturing a bonded body in which a first base material and a second base material are joined via a sealing layer.
A step of forming a sealing material layer made of a sealing material on the first base material,
The process of arranging the second base material so as to be in contact with the sealing material layer, and
Including the step of sealing the first base material and the second base material,
The sealing material layer is composed of a sealing material containing an inorganic powder that softens and flows by heat and a phosphor powder.
By irradiating the sealing material layer with the excitation light of the phosphor powder via the first substrate or the second substrate, the heat generated from the phosphor powder is utilized to utilize the inorganic powder and the phosphor. A method for producing a bonded body, which comprises melting and integrating the powder to obtain a bonded body in which the first base material and the second base material are bonded by a sealing layer.
無機粉末がガラスからなることを特徴とする請求項1に記載の接合体の製造方法。 The method for producing a bonded body according to claim 1, wherein the inorganic powder is made of glass. 無機粉末の最大粒子径Dmaxが200μm以下であることを特徴とする請求項1または2に記載の接合体の製造方法。 The method for producing a bonded body according to claim 1 or 2, wherein the maximum particle size Dmax of the inorganic powder is 200 μm or less. 蛍光体粉末を0.01体積%以上含有することを特徴とする請求項1~3のいずれかに記載の接合体の製造方法。 The method for producing a bonded body according to any one of claims 1 to 3, wherein the fluorescent substance powder is contained in an amount of 0.01% by volume or more. 蛍光体粉末が、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体及びガーネット系化合物蛍光体から選択される少なくとも1種であることを特徴とする請求項1~4のいずれかに記載の接合体の製造方法。 The phosphor powder is an oxide phosphor, a nitride phosphor, an oxynitride phosphor, a chloride phosphor, a acid compound phosphor, a sulfide phosphor, an acid sulfide phosphor, a halide phosphor, and a chalcogen compound. The preparation of the conjugate according to any one of claims 1 to 4, wherein the conjugate is at least one selected from a phosphor, an aluminate phosphor, a halide-based phosphor, and a garnet-based compound phosphor. Method. 励起光の波長が250~1000nmであることを特徴とする請求項1~5のいずれか一項に記載の接合体の製造方法。 The method for producing a bonded body according to any one of claims 1 to 5, wherein the wavelength of the excitation light is 250 to 1000 nm. 励起光がレーザー光であることを特徴とする請求項1~6のいずれか一項に記載の接合体の製造方法。 The method for producing a bonded body according to any one of claims 1 to 6, wherein the excitation light is a laser beam. 励起光を封着材層に対して走査して照射することを特徴とする請求項1~7のいずれかに記載の接合体の製造方法。 The method for producing a bonded body according to any one of claims 1 to 7, wherein the excitation light is scanned and irradiated to the sealing material layer. 第1の基材及び/または第2の基材がガラスまたはセラミックからなることを特徴とする請求項1~8のいずれかに記載の接合体の製造方法。 The method for producing a bonded body according to any one of claims 1 to 8, wherein the first base material and / or the second base material is made of glass or ceramic.
JP2017100781A 2017-05-22 2017-05-22 Manufacturing method of bonded body Active JP7035338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100781A JP7035338B2 (en) 2017-05-22 2017-05-22 Manufacturing method of bonded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100781A JP7035338B2 (en) 2017-05-22 2017-05-22 Manufacturing method of bonded body

Publications (2)

Publication Number Publication Date
JP2018193283A JP2018193283A (en) 2018-12-06
JP7035338B2 true JP7035338B2 (en) 2022-03-15

Family

ID=64570113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100781A Active JP7035338B2 (en) 2017-05-22 2017-05-22 Manufacturing method of bonded body

Country Status (1)

Country Link
JP (1) JP7035338B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305063B2 (en) * 2020-04-09 2023-07-07 イェノプティック オプティカル システムズ ゲーエムベーハー Optical device manufacturing method and optical device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080994A (en) 2005-09-13 2007-03-29 Sumita Optical Glass Inc Solid element device and light emitting device employing it
JP2013010661A (en) 2011-06-29 2013-01-17 Ohara Inc Glass composition
JP2013016268A (en) 2011-06-30 2013-01-24 Sharp Corp Light-emitting device
JP2013241323A (en) 2012-04-24 2013-12-05 Nippon Electric Glass Co Ltd Crystalline glass composition
JP2014236202A (en) 2013-06-05 2014-12-15 旭硝子株式会社 Light-emitting device
JP2016138020A (en) 2015-01-28 2016-08-04 日本電気硝子株式会社 Crystallized glass phosphor and wavelength conversion member prepared therewith
JP2016196394A (en) 2015-02-02 2016-11-24 フエロ コーポレーション Glass composition and glass frit composition used for optical use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412036A (en) * 1990-04-26 1992-01-16 Nec Kansai Ltd Sealed glass for airtight terminal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080994A (en) 2005-09-13 2007-03-29 Sumita Optical Glass Inc Solid element device and light emitting device employing it
JP2013010661A (en) 2011-06-29 2013-01-17 Ohara Inc Glass composition
JP2013016268A (en) 2011-06-30 2013-01-24 Sharp Corp Light-emitting device
JP2013241323A (en) 2012-04-24 2013-12-05 Nippon Electric Glass Co Ltd Crystalline glass composition
JP2014236202A (en) 2013-06-05 2014-12-15 旭硝子株式会社 Light-emitting device
JP2016138020A (en) 2015-01-28 2016-08-04 日本電気硝子株式会社 Crystallized glass phosphor and wavelength conversion member prepared therewith
JP2016196394A (en) 2015-02-02 2016-11-24 フエロ コーポレーション Glass composition and glass frit composition used for optical use

Also Published As

Publication number Publication date
JP2018193283A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6677680B2 (en) Wavelength conversion device, method of manufacturing the same, and related light emitting device
JP6688976B2 (en) Wavelength conversion member
KR102576303B1 (en) Wavelength conversion member and light-emitting device
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP6156440B2 (en) Red light emitting phosphor and light emitting device using the same
JP6693360B2 (en) Light conversion member, illumination light source, and method for manufacturing light conversion member
JP2016225581A (en) Wavelength conversion member and light-emitting device including the same
JP2009091546A (en) Phosphor-containing molded member, method of manufacturing the same, and light emitting device
JP6627914B2 (en) Fluorescent member, optical component, and light emitting device
EP3450413B1 (en) Fluorescent member, optical component, and light emitting device
JP2010097829A (en) Lighting system and vehicular lighting fixture
JP2016511556A (en) LED lighting device
JP2020095233A (en) Wavelength conversion member, wavelength conversion element, methods of manufacturing the same, and light-emitting device
JP2022121610A (en) Light-emitting device
JP7035338B2 (en) Manufacturing method of bonded body
TW201808844A (en) Wavelength conversion member
JP7019496B2 (en) Wavelength conversion member and its manufacturing method
JP6450936B2 (en) Phosphor dispersed glass
JP7121329B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
KR102654998B1 (en) Glass used in wavelength conversion materials, wavelength conversion materials, wavelength conversion members, and light emitting devices
JP6500744B2 (en) Method of manufacturing wavelength conversion element
JP6784312B2 (en) Optical parts and their manufacturing methods and light emitting devices and their manufacturing methods
JP6830751B2 (en) Wavelength conversion member and light emitting device
JP7339609B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2019163208A (en) Raw material powder for wavelength conversion member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7035338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150