JP7034485B2 - Electromagnetic wave measuring device - Google Patents

Electromagnetic wave measuring device Download PDF

Info

Publication number
JP7034485B2
JP7034485B2 JP2018184784A JP2018184784A JP7034485B2 JP 7034485 B2 JP7034485 B2 JP 7034485B2 JP 2018184784 A JP2018184784 A JP 2018184784A JP 2018184784 A JP2018184784 A JP 2018184784A JP 7034485 B2 JP7034485 B2 JP 7034485B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
glass cell
laser
laser beam
laser irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018184784A
Other languages
Japanese (ja)
Other versions
JP2020052020A (en
Inventor
基 木下
正典 石居
仁志 飯田
侑矢 東島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018184784A priority Critical patent/JP7034485B2/en
Publication of JP2020052020A publication Critical patent/JP2020052020A/en
Application granted granted Critical
Publication of JP7034485B2 publication Critical patent/JP7034485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、例えば、電子回路の作動状態を計測するための電磁波測定装置に関し、特に任意のセルに封入した原子に特定のレーザ光や不可視波を照射することで、量子状態間をリレー形式に結ぶ多重共鳴を実現し、レーザ光等から受け取る励起エネルギーに応じた蛍光の強弱や空間分布を利用して電磁波の測定を行う電磁波測定装置に関する。 The present invention relates to, for example, an electromagnetic wave measuring device for measuring an operating state of an electronic circuit, and in particular, by irradiating an atom enclosed in an arbitrary cell with a specific laser beam or an invisible wave, the quantum state is relayed between the quantum states. The present invention relates to an electromagnetic wave measuring device that realizes multiple resonances to be connected and measures electromagnetic waves by utilizing the intensity of fluorescence and the spatial distribution according to the excitation energy received from laser light or the like.

特許文献1には、電磁界センサにより取得された電磁界情報に基づいて電磁界強度を算出し、算出した電磁界強度を用いて電磁界ベクトルを算出することにより電磁界ベクトルの3次元表示を行うことが記載されている。
特許文献2には、複数の測定領域に配置される測定部材を使用して、各測定領域ごとの電波強度を測定することが記載されている。
In Patent Document 1, the electromagnetic field strength is calculated based on the electromagnetic field information acquired by the electromagnetic field sensor, and the electromagnetic field vector is calculated using the calculated electromagnetic field strength to display the electromagnetic field vector in three dimensions. It describes what to do.
Patent Document 2 describes measuring the radio field intensity for each measurement region by using measuring members arranged in a plurality of measurement regions.

特開2012-042401号公報Japanese Unexamined Patent Publication No. 2012-042401 特許5737672号公報Japanese Patent No. 5737672

従来より、電磁波強度の計測は、回路内に配置した電力計、アンテナ等を用いて行ってきたが、コスト面、精度面で限界があった。また、電磁波を可視化する技術として、走査型センサや二次元アレーセンサを利用したものが開発されているが、これらは相応の掃引時間を要し、ピクセル寸法に限界があった。
すなわち、電磁波の強度分布を測定するためには、微小なセンサを空間的に掃引するもの、微小な電磁波センサをアレー化して空間内に多数配置するものなどが一般的であるが、有限の掃引時間のために高速性は失われ、センサ寸法に限界があることから分解能と感度が制限される。
Conventionally, the electromagnetic wave intensity has been measured by using a wattmeter, an antenna, etc. arranged in the circuit, but there are limits in terms of cost and accuracy. Further, as a technique for visualizing electromagnetic waves, a technique using a scanning sensor or a two-dimensional array sensor has been developed, but these require a reasonable sweep time and have a limit in pixel size.
That is, in order to measure the intensity distribution of electromagnetic waves, it is common to sweep minute sensors spatially, or to arrange a large number of minute electromagnetic wave sensors in space, but a finite sweep. High speed is lost due to time, and resolution and sensitivity are limited due to limited sensor dimensions.

そこで、発明者らは、原子に電磁波が照射されると、原子内部の状態が変化を繰り返すラビ振動を発生し、その周波数(ラビ周波数)が原子に照射される電磁波強度に依存することに着目し、これを利用した電磁波測定技術を開発した。
(https://www.nmij.jp/public/ResearchTopics/pdf/2016_12_No1.pdf)
この電磁波測定技術では、一例として、導波管内を伝送する9.2GHzの電磁波を対象として、気体のセシウム原子を封入したガラスセルをこの導波管内に挿入し、その挙動をレーザ光で観測することでラビ周波数の測定を行い、我が国の特定標準器による測定結果と不確かさの範囲内で一致することを検証した。
Therefore, the inventors focused on the fact that when an atom is irradiated with an electromagnetic wave, the internal state of the atom repeatedly changes to generate Rabi vibration, and its frequency (rabbi frequency) depends on the intensity of the electromagnetic wave irradiated to the atom. However, we have developed an electromagnetic wave measurement technology that utilizes this.
(https://www.nmij.jp/public/ResearchTopics/pdf/2016_12_No1.pdf)
In this electromagnetic wave measurement technology, as an example, a glass cell containing a gaseous cesium atom is inserted into this waveguide for an electromagnetic wave of 9.2 GHz transmitted in the waveguide, and its behavior is observed with laser light. The rabbi frequency was measured in Japan, and it was verified that the measurement result by a specific standard in Japan was in agreement with the measurement result within the range of uncertainty.

ガラスセルとレーザ光検出を主体とした、この電磁波測定技術によれば、通常のアンテナ測定では困難であった電磁波の波長より狭い範囲の強度分布を高精度に測定することが可能になり、しかも、ワイヤレスであるため、ケーブルによる電磁波の反射や物理的な束縛を受けないという利点も備えている。 This electromagnetic wave measurement technology, which mainly uses glass cells and laser light detection, makes it possible to measure the intensity distribution in a narrower range than the wavelength of electromagnetic waves, which was difficult with ordinary antenna measurement, and with high accuracy. Since it is wireless, it also has the advantage of not being subject to the reflection of electromagnetic waves by cables and physical constraints.

そこで、本発明の目的は、この電磁波測定技術をさらに深化させ、例えば、回路基板の製造ラインにそのまま組み込むことができ、しかも、測定対象の二次元平面あるいは三次元空間における電磁波強度分布の実測値を低コストかつスピーディに、しかも高精度に計測可能にすることにある。 Therefore, an object of the present invention is to further deepen this electromagnetic wave measurement technique, for example, it can be directly incorporated into a circuit board manufacturing line, and moreover, an actually measured value of an electromagnetic wave intensity distribution in a two-dimensional plane or a three-dimensional space to be measured. Is to be able to measure at low cost, speed, and with high accuracy.

上記の課題を解決するための本発明の電磁波測定装置では、測定対象に対し所定の位置に配置されたガラスセルであって、測定対象から発生する電磁波の照射により原子内部の状態変化を繰り返すラビ振動を発生する原子が封入された密封空間を有するガラスセルと、ガラスセルの側面から、密封空間内部の原子が特定周波数のマイクロ波を吸収させるための光ポンピング可能な波長を持つレーザ光を測定対象の表面に沿って密封空間の内部に照射する第1レーザ照射装置及び第2レーザ照射装置と、ガラスセルの表面を撮影する撮像装置と、第1レーザ照射装置、第2レーザ照射装置及び撮像装置と接続される処理装置とを備え、処理装置は、撮像装置により、第1レーザ照射装置から照射される第1レーザ光により光ポンピングを行った状態で、原子に照射される特定周波数の電磁波の吸収と第1レーザの再吸収により発生する近赤外蛍光の二次元強度分布を撮像するとともに、第1レーザ照射装置と第2レーザ照射装置により光ポンピングを行った状態で記第1レーザ光と、第2レーザ照射装置から照射される第2レーザ光の交点における撮像装置による撮像結果に基づいて、処理装置がガラスセルの二次元平面における特定点における電磁波強度の実測値を計測し、近赤外蛍光の二次元強度分布と特定点における電磁波強度の実測値に基づいて、ガラスセルの二次元平面における電磁波強度分布の実測値を演算するようにした。 In the electromagnetic wave measuring device of the present invention for solving the above-mentioned problems, a glass cell is a glass cell arranged at a predetermined position with respect to a measurement target, and a rabbi that repeatedly changes the state inside the atom by irradiation with electromagnetic waves generated from the measurement target. A glass cell having a sealed space in which atoms that generate vibration are enclosed, and a laser beam having a light pumpable wavelength for the atoms inside the sealed space to absorb microwaves of a specific frequency are measured from the side surface of the glass cell. A first laser irradiation device and a second laser irradiation device that irradiate the inside of a sealed space along the surface of an object, an image pickup device that photographs the surface of a glass cell, a first laser irradiation device, a second laser irradiation device, and an image pickup. The processing device is provided with a processing device connected to the device, and the processing device is an electromagnetic wave having a specific frequency irradiated to an atom in a state where the image pickup device performs optical pumping with the first laser beam emitted from the first laser irradiation device. The first laser beam is described in a state where the two-dimensional intensity distribution of near-infrared fluorescence generated by the absorption and reabsorption of the first laser is imaged and the light pumping is performed by the first laser irradiation device and the second laser irradiation device. Based on the image pickup result by the image pickup device at the intersection of the second laser beam emitted from the second laser irradiation device, the processing device measures the measured value of the electromagnetic wave intensity at a specific point on the two-dimensional plane of the glass cell, and near. Based on the two-dimensional intensity distribution of infrared fluorescence and the measured value of the electromagnetic wave intensity at a specific point, the measured value of the electromagnetic wave intensity distribution on the two-dimensional plane of the glass cell is calculated.

本発明によれば、電磁波との作用によって、ガラスセルの内部に封入した原子が発する蛍光をカメラによって撮影することにより、ガラスセルの二次元平面における電磁波強度分布の実測値を計測することが可能となり、広範囲にわたり、リアルタイムで高分解能な電磁波強度計測を実現することできる。 According to the present invention, it is possible to measure the measured value of the electromagnetic wave intensity distribution in the two-dimensional plane of the glass cell by photographing the fluorescence emitted by the atoms enclosed inside the glass cell by the action with the electromagnetic wave with a camera. Therefore, it is possible to realize high-resolution electromagnetic wave intensity measurement in real time over a wide range.

図1は、本発明に基づく電磁波測定装置の俯瞰図である。FIG. 1 is a bird's-eye view of an electromagnetic wave measuring device based on the present invention. 図2は、本発明に基づく電磁波測定装置の平面図である。FIG. 2 is a plan view of an electromagnetic wave measuring device based on the present invention. 図3は、レーザ光照射による光ポンピングを行った際に、ガラスセルの表面に発生する蛍光を模式的に示す図である。FIG. 3 is a diagram schematically showing fluorescence generated on the surface of a glass cell when optical pumping by laser light irradiation is performed. 図4は、発生した蛍光の撮影画像を示すものである。FIG. 4 shows a photographed image of the generated fluorescence. 図5は、本発明を、ホーンアンテナから空間中に放射される電磁波の強度分布測定に適用した際の模式図である。FIG. 5 is a schematic diagram when the present invention is applied to the measurement of the intensity distribution of electromagnetic waves radiated from a horn antenna into space.

図1、図2は本発明に基づく実施例の概要を示すものであり、図1は俯瞰図、図2は、平面図である。
本実施例の電磁波測定装置は、回路基板などの測定対象1の表面に、治具などで位置決めされた状態で載置されるガラスセル2、第1レーザ照射装置3、凹面レンズ4、第2レーザ照射装置5、レーザ受信装置6、凹面レンズ4を進退させるシフト装置7、測定対象1の表面を撮影する撮像装置8、そして、ディスプレイを備えた処理装置9などから構成されている。
1 and 2 show an outline of an embodiment based on the present invention, FIG. 1 is a bird's-eye view, and FIG. 2 is a plan view.
The electromagnetic wave measuring device of this embodiment has a glass cell 2, a first laser irradiation device 3, a concave lens 4, and a second mounted on the surface of a measurement target 1 such as a circuit board in a state of being positioned by a jig or the like. It is composed of a laser irradiation device 5, a laser receiver 6, a shift device 7 for moving the concave lens 4 back and forth, an image pickup device 8 for photographing the surface of the measurement target 1, a processing device 9 provided with a display, and the like.

ガラスセル2の内部には密封空間が形成されており、この密封空間には、飽和蒸気圧を維持した状態のセシウムが封入されている。ガラスセル2は、合成石英あるいは市販の耐熱ガラスで成形したものが好ましく、本実施例では、縦100mm×横100mm×高さ10mmの密封空間を形成している。 A sealed space is formed inside the glass cell 2, and cesium in a state where the saturated vapor pressure is maintained is sealed in this sealed space. The glass cell 2 is preferably formed of synthetic quartz or commercially available heat-resistant glass, and in this embodiment, a sealed space of 100 mm in length × 100 mm in width × 10 mm in height is formed.

ガラスセル2の側面2aに向けて第1レーザ照射装置3が設置されており、照射されたレーザ光は凹面レンズ4を介して、ガラスセル2の側面2aに向けて拡散され、ガラスセル2内の密封空間全域にわたり、拡散されたレーザ光が照射されるようになっている。
一方、側面2aに直交するガラスセル2の側面2bに向けて第2レーザ照射装置5が設置されており、照射されたレーザ光は、ガラスセル2の密封空間内部において、第1レーザ照射装置3から照射されたレーザ光とガラスセル2の側面2aに沿って交差することになる。
The first laser irradiation device 3 is installed toward the side surface 2a of the glass cell 2, and the irradiated laser light is diffused toward the side surface 2a of the glass cell 2 via the concave lens 4 and inside the glass cell 2. The diffused laser beam is irradiated over the entire sealed space of the.
On the other hand, the second laser irradiation device 5 is installed toward the side surface 2b of the glass cell 2 orthogonal to the side surface 2a, and the irradiated laser light is emitted from the first laser irradiation device 3 in the sealed space of the glass cell 2. The laser beam emitted from the glass cell 2 intersects with the side surface 2a of the glass cell 2.

本実施例では、ガラスセル2を、測定対象1としてのマイクロ波回路(マイクロストリップライン)基板上に密着するよう載置する。
次に、セシウム原子が9.2GHzの電磁波(以下、「マイクロ波」ともいう。)を吸収するように、第1レーザ照射装置3から波長852nmのレーザ光を照射する。このレーザ光は、凹面レンズ4により、ガラスセル2の表面に対し平行を維持しながら、側面2aの全幅に広がり、ガラスセル2内の密封空間全域にわたり拡散し、密封空間内部のセシウム原子に対し光ポンピングを行う。
In this embodiment, the glass cell 2 is placed so as to be in close contact with the microwave circuit (microstrip line) substrate as the measurement target 1.
Next, a laser beam having a wavelength of 852 nm is irradiated from the first laser irradiation device 3 so that the cesium atom absorbs an electromagnetic wave of 9.2 GHz (hereinafter, also referred to as “microwave”). This laser beam spreads over the entire width of the side surface 2a while maintaining parallelism to the surface of the glass cell 2 by the concave lens 4, and diffuses over the entire sealed space in the glass cell 2 with respect to the cesium atom in the sealed space. Perform optical pumping.

この状態で、セシウム原子がマイクロ波を吸収すると、再び波長852nmのレーザ光を吸収し、図3の模式図に示すように、瞬時に波長852nmの蛍光を発する。この蛍光を近赤外光に高感度を有するCCDカメラ等の撮像装置8で撮影する。これにより、マイクロ波回路1におけるマイクロ波の相対的な二次元強度分布を、近赤外蛍光の強度分布として得ることができる。
図4は、実際の撮影画像を示すもので、マイクロ波回路1上の相対的な電磁波強度分布が可視化され、セシウム原子の近赤外線蛍光強度分布が電磁波強度分布を反映していることが確認できる。
なお、この画像により得られた電磁波の強度分布は、マイクロ波回路内の反射に起因する定在波を明瞭に示し、理論的な波長や位相とも合致しており、赤外光像は、マイクロ波の強度分布をリアルタイムに反映し、波長以下の分解能をも有していることが判明した。さらに、ヒーター等を使用して、ガラスセル2内部の密封空間を加熱すれば、セシウム原子の密度を高め、より明確な赤外光像を得ることができる。
In this state, when the cesium atom absorbs the microwave, it absorbs the laser beam having a wavelength of 852 nm again and instantly emits fluorescence having a wavelength of 852 nm as shown in the schematic diagram of FIG. This fluorescence is photographed by an image pickup device 8 such as a CCD camera having high sensitivity to near infrared light. Thereby, the relative two-dimensional intensity distribution of the microwave in the microwave circuit 1 can be obtained as the intensity distribution of near-infrared fluorescence.
FIG. 4 shows an actual photographed image, and it can be confirmed that the relative electromagnetic wave intensity distribution on the microwave circuit 1 is visualized and that the near-infrared fluorescence intensity distribution of the cesium atom reflects the electromagnetic wave intensity distribution. ..
The intensity distribution of the electromagnetic wave obtained from this image clearly shows the standing wave caused by the reflection in the microwave circuit and matches the theoretical wavelength and phase, and the infrared light image is micro. It was found that the wave intensity distribution was reflected in real time and the resolution was below the wavelength. Further, if the sealed space inside the glass cell 2 is heated by using a heater or the like, the density of cesium atoms can be increased and a clearer infrared light image can be obtained.

次に、処理装置9がシフト装置7に指令信号を送出し、凹面レンズ4をレーザ光の光路外に移動させた状態で、第1レーザ照射装置3から照射されたレーザ光(以下、「第1レーザ光」ともいう。)をガラスセル2の側面2aの一点から密封空間内部に照射すると、第2レーザ照射装置5から照射されたレーザ光(以下、「第2レーザ光」ともいう。)と一点で交差することになる。
その際、処理装置9により第1レーザ照射装置3に制御信号を送出して、第2レーザ光に振幅変調(AM)、周波数(FM)、位相変調(PM)いずれかの変調を行う一方、ガラスセル2を透過した第1レーザ光をレーザ受信装置6で検出し、その透過光強度を計測する。
Next, the processing device 9 sends a command signal to the shift device 7, and the laser beam emitted from the first laser irradiation device 3 (hereinafter referred to as “the first”) in a state where the concave lens 4 is moved out of the optical path of the laser beam. (Also referred to as "1 laser beam") is applied to the inside of the sealed space from one point on the side surface 2a of the glass cell 2, and the laser beam emitted from the second laser irradiation device 5 (hereinafter, also referred to as "second laser beam"). Will intersect at one point.
At that time, the processing device 9 sends a control signal to the first laser irradiation device 3, and the second laser beam is modulated by either amplitude modulation (AM), frequency (FM), or phase modulation (PM). The first laser beam transmitted through the glass cell 2 is detected by the laser receiving device 6, and the transmitted light intensity is measured.

第2レーザ光の変調によって、第1レーザ光の透過光強度も変調されるので、第2レーザ光の変調周波数を変えながら、レーザ受信装置6により、第1レーザ光の変調の深さを計測する。
ここで、第1レーザ光の変調深さは、第2レーザ光の変調周波数とラビ周波数との差に依存する。したがって、第2レーザ光の変調周波数に対する第1レーザの変調深さを示すグラフの波形から、第1レーザ光と第2レーザ光の交点における電磁波の絶対強度を示すラビ周波数を計測することができる。
Since the transmitted light intensity of the first laser light is also modulated by the modulation of the second laser light, the modulation depth of the first laser light is measured by the laser receiver 6 while changing the modulation frequency of the second laser light. do.
Here, the modulation depth of the first laser beam depends on the difference between the modulation frequency of the second laser beam and the rabbi frequency. Therefore, the rabbi frequency indicating the absolute intensity of the electromagnetic wave at the intersection of the first laser beam and the second laser beam can be measured from the waveform of the graph showing the modulation depth of the first laser with respect to the modulation frequency of the second laser beam. ..

こうして電磁波強度の絶対値を基準に、前述した、第1レーザ照射装置3のみにより計測したマイクロ波回路1上の相対的な電磁波強度分布に基づいて、マイクロ波回路1上の電磁波強度分布を絶対強度を算出することができ、マイクロ波回路1の性能試験器として利用することが可能となる。 In this way, based on the relative electromagnetic wave intensity distribution on the microwave circuit 1 measured only by the first laser irradiation device 3 described above with reference to the absolute value of the electromagnetic wave intensity, the electromagnetic wave intensity distribution on the microwave circuit 1 is absolutely determined. The intensity can be calculated, and it can be used as a performance tester for the microwave circuit 1.

上記の実施例では、凹面レンズ4を用いて、第1レーザ光の照射による赤外光像を利用して電磁波の相対的な強度分布を計測したが、凹面レンズ4を用いずに第1レーザ照射装置3をガラスセル2の側面2aに沿ってスキャンさせる第1スキャン装置を設け、第1レーザ照射装置3のみによる相対的な電磁波強度分布計測を行い、第1レーザ照射装置3及び第2レーザ照射装置5の同時照射による電磁波の絶対強度計測を行うようにしてもよい。
その際、第2レーザ照射装置5についても、第2スキャン装置により、ガラスセル2の側面2bに沿ってスキャンさせれば、ガラスセルの任意の地点、もしくは全体の電磁波強度の絶対値を計測することが可能となる。
In the above embodiment, the concave lens 4 is used to measure the relative intensity distribution of the electromagnetic wave using the infrared light image obtained by the irradiation of the first laser beam, but the first laser is not used without the concave lens 4. A first scanning device for scanning the irradiation device 3 along the side surface 2a of the glass cell 2 is provided, relative electromagnetic wave intensity distribution measurement is performed only by the first laser irradiation device 3, and the first laser irradiation device 3 and the second laser are used. The absolute intensity of the electromagnetic wave may be measured by simultaneous irradiation of the irradiation device 5.
At that time, if the second laser irradiation device 5 is also scanned along the side surface 2b of the glass cell 2 by the second scanning device, the absolute value of the electromagnetic wave intensity at any point of the glass cell or the whole is measured. It becomes possible.

凹面レンズ4を用いて、第1レーザ光の照射による赤外光像を利用して電磁波の相対的な強度分布を計測し、第2レーザ光の照射により電磁波の絶対強度を計測する場合、第1レーザ光の強度や、測定箇所における静磁場の不均一性を補正する必要がある。しかし、第1レーザ照射装置3、第2レーザ照射装置5をシフトさせ、走査する場合はこのような補正は不要である。ただし、空間分解能は交点の大きさと、走査点数で決まるため、赤外光像と同等の分解能を得るためには、走査のため所要の時間が必要となる。 When the relative intensity distribution of the electromagnetic wave is measured by using the infrared light image obtained by the irradiation of the first laser beam and the absolute intensity of the electromagnetic wave is measured by the irradiation of the second laser beam using the concave lens 4. 1 It is necessary to correct the intensity of the laser beam and the non-uniformity of the static magnetic field at the measurement point. However, when the first laser irradiation device 3 and the second laser irradiation device 5 are shifted and scanned, such correction is not necessary. However, since the spatial resolution is determined by the size of the intersection and the number of scanning points, the time required for scanning is required to obtain the same resolution as the infrared light image.

上記の実施例では、ガラスセル2にセシウムを封入したが、ルビジウム等も使用可能である。ルビジウムの場合、レーザ光の波長が780nmとなり、セシウムの852nmより汎用的であるが、可視化できる電磁波の波長も原子によって異なるため、用途に応じて原子を選択する。 In the above embodiment, cesium is sealed in the glass cell 2, but rubidium or the like can also be used. In the case of rubidium, the wavelength of the laser beam is 780 nm, which is more general than 852 nm of cesium, but the wavelength of the electromagnetic wave that can be visualized also differs depending on the atom, so the atom is selected according to the application.

また、上記の実施例では、ガラスセル2を測定対象に密着するよう載置し、電磁波の二次元分布を計測したが、電磁波計測環境において、ガラスセル2を高さ方向にシフトして、そのたびに得られる二次元強度分布を統合して三次元分布を得ることができる。
この場合、処理装置9は、ガラスセル2の三次元位置を制御するロボットハンドなどの位置決め装置と連携し、ガラスセル2の高さ毎に上述の電磁波の二次元分布を計測し、これを統合することにより、電磁波の三次元分布を演算し、ディスプレイ表示を行う。このように、電磁波の放射パターンを可視化することで、アンテナの設計・開発やEMC等へ応用さすることができる。
なお、高さ方向の計測範囲は限られるが、ガラスセル2及びその内部に形成された密封空間の高さを拡大し、第1レーザ照射装置3、第2レーザ照射装置5を前述の位置決め装置を利用して高さ方向にシフトすることで、密封空間の高さの範囲で電磁波の三次元強度分布を計測することも可能である。
Further, in the above embodiment, the glass cell 2 is placed in close contact with the measurement target and the two-dimensional distribution of the electromagnetic wave is measured. However, in the electromagnetic wave measurement environment, the glass cell 2 is shifted in the height direction and the glass cell 2 is measured. A three-dimensional distribution can be obtained by integrating the two-dimensional intensity distributions obtained each time.
In this case, the processing device 9 cooperates with a positioning device such as a robot hand that controls the three-dimensional position of the glass cell 2, measures the above-mentioned two-dimensional distribution of electromagnetic waves for each height of the glass cell 2, and integrates them. By doing so, the three-dimensional distribution of electromagnetic waves is calculated and displayed on the display. By visualizing the radiation pattern of electromagnetic waves in this way, it can be applied to antenna design / development and EMC.
Although the measurement range in the height direction is limited, the height of the glass cell 2 and the sealed space formed inside the glass cell 2 is expanded, and the first laser irradiation device 3 and the second laser irradiation device 5 are positioned as described above. It is also possible to measure the three-dimensional intensity distribution of electromagnetic waves within the height range of the sealed space by shifting in the height direction using.

上記の実施例では、ガラスセル2を測定対象に密着するよう載置し、測定対象から発生する電磁波の二次元分布を計測したが、図5に示すように、ガラスセル2をホーンアンテナ10の前面に配置し、アンテナから空間中に放射されるマイクロ波の強度分布に関しても、近赤外蛍光の強度分布として得ることができる。
さらに多重共鳴技術を用いて、前述のセシウム原子が9.2GHzのマイクロ波を吸収するように、波長852nmのレーザ光で光ポンピングした状態において、ホーンアンテナからの9.2GHzのマイクロ波に加え、さらにセシウムのゼーマン副準位間のエネルギー差に該当する低周波帯のマイクロ波をループコイルアンテナで与えることで、低周波帯のマイクロ波に対応する蛍光を、同様の撮像装置8でリアルタイムに観測することも可能である。
実際の観測結果によれば、電磁界シミュレータで得られるホーンアンテナ近傍におけるマイクロ波の強度分布とも合致していることが確認できた。
In the above embodiment, the glass cell 2 is placed so as to be in close contact with the measurement target, and the two-dimensional distribution of the electromagnetic wave generated from the measurement target is measured. As shown in FIG. 5, the glass cell 2 is mounted on the horn antenna 10. The intensity distribution of microwaves radiated from the antenna into space by arranging the front surface can also be obtained as the intensity distribution of near-infrared fluorescence.
Furthermore, using multiple resonance technology, in the state of optical pumping with a laser beam with a wavelength of 852 nm so that the above-mentioned cesium atom absorbs the microwave of 9.2 GHz, in addition to the microwave of 9.2 GHz from the horn antenna, further cesium By giving a low frequency band microwave corresponding to the energy difference between the Zeeman sublevels with a loop coil antenna, the fluorescence corresponding to the low frequency band microwave can be observed in real time with the same image pickup device 8. Is also possible.
According to the actual observation results, it was confirmed that the microwave intensity distribution in the vicinity of the horn antenna obtained by the electromagnetic field simulator also matches.

1;測定対象
2;ガラスセル
3;第1レーザ照射装置
4;凹面レンズ
5;第2レーザ照射装置
6;受信装置
7;シフト装置
8;撮像装置
9;処理装置
10;ホーンアンテナ

1; Measurement target 2; Glass cell 3; First laser irradiation device 4; Concave lens 5; Second laser irradiation device 6; Receiver device 7; Shift device 8; Image pickup device 9; Processing device 10; Horn antenna

Claims (6)

測定対象に対し所定の位置に配置されたガラスセルであって、前記測定対象から発生する電磁波の照射により原子内部の状態変化を繰り返すラビ振動を発生する原子が封入された密封空間を有するガラスセルと、
前記ガラスセルの側面から、前記密封空間内部の原子が特定周波数のマイクロ波を吸収させるための光ポンピング可能な波長を持つレーザ光を前記測定対象の表面に沿って前記密封空間の内部に照射する第1レーザ照射装置及び第2レーザ照射装置と、
前記ガラスセルの表面を撮影する撮像装置と、
処理装置とを備え、
前記処理装置は、前記第1レーザ照射装置から照射される第1レーザ光により光ポンピングを行った状態で、前記原子に照射される特定周波数の電磁波の吸収と前記第1レーザ光の再吸収により発生する、前記撮像装置による近赤外蛍光の撮像結果に基づいて、前記電磁波の二次元強度分布を計測するとともに、前記第1レーザ照射装置と第2レーザ照射装置により光ポンピングを行った状態で、前記第1レーザ光前記第2レーザ照射装置から照射される第2レーザ光に特定点において交差して透過した光の強度に基づいて、前記ガラスセルの二次元平面における前記特定点における電磁波強度の絶対値を計測し、
前記電磁波の二次元強度分布と前記特定点における電磁波強度の絶対値に基づいて、前記ガラスセルの二次元平面における電磁波強度分布の絶対値算出することを特徴とする電磁波測定装置。
A glass cell that is placed at a predetermined position with respect to the measurement target and has a sealed space in which atoms that generate Rabi vibration that repeatedly changes the state inside the atom due to irradiation of electromagnetic waves generated from the measurement target are enclosed. When,
From the side surface of the glass cell, a laser beam having a wavelength capable of optical pumping for atoms inside the sealed space to absorb microwaves of a specific frequency is irradiated to the inside of the sealed space along the surface of the measurement target. The first laser irradiation device and the second laser irradiation device,
An image pickup device that photographs the surface of the glass cell, and
Equipped with a processing device,
The processing apparatus absorbs electromagnetic waves of a specific frequency irradiated to the atoms and reabsorbs the first laser beam in a state of performing optical pumping by the first laser beam emitted from the first laser irradiation apparatus. The two-dimensional intensity distribution of the electromagnetic wave is measured based on the image pickup result of the near-infrared fluorescence generated by the image pickup device, and the light pumping is performed by the first laser irradiation device and the second laser irradiation device. , The electromagnetic wave at the specific point in the two-dimensional plane of the glass cell based on the intensity of the light transmitted by the first laser light intersecting the second laser light emitted from the second laser irradiation device at a specific point. Measure the absolute value of the intensity and
An electromagnetic wave measuring device characterized in that the absolute value of the electromagnetic wave intensity distribution in the two-dimensional plane of the glass cell is calculated based on the two-dimensional intensity distribution of the electromagnetic wave and the absolute value of the electromagnetic wave intensity at the specific point.
前記近赤外蛍光の二次元強度分布を求める際に、前記第1レーザ光を前記ガラスセルの側面から前記密封空間の全域にわたり拡散させて照射するよう、前記第1レーザ照射装置と前記ガラスセルの側面との間に凹面レンズを介在させたことを特徴とする請求項1に記載された電磁波測定装置。 When determining the two-dimensional intensity distribution of the near-infrared fluorescence, the first laser irradiation device and the glass cell so as to diffuse and irradiate the first laser beam from the side surface of the glass cell over the entire area of the sealed space. The electromagnetic wave measuring apparatus according to claim 1, wherein a concave lens is interposed between the side surface of the glass and the surface of the device. 前記第1レーザ光を前記ガラスセルの側面に沿って照射するよう、前記第1レーザ照射装置をスキャンさせる第1スキャン装置を設けたことを特徴とする請求項1に記載された電磁波測定装置。 The electromagnetic wave measuring device according to claim 1, wherein a first scanning device for scanning the first laser irradiating device is provided so as to irradiate the first laser beam along the side surface of the glass cell. 前記第2レーザ光を前記ガラスセルの他の側面に沿って照射するよう、前記第2レーザ照射装置をスキャンさせる第2スキャン装置を設けたことを特徴とする請求項2または請求項3に記載された電磁波測定装置。 The second or third aspect of the present invention, wherein the second scanning device for scanning the second laser irradiating device is provided so as to irradiate the second laser beam along the other side surface of the glass cell. Electromagnetic wave measuring device. 前記ガラスセルを電磁波計測環境において高さ方向にシフトして、そのたびに得られる二次元強度分布を統合することにより三次元分布を得るようにしたことを特徴とする請求項1から請求項4のいずれか1項に記載された電磁波測定装置。 Claims 1 to 4 are characterized in that the glass cell is shifted in the height direction in an electromagnetic wave measurement environment to obtain a three-dimensional distribution by integrating the two-dimensional intensity distributions obtained each time. The electromagnetic wave measuring device according to any one of the above items. 測定対象がホーンアンテナであり、前記原子のゼーマン副準位間のエネルギー差に該当する低周波帯のマイクロ波をループコイルアンテナで与えることで、低周波帯のマイクロ波に対応する蛍光を、前記撮像装置で撮像するようにしたことを特徴とする請求項1から請求項5のいずれか1項に記載された電磁波測定装置。 The measurement target is a horn antenna, and by applying a low-frequency band microwave corresponding to the energy difference between the Zeeman sub-levels of the atom with a loop coil antenna, fluorescence corresponding to the low-frequency band microwave can be obtained. The electromagnetic wave measuring device according to any one of claims 1 to 5, wherein the image is captured by an image pickup device.
JP2018184784A 2018-09-28 2018-09-28 Electromagnetic wave measuring device Active JP7034485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018184784A JP7034485B2 (en) 2018-09-28 2018-09-28 Electromagnetic wave measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018184784A JP7034485B2 (en) 2018-09-28 2018-09-28 Electromagnetic wave measuring device

Publications (2)

Publication Number Publication Date
JP2020052020A JP2020052020A (en) 2020-04-02
JP7034485B2 true JP7034485B2 (en) 2022-03-14

Family

ID=69996847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018184784A Active JP7034485B2 (en) 2018-09-28 2018-09-28 Electromagnetic wave measuring device

Country Status (1)

Country Link
JP (1) JP7034485B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7342126B2 (en) * 2018-12-31 2023-09-11 クオンタム ヴァリー アイデアズ ラボラトリーズ Electromagnetic field imaging
CN112798875B (en) * 2020-12-30 2023-08-08 清远市天之衡传感科技有限公司 Millimeter wave and terahertz wave electric field measurement method, device and system
US11940374B2 (en) 2021-01-21 2024-03-26 Honeywell International Inc. Continuous tunable RF sensor using rydberg atoms with high transmissivity
CN113933604B (en) * 2021-09-22 2024-03-15 浙江润阳新材料科技股份有限公司 Electron beam intensity monitoring and feedback control system
EP4174498B8 (en) * 2021-10-26 2023-11-15 Rohde & Schwarz GmbH & Co. KG Measurement system for analysing radio frequency signals, and method of operating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519615A (en) 2011-06-13 2014-08-14 プレジデント アンド フェローズ オブ ハーバード カレッジ Absorption-based detection of spin impurities in solid-state spin systems
US20160363617A1 (en) 2015-06-15 2016-12-15 The Regents Of The University Of Michigan Atom-Based Electromagnetic Radiation Electric-Field Sensor
JP2017514130A (en) 2014-04-16 2017-06-01 エレメント シックス テクノロジーズ リミテッド Sensor comprising a piezoelectric or piezoelectric element on a diamond substrate having a color center

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519615A (en) 2011-06-13 2014-08-14 プレジデント アンド フェローズ オブ ハーバード カレッジ Absorption-based detection of spin impurities in solid-state spin systems
JP2017514130A (en) 2014-04-16 2017-06-01 エレメント シックス テクノロジーズ リミテッド Sensor comprising a piezoelectric or piezoelectric element on a diamond substrate having a color center
US20160363617A1 (en) 2015-06-15 2016-12-15 The Regents Of The University Of Michigan Atom-Based Electromagnetic Radiation Electric-Field Sensor

Also Published As

Publication number Publication date
JP2020052020A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP7034485B2 (en) Electromagnetic wave measuring device
US10509065B1 (en) Imaging of electromagnetic fields
JP7422224B2 (en) Single pixel imaging of electromagnetic fields
CN105699315B (en) THz wave measuring device, measurement method and measuring instrument
JP2023109764A (en) Imaging of electromagnetic fields
US20150123672A1 (en) Radio frequency and microwave imaging with a two-dimensional sensor array
WO2017026494A1 (en) Method for measuring electromagnetic field, electromagnetic field measurement device, and phase imaging device
KR20130064684A (en) Terahertz continuous wave system and three dimension imaging abtainning method thereof
US20160299064A1 (en) Far-Infrared Imaging Device and Far-Infrared Imaging Method
CN101548175A (en) Detection apparatus
JP4403272B2 (en) Spectroscopic measurement method and spectroscopic measurement apparatus
JP5999474B2 (en) Terahertz imaging apparatus, interference pattern removal method and program from terahertz image
JP6789049B2 (en) Inspection equipment and inspection method
CN107193035B (en) Detection system and method based on microwave pump-back atoms in atomic interferometer
CN108168715B (en) Optical detection device
JP2016186424A (en) Information acquisition apparatus and fixture
CN103884422A (en) Quasi-optics type probe for terahertz near-field measurement, detection system and detection method
JP2007017289A (en) Non-destructive inspection system and non-destructive inspection method of fss sandwich panel
CN114113151A (en) Coupling magnetic imaging device and measuring method
JP7407683B2 (en) Information acquisition device
Norgard Infrared/microwave correlation measurements
US9863752B2 (en) Metrology apparatus for a semiconductor pattern, metrology system including the same and metrology method using the same
US10274743B2 (en) Imaging system
JP2009063345A (en) Electromagnetic field intensity distribution measuring device
CN113484620B (en) Method and system for rapidly measuring amplitude and phase distribution of optical scanning electromagnetic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7034485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150