JP7033827B2 - Head structure of moving body - Google Patents

Head structure of moving body Download PDF

Info

Publication number
JP7033827B2
JP7033827B2 JP2018096008A JP2018096008A JP7033827B2 JP 7033827 B2 JP7033827 B2 JP 7033827B2 JP 2018096008 A JP2018096008 A JP 2018096008A JP 2018096008 A JP2018096008 A JP 2018096008A JP 7033827 B2 JP7033827 B2 JP 7033827B2
Authority
JP
Japan
Prior art keywords
moving body
head portion
head
sectional area
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018096008A
Other languages
Japanese (ja)
Other versions
JP2019199223A (en
Inventor
徳蔵 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2018096008A priority Critical patent/JP7033827B2/en
Publication of JP2019199223A publication Critical patent/JP2019199223A/en
Application granted granted Critical
Publication of JP7033827B2 publication Critical patent/JP7033827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

この発明は、移動体がトンネル内に突入するときに発生する微気圧波を低減可能な微気圧波低減性能を有する移動体の先頭部構造に関する。 The present invention relates to a head structure of a moving body having a micro pressure wave reducing performance capable of reducing a micro pressure wave generated when the moving body rushes into a tunnel.

列車が高速でトンネル内に突入するとトンネル内に圧縮波が生じる。この圧縮波は音速でトンネル内を伝搬し、出口で開口端反射する。この反射の際にトンネル外に放射されるパルス状の圧力波のことをトンネル微気圧波あるいは単に微気圧波と呼ぶ。微気圧波は、発破音や家屋の振動・ガタツキに騒音などの原因となるため対策を講じる必要がある。微気圧波は、トンネル出口に到着した圧縮波の圧力勾配(圧縮波の時間変化率)の最大値にほぼ比例するため、圧縮波の形成時間を長くして圧力勾配をなだらかにする対策が有効となる。実際の新幹線(登録商標)では列車先頭部の延伸・最適化や緩衝工の設置・延伸などの対策が行われている。 When a train rushes into a tunnel at high speed, a compressed wave is generated in the tunnel. This compressed wave propagates in the tunnel at the speed of sound and is end-reflected at the exit. The pulsed pressure wave radiated outside the tunnel during this reflection is called a tunnel micropressure wave or simply a micropressure wave. Micro-pressure waves cause blasting noise, vibration of houses, rattling, and noise, so it is necessary to take measures. Since the micro-pressure wave is almost proportional to the maximum value of the pressure gradient (time change rate of the compression wave) of the compression wave arriving at the tunnel exit, it is effective to lengthen the formation time of the compression wave to smooth the pressure gradient. Will be. In the actual Shinkansen (registered trademark), measures such as extension / optimization of the train head and installation / extension of shock absorbers are taken.

図7に示す従来の先頭部形状S'は、車両102の先頭部先端105aの断面積変化率が大きく、車両102の先頭部105Aで断面積変化率が一定で増加し、車両102の後尾部105Bで断面積変化率が一定である。従来、微気圧波低減のための先頭部形状は、図7に示すような列車先端部をのぞき断面積変化率が一定となる形状がよいとされてきた(例えば、非特許文献1参照)。現在の新幹線列車の先頭部形状は、この方針が反映されている。このような従来の微気圧波低減のための先頭部形状は、少ない設計パラメータによって表現された先頭部形状を最適化して得られたものである。微気圧波低減のための先頭部形状では、音響理論をもとに列車先頭部長さを考慮した圧力勾配最大値の無次元化が提案されており、この圧力勾配最大値の逆数を効率として定義している(例えば、非特許文献2参照)。 In the conventional head portion shape S'shown in FIG. 7, the cross-sectional area change rate of the head portion tip 105a of the vehicle 102 is large, the cross-sectional area change rate is constantly increased at the head portion 105A of the vehicle 102, and the tail portion of the vehicle 102. At 105B, the cross-sectional area change rate is constant. Conventionally, it has been considered that the shape of the head portion for reducing the micro-pressure wave is preferably a shape in which the cross-sectional area change rate is constant except for the train tip portion as shown in FIG. 7 (see, for example, Non-Patent Document 1). This policy is reflected in the shape of the head of the current Shinkansen train. Such a conventional head portion shape for reducing micro-pressure waves is obtained by optimizing the head portion shape expressed by a small number of design parameters. In the head shape for reducing micro-pressure waves, it has been proposed to make the maximum pressure gradient value non-dimensional in consideration of the length of the train head based on acoustic theory, and the reciprocal of this maximum pressure gradient value is defined as efficiency. (See, for example, Non-Patent Document 2).

飯田 雅宣、他4名,「トンネル微気圧波低減のための列車先頭部形状の最適化」,日本機械学会論文集B編, 1996年,第62巻, p.1428~1435Masanobu Iida, 4 others, "Optimization of train head shape for reducing tunnel micro-pressure waves", JSME Proceedings B, 1996, Vol. 62, p.1428-1435

Miyachi,T.,M.Fukuda,T.,Arai,T.," Nondimensional maximum pressure gradient of tunnel compression waves generated by offset running axisymmetric trains",Journal of Wind Engineering and Industrial Aerodynamics <http://www.sciencedirect.com/science/article/pii/S0167610515301525>Miyachi, T., M.Fukuda, T., Arai, T., "Nondimensional maximum pressure gradient of tunnel compression waves generated by offset running axisymmetric trains", Journal of Wind Engineering and Industrial Aerodynamics <http://www.sciencedirect. com / science / article / pii / S0167610515301525>

このような従来の微気圧波低減のための先頭部形状では、効率は0.8程度であることが非特許文献2に示されている。この効率は、理想的な先頭部形状の場合には値が最大で1となるために、さらに微気圧波の低減効果の高い先頭部形状が存在する可能性が指摘された。 It is shown in Non-Patent Document 2 that the efficiency of such a conventional head portion shape for reducing micro-pressure waves is about 0.8. Since the maximum value of this efficiency is 1 in the case of the ideal head shape, it was pointed out that there may be a head shape that has a higher effect of reducing micro-pressure waves.

この発明の課題は、微気圧波の低減効果をより一層向上させることができる移動体の先頭部構造を提供することである。 An object of the present invention is to provide a head structure of a moving body capable of further improving the effect of reducing micro-pressure waves.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、図1~図3及び図6に示すように、移動体(2)がトンネル内に突入するときに発生する微気圧波を低減可能な微気圧波低減性能を有する移動体の先頭部構造であって、前記移動体の先頭部形状(S)は、この移動体の先頭部(5A)の断面積変化率分布(dA*/dX)に少なくとも3つのピーク(P1~P3)があり、前記移動体の先頭部の先端部(5a)及び先頭部の後端部(5c)に断面積変化率分布の大きなピーク(P1,P3)があり、この移動体の先頭部の中間部(5b)に断面積変化率分布の小さなピーク(P2)があ前記移動体の先頭部の先端部の断面積変化率分布のピーク(P 1 )と、この先頭部の後端部の断面積変化率分布のピーク(P 3 )との間のほぼ中間に、この先頭部の中間部の断面積変化率分布のピーク(P 2 )があり、前記移動体の先頭部の先端部及び後端部の断面積変化率分布のピーク(P 1 ,P 3 )の幅が狭く、この先頭部の中間部の断面積変化率分布のピーク(P 2 )の幅が広いことを特徴とする移動体の先頭部構造(6)である。
The present invention solves the above-mentioned problems by means of solutions as described below.
Although the description will be given with reference numerals corresponding to the embodiments of the present invention, the present invention is not limited to this embodiment.
As shown in FIGS. 1 to 3 and 6, the invention of claim 1 has a movement having a micro-pressure wave reducing performance capable of reducing a micro-pressure wave generated when a moving body (2) enters a tunnel. In the head portion structure of the body, the head portion shape (S) of the moving body has at least three peaks (P 1 ) in the cross-sectional area change rate distribution (dA * / dX) of the head portion (5A) of the moving body. ~ P 3 ), and there are large peaks (P 1 , P 3 ) of the cross-sectional area change rate distribution at the tip end (5a) and the rear end (5c) of the front end of the moving body, and this movement. There is a small peak (P 2 ) of the cross-sectional area change rate distribution in the middle part (5b) of the head part of the body, and the peak (P 1 ) of the cross-sectional area change rate distribution at the tip part of the head part of the moving body . Almost in the middle of the peak (P 3 ) of the cross-sectional area change rate distribution at the rear end of the head portion, there is a peak (P 2 ) of the cross-sectional area change rate distribution at the middle portion of this head portion. The width of the peak (P 1 , P 3 ) of the cross-sectional area change rate distribution at the front end and the rear end of the body is narrow, and the peak (P 2 ) of the cross-sectional area change rate distribution at the middle of the front end It is a head structure (6) of a moving body characterized by having a wide width .

請求項2の発明は、請求項1に記載の移動体の先頭部構造において、図2に示すように、前記移動体の先頭部形状は、この移動体の先頭部の後端部(5c)における前記断面積変化率分布(dA*/dX)がゼロであることを特徴とする移動体の先頭部構造である。 According to the second aspect of the present invention, in the head structure of the moving body according to the first aspect, as shown in FIG. 2, the shape of the head portion of the moving body is the rear end portion (5c) of the head portion of the moving body. It is a head structure of a moving body characterized in that the cross-sectional area change rate distribution (dA * / dX) is zero.

請求項3の発明は、請求項1又は請求項に記載の移動体の先頭部構造において、図1及び図2に示すように、前記移動体の先頭部形状は、この移動体の先頭部の長さ(ln)が20m未満であるときには、この移動体の先頭部の断面積変化率分布に3つのピーク(P1~P3)があることを特徴とする移動体の先頭部構造である。 In the invention of claim 3, in the head structure of the moving body according to claim 1 or 2 , as shown in FIGS. 1 and 2, the head portion shape of the moving body is the head portion of the moving body. When the length (ln) of is less than 20 m , the head structure of the moving body is characterized by having three peaks (P 1 to P 3 ) in the cross-sectional area change rate distribution of the head of the moving body. Is.

請求項4の発明は、請求項1又は請求項に記載の移動体の先頭部構造において、図3に示すように、前記移動体の先頭部形状は、この移動体の先頭部の長さ(ln)が20m以上であるときには、この移動体の先頭部の断面積変化率分布に4つ以上のピーク(P1~P4)があることを特徴とする移動体の先頭部構造である。 According to a fourth aspect of the present invention, in the head portion structure of the moving body according to claim 1 or 2 , as shown in FIG. 3, the head portion shape of the moving body is the length of the head portion of the moving body. When (ln) is 20 m or more, the head structure of the moving body is characterized by having four or more peaks (P 1 to P 4 ) in the cross-sectional area change rate distribution at the head of the moving body. be.

この発明によると、微気圧波の低減効果をより一層向上させることができる。 According to the present invention, the effect of reducing micro-pressure waves can be further improved.

この発明の第1実施形態に係る移動体の先頭部構造の側面図であり、(A)は先頭部形状が滑らかである場合を一例として模式的に示す側面図であり、(B)は先頭部形状の断面積変化率分布を一例として模式的に示すグラフである。It is a side view of the head part structure of the moving body which concerns on 1st Embodiment of this invention, (A) is the side view which shows typically the case where the head part shape is smooth, (B) is the head part. It is a graph which shows typically the cross-sectional area change rate distribution of a part shape as an example. この発明の第2実施形態に係る移動体の先頭部構造の側面図であり、(A)は先頭部形状が先頭部後端を後尾部先端と滑らかに接続した場合を一例として模式的に示す側面図であり、(B)は先頭部形状の断面積変化率分布を一例として模式的に示すグラフである。It is a side view of the head part structure of the moving body which concerns on 2nd Embodiment of this invention, and (A) shows typically the case where the head part shape smoothly connects the head part rear end with the tail part tip, as an example. It is a side view, and (B) is a graph schematically showing the cross-sectional area change rate distribution of the head portion shape as an example. この発明の第3実施形態に係る移動体の先頭部構造の側面図であり、(A)は先頭部形状が滑らかである場合を一例として模式的に示す側面図であり、(B)は先頭部形状が先頭部後端を後尾部先端と滑らかに接続した場合を一例として模式的に示す側面図である。It is a side view of the head part structure of the moving body which concerns on 3rd Embodiment of this invention, (A) is the side view which shows typically the case where the head part shape is smooth, and (B) is the head part. It is a side view schematically showing the case where the part shape smoothly connects the rear end of the head portion with the tip of the tail portion as an example. この発明の実施例及び従来例に係る移動体の先頭部構造の側面図である。It is a side view of the head part structure of the moving body which concerns on Example and the prior art of this invention. この発明の実施例及び従来例に係る移動体の先頭部構造における断面積変化率分布を一例として示すグラフである。It is a graph which shows the cross-sectional area change rate distribution in the head part structure of the moving body which concerns on Example and the prior art of this invention as an example. この発明の実施例及び従来例に係る移動体の先頭部構造における圧力勾配波形を一例として示すグラフである。It is a graph which shows the pressure gradient waveform in the head part structure of the moving body which concerns on Example and the prior art of this invention as an example. 従来の移動体の先頭部構造を一例として模式的に示す側面図である。It is a side view which shows typically the structure of the head part of the conventional moving body as an example.

(第1実施形態)
以下、図面を参照して、この発明の第1実施形態について詳しく説明する。
図1(A)に示す軌道1は、車両2が走行する通路(線路)である。軌道1は、車両2の車輪を支持し案内する一対のレールなどを備えている。車両2は、軌道1に沿って移動する移動体である。車両2は、例えば、300km/h以上の高速で新幹線(登録商標)を走行する鉄道車両などの高速列車である。図1(A)に示す車両2は、例えば、図中矢印方向に走行するときには先頭車両となり、この矢印方向とは逆方向に走行するときには後尾車両となる。車両2は、台車3と車体4などを備えている。台車3は、車体4を支持して軌道1上を走行する装置である。車体4は、乗務員及び乗客などの積載物を輸送するための構造物である。車体4は、先頭部5Aと後尾部5Bとを備えている。車体4は、車両2を運転制御するための主幹制御器を操作する乗務員が乗車する乗務員室が先頭部5A側に配置されており、乗客が乗車する客室が後尾部5B側に配置されている。
(First Embodiment)
Hereinafter, the first embodiment of the present invention will be described in detail with reference to the drawings.
The track 1 shown in FIG. 1 (A) is a passage (railway) on which the vehicle 2 travels. The track 1 includes a pair of rails that support and guide the wheels of the vehicle 2. The vehicle 2 is a moving body that moves along the track 1. Vehicle 2 is, for example, a high-speed train such as a railroad vehicle traveling on the Shinkansen (registered trademark) at a high speed of 300 km / h or more. The vehicle 2 shown in FIG. 1A is, for example, a leading vehicle when traveling in the direction of the arrow in the figure, and a trailing vehicle when traveling in the direction opposite to the arrow direction. The vehicle 2 includes a bogie 3, a vehicle body 4, and the like. The bogie 3 is a device that supports the vehicle body 4 and travels on the track 1. The vehicle body 4 is a structure for transporting loads such as crew members and passengers. The vehicle body 4 includes a front portion 5A and a tail portion 5B. In the vehicle body 4, the crew room on which the crew who operates the master controller for driving and controlling the vehicle 2 rides is arranged on the front portion 5A side, and the passenger cabin on which the passengers ride is arranged on the tail portion 5B side. ..

先頭部5Aは、車両2の前部側を構成する部分である。先頭部5Aは、空気抵抗及び微気圧波の低減を図るために長い流線形に形成されている。先頭部5Aは、この先頭部5Aの前部を構成する先頭部先端5aと、この先頭部先端5aと先頭部後端5cとの間の中間部を構成する先頭部中間5bと、この先頭部5Aの後部を構成する先頭部後端5cなどを備えている。 The head portion 5A is a portion constituting the front side of the vehicle 2. The head portion 5A is formed in a long streamline in order to reduce air resistance and micro-pressure waves. The head portion 5A includes a head portion tip 5a constituting the front portion of the head portion 5A, a head portion middle 5b forming an intermediate portion between the head portion tip 5a and the head portion rear end 5c, and a head portion intermediate 5b. It is provided with a front end rear end 5c and the like that constitute the rear portion of the 5A.

後尾部5Bは、車両2の後部側を構成する部分である。後尾部5Bは、車両2の中心線に対して直交する垂直面で切断したときの断面積が略一定である。後尾部5Bは、先頭部後端5cと接続する後尾部先端5dと、この後尾部先端5dとは反対側の端部である後尾部後端5eなどを備えている。後尾部5Bは、編成中に中間車として組成される他の車両を連結する連結装置などを後尾部後端5eに備えている。 The tail portion 5B is a portion constituting the rear side of the vehicle 2. The tail portion 5B has a substantially constant cross-sectional area when cut on a vertical plane orthogonal to the center line of the vehicle 2. The tail portion 5B includes a tail portion tip 5d connected to the front end rear end 5c, a tail portion rear end 5e which is an end opposite to the tail portion tip 5d, and the like. The tail portion 5B is provided with a connecting device or the like for connecting other rolling stock, which is composed as an intermediate vehicle during formation, at the rear end portion 5e of the tail portion.

先頭部構造6は、車両2がトンネル内に突入するときに発生する微気圧波を低減可能な微気圧波低減性能を有する構造である。先頭部構造6は、断面積変化率が複数のピークをもつことを前提に先頭部形状Sが最適化されている。先頭部構造6は、先頭部5Aの周りの流れが断面積の急変化部で大きくはく離しないように、滑らかな先頭部形状Sに形成されている。 The head structure 6 is a structure having a micro-pressure wave reducing performance capable of reducing a micro-pressure wave generated when the vehicle 2 rushes into the tunnel. In the head portion structure 6, the head portion shape S is optimized on the premise that the cross-sectional area change rate has a plurality of peaks. The head portion structure 6 is formed in a smooth head portion shape S so that the flow around the head portion 5A does not greatly separate at the sudden change portion of the cross-sectional area.

先頭部形状Sは、車両2の中心線を通過する垂直面で切断したときの断面形状である。図1(A)に示す先頭部形状Sは、所定の個数(例えば、10個)の誤差関数の組み合わせによって断面積変化率を表現し、断面積変化率のピークP1~P3の大きさ、位置及び広がりを最適パラメータとして最適化されている。先頭部形状Sは、車両2の先頭部5Aの断面積変化率分布に少なくとも3つのピークP1~P3がある。先頭部形状Sは、断面積変化率が誤差関数の組み合わせで表される滑らかな形状である。ここで、断面積変化率とは、車両2の中心線に対して直交する垂直面で切断したときの断面積が先頭部先端5aから後尾部後端5eに向かって変化する割合である。図1に示す断面積変化率分布dA*/dXは、10個の誤差関数を基底に与えられたものであり、各基底の大きさ、位置及び広がりをパラメータとして最適化されている。 The head portion shape S is a cross-sectional shape when cut on a vertical plane passing through the center line of the vehicle 2. The head portion shape S shown in FIG. 1A expresses the cross-sectional area change rate by a combination of a predetermined number (for example, 10) of error functions , and the magnitudes of the peaks P1 to P3 of the cross - sectional area change rate. , Position and spread are optimized as optimal parameters. The head portion shape S has at least three peaks P 1 to P 3 in the cross-sectional area change rate distribution of the head portion 5A of the vehicle 2. The head portion shape S is a smooth shape in which the cross-sectional area change rate is represented by a combination of error functions. Here, the cross-sectional area change rate is a rate at which the cross-sectional area when cut on a vertical plane orthogonal to the center line of the vehicle 2 changes from the front end 5a to the tail rear end 5e. The cross-sectional area change rate distribution dA * / dX shown in FIG. 1 is given based on 10 error functions, and is optimized with the size, position, and spread of each basis as parameters.

先頭部形状Sは、図1(A)に示すように、先頭部先端5a、先頭部中間5b及び先頭部後端5cに断面積変化率分布dA*/dXのピークP1~P3がある。先頭部形状Sは、先頭部先端5a、先頭部中間5b及び先頭部後端5cにおいて断面積を略1/3程度ずつ増加させるような形状である。先頭部形状Sは、断面積変化率dA/dXが先頭部先端5a及び先頭部後端5cで大きな単一のピークP1,P3を持ち、先頭部中間5bに小さく広いピークP2を持つ略W字型である。先頭部形状Sは、先頭部5Aの長さlnが20m未満であるときには、先頭部5Aの断面積変化率分布dA*/dXに3つのピークP1~P3がある。 As shown in FIG. 1A , the head portion shape S has peaks P1 to P3 of cross - sectional area change rate distribution dA * / dX at the head portion tip 5a, the head portion middle 5b, and the head portion rear end 5c. .. The head portion shape S is a shape that increases the cross-sectional area by about 1/3 at the front end portion 5a, the head portion middle 5b, and the head portion rear end 5c. The head portion shape S has a single large peak P 1 and P 3 with a cross-sectional area change rate dA / dX at the front end portion 5a and the head portion rear end 5c, and has a small and wide peak P 2 at the head portion middle 5b. It is approximately W-shaped. The head portion shape S has three peaks P 1 to P 3 in the cross-sectional area change rate distribution dA * / dX of the head portion 5A when the length l n of the head portion 5A is less than 20 m.

この発明の第1実施形態に係る移動体の先頭部構造には、以下に記載するような効果がある。
(1) この第1実施形態では、車両2の先頭部5Aの断面積変化率分布dA*/dXに少なくとも3つのピークP1~P3がある先頭部形状Sである。また、この第1実施形態では、車両2の先頭部先端5a、先頭部中間5b及び先頭部後端5cに断面積変化率分布dA*/dXのピークP1~P3がある先頭部形状Sである。このため、断面積変化率分布dA*/dXに3つのピークP1~P3がある略W型の先頭部形状Sにすることによって、トンネル内の圧力勾配最大値のピークを分散することができ、微気圧波を低減することができる。
The head structure of the moving body according to the first embodiment of the present invention has the effects as described below.
(1) In this first embodiment, there is a head portion shape S having at least three peaks P 1 to P 3 in the cross-sectional area change rate distribution dA * / dX of the head portion 5A of the vehicle 2. Further, in the first embodiment , the head portion shape S having peaks P1 to P3 of the cross-sectional area change rate distribution dA * / dX at the head portion tip 5a, the head portion middle 5b, and the head portion rear end 5c of the vehicle 2. Is. Therefore, it is possible to disperse the peak of the maximum pressure gradient value in the tunnel by forming a substantially W-shaped head portion shape S having three peaks P 1 to P 3 in the cross-sectional area change rate distribution dA * / dX. It can reduce micro-pressure waves.

(2) この第1実施形態では、車両2の先頭部5Aの長さlnが20m未満であるときには、この車両2の先頭部5Aの断面積変化率分布dA*/dXに3つのピークP1~P3がある先頭部形状Sである。このため、トンネル内の圧力勾配波形のピーク値を低減することができる。 (2) In this first embodiment, when the length l n of the head portion 5A of the vehicle 2 is less than 20 m, the cross-sectional area change rate distribution dA * / dX of the head portion 5A of the vehicle 2 has three peaks P. It is a head portion shape S having 1 to P 3 . Therefore, the peak value of the pressure gradient waveform in the tunnel can be reduced.

(第2実施形態)
以下では、図1に示す部分と同一の部分については、同一の符号を付して詳細な説明を省略する。
図2(A)に示す先頭部構造6は、先頭部5Aの周りの流れが先頭部後端5cで大きくはく離しないように、先頭部後端5cが後尾部先端5dと滑らかに接続された先頭部形状Sに形成されている。先頭部形状Sは、所定の個数(例えば、10個)の誤差関数の組み合わせと、先頭部後端5cを後尾部先端5dと滑らかに接続することを表す重み関数とによって断面積変化率dA/dXを表現し、断面積変化率dA/dXのピークP1~P3の大きさ、位置及び広がりを最適パラメータとして最適化されている。先頭部形状Sは、先頭部後端5cにおける断面積変化率分布dA*/dXがゼロである。図1(A)に示す先頭部形状Sは、車体4の断面積が一定になる後尾部先端5dと先頭部後端5cとの接続部において断面積変化率dA/dXが不連続となり、流れのはく離による影響が懸念される。図2(A)に示す先頭部形状Sは、車体4の断面積が一定になる後尾部先端5dと先頭部後端5cとの接続部において、この先頭部後端5cがこの後尾部先端5dと滑らかに接続するように丸みが付与されている。先頭部形状Sは、先頭部5Aの後端にcos型の重み関数を乗じてこの先頭部形状Sが最適化されており、cos型の重み関数によって先頭部後端5cの断面積変化率dA/dXが滑らかにゼロになる。
(Second Embodiment)
In the following, the same parts as those shown in FIG. 1 are designated by the same reference numerals and detailed description thereof will be omitted.
In the head structure 6 shown in FIG. 2A, the front end 5c is smoothly connected to the tail tip 5d so that the flow around the head 5A does not separate significantly at the head rear end 5c. It is formed in a partial shape S. The head portion shape S has a cross-sectional area change rate dA / by a combination of a predetermined number (for example, 10) of error functions and a weight function indicating that the head portion rear end 5c is smoothly connected to the tail tip 5d. It expresses dX and is optimized with the magnitude, position , and spread of peaks P1 to P3 of the cross - sectional area change rate dA / dX as the optimum parameters. In the head portion shape S, the cross-sectional area change rate distribution dA * / dX at the head portion rear end 5c is zero. In the head portion shape S shown in FIG. 1 (A), the cross-sectional area change rate dA / dX becomes discontinuous at the connection portion between the tail portion tip 5d and the front end rear end 5c where the cross-sectional area of the vehicle body 4 becomes constant, and the flow flows. There is concern about the effects of peeling. In the head portion shape S shown in FIG. 2A, the front end rear end 5c is the tail tip 5d at the connection portion between the tail tip 5d and the front rear end 5c where the cross-sectional area of the vehicle body 4 is constant. It is rounded so that it connects smoothly with. The head portion shape S is optimized by multiplying the rear end of the head portion 5A by a cos-type weight function, and the cross-sectional area change rate dA of the head portion rear end 5c is optimized by the cos-type weight function. / dX becomes zero smoothly.

図2(A)に示す先頭部形状Sは、先頭部先端5a、先頭部中間5b及び先頭部後端5cに断面積変化率分布dA*/dXにピークP1~P3がある。先頭部形状Sは、先頭部5Aの長さlnが20m未満であるときには、先頭部5Aの断面積変化率分布dA*/dXに3つのピークP1~P3がある。 The head portion shape S shown in FIG. 2A has peaks P1 to P3 in the cross - sectional area change rate distribution dA * / dX at the head portion tip 5a , the head portion middle 5b, and the head portion rear end 5c. The head portion shape S has three peaks P 1 to P 3 in the cross-sectional area change rate distribution dA * / dX of the head portion 5A when the length l n of the head portion 5A is less than 20 m.

この発明の第2実施形態に係る移動体の先頭部構造には、第1実施形態の効果に加えて、以下に記載するような効果がある。
この第2実施形態では、車両2の先頭部後端5cにおける断面積変化率分布dA*/dXがゼロである先頭部形状Sである。このため、車体4の断面積が一定になる後尾部先端5dと先頭部後端5cとの接続部における流れのはく離を抑制することができる。
The head structure of the moving body according to the second embodiment of the present invention has the effects described below in addition to the effects of the first embodiment.
In this second embodiment, the front portion shape S is such that the cross-sectional area change rate distribution dA * / dX at the front end rear end 5c of the vehicle 2 is zero. Therefore, it is possible to suppress the separation of the flow at the connection portion between the rear end portion 5d of the tail portion and the rear end portion 5c of the front portion where the cross-sectional area of the vehicle body 4 becomes constant.

(第3実施形態)
図3に示す車体4は、車両2の先頭部5Aの長さlnが20m以上の長大な先頭部5Aを備えている。図3(A)に示す先頭部構造6は、図1(A)に示す先頭部構造6と同様に滑らかな先頭部形状Sに形成されている。図3(B)に示す先頭部構造6は、図2(A)に示す先頭部構造6と同様に先頭部後端5cが後尾部先端5dと滑らかに接続された先頭部形状Sに形成されている。先頭部形状Sは、車両2の先頭部5Aの長さlnが20m以上であるときには、この車両2の先頭部5Aの断面積変化率分布dA*/dXに4つのピークP1~P4がある。この第3実施形態には、第1実施形態及び第2実施形態と同様の効果がある。
(Third Embodiment)
The vehicle body 4 shown in FIG. 3 includes a long head portion 5A having a length l n of the head portion 5A of the vehicle 2 of 20 m or more. The head portion structure 6 shown in FIG. 3 (A) is formed into a smooth head portion shape S similar to the head portion structure 6 shown in FIG. 1 (A). The head structure 6 shown in FIG. 3B is formed in a head shape S in which the rear end 5c of the head is smoothly connected to the tip 5d of the tail, similarly to the head structure 6 shown in FIG. 2A. ing. When the length l n of the head portion 5A of the vehicle 2 is 20 m or more, the head portion shape S has four peaks P 1 to P 4 in the cross-sectional area change rate distribution dA * / dX of the head portion 5A of the vehicle 2. There is. This third embodiment has the same effect as that of the first embodiment and the second embodiment.

図4に示すグラフは、実施例1,2及び従来例に係る先頭部形状を一例として示すグラフである。図4に示す縦軸は、形状であり、横軸は先頭部先端からの距離である。図5に示すグラフは、実施例1,2及び従来例に係る先頭部形状の断面積変化率分布dA*/dXを一例として示すグラフである。図5に示す縦軸は、断面積変化率dA/dXであり、横軸は先頭部先端からの距離である。図4及び図5に示す実施例1は、図1(A)に示す第1実施形態に係る先頭部形状Sに相当し、先頭部5Aの長さln=12mの断面積変化率分布dA*/dXの例である。図4及び図5に示す実施例2は、図2(A)に示す第2実施形態に係る先頭部形状Sに相当する断面積変化率分布dA*/dXの例である。実施例1,2は、いずれもHoweの音響理論によって先頭部形状Sを最適化したときの断面積変化率分布dA*/dXの例である。図4及び図5に示す従来例は、図7に示す従来の先頭部形状S'に相当する断面積変化率dA/dXの例である。 The graph shown in FIG. 4 is a graph showing the shape of the head portion according to Examples 1 and 2 and the conventional example as an example. The vertical axis shown in FIG. 4 is the shape, and the horizontal axis is the distance from the tip of the head portion. The graph shown in FIG. 5 is a graph showing the cross-sectional area change rate distribution dA * / dX of the head portion shape according to Examples 1 and 2 and the conventional example as an example. The vertical axis shown in FIG. 5 is the cross-sectional area change rate dA / dX, and the horizontal axis is the distance from the tip of the head portion. Example 1 shown in FIGS. 4 and 5 corresponds to the head portion shape S according to the first embodiment shown in FIG. 1 (A), and the cross-sectional area change rate distribution dA having a length l n = 12 m of the head portion 5A. * This is an example of / dX. Example 2 shown in FIGS. 4 and 5 is an example of the cross-sectional area change rate distribution dA * / dX corresponding to the head portion shape S according to the second embodiment shown in FIG. 2 (A). Examples 1 and 2 are examples of the cross-sectional area change rate distribution dA * / dX when the head portion shape S is optimized by Howe's acoustic theory. The conventional example shown in FIGS. 4 and 5 is an example of the cross-sectional area change rate dA / dX corresponding to the conventional head portion shape S'shown in FIG. 7.

Howeの音響理論によって計算した圧力勾配波形を図6に示す。図6に示す縦軸は、圧力勾配∂p/∂tであり、横軸は時間である。図6に示す圧力勾配波形のピークはトンネル微気圧波のピークに比例する。図6に示すように、実施例1,2の圧力勾配波形は従来例の圧力勾配波形に比べてピークが分散しており、微気圧波の低減効果が確認された。また、実施例1,2のような断面積変化率分布dA*/dXが複数のピークを持つ先頭部形状が微気圧波の低減効果の高い先頭部形状であることが確認された。 The pressure gradient waveform calculated by Howe's acoustic theory is shown in FIG. The vertical axis shown in FIG. 6 is the pressure gradient ∂p / ∂t, and the horizontal axis is time. The peak of the pressure gradient waveform shown in FIG. 6 is proportional to the peak of the tunnel micropressure wave. As shown in FIG. 6, the pressure gradient waveforms of Examples 1 and 2 have more dispersed peaks than the pressure gradient waveforms of the conventional example, and the effect of reducing the micro-pressure wave was confirmed. Further, it was confirmed that the head portion shape having a plurality of peaks in the cross-sectional area change rate distribution dA * / dX as in Examples 1 and 2 is a head portion shape having a high effect of reducing micro-pressure waves.

(他の実施形態)
この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
(1) この実施形態では、移動体として鉄道車両である場合を例に挙げて説明したがこれに限定するものではない。例えば、広い空間から狭い空間に突入する種々の移動体であって、高速で走行する磁気浮上式鉄道、自動車、航空機又は飛翔体などの移動体についても、この発明を適用することができる。また、この実施形態では、車両2が新幹線列車である場合を例に挙げて説明したが、在来線を走行する在来線列車、又は新幹線と在来線とを相互に走行可能な新在直通運転用の列車などについても、この発明を適用することができる。さらに、この実施形態では、構造物としてトンネルを例に挙げて説明したが、トンネル微気圧波を低減するためにトンネル坑口を覆うトンネル緩衝工、軌道1上に架け渡した跨線橋、軌道1上に駅本屋を配置した橋上駅などの構造物についてもこの発明を適用することができる。
(Other embodiments)
The present invention is not limited to the embodiments described above, and various modifications or modifications can be made as described below, and these are also within the scope of the present invention.
(1) In this embodiment, the case where the moving body is a railroad vehicle has been described as an example, but the present invention is not limited to this. For example, the present invention can be applied to various moving objects that plunge into a narrow space from a wide space, such as a magnetic levitation type railway, an automobile, an aircraft, or a flying object that travels at high speed. Further, in this embodiment, the case where the vehicle 2 is a Shinkansen train has been described as an example, but a conventional line train traveling on a conventional line or a new existing train capable of mutually traveling between a Shinkansen and a conventional line. The present invention can also be applied to trains for direct operation and the like. Further, in this embodiment, a tunnel has been described as an example as a structure, but a tunnel shock absorber covering the tunnel entrance in order to reduce the tunnel micro-pressure wave, an overpass over the track 1, and a track 1 on the track 1. The present invention can also be applied to structures such as Hashigami Station where a station bookstore is located.

(2) この第1実施形態及び第2実施形態では、車両2の先頭部先端5aにおける断面積変化率分布dA*/dXのピークP1よりも、車両2の先頭部後端5cにおける断面積変化率分布dA*/dXのピークP3のほうが小さい場合を例に挙げて説明したがこれに限定するものではない。例えば、車両2の先頭部先端5a及び/又は先頭部中間5bにおける断面積変化率分布dA*/dXのピークP1,P2よりも、車両2の先頭部後端5cにおける断面積変化率分布dA*/dXのピークP3のほうが小さくする場合についても、この発明を適用することができる。また、この第3実施形態では、車両2の先頭部5Aの長さlnが20m以上であるときには、この車両2の先頭部5Aの断面積変化率分布dA*/dXに4つのピークP1~P4がある場合を例に挙げて説明したがこれに限定するものではない。例えば、車両2の先頭部5Aの長さlnが20m以上であるときには、この車両2の先頭部5Aの断面積変化率分布dA*/dXに4つ以上のピークP1,P2,P3,P4,…がある場合についても、この発明を適用することができる。 (2) In the first embodiment and the second embodiment, the cross-sectional area at the front end 5c of the vehicle 2 is larger than the peak P 1 of the cross-sectional area change rate distribution dA * / dX at the front end 5a of the vehicle 2. The case where the peak P 3 of the rate of change distribution dA * / dX is smaller has been described as an example, but the present invention is not limited to this. For example, the cross-sectional area change rate distribution at the front end 5c of the vehicle 2 rather than the peaks P 1 and P 2 of the cross-sectional area change rate dA * / dX at the front end 5a and / or the front middle 5b of the vehicle 2. The present invention can also be applied to the case where the peak P 3 of dA * / dX is made smaller. Further, in the third embodiment, when the length l n of the head portion 5A of the vehicle 2 is 20 m or more, the cross-sectional area change rate distribution dA * / dX of the head portion 5A of the vehicle 2 has four peaks P 1 The case where there is ~ P 4 has been described as an example, but the description is not limited to this. For example, when the length l n of the head portion 5A of the vehicle 2 is 20 m or more, four or more peaks P 1 , P 2 , P in the cross-sectional area change rate distribution dA * / dX of the head portion 5A of the vehicle 2. The present invention can be applied even when there are 3 , P 4 , ....

1 軌道
2 車両(移動体)
3 台車
4 車体
5A 先頭部
5B 後尾部
5a 先頭部先端
5b 先頭部中間
5c 先頭部後端
5d 後尾部先端
5e 後尾部後端
dA/dX 断面積変化率
dA*/dX 断面積変化率分布
∂p/∂t 圧力勾配
S 先頭部形状
1~P4 ピーク
1 track 2 vehicle (moving body)
3 bogie 4 body 5A head 5B tail 5a head tip 5b head middle 5c head rear end 5d tail tip 5e tail rear end dA / dX cross-sectional area change rate dA * / dX cross-sectional area change rate distribution ∂p / ∂t Pressure gradient S Head shape P 1 to P 4 Peak

Claims (4)

移動体がトンネル内に突入するときに発生する微気圧波を低減可能な微気圧波低減性能を有する移動体の先頭部構造であって、
前記移動体の先頭部形状は、
この移動体の先頭部の断面積変化率分布に少なくとも3つのピークがあり、
前記移動体の先頭部の先端部及び先頭部の後端部に断面積変化率分布の大きなピークがあり、この移動体の先頭部の中間部に断面積変化率分布の小さなピークがあ
前記移動体の先頭部の先端部の断面積変化率分布のピークと、この先頭部の後端部の断面積変化率分布のピークとの間のほぼ中間に、この先頭部の中間部の断面積変化率分布のピークがあり、
前記移動体の先頭部の先端部及び後端部の断面積変化率分布のピークの幅が狭く、この先頭部の中間部の断面積変化率分布のピークの幅が広いこと、
を特徴とする移動体の先頭部構造。
It is a head structure of a moving body having a micro pressure wave reduction performance capable of reducing the micro pressure wave generated when the moving body rushes into a tunnel.
The shape of the head of the moving body is
There are at least three peaks in the cross-sectional area change rate distribution at the head of this moving body.
There is a large peak in the cross-sectional area change rate distribution at the tip of the front end and the rear end of the front end of the moving body, and there is a small peak in the cross-sectional area change rate distribution in the middle of the head of the moving body.
A break in the middle part of the head portion is approximately halfway between the peak of the cross-sectional area change rate distribution at the tip of the head portion of the moving body and the peak of the cross-sectional area change rate distribution at the rear end portion of the head portion. There is a peak in the area change rate distribution,
The width of the peak of the cross-sectional area change rate distribution at the front end and the rear end of the moving body is narrow, and the peak width of the cross-sectional area change rate distribution at the middle of the front end is wide.
The head structure of the moving body, which is characterized by.
請求項1に記載の移動体の先頭部構造において、
前記移動体の先頭部形状は、この移動体の先頭部の後端部における前記断面積変化率分布がゼロであること、
を特徴とする移動体の先頭部構造。
In the head structure of the moving body according to claim 1,
The shape of the head portion of the moving body is such that the cross-sectional area change rate distribution at the rear end portion of the head portion of the moving body is zero.
The head structure of the moving body, which is characterized by.
請求項1又は請求項2に記載の移動体の先頭部構造において、
前記移動体の先頭部形状は、この移動体の先頭部の長さが20m未満であるときには、この移動体の先頭部の断面積変化率分布に3つのピークがあること、
を特徴とする移動体の先頭部構造。
In the head structure of the moving body according to claim 1 or 2.
The shape of the head portion of the moving body has three peaks in the cross-sectional area change rate distribution of the head portion of the moving body when the length of the head portion of the moving body is less than 20 m.
The head structure of the moving body, which is characterized by.
請求項1又は請求項2に記載の移動体の先頭部構造において、
前記移動体の先頭部形状は、この移動体の先頭部の長さが20m以上であるときには、この移動体の先頭部の断面積変化率分布に4つ以上のピークがあること、
を特徴とする移動体の先頭部構造。
In the head structure of the moving body according to claim 1 or 2.
The shape of the head portion of the moving body is such that when the length of the head portion of the moving body is 20 m or more, there are four or more peaks in the cross-sectional area change rate distribution of the head portion of the moving body.
The head structure of the moving body, which is characterized by.
JP2018096008A 2018-05-18 2018-05-18 Head structure of moving body Active JP7033827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018096008A JP7033827B2 (en) 2018-05-18 2018-05-18 Head structure of moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018096008A JP7033827B2 (en) 2018-05-18 2018-05-18 Head structure of moving body

Publications (2)

Publication Number Publication Date
JP2019199223A JP2019199223A (en) 2019-11-21
JP7033827B2 true JP7033827B2 (en) 2022-03-11

Family

ID=68612794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018096008A Active JP7033827B2 (en) 2018-05-18 2018-05-18 Head structure of moving body

Country Status (1)

Country Link
JP (1) JP7033827B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308092A (en) 2001-04-11 2002-10-23 Nippon Sharyo Seizo Kaisha Ltd Forefront part shape of high speed railway rolling stock
JP2003063386A (en) 2001-08-22 2003-03-05 Nippon Sharyo Seizo Kaisha Ltd Top part shape of rapid-transit railway rolling stock
JP2004066887A (en) 2002-08-02 2004-03-04 Central Japan Railway Co Car body for railroad head car and railroad head car using the car body
JP2006056439A (en) 2004-08-23 2006-03-02 Nippon Sharyo Seizo Kaisha Ltd High speed railway vehicle
WO2014202147A1 (en) 2013-06-20 2014-12-24 Bombardier Transportation Gmbh High-speed rail vehicle provided with a streamlined nose

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4243658B2 (en) * 1998-05-12 2009-03-25 川崎重工業株式会社 Body shape of the first train

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308092A (en) 2001-04-11 2002-10-23 Nippon Sharyo Seizo Kaisha Ltd Forefront part shape of high speed railway rolling stock
JP2003063386A (en) 2001-08-22 2003-03-05 Nippon Sharyo Seizo Kaisha Ltd Top part shape of rapid-transit railway rolling stock
JP2004066887A (en) 2002-08-02 2004-03-04 Central Japan Railway Co Car body for railroad head car and railroad head car using the car body
JP2006056439A (en) 2004-08-23 2006-03-02 Nippon Sharyo Seizo Kaisha Ltd High speed railway vehicle
WO2014202147A1 (en) 2013-06-20 2014-12-24 Bombardier Transportation Gmbh High-speed rail vehicle provided with a streamlined nose

Also Published As

Publication number Publication date
JP2019199223A (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP6677309B2 (en) Bogies for railway vehicles, railway vehicles and trains
CN111071272B (en) Obstacle deflector with pit arranged at rear end of bottom and application thereof
JP7033827B2 (en) Head structure of moving body
JP6824683B2 (en) Rail car
CN102166960B (en) Bionic anti-drag and noise-reducing high-speed pantograph
JP6473257B2 (en) Railway vehicle
CN216034177U (en) Noise elimination vehicle and device
JP2019123406A (en) Railway vehicle
JP6932097B2 (en) Bogie for rail vehicles
JPH07267081A (en) Device for decreasing aerodynamic resistance of cavity existing in air passage and vehicle particularly railway vehicle with said device
JP6734754B2 (en) Railway vehicle
KR101524010B1 (en) Bogie air dam
JP6722533B2 (en) Railway vehicle body structure
JP6615598B2 (en) High speed train
JP4187488B2 (en) RAILWAY VEHICLE AND METHOD FOR REDUCING RANGE VEHICLE MOVEMENT IN TUN
JP4749831B2 (en) Method and apparatus for reducing underfloor wind of railway vehicles
CN113815667B (en) Low-resistance streamline bogie for high-speed train
JP7332884B2 (en) bogies and railcars
JP3388804B2 (en) Low noise pantograph
WO2013014465A1 (en) Train suspension system
Kara et al. Methods for reducing the specific mass of rolling stock.
CN113799816B (en) Drag reduction control device for high-speed train
JP2021142944A (en) Forefront part structure of movable body
CN113859296B (en) Barrier with passive turbulence structure and application thereof
CN208602472U (en) Empty iron train and empty iron series system for empty iron series system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7033827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150