JP2021142944A - Forefront part structure of movable body - Google Patents

Forefront part structure of movable body Download PDF

Info

Publication number
JP2021142944A
JP2021142944A JP2020044232A JP2020044232A JP2021142944A JP 2021142944 A JP2021142944 A JP 2021142944A JP 2020044232 A JP2020044232 A JP 2020044232A JP 2020044232 A JP2020044232 A JP 2020044232A JP 2021142944 A JP2021142944 A JP 2021142944A
Authority
JP
Japan
Prior art keywords
head
moving body
vehicle
sectional area
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020044232A
Other languages
Japanese (ja)
Inventor
傑 福田
Takashi Fukuda
傑 福田
徳蔵 宮地
Tokuzo Miyaji
徳蔵 宮地
伸也 眞下
Shinya Mashita
伸也 眞下
哲也 中村
Tetsuya Nakamura
哲也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
West Japan Railway Co
Original Assignee
Railway Technical Research Institute
West Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, West Japan Railway Co filed Critical Railway Technical Research Institute
Priority to JP2020044232A priority Critical patent/JP2021142944A/en
Publication of JP2021142944A publication Critical patent/JP2021142944A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

To provide a forefront part structure of a movable body capable of exhibiting a reduction effect of a micro atmospheric pressure wave even if there is a step part in a forefront part of the movable body.SOLUTION: A forefront part structure 7 has a structure having micro atmospheric pressure wave reduction performance which can reduce a micro atmospheric pressure wave that is generated when a vehicle 2 having a step part 5C in a forefront part 5A plunges into a tunnel. A forefront part shape S has at least three peaks P1 to P3 in a cross sectional area rate-of-change distribution dA*/dX of the forefront part 5A of the vehicle 2, and the step part 5C is present in the peaks P1 to P3. The forefront part shape S has the peaks P1 to P3 of the cross sectional area rate-of-change distribution dA*/dX at a forefront part tip 5a, a forefront part intermediate part 5b and a forefront part rear end 5c of the forefront part 5A of the vehicle 2, and the step part 5C is present between the peak P1 of the forefront part tip 5a and the peak P2 of the forefront part intermediate part 5b. The step part 5C is formed in the forefront part 5A when the forefront part 5A is drawn.SELECTED DRAWING: Figure 5

Description

この発明は、先頭部に段差部を有する移動体がトンネル内に突入するときに発生する微気圧波を低減可能な微気圧波低減性能を有する移動体の先頭部構造に関する。 The present invention relates to a head portion structure of a moving body having a micro-pressure wave reducing performance capable of reducing a micro-pressure wave generated when a moving body having a stepped portion at the head portion rushes into a tunnel.

高速鉄道の空気力学的な沿線環境の問題の一つに、トンネル坑口から放射される微気圧波がある。列車が高速でトンネル内に突入するとトンネル内に圧縮波が生じる。この圧縮波は音速でトンネル内を伝搬し、出口で開口端反射する。この反射の際にトンネル外に放射されるパルス状の圧力波のことをトンネル微気圧波あるいは単に微気圧波と呼ぶ。微気圧波は、発破音や家屋の振動・ガタツキに騒音などの原因となるため対策を講じる必要がある。微気圧波は、トンネル出口に到着した圧縮波の波面圧力勾配(圧縮波の時間変化率)の最大値にほぼ比例する。微気圧波低減のためには、圧縮波の波面圧力勾配の最大値を小さくする必要があり、圧縮波の形成時間を長くして圧力勾配をなだらかにする対策が有効となる。これまでの列車先頭部による微気圧波低減対策の方法の一つに、流線形の車両先頭部の延伸と形状の最適化がある。 One of the problems of the aerodynamic environment along the high-speed railway is the micro-pressure wave radiated from the tunnel entrance. When a train rushes into a tunnel at high speed, a compressed wave is generated in the tunnel. This compressed wave propagates in the tunnel at the speed of sound and is end-reflected at the exit. The pulsed pressure wave radiated outside the tunnel during this reflection is called a tunnel micro-pressure wave or simply a micro-pressure wave. Micro-pressure waves cause blasting noise, vibration and rattling of houses, and noise, so it is necessary to take measures. The micropressure wave is almost proportional to the maximum value of the wavefront pressure gradient (time change rate of the compressed wave) of the compressed wave arriving at the tunnel exit. In order to reduce the micro-pressure wave, it is necessary to reduce the maximum value of the wave surface pressure gradient of the compressed wave, and it is effective to take measures to lengthen the formation time of the compressed wave and smooth the pressure gradient. One of the conventional methods for reducing micro-pressure waves by the train head is to extend the streamlined train head and optimize the shape.

しかし、車両先頭部の延伸は、空気力学以外の設計上の制約を受ける。このため、空気力学以外の設計上の制約を受けることにより、先頭部に断面積の不連続部があるとそこで流れが剥離し、見かけ上、車両断面積が大きくなってしまい、先頭部の微気圧波低減の性能が低下する。また、先頭部を延伸したくても、その分、客席に使用できるスペースが小さくなってしまう。客席に使用できるスペースを確保するため、高速走行時のみ先頭部を伸ばす可変形状先頭部が考えられる。 However, the extension of the front part of the vehicle is subject to design restrictions other than aerodynamics. For this reason, due to design restrictions other than aerodynamics, if there is a discontinuous part in the cross-sectional area at the head part, the flow will separate there, and the vehicle cross-sectional area will apparently become large, and the head part will be fine. The performance of pressure wave reduction is reduced. Moreover, even if the leading portion is desired to be extended, the space that can be used for the audience seats is reduced accordingly. In order to secure a space that can be used for the audience seats, a variable-shaped head portion that extends the head portion only when driving at high speed can be considered.

考えられる可変形状先頭部は、先頭部分が運転室を含む後側部分と、この後側部分よりも前側に位置する前側部分とによって構成されており、後側部分によって前側部分が車体前後方向に相対的に移動可能に支持されており、後側部分の内部に前側部分を格納する格納空間部が形成されている(例えば、特許文献1参照)。この車体は、高速走行状態であるときには前側部分を基準位置にあり、低速走行状態であるときには前側部分を後退させて車体前後方向の長さを短くしている。 The conceivable variable shape head portion is composed of a rear side portion including the driver's cab and a front side portion located on the front side of the rear side portion, and the front side portion is moved in the front-rear direction of the vehicle body by the rear side portion. It is supported so as to be relatively movable, and a storage space portion for storing the front side portion is formed inside the rear side portion (see, for example, Patent Document 1). In the high-speed running state, the front side portion of the vehicle body is in the reference position, and in the low-speed traveling state, the front side portion is retracted to shorten the length in the front-rear direction of the vehicle body.

特開2004-161085号公報Japanese Unexamined Patent Publication No. 2004-161085

考えられる可変形状先頭部の車体では、高速走行時に前側部分を車体前後方向に長くして微気圧波を低減している。しかし、先頭部に形状の可変機構を設けると、やはりそこに断面積の不連続部が生じ、上記の流れの剥離による問題が生じると、微気圧波に対して悪影響を及ぼすことが考えらえる。 In the vehicle body at the head of the variable shape that can be considered, the front side portion is lengthened in the front-rear direction of the vehicle body during high-speed driving to reduce micro-pressure waves. However, if a variable shape mechanism is provided at the head portion, a discontinuous portion of the cross-sectional area also occurs there, and if the problem due to the above-mentioned flow separation occurs, it is considered that the micro-pressure wave is adversely affected. ..

この発明の課題は、移動体の先頭部に段差部が存在しても微気圧波の低減効果を発揮することができる移動体の先頭部構造を提供することである。 An object of the present invention is to provide a head portion structure of a moving body capable of exerting a reduction effect of micropressure waves even if a step portion is present at the head portion of the moving body.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、図5に示すように、先頭部(5A)に段差部(5C)を有する移動体がトンネル内に突入するときに発生する微気圧波を低減可能な微気圧波低減性能を有する移動体の先頭部構造であって、前記移動体の先頭部形状(S)は、この移動体の先頭部の断面積変化率分布(dA*/dX)に少なくとも3つのピーク(P1〜P3)があり、前記段差部は、前記ピーク間に存在することを特徴とする移動体の先頭部構造(7)である。
The present invention solves the above problems by means of solutions as described below.
Although the description will be given with reference numerals corresponding to the embodiments of the present invention, the present invention is not limited to this embodiment.
As shown in FIG. 5, the invention of claim 1 is a micro-pressure wave reduction capable of reducing a micro-pressure wave generated when a moving body having a step portion (5C) at a head portion (5A) rushes into a tunnel. It is a head portion structure of a moving body having performance, and the head portion shape (S) of the moving body has at least three peaks (P) in the cross-sectional area change rate distribution (dA * / dX) of the head portion of the moving body. There are 1 to P 3 ), and the step portion is a head portion structure (7) of a moving body characterized in that it exists between the peaks.

請求項2の発明は、請求項1に記載の移動体の先頭部構造において、前記移動体の先頭部形状は、この移動体の先頭部の先端部(5a)、中間部(5b)及び後端部(5c)に前記断面積変化率分布のピークがあり、前記段差部は、前記先端部のピーク(P1)と前記中間部のピーク(P2)との間に存在することを特徴としている移動体の先頭部構造である。 The invention of claim 2 is the head portion structure of the moving body according to claim 1, wherein the head portion shape of the moving body is the tip portion (5a), the intermediate portion (5b), and the rear portion of the head portion of the moving body. The end portion (5c) has a peak of the cross-sectional area change rate distribution, and the step portion exists between the peak at the tip portion (P 1 ) and the peak at the intermediate portion (P 2). It is the head structure of the moving body.

請求項3の発明は、請求項1又は請求項2に記載の移動体の先頭部構造であって、図4に示すように、前記段差部の長さ(L2)が1.5m以下であることを特徴とする移動体の先頭部構造である。 The invention of claim 3 is the head structure of the moving body according to claim 1 or 2, and as shown in FIG. 4, the length (L 2 ) of the step portion is 1.5 m or less. It is a head structure of a moving body, which is characterized in that.

請求項4の発明は、請求項1又は請求項2に記載の移動体の先頭部構造において、図4に示すように、前記段差部の長さ(L2)が1.5m以下であり、かつ、この段差部が存在する部分の先頭部の断面積(A3)が2.0m2以上であることを特徴とする移動体の先頭部構造である。 In the invention of claim 4, in the head structure of the moving body according to claim 1 or 2, as shown in FIG. 4, the length (L 2 ) of the step portion is 1.5 m or less, and the step portion is 1.5 m or less. , The structure of the head portion of the moving body is characterized in that the cross-sectional area (A 3 ) of the head portion of the portion where the step portion exists is 2.0 m 2 or more.

請求項5の発明は、請求項1から請求項4までのいずれか1項に記載の移動体の先頭部構造において、図1及び図2に示すように、前記段差部は、前記先頭部を延伸させたときに、この先頭部に形成されることを特徴とする移動体の先頭部構造である。 In the invention of claim 5, in the head portion structure of the moving body according to any one of claims 1 to 4, as shown in FIGS. 1 and 2, the step portion has the head portion. It is a head portion structure of a moving body, which is characterized by being formed at the head portion when stretched.

この発明によると、移動体の先頭部に段差部が存在しても微気圧波の低減効果を発揮することができる。 According to the present invention, even if there is a stepped portion at the head portion of the moving body, the effect of reducing the micropressure wave can be exhibited.

この発明の実施形態に係る移動体の先頭部構造を模式的に示す外観図であり、(A)は平面図であり、(B)は側面図である。It is an external view which shows typically the head part structure of the moving body which concerns on embodiment of this invention, (A) is a plan view, (B) is a side view. の発明の実施形態に係る移動体の先頭部構造における先頭部の延伸前後の状態を模式的に示す外観図であり、(A)は延伸前の状態を示す側面図であり、(B)は延伸後の状態を示す側面図である。It is an external view which shows typically the state before and after stretching of the head part in the head part structure of the moving body which concerns on embodiment of the invention, (A) is the side view which shows the state before stretching, (B) is It is a side view which shows the state after stretching. この発明の実施形態に係る移動体の先頭部構造の段差部を模式的に示す縦断面図であり、(A)は縦断面図であり、(B)は横断面図である。It is a vertical cross-sectional view which shows typically the step part of the head part structure of the moving body which concerns on embodiment of this invention, (A) is a vertical cross-sectional view, and (B) is a cross-sectional view. この発明の実施形態に係る移動体の先頭部構造における種々の段差部を模式的に示す縦断面図であり、(A)〜(E)は段差部が存在するときの先頭部の縦断面図であり、(F)は段差部が存在しないときの先頭部の縦断面図である。It is a vertical cross-sectional view which shows typically the various step portions in the head part structure of the moving body which concerns on embodiment of this invention, and (A)-(E) are the vertical cross-sectional views of the head part when a step part exists. (F) is a vertical cross-sectional view of the head portion when there is no step portion. この発明の実施形態に係る移動体の先頭部構造の先頭部形状を模式的に示す外観図であり、(A)は側面図であり、(B)は先頭部形状の断面積変化率分布を一例として模式的に示すグラフである。It is an external view which shows typically the head part shape of the head part structure of the moving body which concerns on embodiment of this invention, (A) is the side view, (B) is the cross-sectional area change rate distribution of the head part shape. It is a graph which shows typically as an example. この発明の実施例に係る移動体の先頭部構造による微気圧波低減効果の実験に使用した模型実験装置の概略図である。It is the schematic of the model experimental apparatus used for the experiment of the micro-pressure wave reduction effect by the head part structure of the moving body which concerns on embodiment of this invention. この発明の実施例に係る移動体の先頭部構造による微気圧波低減効果の実験に使用した車両先頭部模型の写真である。It is a photograph of the vehicle head part model used in the experiment of the micro-pressure wave reduction effect by the head part structure of the moving body which concerns on embodiment of this invention. この発明の実施例に係る移動体の先頭部構造による微気圧波低減効果の実験に使用した車両先頭部形状のグラフである。It is a graph of the vehicle head portion shape used in the experiment of the micro-pressure wave reduction effect by the head portion structure of the moving body according to the embodiment of the present invention. この発明の実施例に係る移動体の先頭部構造による微気圧波低減効果の模型実験結果を示すグラフであり、(A)は圧縮波の圧力波形を示すグラフであり、(B)は圧力勾配波形を示すグラフである。It is a graph which shows the model experiment result of the micro-pressure wave reduction effect by the head part structure of the moving body which concerns on embodiment of this invention, (A) is a graph which shows the pressure waveform of a compression wave, and (B) is a pressure gradient. It is a graph which shows the waveform. この発明の実施例に係る移動体の先頭部構造による微気圧波低減効果の模型実験結果による段差部の影響を示すグラフである。It is a graph which shows the influence of the step part by the model experiment result of the micro-pressure wave reduction effect by the head part structure of the moving body which concerns on embodiment of this invention.

以下、図面を参照して、この発明の実施形態について詳しく説明する。
図1に示す線路1は、車両2が走行する通路(軌道)である。線路1は、車両2の車輪を支持し案内する一対のレールなどを備えている。車両2は、線路1に沿って移動する移動体である。車両2は、例えば、300km/h以上の高速で新幹線(登録商標)を走行する鉄道車両による高速列車である。図1に示す車両2は、例えば、図中矢印方向に走行するときには先頭車両となり、この矢印方向とは逆方向に走行するときには後尾車両となる。車両2は、図1(B)に示す台車3と、図1(A)(B)に示す車体4と、駆動装置6などを備えている。図1(B)に示す台車3は、車体4を支持して線路1上を走行する装置である。台車3は、線路1のレールに沿って転動する車輪などを備えている。図1(A)(B)に示す車体4は、乗務員及び乗客などの積載物を輸送するための部分である。車体4は、図1に示す先頭部5Aと、後尾部5Bと、図1〜図3に示す段差部5Cなどを備えている。車体4は、車両2を運転制御するための主幹制御器を操作する乗務員が乗車する乗務員室が先頭部5A側に配置されており、乗客が乗車する客室が後尾部5B側に配置されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The track 1 shown in FIG. 1 is a passage (track) on which the vehicle 2 travels. The track 1 includes a pair of rails that support and guide the wheels of the vehicle 2. The vehicle 2 is a moving body that moves along the track 1. Vehicle 2 is, for example, a high-speed train by a railway vehicle traveling on the Shinkansen (registered trademark) at a high speed of 300 km / h or more. The vehicle 2 shown in FIG. 1 is, for example, the leading vehicle when traveling in the direction of the arrow in the figure, and the trailing vehicle when traveling in the direction opposite to the direction of the arrow. The vehicle 2 includes a bogie 3 shown in FIG. 1 (B), a vehicle body 4 shown in FIGS. 1 (A) and 1 (B), a drive device 6, and the like. The bogie 3 shown in FIG. 1B is a device that supports the vehicle body 4 and travels on the track 1. The carriage 3 includes wheels that roll along the rails of the track 1. The vehicle body 4 shown in FIGS. 1A and 1B is a part for transporting a load such as a crew member and a passenger. The vehicle body 4 includes a front portion 5A shown in FIG. 1, a tail portion 5B, a step portion 5C shown in FIGS. 1 to 3, and the like. In the vehicle body 4, the crew room on which the crew operating the master controller for driving and controlling the vehicle 2 rides is arranged on the front portion 5A side, and the passenger cabin on which the passengers ride is arranged on the tail portion 5B side. ..

図1に示す先頭部5Aは、車両2の前部側を構成する部分である。先頭部5Aは、空気抵抗及び微気圧波の低減を図るために長い流線形に形成されている。先頭部5Aは、この先頭部5Aの前部を構成する先頭部先端5aと、この先頭部先端5aと先頭部後端5cとの間の中間部を構成する先頭部中間5bと、この先頭部5Aの後部を構成する先頭部後端5cと、先頭部5Aの長さLnを延伸する延伸部5dなどを備えている。先頭部5Aは、図2に示すように、先頭部先端5a側の可動部と、先頭部中間5b側の固定部とに分割可能な分割構造を備えている。先頭部5Aは、図2(A)に示すように、先頭部5Aの長さLnを短縮させているときには、延伸部5dが車体4内に収容されており、図2(B)に示すように先頭部5Aの長さLnを延伸させているときには、延伸部5dが車体4外に露出している。 The leading portion 5A shown in FIG. 1 is a portion constituting the front portion side of the vehicle 2. The head portion 5A is formed in a long streamline to reduce air resistance and micro-pressure waves. The head portion 5A includes a head portion tip 5a forming the front portion of the head portion 5A, a head portion middle 5b forming an intermediate portion between the head portion tip 5a and the head portion rear end 5c, and the head portion intermediate 5b. It is provided with a front end rear end 5c constituting the rear portion of the 5A, an extension portion 5d for extending the length L n of the front portion 5A, and the like. As shown in FIG. 2, the head portion 5A has a split structure that can be divided into a movable portion on the tip end 5a side of the head portion and a fixed portion on the middle 5b side of the head portion. As shown in FIG. 2 (A), when the length L n of the head portion 5A is shortened, the extension portion 5d is housed in the vehicle body 4 and is shown in FIG. 2 (B). When the length L n of the leading portion 5A is extended as described above, the extended portion 5d is exposed to the outside of the vehicle body 4.

図1に示す後尾部5Bは、車両2の後部側を構成する部分である。後尾部5Bは、車両2の中心線に対して直交する垂直面で切断したときの断面積が略一定である。後尾部5Bは、先頭部後端5cと接続する後尾部先端5eと、この後尾部先端5eとは反対側の端部である後尾部後端5fなどを備えている。後尾部5Bは、編成中に中間車として組成される他の車両を連結する連結装置などを後尾部後端5fに備えている。 The tail portion 5B shown in FIG. 1 is a portion constituting the rear side of the vehicle 2. The tail portion 5B has a substantially constant cross-sectional area when cut on a vertical plane orthogonal to the center line of the vehicle 2. The tail portion 5B includes a tail portion tip 5e that connects to the front end rear end 5c, a tail portion rear end 5f that is an end opposite to the tail portion tip 5e, and the like. The tail portion 5B is provided with a connecting device or the like for connecting other vehicles formed as an intermediate vehicle during formation at the rear end portion 5f of the tail portion.

図1〜図3に示す段差部5Cは、先頭部5Aに形成された段部である。段差部5Cは、図1に示すように、先頭部5Aの長さLnを延伸させたときに、この先頭部5Aに形成される。段差部5Cは、図3に示すように、壁部5g,5hと、上縁部5i,5jと、下縁部5k,5mと、底部5nなどを備えている。壁部5g,5hは、車両2の中心線に対して直交する平坦面である。壁部5gは、先頭部先端5a寄りに形成されており、壁部5hは壁部5gと対向して先頭部後端5c寄りに形成されている。壁部5g,5hは、先頭部5Aの断面積不連続部である。ここで、断面積不連続部とは、車両2の中心線を通過する垂直面で切断したときに車両2の断面積が垂直に変化する部分である。上縁部5i,5jは、壁部5g,5hと先頭部5Aの表面とが交わる角部である。下縁部5k,5mは、壁部5g,5hと底部5nとが交わる角部である。底部5nは、段差部5Cの底面を構成する部分である。段差部5Cは、図4(F)に示す先頭部形状Sを基本形状として、図4(A)〜(E)に示すように延伸部5dの構造に応じて種々の形態がある。 The stepped portion 5C shown in FIGS. 1 to 3 is a stepped portion formed on the leading portion 5A. As shown in FIG. 1, the step portion 5C is formed on the leading portion 5A when the length L n of the leading portion 5A is extended. As shown in FIG. 3, the step portion 5C includes wall portions 5g, 5h, upper edge portions 5i, 5j, lower edge portions 5k, 5m, a bottom portion 5n, and the like. The wall portions 5g and 5h are flat surfaces orthogonal to the center line of the vehicle 2. The wall portion 5g is formed closer to the leading end 5a of the leading portion, and the wall portion 5h is formed closer to the rear end 5c of the leading portion facing the wall portion 5g. The wall portions 5g and 5h are cross-sectional area discontinuous portions of the leading portion 5A. Here, the cross-sectional area discontinuous portion is a portion where the cross-sectional area of the vehicle 2 changes vertically when cut on a vertical plane passing through the center line of the vehicle 2. The upper edge portions 5i and 5j are corner portions where the wall portions 5g and 5h and the surface of the head portion 5A intersect. The lower edge portions 5k and 5m are corner portions where the wall portions 5g and 5h and the bottom portion 5n intersect. The bottom portion 5n is a portion constituting the bottom surface of the step portion 5C. The step portion 5C has various forms depending on the structure of the stretched portion 5d as shown in FIGS. 4 (A) to 4 (E), with the head portion shape S shown in FIG. 4 (F) as the basic shape.

図4(A)(B)に示す段差部5Cは、先頭部5Aの表面を切り欠くように、車両2の前後方向に長さ(可変部長さ(不連続部長さ))L1,L2(L1<L2)で略L字状に形成されている。図4(A)(B)に示す段差部5Cは、上縁部5j及び底部5nが先頭部5Aの表面に滑らかに接続されている。図4(B)に示す段差部5Cは、図4(A)に示す段差部5Cよりも段部の高さが高く、図4(B)に示す段差部5Cの長さL2は図4(A)に示す段差部5Cの長さL1よりも先頭部先端5aに向かって長くなるように形成されている。 The stepped portion 5C shown in FIGS. 4A and 4B has a length (variable portion length (discontinuous portion length)) L 1 , L 2 in the front-rear direction of the vehicle 2 so as to cut out the surface of the leading portion 5A. It is formed in a substantially L shape at (L 1 <L 2). In the stepped portion 5C shown in FIGS. 4A and 4B, the upper edge portion 5j and the bottom portion 5n are smoothly connected to the surface of the leading portion 5A. The step portion 5C shown in FIG. 4 (B) has a higher step portion height than the step portion 5C shown in FIG. 4 (A), and the length L 2 of the step portion 5C shown in FIG. 4 (B) is FIG. It is formed so as to be longer toward the tip 5a of the leading portion than the length L 1 of the step portion 5C shown in (A).

図4(C)〜(E)に示す段差部5Cは、先頭部5Aの表面を切り欠くように、車両2の前後方向に長さL2及び車両2の上下方向に深さD1〜D3(D1<D2<D3)で略U字状に形成されている。図4(C)〜(E)に示す段差部5Cは、上縁部5iが上縁部5jよりも高さが低くなるように、上縁部5i,5jが先頭部5Aの表面に滑らかに接続されている。図4(C)〜(E)に示す段差部5Cは、車両2の中心線を通過する垂直面で切断したときに、この段差部5Cが存在する部分(くびれ部)の先頭部5Aの断面積(くびれ部断面積)A1〜A3(A1>A2>A3)である。 The stepped portions 5C shown in FIGS. 4 (C) to 4 (E) have a length L 2 in the front-rear direction of the vehicle 2 and a depth D 1 to D in the vertical direction of the vehicle 2 so as to cut out the surface of the leading portion 5A. It is formed in a substantially U shape with 3 (D 1 <D 2 <D 3). In the stepped portion 5C shown in FIGS. 4 (C) to 4 (E), the upper edge portions 5i and 5j are smoothly placed on the surface of the leading portion 5A so that the height of the upper edge portion 5i is lower than that of the upper edge portion 5j. It is connected. When the stepped portion 5C shown in FIGS. 4 (C) to 4 (E) is cut on a vertical surface passing through the center line of the vehicle 2, the leading portion 5A of the portion (constricted portion) where the stepped portion 5C exists is cut off. Area (cross-sectional area of constriction) A 1 to A 3 (A 1 > A 2 > A 3 ).

段差部5Cは、図5に示すように、車両2の先頭部5Aの断面積変化率分布dA*/dXのピークP1,P2間に存在する。段差部5Cは、例えば、先頭部先端5aのピークP1と先頭部中間5bのピークP2との間に存在する。段差部5Cは、図4に示すこの段差部5Cの長さL2が1.5m以下であることが好ましい。段差部5Cは、この段差部5Cの長さL2が1.5m以下であり、かつ、先頭部5Aの断面積A3が2.0m2以上であることが好ましい。 As shown in FIG. 5, the step portion 5C exists between the peaks P 1 and P 2 of the cross-sectional area change rate distribution dA * / dX of the leading portion 5A of the vehicle 2. The step portion 5C exists , for example, between the peak P 1 at the tip 5a of the head portion and the peak P 2 at the middle 5b of the head portion. The step portion 5C preferably has a length L 2 of the step portion 5C shown in FIG. 4 of 1.5 m or less. It is preferable that the step portion 5C has a length L 2 of the step portion 5C of 1.5 m or less and a cross-sectional area A 3 of the head portion 5A of 2.0 m 2 or more.

図1及び図2に示す駆動装置6は、延伸部5dを駆動する装置である。駆動装置6は、先頭部5Aの形状を可変する形状可変機構部として機能する。駆動装置6は、先頭部5Aの延伸部5dを駆動することによって、先頭部5Aの長さLnを可変する。駆動装置6は、例えば、電動機によって回転するピニオンと噛み合うラックを往復駆動させて、このラックに接続された延伸部5dを進退動作させるラック/ピニオン機構、油圧又は空気圧などの作動流体の流体圧によって延伸部5dを進退動作させる油圧シリンダ装置又は空気圧シリンダ装置などである。駆動装置6は、図2(B)に示すように、車両2が本線を高速で走行するときには、先頭部5Aの長さLnが延伸するように延伸部5dを前進させて微気圧波を低減する。一方、駆動装置6は、図2(A)に示すように、車両2が車両基地内などを低速で走行するときには、車両基地内の構造物と支障しないように、先頭部5Aの長さLnが短縮するように延伸部5dを後退させる。 The driving device 6 shown in FIGS. 1 and 2 is a device for driving the stretched portion 5d. The drive device 6 functions as a shape variable mechanism unit that changes the shape of the head portion 5A. The driving device 6 changes the length L n of the leading portion 5A by driving the extending portion 5d of the leading portion 5A. The drive device 6 reciprocates, for example, a rack that meshes with a pinion that is rotated by an electric motor, and moves the extension portion 5d connected to the rack back and forth by a rack / pinion mechanism, a fluid pressure of a working fluid such as hydraulic pressure or pneumatic pressure. It is a hydraulic cylinder device or a pneumatic cylinder device that moves the stretched portion 5d forward and backward. As shown in FIG. 2B, the drive device 6 advances the extension portion 5d so that the length L n of the head portion 5A extends when the vehicle 2 travels on the main line at high speed to generate a micro-pressure wave. Reduce. On the other hand, as shown in FIG. 2A, the drive device 6 has a length L of a leading portion 5A so as not to interfere with the structure in the depot when the vehicle 2 travels in the depot or the like at a low speed. The stretched portion 5d is retracted so that n is shortened.

図1〜図5に示す先頭部構造7は、段差部5Cを有する車両2がトンネル内に突入するときに発生する微気圧波を低減可能な微気圧波低減性能を有する構造である。先頭部構造7は、図5(B)に示すように、断面積変化率dA/dXが複数のピークP1〜P3をもつことを前提に先頭部形状Sが最適化されている。先頭部構造7は、図3に示すように、先頭部5Aの周りの流れFが断面積の急変化部で大きくはく離しないように、図5(A)に示すように滑らかな先頭部形状Sに形成されている。先頭部構造7は、先頭部5Aの周りの流れFが先頭部後端5cで大きくはく離しないように、先頭部後端5cが後尾部先端5eと滑らかに接続された先頭部形状Sに形成されている。 The head structure 7 shown in FIGS. 1 to 5 is a structure having a micro-pressure wave reduction performance capable of reducing a micro-pressure wave generated when a vehicle 2 having a step portion 5C rushes into a tunnel. The top portion structure 7, as shown in FIG. 5 (B), the head portion shape S on the assumption that the sectional area change rate dA / dX has a plurality of peaks P 1 to P 3 are optimized. As shown in FIG. 3, the head portion structure 7 has a smooth head portion shape S as shown in FIG. 5 (A) so that the flow F around the head portion 5A does not largely separate at the sudden change portion of the cross-sectional area. Is formed in. The head structure 7 is formed in a head shape S in which the rear end 5c of the head is smoothly connected to the tip 5e of the tail so that the flow F around the head 5A does not separate significantly at the rear end 5c of the head. ing.

図4及び図5に示す先頭部形状Sは、車両2の中心線を通過する垂直面で切断したときの断面形状である。図5(A)に示す先頭部形状Sは、所定の個数(例えば、10個)の誤差関数の組み合わせと、先頭部後端5cを後尾部先端5eと滑らかに接続することを表す重み関数とによって断面積変化率dA/dXを表現し、断面積変化率dA/dXのピークP1〜P3の大きさ、位置及び広がりを最適パラメータとして最適化されている。先頭部形状Sは、車両2の先頭部5Aの断面積変化率分布dA*/dXに少なくとも3つのピークP1〜P3がある。先頭部形状Sは、断面積変化率dA/dXが誤差関数の組み合わせで表される滑らかな形状である。ここで、断面積変化率dA/dXとは、車両2の中心線に対して直交する垂直面で切断したときの断面積が先頭部先端5aから後尾部後端5fに向かって変化する割合である。図5に示す断面積変化率分布dA*/dXは、10個の誤差関数を基底に与えられたものであり、各基底の大きさ、位置及び広がりをパラメータとして最適化されている。 The head portion shape S shown in FIGS. 4 and 5 is a cross-sectional shape when cut on a vertical plane passing through the center line of the vehicle 2. The head portion shape S shown in FIG. 5 (A) is a combination of a predetermined number (for example, 10) of error functions and a weight function indicating that the front end rear end 5c is smoothly connected to the tail tip 5e. sectional area change rate dA / dX represent cross-sectional area change rate dA / dX of magnitude of the peak P 1 to P 3, it is optimized position and spread as the optimum parameter by. The head portion shape S has at least three peaks P 1 to P 3 in the cross-sectional area change rate distribution dA * / dX of the head portion 5A of the vehicle 2. The head portion shape S is a smooth shape in which the cross-sectional area change rate dA / dX is represented by a combination of error functions. Here, the cross-sectional area change rate dA / dX is the rate at which the cross-sectional area when cut on a vertical plane orthogonal to the center line of the vehicle 2 changes from the front end 5a to the tail rear end 5f. be. The cross-sectional area change rate distribution dA * / dX shown in FIG. 5 is given based on 10 error functions, and is optimized with the size, position, and spread of each basis as parameters.

先頭部形状Sは、図5(A)に示すように、先頭部先端5a、先頭部中間5b及び先頭部後端5cに断面積変化率分布dA*/dXのピークP1〜P3がある。先頭部形状Sは、先頭部5Aの長さLnが20m未満であるときには、図5(B)に示すように先頭部5Aの断面積変化率分布dA*/dXに3つのピークP1〜P3がある。先頭部形状Sは、先頭部先端5a、先頭部中間5b及び先頭部後端5cにおいて断面積を略1/3程度ずつ増加させるような形状である。先頭部形状Sは、断面積変化率dA/dXが先頭部先端5a及び先頭部後端5cの直前で大きな単一のピークP1,P3を持ち、先頭部中間5bに小さく広いピークP2を持つ略W字型である。先頭部形状Sは、車体4の断面積が一定になる後尾部先端5eと先頭部後端5cとの接続部における流れFのはく離を抑制するために、先頭部後端5cにおける断面積変化率分布dA*/dXがゼロである。 As shown in FIG. 5A, the head portion shape S has peaks P 1 to P 3 of cross-sectional area change rate distribution dA * / dX at the head portion tip 5a, the head portion middle 5b, and the head portion rear end 5c. .. When the length L n of the head portion 5A is less than 20 m, the head portion shape S has three peaks P 1 to 3 peaks P 1 to the cross-sectional area change rate distribution dA * / dX of the head portion 5A as shown in FIG. 5 (B). There is P 3. The head portion shape S is a shape that increases the cross-sectional area by about 1/3 at the head portion tip 5a, the head portion middle 5b, and the head portion rear end 5c. The head portion shape S has large single peaks P 1 and P 3 immediately before the front end portion 5a and the head portion rear end 5c, and the cross-sectional area change rate dA / dX is small and wide peak P 2 in the front portion middle 5b. It is an abbreviated W-shape with. The head portion shape S has a cross-sectional area change rate at the front end rear end 5c in order to suppress peeling of the flow F at the connection portion between the tail portion tip 5e and the front end rear end 5c where the cross-sectional area of the vehicle body 4 becomes constant. The distribution dA * / dX is zero.

この発明の実施形態に係る移動体の先頭部構造は、以下に記載するような効果がある。
(1) この実施形態では、車両2の先頭部5Aの断面積変化率分布dA*/dXに少なくとも3つのピークP1〜P3があり、段差部5CがピークP1〜P3間に存在する。このため、先頭部5Aの適切な位置に段差部5Cを設けることによって、微気圧波の低減効果に悪影響が及ぶのを回避することができる。
The head structure of the moving body according to the embodiment of the present invention has the effects described below.
(1) In this embodiment, there are at least three peaks P 1 to P 3 to the cross-sectional area change rate distribution dA * / dX of the leading portion 5A of the vehicle 2, the step portion 5C is present between the peak P 1 to P 3 do. Therefore, by providing the stepped portion 5C at an appropriate position of the leading portion 5A, it is possible to avoid adversely affecting the effect of reducing the micro-pressure wave.

(2) この実施形態では、車両2の先頭部5Aの先頭部先端5a、先頭部中間5b及び先頭部後端5cに断面積変化率分布dA*/dXのピークP1〜P3があり、この先頭部先端5aのピークP1と先頭部中間5bのピークP2との間に段差部5Cが存在する。このため、列車の先頭部形状Sが最適化されているときに、この先頭部5Aの断面積不連続部の位置を適切な位置に設けることによって、微気圧波の低減効果に悪影響が及ぶのを回避することができる。 (2) In this embodiment, there is the top tip 5a, the top portion intermediate 5b and the top cross-sectional area change rate in the rear end 5c distribution dA * / dX of the peak P 1 to P 3 of the head portion 5A of the vehicle 2, There is a stepped portion 5C between the peak P 1 at the tip 5a of the head portion and the peak P 2 at the middle 5b of the head portion. Therefore, when the shape S of the head portion of the train is optimized, the effect of reducing the micro-pressure wave is adversely affected by providing the position of the cross-sectional area discontinuous portion of the head portion 5A at an appropriate position. Can be avoided.

(2) この実施形態では、段差部5Cの長さL2が1.5m以下である。また、この実施形態では、段差部5Cの長さL2が1.5m以下であり、かつ、この段差部5Cが存在する部分の先頭部5Aの断面積A3が2.0m2以上である。このとき、段差部5Cの上縁部5i付近で剥離した流れFが段差部5Cの上縁部5jの下流側で再付着させることができる。 (2) In this embodiment, the length L 2 of the step portion 5C is 1.5 m or less. Further, in this embodiment, the length L 2 of the step portion 5C is 1.5 m or less, and the cross-sectional area A 3 of the leading portion 5A of the portion where the step portion 5C exists is 2.0 m 2 or more. At this time, the flow F peeled off near the upper edge portion 5i of the step portion 5C can be reattached on the downstream side of the upper edge portion 5j of the step portion 5C.

(4) この実施形態では、先頭部5Aを延伸させたときに、この先頭部5Aに段差部5Cが形成される。このため、先頭部5Aの形状を可変する可変機構を車両2が備えている場合に、先頭部5Aを延伸させたときに先頭部5Aに形成される段差部5Cによって微気圧波の低減効果に悪影響が及ぶのを回避することができる。また、先頭部5Aの形状を可変する可変機構によって断面積不連続部が形成されても、流線形先頭部とほぼ同等の微気圧波低減効果を発揮させることができるとともに、先頭部形状Sの設計上の制約の問題と、先頭部の延伸による客室スペース縮小の問題とを解決することができる。 (4) In this embodiment, when the head portion 5A is stretched, a step portion 5C is formed on the head portion 5A. Therefore, when the vehicle 2 is provided with a variable mechanism for changing the shape of the leading portion 5A, the stepped portion 5C formed on the leading portion 5A when the leading portion 5A is extended has an effect of reducing micro-pressure waves. It is possible to avoid adverse effects. Further, even if the cross-sectional area discontinuity is formed by the variable mechanism that changes the shape of the head portion 5A, it is possible to exert the micro-pressure wave reduction effect almost the same as that of the streamlined head portion, and the head portion shape S. It is possible to solve the problem of design restrictions and the problem of shrinking the cabin space due to the extension of the leading part.

次に、この発明の実施例について説明する。
(模型実験)
図7及び図8に示す車両先頭部模型による微気圧波低減性能を調べるため、図6に示す公益財団法人鉄道総合技術研究所のトンネル微気圧波模型実験装置を使用して、トンネル模型に車両模型を打ち込み、トンネル坑口から1mの位置に設置した2台の圧力計によりトンネル内圧縮波の波形を計測した。車両模型の速度を計測するために、4m離れでコイルを設置した。圧力勾配波形は中心差分で求めた。
Next, examples of the present invention will be described.
(Model experiment)
In order to investigate the micro-pressure wave reduction performance by the vehicle head model shown in FIGS. 7 and 8, the tunnel micro-pressure wave model experimental device of the Railway Technical Research Institute shown in FIG. The model was driven in, and the waveform of the compressed wave in the tunnel was measured by two pressure gauges installed at a position 1 m from the tunnel entrance. In order to measure the speed of the vehicle model, coils were installed at a distance of 4 m. The pressure gradient waveform was obtained by the center difference.

模型実験のスケールは、63.4m2の新幹線トンネルの鏡像を考慮して1/127とした。トンネル模型に内径100mmのパイプを用いた。車両模型は、車両/トンネル断面積比(ブロッケージ比)0.19、先頭部実スケール長さ12m相当、先頭部形状は回転楕円体、緩衝工模型の中心に対して新幹線列車相当の偏心走行とした。模型突入速度は主に360km/hとした。 The scale of the model experiment was set to 1/127 in consideration of the mirror image of the 63.4 m 2 Shinkansen tunnel. A pipe with an inner diameter of 100 mm was used for the tunnel model. The vehicle model has a vehicle / tunnel cross-sectional area ratio (blockage ratio) of 0.19, a head part equivalent to a real scale length of 12 m, a spheroid shape at the head part, and an eccentric running equivalent to a Shinkansen train with respect to the center of the shock absorber model. The model entry speed was mainly 360km / h.

車両先頭部模型は、図7及び図8に示す比較例1及び実施例1〜5の6種類を作製した。図8に示すグラフは、車両先頭部模型の実スケールの断面積分布であり、縦軸は車両の中心線を通過する垂直面で切断したときの断面積A(m2)であり、横軸は車両の先頭部先端からの距離X(m)である。実施例1は、図4(A)に示す段差部5Cに対応する車両先頭部模型であり、可変部長さ1.0mである。実施例2は、図4(B)に示す段差部5Cに対応する車両先頭部模型であり、可変部長さ1.5mである。実施例3は、図4(C)に示す段差部5Cに対応する車両先頭部模型であり、可変部長さ1.5mであり、くびれ部断面積4m2である。実施例4は、図4(D)に示す段差部5Cに対応する車両先頭部模型であり、可変部長さ1.5mであり、くびれ部断面積3m2である。実施例5は、図4(E)に示す段差部5Cに対応する車両先頭部模型であり、可変部長さ1.5mであり、くびれ部断面積2m2である。比較例1は、図4(F)に示すような先頭部形状Sが基準形状であり、段差部5Cのない車両先頭部模型である。 Six types of vehicle front model, Comparative Example 1 and Examples 1 to 5 shown in FIGS. 7 and 8, were produced. The graph shown in FIG. 8 shows the actual scale cross-sectional area distribution of the vehicle head model, the vertical axis is the cross-sectional area A (m 2 ) when cut on a vertical plane passing through the center line of the vehicle, and the horizontal axis. Is the distance X (m) from the tip of the front part of the vehicle. The first embodiment is a vehicle leading portion model corresponding to the step portion 5C shown in FIG. 4A, and has a variable portion length of 1.0 m. The second embodiment is a vehicle leading portion model corresponding to the step portion 5C shown in FIG. 4B, and has a variable portion length of 1.5 m. The third embodiment is a vehicle leading portion model corresponding to the step portion 5C shown in FIG. 4C, has a variable portion length of 1.5 m, and a constricted portion cross-sectional area of 4 m 2 . The fourth embodiment is a vehicle leading portion model corresponding to the step portion 5C shown in FIG. 4D, has a variable portion length of 1.5 m, and a constricted portion cross-sectional area of 3 m 2 . The fifth embodiment is a vehicle leading portion model corresponding to the step portion 5C shown in FIG. 4 (E), has a variable portion length of 1.5 m, and a constricted portion cross-sectional area of 2 m 2 . Comparative Example 1 is a vehicle head model in which the head shape S as shown in FIG. 4 (F) is the reference shape and there is no step portion 5C.

(実験結果)
図9(A)に示す縦軸は、圧力(kPa)であり、図9(B)に示す縦軸は圧力勾配(MPa/s)であり、図9(A)(B)に示す横軸は時間(ms)である。ここで、圧力勾配波形とは、トンネル模型に車両模型が突入したときにトンネル模型内に発生する圧縮波の時間微分波形である。図9(A)に示すように、比較例1及び実施例1〜5の車両先頭部模型についてトンネル内圧縮波の波形を計測し、図9(B)に示すように比較例1及び実施例1〜5の車両先頭部模型について圧力勾配波形を演算した。
(Experimental result)
The vertical axis shown in FIG. 9 (A) is the pressure (kPa), the vertical axis shown in FIG. 9 (B) is the pressure gradient (MPa / s), and the horizontal axis shown in FIGS. 9 (A) and 9 (B). Is the time (ms). Here, the pressure gradient waveform is a time derivative waveform of the compression wave generated in the tunnel model when the vehicle model rushes into the tunnel model. As shown in FIG. 9 (A), the waveform of the compressed wave in the tunnel was measured for the vehicle head model of Comparative Example 1 and Examples 1 to 5, and as shown in FIG. 9 (B), Comparative Example 1 and Example The pressure gradient waveforms were calculated for the vehicle head models 1 to 5.

図10に示す縦軸は、圧力勾配最大値の比であり、横軸は段差部の面積である。圧力勾配最大値の比とは、実施例1〜5の圧力勾配波形の最大値を比較例1の圧力勾配波形の最大値で除算した値である。図10に示すように、実施例1〜5の圧力勾配最大値の比が比較例1の圧力勾配最大値の比とほぼ同じであり、可動部長が1.5m以下である場合、又は段差部の可動部長が1.5m以下であってくびれ部断面積が2.0m2以上である場合には、段差部があっても微気圧波を低減可能であることが確認された。 The vertical axis shown in FIG. 10 is the ratio of the maximum pressure gradient values, and the horizontal axis is the area of the step portion. The ratio of the maximum pressure gradient values is a value obtained by dividing the maximum value of the pressure gradient waveforms of Examples 1 to 5 by the maximum value of the pressure gradient waveform of Comparative Example 1. As shown in FIG. 10, the ratio of the maximum pressure gradient values of Examples 1 to 5 is almost the same as the ratio of the maximum pressure gradient values of Comparative Example 1, and the movable portion length is 1.5 m or less, or the step portion. It was confirmed that when the length of the movable part is 1.5 m or less and the cross-sectional area of the constricted part is 2.0 m 2 or more, the micro-pressure wave can be reduced even if there is a stepped part.

この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
(1) この実施形態では、移動体として鉄道車両である場合を例に挙げて説明したが、高速で走行する磁気浮上式鉄道、自動車、航空機又は飛翔体などの移動体についても、この発明を適用することができる。また、この実施形態では、車両2が新幹線列車である場合を例に挙げて説明したが、在来線を走行する在来線列車、又は新幹線と在来線とを相互に走行可能な新在直通運転用の列車などについても、この発明を適用することができる。さらに、この実施形態では、先頭部5Aの延伸部5dに対応する位置に段差部5Cが形成される場合を例に挙げて説明したが、延伸部5dに対応する位置以外の先頭部5Aに段差部が形成される場合についても、この発明を適用することができる。
The present invention is not limited to the embodiments described above, and various modifications or modifications can be made as described below, and these are also within the scope of the present invention.
(1) In this embodiment, the case where the moving body is a railroad vehicle has been described as an example, but the present invention is also applied to a moving body such as a magnetic levitation type railroad, an automobile, an aircraft, or a flying object that travels at high speed. Can be applied. Further, in this embodiment, the case where the vehicle 2 is a Shinkansen train has been described as an example, but a conventional line train traveling on a conventional line or a new existing train capable of mutually traveling between a Shinkansen and a conventional line. The present invention can also be applied to trains for direct operation and the like. Further, in this embodiment, the case where the step portion 5C is formed at the position corresponding to the stretched portion 5d of the head portion 5A has been described as an example, but the step portion 5A other than the position corresponding to the stretched portion 5d has been described as an example. The present invention can also be applied to the case where a portion is formed.

(2) この実施形態では、先頭部5Aの長さLnを一つの延伸部5dによって延伸する場合を例に挙げて説明したが、先頭部5Aの長さLnを複数の延伸部によって多段で延伸する場合についても、この発明を適用することができる。また、この実施形態では、断面積変化率分布dA*/dXのピークP1,P2間に段差部5Cを配置する場合を例に挙げて説明したが、ピークP2,P3間に段差部5Cを配置する場合についても、この発明を適用することができる。さらに、この実施形態では、駆動装置6がラック/ピニオン機構、油圧シリンダ装置又は空気圧シリンダ装置である場合を例に挙げて説明したが、送りねじ機構又はリニアモータなどについても、この発明を適用することができる。 (2) In this embodiment, the case where the length L n of the head portion 5A is stretched by one stretching portion 5d has been described as an example, but the length L n of the head portion 5A is multi-staged by a plurality of stretching portions. The present invention can also be applied to the case of stretching with. Further, in this embodiment, although the case of arranging the stepped portion 5C has been described as an example between the peak P 1, P 2 of the sectional area change rate distribution dA * / dX, stepped between the peak P 2, P 3 The present invention can also be applied to the case where the part 5C is arranged. Further, in this embodiment, the case where the drive device 6 is a rack / pinion mechanism, a hydraulic cylinder device, or a pneumatic cylinder device has been described as an example, but the present invention is also applied to a feed screw mechanism, a linear motor, and the like. be able to.

(3) この実施形態では、車両2の先頭部先端5aにおける断面積変化率分布dA*/dXのピークP1よりも、車両2の先頭部後端5cにおける断面積変化率分布dA*/dXのピークP3のほうが小さい場合を例に挙げて説明したがこれに限定するものではない。例えば、車両2の先頭部先端5a及び/又は先頭部中間5bにおける断面積変化率分布dA*/dXのピークP1,P2よりも、車両2の先頭部後端5cにおける断面積変化率分布dA*/dXのピークP3のほうが小さくする場合についても、この発明を適用することができる。また、この実施形態では、車両2の先頭部5Aの長さLnが20m未満である場合を例に挙げて説明したが、先頭部5Aの長さLnが20m以上である場合についても、この発明を適用することができる。この場合に、先頭部5Aの断面積変化率分布dA*/dXに4つのピークP1〜P4があるときには、ピークP1とピークP2との間に段差部5Cを配置することができる。 (3) In this embodiment, than the peak P 1 of the cross-sectional area change rate distribution dA * / dX at the head tip 5a of the vehicle 2, the cross-sectional area change rate distribution in the top portion rear end 5c of the vehicle 2 dA * / dX The case where the peak P 3 of is smaller is described as an example, but the present invention is not limited to this. For example, the cross-sectional area change rate at the top tip 5a and / or the top portion intermediate 5b of the vehicle 2 Distribution dA * / peak of dX P 1, than P 2, the cross-sectional area change rate distribution in the top portion rear end 5c of the vehicle 2 The present invention can also be applied to the case where the peak P 3 of dA * / dX is made smaller. Further, in this embodiment, the case where the length L n of the leading portion 5A of the vehicle 2 is less than 20 m has been described as an example, but the case where the length L n of the leading portion 5A is 20 m or more is also described. The present invention can be applied. In this case, when there are four peaks P 1 to P 4 in the cross-sectional area change rate distribution dA * / dX of the head portion 5A, the step portion 5C can be arranged between the peak P 1 and the peak P 2. ..

1 線路
2 車両(移動体)
3 台車
4 車体
5A 先頭部
5B 後尾部
5C 段差部
5a 先頭部先端
5b 先頭部中間
5c 先頭部後端
5d 延伸部
5e 後尾部先端
5f 後尾部後端
5g,5h 壁部
5i,5j 上縁部
5k,5m 下縁部
5n 底部
6 駆動装置
7 先頭部構造
dA/dX 断面積変化率
dA*/dX 断面積変化率分布
S 先頭部形状
1〜P3 ピーク
n 長さ(先頭部の長さ)
1,L2 長さ(可変部長さ(不連続部長さ))
1〜D3 深さ
A 断面積(くびれ部断面積)
F 流れ
1 track 2 vehicle (moving body)
3 Bogie 4 Body 5A Leading part 5B Rear tail 5C Step 5a Leading tip 5b Leading middle 5c Leading rear end 5d Extension 5e Rear tail tip 5f Rear tail rear end 5g, 5h Wall 5i, 5j Upper edge 5k , 5m Lower edge 5n Bottom 6 Drive device 7 Head structure dA / dX Cross-sectional area change rate dA * / dX Cross-sectional area change rate distribution S Head shape P 1 to P 3 Peak L n Length (head length) )
L 1 , L 2 length (variable part length (discontinuous part length))
D 1 to D 3 Depth A Cross-sectional area (constricted cross-sectional area)
F flow

Claims (5)

先頭部に段差部を有する移動体がトンネル内に突入するときに発生する微気圧波を低減可能な微気圧波低減性能を有する移動体の先頭部構造であって、
前記移動体の先頭部形状は、この移動体の先頭部の断面積変化率分布に少なくとも3つのピークがあり、
前記段差部は、前記ピーク間に存在すること、
を特徴とする移動体の先頭部構造。
It is a head structure of a moving body having a micro-pressure wave reduction performance capable of reducing micro-pressure waves generated when a moving body having a stepped portion at the head rushes into a tunnel.
The shape of the head portion of the moving body has at least three peaks in the cross-sectional area change rate distribution of the head portion of the moving body.
The step portion exists between the peaks,
The head structure of the moving body, which is characterized by.
請求項1に記載の移動体の先頭部構造において、
前記移動体の先頭部形状は、この移動体の先頭部の先端部、中間部及び後端部に前記断面積変化率分布のピークがあり、
前記段差部は、前記先端部のピークと前記中間部のピークとの間に存在すること、
を特徴とする移動体の先頭部構造。
In the head structure of the moving body according to claim 1,
The shape of the front portion of the moving body has peaks of the cross-sectional area change rate distribution at the front end portion, the middle portion, and the rear end portion of the front portion of the moving body.
The step portion exists between the peak at the tip portion and the peak at the intermediate portion.
The head structure of the moving body, which is characterized by.
請求項1又は請求項2に記載の移動体の先頭部構造であって、
前記段差部の長さが1.5m以下であること、
を特徴とする移動体の先頭部構造。
The head structure of the moving body according to claim 1 or 2.
The length of the step is 1.5 m or less.
The head structure of the moving body, which is characterized by.
請求項1又は請求項2に記載の移動体の先頭部構造において、
前記段差部の長さが1.5m以下であり、かつ、この段差部が存在する部分の先頭部の断面積が2.0m2以上であること、
を特徴とする移動体の先頭部構造。
In the head structure of the moving body according to claim 1 or 2.
The length of the stepped portion is 1.5 m or less, and the cross-sectional area of the head portion of the portion where the stepped portion exists is 2.0 m 2 or more.
The head structure of the moving body, which is characterized by.
請求項1から請求項4までのいずれか1項に記載の移動体の先頭部構造において、
前記段差部は、前記先頭部を延伸させたときに、この先頭部に形成されること、
を特徴とする移動体の先頭部構造。
In the head structure of the moving body according to any one of claims 1 to 4,
The stepped portion is formed at the leading portion when the leading portion is stretched.
The head structure of the moving body, which is characterized by.
JP2020044232A 2020-03-13 2020-03-13 Forefront part structure of movable body Pending JP2021142944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020044232A JP2021142944A (en) 2020-03-13 2020-03-13 Forefront part structure of movable body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020044232A JP2021142944A (en) 2020-03-13 2020-03-13 Forefront part structure of movable body

Publications (1)

Publication Number Publication Date
JP2021142944A true JP2021142944A (en) 2021-09-24

Family

ID=77765878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020044232A Pending JP2021142944A (en) 2020-03-13 2020-03-13 Forefront part structure of movable body

Country Status (1)

Country Link
JP (1) JP2021142944A (en)

Similar Documents

Publication Publication Date Title
KR101474702B1 (en) Side skirt for a pulled vehicle
CN108162995B (en) Air guide device and method for reducing air pressure difference resistance by using same
US2864318A (en) Method and apparatus for rail transportation
KR101522232B1 (en) Device for reducing rocking of vehicle
MX2012006591A (en) AIRâ¿¿CONDUCTING SYSTEM.
CN108820058A (en) Master end skirt section for motor vehicles
WO2019179099A1 (en) High-speed transportation device enclosed in low-pressure tube
KR101306279B1 (en) high-speed train applied weight lightening by lift force
JP2021142944A (en) Forefront part structure of movable body
US3238894A (en) Duo-rail transportation system
JP2010116075A (en) Multiple-car train
CN102166960B (en) Bionic anti-drag and noise-reducing high-speed pantograph
CN210310342U (en) Reduce train aerodynamic resistance&#39;s train head streamlined structure and train
JP6483522B2 (en) Micro-pressure wave reduction device
JP2010228562A (en) Air current separation restraining structure of moving body
US3498234A (en) Aerodynamically-supported train and track system
US3527170A (en) Suspended railway car aerodynamically supported
WO2022116789A1 (en) Method for reducing wind resistance and obtaining power or electric energy simultaneously, apparatus, and application
CN105438278A (en) Automobile turbulence device capable of improving fuel economy
KR101524010B1 (en) Bogie air dam
JP2019199223A (en) Forefront part structure of movable body
KR101372435B1 (en) Device for needle type reducing the aerodynamic drag of high speed train
KR101306273B1 (en) Air-resistance reducing apparatus for railway vehicle
Taubert et al. Preliminary experiments applying active flow control to a 1/24th scale model of a semi-trailer truck
CN205498931U (en) High -speed closed -loop train