JP7031775B2 - Power supply for electric vehicles - Google Patents

Power supply for electric vehicles Download PDF

Info

Publication number
JP7031775B2
JP7031775B2 JP2021063432A JP2021063432A JP7031775B2 JP 7031775 B2 JP7031775 B2 JP 7031775B2 JP 2021063432 A JP2021063432 A JP 2021063432A JP 2021063432 A JP2021063432 A JP 2021063432A JP 7031775 B2 JP7031775 B2 JP 7031775B2
Authority
JP
Japan
Prior art keywords
switch
secondary battery
battery modules
ecu
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021063432A
Other languages
Japanese (ja)
Other versions
JP2021106496A (en
Inventor
健太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2021063432A priority Critical patent/JP7031775B2/en
Publication of JP2021106496A publication Critical patent/JP2021106496A/en
Application granted granted Critical
Publication of JP7031775B2 publication Critical patent/JP7031775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明は、電動車両の電源装置に関する。 The present invention relates to a power supply device for an electric vehicle.

従来、電池パック内の複数のバッテリの接続状態を、直列接続あるいは並列接続へと切り替えることができ、所定電圧で充電する普通充電よりも大きい電圧での充電となる急速充電時には、バッテリの接続状態を直列接続とする技術が特許文献1に提案されている。 Conventionally, the connection state of multiple batteries in the battery pack can be switched to series connection or parallel connection, and the battery connection state is used during rapid charging, which is charging at a voltage higher than normal charging, which charges at a predetermined voltage. A technique for connecting in series is proposed in Patent Document 1.

特開2015-122866号公報Japanese Unexamined Patent Publication No. 2015-122866

上述したような従来の技術は、普通充電よりも大電流を流す急速充電の際は、電池パック内の複数のバッテリの接続状態を直列接続とするため、バッテリから発生する熱が大きく、バッテリを冷却するための冷却装置が大型化してしまい、コストアップやレイアウトが制限されてしまうといった課題があった。 In the conventional technology as described above, in the case of quick charging in which a larger current flows than in normal charging, the connection state of a plurality of batteries in the battery pack is connected in series, so that the heat generated from the battery is large and the battery is used. The cooling device for cooling becomes large, and there are problems such as cost increase and layout limitation.

そこで、本発明は、コストアップやレイアウトが制限されてしまうことを防止することができる電動車両の電源装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a power supply device for an electric vehicle that can prevent cost increase and layout limitation.

上記課題を解決する本発明に係る電動車両の電源装置は、駆動モータに電力を供給する複数の二次電池モジュールを有する電動車両の電源装置において、前記複数の二次電池モジュールを直列又は並列に切り替え可能に接続する接続回路と、前記接続回路の切り替え状態を制御する切替制御部と、前記電動車両の外部に設置された急速充電用充電器が接続されることで前記複数の二次電池モジュールを充電する急速充電用コネクタと、前記複数の二次電池モジュールを前記急速充電用充電器と比較して長い時間をかけて充電する普通充電用充電器が接続される普通充電用コネクタと、を有し、前記切替制御部は、前記急速充電用充電器が前記急速充電用コネクタに接続された場合には、前記複数の二次電池モジュールを並列に接続するように前記接続回路の切り替え状態を制御し、前記普通充電用充電器が前記普通充電用コネクタに接続された場合、又は、前記複数の二次電池モジュールにより前記駆動モータを駆動させる場合、又は、前記駆動モータにより前記複数の二次電池モジュールを充電させる場合には、前記複数の二次電池モジュールを直列に接続するように前記接続回路の切り替え状態を制御し、前記接続回路は、前記急速充電用充電器と前記普通充電用充電器と前記駆動モータとに接続可能な第1スイッチ回路と、前記複数の二次電池モジュールが前記第1スイッチ回路に直列に接続される第1接続パターンと前記複数の二次電池モジュールが前記第1スイッチ回路に並列に接続される第2接続パターンとの一方を選択するように構成された第2スイッチ回路と、を有し、前記第1スイッチ回路は、第1スイッチ対と第2スイッチ対と第3スイッチ対と、を有し、前記急速充電用コネクタは前記第1スイッチ対に接続され、前記普通充電用コネクタは前記第2スイッチ対に接続され、前記駆動モータは前記第3スイッチ対に接続され、前記接続回路は、前記第1スイッチ対の一方のスイッチと前記第2スイッチ対の一方のスイッチと前記第3スイッチ対の一方のスイッチとに接続された第1ノードと、前記第1スイッチ対の他方のスイッチと前記第2スイッチ対の他方のスイッチと前記第3スイッチ対の他方のスイッチとに接続された第2ノードと、を有する。

The power supply device for an electric vehicle according to the present invention, which solves the above problems, is a power supply device for an electric vehicle having a plurality of secondary battery modules for supplying power to a drive motor, in which the plurality of secondary battery modules are connected in series or in parallel. The plurality of secondary battery modules are connected by connecting a connection circuit that is switchably connected, a switching control unit that controls the switching state of the connection circuit, and a quick charging charger installed outside the electric vehicle. A quick charging connector for charging, and a normal charging connector to which a normal charging charger for charging the plurality of secondary battery modules over a longer period of time as compared with the quick charging charger is connected. The switching control unit has a switching state of the connection circuit so as to connect the plurality of secondary battery modules in parallel when the quick charging charger is connected to the quick charging connector. When the normal charging charger is controlled and connected to the normal charging connector, or when the drive motor is driven by the plurality of secondary battery modules, or when the drive motor drives the drive motor, or when the drive motor drives the plurality of secondary batteries. When charging the battery module , the switching state of the connection circuit is controlled so that the plurality of secondary battery modules are connected in series, and the connection circuit controls the quick charging charger and the normal charging charging. The first switch circuit that can be connected to the device and the drive motor, the first connection pattern in which the plurality of secondary battery modules are connected in series to the first switch circuit, and the plurality of secondary battery modules are the first. It has a second switch circuit configured to select one of a second connection pattern connected in parallel to the one switch circuit, and the first switch circuit is a first switch pair and a second switch pair. The fast charging connector is connected to the first switch pair, the normal charging connector is connected to the second switch pair, and the drive motor is connected to the third switch pair. The connection circuit is connected to a first node connected to one switch of the first switch pair, one switch of the second switch pair, and one switch of the third switch pair, and the first node. It has a second node connected to the other switch of one switch pair, the other switch of the second switch pair, and the other switch of the third switch pair.

本発明は、コストアップやレイアウトが制限されてしまうことを防止することができる電動車両の電源装置を提供することができる。 The present invention can provide a power supply device for an electric vehicle that can prevent cost increase and layout limitation.

図1は、本発明の実施例に係る電動車両の電源装置を搭載した車両の要部を示す構成図である。FIG. 1 is a configuration diagram showing a main part of a vehicle equipped with a power supply device for an electric vehicle according to an embodiment of the present invention. 図2は、本発明の実施例に係る電動車両の電源装置の電力制御動作を示すフローチャートである。FIG. 2 is a flowchart showing a power control operation of the power supply device of the electric vehicle according to the embodiment of the present invention.

本発明の一実施の形態に係る電動車両の電源装置は、駆動モータに電力を供給する複数の二次電池モジュールを有する電動車両の電源装置において、複数の二次電池モジュールを直列又は並列に切り替え可能に接続する接続回路と、接続回路の切り替え状態を制御する切替制御部と、複数の二次電池モジュールを充電する急速充電用充電器が接続される急速充電用コネクタとを有し、切替制御部は、急速充電用充電器が急速充電用コネクタに接続された場合には、複数の二次電池モジュールを並列に接続するように接続回路の切り替え状態を制御する。これにより、本発明の一実施の形態に係る電動車両の電源装置は、コストアップやレイアウトが制限されてしまうことを防止することができる。 The power supply device for an electric vehicle according to an embodiment of the present invention is a power supply device for an electric vehicle having a plurality of secondary battery modules for supplying power to a drive motor, and the plurality of secondary battery modules are switched in series or in parallel. It has a connection circuit that can be connected so that it can be connected, a switching control unit that controls the switching state of the connection circuit, and a quick charging connector to which a quick charging charger that charges a plurality of secondary battery modules is connected. When the quick charging charger is connected to the quick charging connector, the unit controls the switching state of the connection circuit so that a plurality of secondary battery modules are connected in parallel. As a result, the power supply device for the electric vehicle according to the embodiment of the present invention can prevent cost increase and layout limitation.

以下、図面を参照して、駆動モータを駆動源とする車両に本発明の電動車両の電源装置を適用した例について説明する。 Hereinafter, an example in which the power supply device of the electric vehicle of the present invention is applied to a vehicle whose drive source is a drive motor will be described with reference to the drawings.

図1に示すように、車両1は、車両1の駆動源としての駆動モータ2と、複数の二次電池モジュール3と、急速充電用コネクタ4と、普通充電用コネクタ5と、コンバータ6と、インバータ7と、接続回路8と、ECU(Electronic Control Unit)9とを含んで構成される。 As shown in FIG. 1, the vehicle 1 includes a drive motor 2 as a drive source of the vehicle 1, a plurality of secondary battery modules 3, a quick charging connector 4, a normal charging connector 5, and a converter 6. It includes an inverter 7, a connection circuit 8, and an ECU (Electronic Control Unit) 9.

駆動モータ2は、複数の二次電池モジュール3から供給された電力で駆動する電動機として機能する。駆動モータ2は、複数の二次電池モジュール3を充電する電力を車両1の駆動力から生成する発電機としても機能する。 The drive motor 2 functions as an electric motor driven by electric power supplied from a plurality of secondary battery modules 3. The drive motor 2 also functions as a generator that generates electric power for charging the plurality of secondary battery modules 3 from the driving force of the vehicle 1.

各二次電池モジュール3は、直列に接続された複数の電池セルによって構成される。なお、図1においては、2つの二次電池モジュール3が図示されているが、車両1に設けられる二次電池モジュール3の数を限定するものではなく、車両1には、3つ以上の二次電池モジュール3が設けられていてもよい。以下の説明において、複数の二次電池モジュール3を総称して、単に「電池モジュール」ともいう。 Each secondary battery module 3 is composed of a plurality of battery cells connected in series. Although two secondary battery modules 3 are shown in FIG. 1, the number of secondary battery modules 3 provided in the vehicle 1 is not limited, and the vehicle 1 has three or more secondary battery modules 3. The next battery module 3 may be provided. In the following description, the plurality of secondary battery modules 3 are collectively referred to simply as "battery modules".

急速充電用コネクタ4は、電池モジュールを充電する急速充電用充電器が接続される。急速充電用コネクタ4には、急速充電用充電器とECU9との間で制御信号を送受信させるための接続端子が設けられている。 The quick charging connector 4 is connected to a quick charging charger that charges the battery module. The quick charging connector 4 is provided with a connection terminal for transmitting and receiving a control signal between the quick charging charger and the ECU 9.

例えば、急速充電用コネクタ4に急速充電用充電器が接続された場合には、接続端子を介して急速充電用充電器からECU9に接続信号が送信される。急速充電用コネクタ4に急速充電用充電器が接続された状態では、接続端子を介してECU9から急速充電用充電器に充電の開始又は終了などを指示する制御信号が送信される。 For example, when the quick charging charger is connected to the quick charging connector 4, the quick charging charger transmits a connection signal to the ECU 9 via the connection terminal. In a state where the quick charging charger is connected to the quick charging connector 4, a control signal instructing the start or end of charging is transmitted from the ECU 9 to the quick charging charger via the connection terminal.

普通充電用コネクタ5は、急速充電用充電器と比較して長い時間をかけて充電する普通充電用充電器が接続される。普通充電用充電器は、急速充電用充電器よりも低い商用電力を供給する。普通充電用コネクタ5は、家庭用コンセントと同様に構成される。 The normal charging connector 5 is connected to a normal charging charger that charges over a longer period of time as compared with the quick charging charger. Normal charging chargers provide lower commercial power than quick charging chargers. The normal charging connector 5 is configured in the same manner as a household outlet.

コンバータ6は、ECU9の制御により、普通充電用コネクタ5に接続された普通充電用充電器から供給された交流の電力を電池モジュールに供給する直流の電力に変換する。 The converter 6 converts the alternating current power supplied from the normal charging charger connected to the normal charging connector 5 into the direct current power supplied to the battery module under the control of the ECU 9.

インバータ7は、ECU9の制御により、電池モジュールから供給された直流の電力を駆動モータ2に供給する三相の交流の電力に変換する。インバータ7は、ECU9の制御により、駆動モータ2から供給された三相の交流の電力を電池モジュールに供給する直流の電力に変換する。 Under the control of the ECU 9, the inverter 7 converts the DC power supplied from the battery module into the three-phase AC power supplied to the drive motor 2. The inverter 7 converts the three-phase alternating current power supplied from the drive motor 2 into the direct current power supplied to the battery module under the control of the ECU 9.

接続回路8は、リレー10から15と、第1スイッチ16と、第2スイッチ17とを含んで構成される。リレー10及び11は、ECU9の制御により、急速充電用コネクタ4と電池モジュールとを電気的に接続又は切断する。 The connection circuit 8 includes relays 10 to 15, a first switch 16, and a second switch 17. The relays 10 and 11 electrically connect or disconnect the quick charging connector 4 and the battery module under the control of the ECU 9.

リレー12及び13は、ECU9の制御により、コンバータ6と電池モジュールとを電気的に接続又は切断する。リレー14及び15は、ECU9の制御により、インバータ7と電池モジュールとを電気的に接続又は切断する。 The relays 12 and 13 electrically connect or disconnect the converter 6 and the battery module under the control of the ECU 9. The relays 14 and 15 electrically connect or disconnect the inverter 7 and the battery module under the control of the ECU 9.

第1スイッチ16及び第2スイッチ17は、ECU9の制御により、複数の二次電池モジュール3を直列又は並列に切り替え可能に接続する。なお、図1は、複数の二次電池モジュール3が並列に接続されている状態を示している。 The first switch 16 and the second switch 17 connect a plurality of secondary battery modules 3 in series or in parallel so as to be switchable under the control of the ECU 9. Note that FIG. 1 shows a state in which a plurality of secondary battery modules 3 are connected in parallel.

すなわち、複数の二次電池モジュール3が並列に接続されている状態では、第1スイッチ16が接続状態になり、第2スイッチ17が端子17aと端子17bとを接続する状態となる。 That is, in a state where a plurality of secondary battery modules 3 are connected in parallel, the first switch 16 is in a connected state, and the second switch 17 is in a state of connecting the terminal 17a and the terminal 17b.

一方、複数の二次電池モジュール3が直列に接続されている状態では、第1スイッチ16が切断状態になり、第2スイッチ17が端子17aと端子17cとを接続する状態となる。 On the other hand, in a state where a plurality of secondary battery modules 3 are connected in series, the first switch 16 is in a disconnected state, and the second switch 17 is in a state of connecting the terminal 17a and the terminal 17c.

ECU9は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、フラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによって構成されている。 The ECU 9 is composed of a computer unit including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an input port, and an output port.

コンピュータユニットのROMには、各種定数や各種マップ等とともに、当該コンピュータユニットをECU9として機能させるためのプログラムが格納されている。すなわち、当該コンピュータユニットにおいて、CPUがROMに格納されたプログラムを実行することにより、当該コンピュータユニットは、本実施例におけるECU9として機能する。 The ROM of the computer unit stores various constants, various maps, and the like, as well as a program for making the computer unit function as an ECU 9. That is, when the CPU executes the program stored in the ROM in the computer unit, the computer unit functions as the ECU 9 in this embodiment.

ECU9の入力ポートには、急速充電用コネクタ4の接続端子と、普通充電用充電器が普通充電用コネクタ5に接続されたことを検出するために普通充電用コネクタ5に設けられた図示しない電圧センサと、電池モジュールのSOC(State of Charge)を検出する図示しないSOCセンサを含む各種センサ類が接続されている。 The input port of the ECU 9 has a connection terminal of the quick charging connector 4 and a voltage (not shown) provided in the normal charging connector 5 for detecting that the normal charging charger is connected to the normal charging connector 5. The sensor is connected to various sensors including an SOC sensor (not shown) that detects the SOC (State of Charge) of the battery module.

ECU9の出力ポートには、コンバータ6と、インバータ7と、接続回路8の各スイッチとを含む各種制御対象類が接続されている。ECU9は、各種センサ類から得られる情報に基づいて、各種制御対象類を制御する。具体的には、以下に説明するように、ECU9は、接続回路8の切り替え状態を制御する切替制御部20としての機能を有する。 Various control objects including the converter 6, the inverter 7, and the switches of the connection circuit 8 are connected to the output port of the ECU 9. The ECU 9 controls various control targets based on the information obtained from the various sensors. Specifically, as described below, the ECU 9 has a function as a switching control unit 20 that controls the switching state of the connection circuit 8.

(急速充電)
ECU9は、急速充電用コネクタ4に急速充電用充電器が接続された場合には、リレー10から15のうち少なくともリレー10及び11を接続状態にし、第1スイッチ16を接続状態にし、第2スイッチ17の端子17aと端子17bとを接続させる。すなわち、ECU9は、急速充電用コネクタ4に急速充電用充電器が接続された場合には、電池モジュールを並列に接続させる。
(Fast charge)
When the quick charging charger is connected to the quick charging connector 4, the ECU 9 connects at least the relays 10 and 11 of the relays 10 to 15, puts the first switch 16 in the connected state, and sets the second switch. The terminal 17a and the terminal 17b of 17 are connected. That is, when the quick charging charger is connected to the quick charging connector 4, the ECU 9 connects the battery modules in parallel.

(普通充電)
ECU9は、普通充電用コネクタ5に普通充電用充電器が接続された場合には、リレー10から15のうち少なくともリレー12及び13を接続状態にし、第1スイッチ16を切断状態にし、第2スイッチ17の端子17aと端子17cとを接続させる。
(Normal charge)
When the normal charging charger is connected to the normal charging connector 5, the ECU 9 connects at least the relays 12 and 13 of the relays 10 to 15, turns off the first switch 16, and sets the second switch. The terminal 17a and the terminal 17c of 17 are connected.

すなわち、ECU9は、普通充電用コネクタ5に普通充電用充電器が接続された場合には、電池モジュールを直列に接続させる。ECU9は、電池モジュールを直列に接続させた状態で、コンバータ6を制御し、普通充電用コネクタ5に接続された普通充電用充電器から供給された電力を電池モジュールに充電させる。 That is, when the normal charging charger is connected to the normal charging connector 5, the ECU 9 connects the battery modules in series. The ECU 9 controls the converter 6 with the battery modules connected in series, and charges the battery module with the electric power supplied from the normal charging charger connected to the normal charging connector 5.

(駆動モータの駆動)
ECU9は、電池モジュールにより駆動モータ2を駆動させる場合には、リレー10から15のうち少なくともリレー14及び15を接続状態にし、第1スイッチ16を切断状態にし、第2スイッチ17の端子17aと端子17cとを接続させる。
(Drive of drive motor)
When the drive motor 2 is driven by the battery module, the ECU 9 connects at least the relays 14 and 15 of the relays 10 to 15, disconnects the first switch 16, and connects the terminals 17a and the terminals of the second switch 17. Connect with 17c.

すなわち、電池モジュールにより駆動モータ2を駆動させる場合には、電池モジュールを直列に接続させる。ECU9は、電池モジュールを直列に接続させた状態で、インバータ7を制御し、電池モジュールから駆動モータ2に電力を供給させる。 That is, when the drive motor 2 is driven by the battery module, the battery modules are connected in series. The ECU 9 controls the inverter 7 with the battery modules connected in series, and supplies electric power from the battery modules to the drive motor 2.

(駆動モータによる充電)
ECU9は、駆動モータ2により電池モジュールを充電させる場合には、リレー10から15のうち少なくともリレー14及び15を接続状態にし、第1スイッチ16を切断状態にし、第2スイッチ17の端子17aと端子17cとを接続させる。
(Charging by drive motor)
When the battery module is charged by the drive motor 2, the ECU 9 connects at least the relays 14 and 15 of the relays 10 to 15, disconnects the first switch 16, and connects the terminals 17a and the terminals of the second switch 17. Connect with 17c.

すなわち、駆動モータ2により電池モジュールを充電させる場合には、電池モジュールを直列に接続させる。ECU9は、電池モジュールを直列に接続させた状態で、インバータ7を制御し、駆動モータ2から電池モジュールに電力を供給させる。 That is, when the battery module is charged by the drive motor 2, the battery modules are connected in series. The ECU 9 controls the inverter 7 with the battery modules connected in series, and supplies electric power to the battery modules from the drive motor 2.

以上のように構成された本発明の実施例に係る電動車両の電源装置による電力制御動作について図2を参照して説明する。以下に説明する電力制御動作は、ECU9が作動している間、繰り返し実行される。 The power control operation by the power supply device of the electric vehicle according to the embodiment of the present invention configured as described above will be described with reference to FIG. The power control operation described below is repeatedly executed while the ECU 9 is operating.

なお、本発明を理解しやすくするために、以下、電力制御動作については、電池モジュールの接続状態の制御を主として説明し、コンバータ6及びインバータ7の制御及びリレー10から15の接続状態の制御などの説明を省略する。 In order to make the present invention easier to understand, the power control operation will mainly explain the control of the connection state of the battery module, the control of the converter 6 and the inverter 7, and the control of the connection state of the relays 10 to 15. The explanation of is omitted.

まず、ステップS1において、ECU9は、急速充電用コネクタ4に急速充電用充電器が接続されたか否かを判断する。具体的には、ECU9は、急速充電用充電器から接続信号を受信した場合には、急速充電用コネクタ4に急速充電用充電器が接続されたと判断し、急速充電用充電器から接続信号を受信していない場合には、急速充電用コネクタ4に急速充電用充電器が接続されていないと判断する。 First, in step S1, the ECU 9 determines whether or not the quick charging charger is connected to the quick charging connector 4. Specifically, when the ECU 9 receives the connection signal from the quick charging charger, it determines that the quick charging charger is connected to the quick charging connector 4, and outputs the connection signal from the quick charging charger. If it is not received, it is determined that the quick charge charger is not connected to the quick charge connector 4.

急速充電用コネクタ4に急速充電用充電器が接続されたと判断した場合には、ECU9は、ステップS2の処理を実行し、急速充電用コネクタ4に急速充電用充電器が接続されてないと判断した場合には、ECU9は、ステップS6の処理を実行する。 When it is determined that the quick charge charger is connected to the quick charge connector 4, the ECU 9 executes the process of step S2 and determines that the quick charge charger is not connected to the quick charge connector 4. If so, the ECU 9 executes the process of step S6.

ステップS2において、ECU9は、電池モジュールを並列に接続させる。具体的には、ECU9は、第1スイッチ16を接続状態にし、第2スイッチ17の端子17aと端子17bとを接続させる。ステップS2の処理を実行した後、ECU9は、ステップS3の処理を実行する。 In step S2, the ECU 9 connects the battery modules in parallel. Specifically, the ECU 9 puts the first switch 16 in a connected state and connects the terminal 17a and the terminal 17b of the second switch 17. After executing the process of step S2, the ECU 9 executes the process of step S3.

ステップS3において、ECU9は、急速充電を開始させる。具体的には、ECU9は、充電の開始を指示する制御信号を急速充電用充電器に送信する。ステップS3の処理を実行した後、ECU9は、ステップS4の処理を実行する。 In step S3, the ECU 9 starts quick charging. Specifically, the ECU 9 transmits a control signal instructing the start of charging to the quick charging charger. After executing the process of step S3, the ECU 9 executes the process of step S4.

ステップS4において、ECU9は、急速充電の終了条件が成立したか否かを判断する。具体的には、ECU9は、SOCセンサによって検出された電池モジュールのSOCが閾値以上となった場合、急速充電用充電器が取り外された場合、又は、急速充電用充電器等の不具合が検出された場合には、急速充電の終了条件が成立したと判断する。 In step S4, the ECU 9 determines whether or not the condition for ending the quick charge is satisfied. Specifically, the ECU 9 detects that the SOC of the battery module detected by the SOC sensor exceeds the threshold value, the quick charging charger is removed, or a malfunction of the quick charging charger or the like is detected. If so, it is determined that the condition for ending the quick charge is satisfied.

急速充電の終了条件が成立していないと判断した場合、ECU9は、電力制御動作を終了し、急速充電用充電器による充電を継続する。急速充電の終了条件が成立したと判断した場合、ECU9は、ステップS5の処理を実行する。 If it is determined that the quick charging end condition is not satisfied, the ECU 9 ends the power control operation and continues charging by the quick charging charger. When it is determined that the condition for ending the quick charge is satisfied, the ECU 9 executes the process of step S5.

ステップS5において、ECU9は、急速充電を終了させる。具体的には、ECU9は、充電の終了を指示する制御信号を急速充電用充電器に送信する。ステップS5の処理を実行した後、ECU9は、電力制御動作を終了する。 In step S5, the ECU 9 ends the quick charge. Specifically, the ECU 9 transmits a control signal instructing the end of charging to the quick charging charger. After executing the process of step S5, the ECU 9 ends the power control operation.

ステップS6において、ECU9は、普通充電用コネクタ5に普通充電用充電器が接続されたか否かを判断する。具体的には、ECU9は、電圧センサによって所定値以上の電圧が検出された場合には、普通充電用コネクタ5に普通充電用充電器が接続されたと判断し、所定値以上の電圧が検出されなかった場合には、普通充電用コネクタ5に普通充電用充電器が接続されていないと判断する。 In step S6, the ECU 9 determines whether or not the normal charging charger is connected to the normal charging connector 5. Specifically, when the voltage sensor detects a voltage equal to or higher than a predetermined value, the ECU 9 determines that the normal charging charger is connected to the normal charging connector 5, and detects a voltage equal to or higher than the predetermined value. If not, it is determined that the normal charging charger is not connected to the normal charging connector 5.

普通充電用コネクタ5に普通充電用充電器が接続されたと判断した場合には、ECU9は、ステップS7の処理を実行し、普通充電用コネクタ5に普通充電用充電器が接続されてないと判断した場合には、ECU9は、ステップS10の処理を実行する。 When it is determined that the normal charging charger is connected to the normal charging connector 5, the ECU 9 executes the process of step S7 and determines that the normal charging charger is not connected to the normal charging connector 5. If so, the ECU 9 executes the process of step S10.

ステップS7において、ECU9は、電池モジュールを直列に接続させる。具体的には、ECU9は、第1スイッチ16を切断状態にし、第2スイッチ17の端子17aと端子17cとを接続させる。ステップS7の処理を実行した後、ECU9は、ステップS8の処理を実行する。 In step S7, the ECU 9 connects the battery modules in series. Specifically, the ECU 9 cuts off the first switch 16 and connects the terminal 17a and the terminal 17c of the second switch 17. After executing the process of step S7, the ECU 9 executes the process of step S8.

ステップS8において、ECU9は、普通充電の終了条件が成立したか否かを判断する。具体的には、ECU9は、SOCセンサによって検出された電池モジュールのSOCが閾値以上となった場合、普通充電用充電器が取り外された場合、又は、普通充電用充電器等の不具合が検出された場合には、普通充電の終了条件が成立したと判断する。 In step S8, the ECU 9 determines whether or not the end condition of normal charging is satisfied. Specifically, the ECU 9 detects that the SOC of the battery module detected by the SOC sensor exceeds the threshold value, the normal charging charger is removed, or a malfunction of the normal charging charger or the like is detected. If so, it is determined that the end condition of normal charging is satisfied.

普通充電の終了条件が成立していないと判断した場合、ECU9は、電力制御動作を終了し、普通充電用充電器による充電を継続する。普通充電の終了条件が成立したと判断した場合、ECU9は、ステップS9の処理を実行する。 When it is determined that the end condition of the normal charging is not satisfied, the ECU 9 ends the power control operation and continues charging by the normal charging charger. When it is determined that the end condition of normal charging is satisfied, the ECU 9 executes the process of step S9.

ステップS9において、ECU9は、普通充電を終了させる。具体的には、ECU9は、コンバータ6の全てのスイッチをオフにする。なお、ステップS5において、ECU9は、リレー12及び13の少なくとも一方をオフにしてもよい。ステップS5の処理を実行した後、ECU9は、電力制御動作を終了する。 In step S9, the ECU 9 ends normal charging. Specifically, the ECU 9 turns off all the switches of the converter 6. In step S5, the ECU 9 may turn off at least one of the relays 12 and 13. After executing the process of step S5, the ECU 9 ends the power control operation.

ステップS10において、ECU9は、電池モジュールを直列に接続させる。具体的には、ECU9は、第1スイッチ16を切断状態にし、第2スイッチ17の端子17aと端子17cとを接続させる。本実施例において、ステップS10は、電池モジュールにより駆動モータ2を駆動させる場合、又は、駆動モータ2により電池モジュールを充電させる場合などに実行される。ステップS10の処理を実行した後、ECU9は、電力制御動作を終了する。 In step S10, the ECU 9 connects the battery modules in series. Specifically, the ECU 9 cuts off the first switch 16 and connects the terminal 17a and the terminal 17c of the second switch 17. In this embodiment, step S10 is executed when the drive motor 2 is driven by the battery module, or when the battery module is charged by the drive motor 2. After executing the process of step S10, the ECU 9 ends the power control operation.

以上のように、本実施例に係る電動車両の電源装置は、急速充電用充電器が急速充電用コネクタ4に接続された場合には、複数の二次電池モジュール3を並列に接続するように接続回路8の切り替え状態を制御する。 As described above, in the power supply device of the electric vehicle according to the present embodiment, when the quick charging charger is connected to the quick charging connector 4, a plurality of secondary battery modules 3 are connected in parallel. The switching state of the connection circuit 8 is controlled.

このため、本実施例に係る電動車両の電源装置は、急速充電用充電器から供給された電力により流れる電流を複数の二次電池モジュール3に分散させることで、二次電池モジュール3から発生する熱を抑制することができる。 Therefore, the power supply device for the electric vehicle according to the present embodiment is generated from the secondary battery module 3 by distributing the current flowing by the electric power supplied from the quick charging charger to the plurality of secondary battery modules 3. The heat can be suppressed.

したがって、本実施例に係る電動車両の電源装置は、複数の二次電池モジュール3を冷却するための冷却装置を大型化する必要がなくなるため、コストアップやレイアウトが制限されてしまうことを防止することができる。 Therefore, the power supply device for the electric vehicle according to the present embodiment does not need to increase the size of the cooling device for cooling the plurality of secondary battery modules 3, and thus prevents cost increase and layout limitation. be able to.

また、本実施例に係る電動車両の電源装置は、急速充電時に流れる電流を低減するため、二次電池モジュール3として大電流に対する耐性を有するものを使用する必要がなくなるため、コストダウンを図ることができ、二次電池モジュール3の選択範囲が広がる。 Further, in the power supply device of the electric vehicle according to the present embodiment, since the current flowing during quick charging is reduced, it is not necessary to use a secondary battery module 3 having resistance to a large current, so that the cost can be reduced. The selection range of the secondary battery module 3 is expanded.

また、本実施例に係る電動車両の電源装置は、普通充電用充電器が普通充電用コネクタ5に接続された場合、又は、複数の二次電池モジュール3により駆動モータ2を駆動させる場合には、複数の二次電池モジュール3を直列に接続するように接続回路8の切り替え状態を制御する。 Further, in the power supply device of the electric vehicle according to the present embodiment, when the normal charging charger is connected to the normal charging connector 5, or when the drive motor 2 is driven by a plurality of secondary battery modules 3. , The switching state of the connection circuit 8 is controlled so that a plurality of secondary battery modules 3 are connected in series.

したがって、本実施例に係る電動車両の電源装置は、普通充電における充電時間を短縮することができる。また、本実施例に係る電動車両の電源装置は、複数の二次電池モジュール3を直列に接続するため、電池モジュールの端子間電圧が高くなり、二次電池モジュール3及び駆動モータ2の使用電圧及び電流範囲を広げることができる。 Therefore, the power supply device for the electric vehicle according to the present embodiment can shorten the charging time in normal charging. Further, in the power supply device of the electric vehicle according to the present embodiment, since a plurality of secondary battery modules 3 are connected in series, the voltage between the terminals of the battery modules becomes high, and the working voltage of the secondary battery module 3 and the drive motor 2 is increased. And the current range can be expanded.

なお、本実施例においては、駆動モータ2を駆動源とする車両に本発明に係る電動車両の電源装置を適用した例について説明したが、エンジンと駆動モータとを駆動源とする車両、いわゆる、プラグインハイブリッド車両にも適用することができる。 In this embodiment, an example in which the power supply device of the electric vehicle according to the present invention is applied to a vehicle using the drive motor 2 as a drive source has been described, but a vehicle having an engine and a drive motor as a drive source, so-called It can also be applied to plug-in hybrid vehicles.

以上、本発明の実施例について開示したが、本発明の範囲を逸脱することなく本実施例に変更を加えられ得ることは明白である。本発明の実施例は、このような変更が加えられた等価物が特許請求の範囲に記載された発明に含まれることを前提として開示されている。 Although the embodiments of the present invention have been disclosed above, it is clear that the embodiments can be modified without departing from the scope of the present invention. The embodiments of the present invention are disclosed on the premise that the equivalents to which such modifications are made are included in the invention described in the claims.

1 車両(電動車両)
2 駆動モータ
3 二次電池モジュール
4 急速充電用コネクタ
5 普通充電用コネクタ
8 接続回路
20 切替制御部
1 Vehicle (electric vehicle)
2 Drive motor 3 Secondary battery module 4 Quick charge connector 5 Normal charge connector 8 Connection circuit 20 Switching control unit

Claims (2)

駆動モータに電力を供給する複数の二次電池モジュールを有する電動車両の電源装置において、
前記複数の二次電池モジュールを直列又は並列に切り替え可能に接続する接続回路と、
前記接続回路の切り替え状態を制御する切替制御部と、
前記電動車両の外部に設置された急速充電用充電器が接続されることで前記複数の二次電池モジュールを充電する急速充電用コネクタと、
前記複数の二次電池モジュールを前記急速充電用充電器と比較して長い時間をかけて充電する普通充電用充電器が接続される普通充電用コネクタと、を有し、
前記切替制御部は、
前記急速充電用充電器が前記急速充電用コネクタに接続された場合には、前記複数の二次電池モジュールを並列に接続するように前記接続回路の切り替え状態を制御し、
前記普通充電用充電器が前記普通充電用コネクタに接続された場合、又は、前記複数の二次電池モジュールにより前記駆動モータを駆動させる場合、又は、前記駆動モータにより前記複数の二次電池モジュールを充電させる場合には、前記複数の二次電池モジュールを直列に接続するように前記接続回路の切り替え状態を制御し、
前記接続回路は、
前記急速充電用充電器と前記普通充電用充電器と前記駆動モータとに接続可能な第1スイッチ回路と、
前記複数の二次電池モジュールが前記第1スイッチ回路に直列に接続される第1接続パターンと前記複数の二次電池モジュールが前記第1スイッチ回路に並列に接続される第2接続パターンとの一方を選択するように構成された第2スイッチ回路と、を有し、
前記第1スイッチ回路は、第1スイッチ対と第2スイッチ対と第3スイッチ対と、を有し、
前記急速充電用コネクタは前記第1スイッチ対に接続され、
前記普通充電用コネクタは前記第2スイッチ対に接続され、
前記駆動モータは前記第3スイッチ対に接続され、
前記接続回路は、
前記第1スイッチ対の一方のスイッチと前記第2スイッチ対の一方のスイッチと前記第3スイッチ対の一方のスイッチとに接続された第1ノードと、
前記第1スイッチ対の他方のスイッチと前記第2スイッチ対の他方のスイッチと前記第3スイッチ対の他方のスイッチとに接続された第2ノードと、を有することを特徴とする電動車両の電源装置。
In a power supply unit of an electric vehicle having multiple secondary battery modules that supply electric power to a drive motor.
A connection circuit that connects the plurality of secondary battery modules in series or in parallel so as to be switchable.
A switching control unit that controls the switching state of the connection circuit,
A quick charging connector for charging the plurality of secondary battery modules by connecting a quick charging charger installed outside the electric vehicle, and a quick charging connector.
It has a normal charging connector to which a normal charging charger for charging the plurality of secondary battery modules over a longer period of time as compared with the quick charging charger is connected .
The switching control unit
When the quick charging charger is connected to the quick charging connector, the switching state of the connection circuit is controlled so that the plurality of secondary battery modules are connected in parallel.
When the normal charging charger is connected to the normal charging connector, or when the drive motor is driven by the plurality of secondary battery modules, or when the drive motor drives the plurality of secondary battery modules. When charging , the switching state of the connection circuit is controlled so that the plurality of secondary battery modules are connected in series .
The connection circuit is
A first switch circuit that can be connected to the quick charging charger, the normal charging charger, and the drive motor.
One of a first connection pattern in which the plurality of secondary battery modules are connected in series to the first switch circuit and a second connection pattern in which the plurality of secondary battery modules are connected in parallel to the first switch circuit. Has a second switch circuit, which is configured to select
The first switch circuit has a first switch pair, a second switch pair, and a third switch pair.
The quick charge connector is connected to the first switch pair and is connected to the first switch pair.
The normal charging connector is connected to the second switch pair and is connected to the second switch pair.
The drive motor is connected to the third switch pair and
The connection circuit is
A first node connected to one switch of the first switch pair, one switch of the second switch pair, and one switch of the third switch pair.
A power supply for an electric vehicle comprising: the other switch of the first switch pair, the other switch of the second switch pair, and a second node connected to the other switch of the third switch pair. Device.
前記複数の二次電池モジュールが、
第1陽極端子と第1陰極端子とを有する第1の二次電池モジュールと、
第2陽極端子と第2陰極端子とを有する第2の二次電池モジュールと、を有し、
前記第2スイッチ回路は、
前記第1ノードと前記第1陽極端子とを結ぶ第1回路と、
前記第2ノードと前記第2陰極端子とを結ぶ第2回路と、
前記第1ノードに接続された第1接点と前記第2陽極端子に接続された第2接点との間に設けられた第1スイッチと、
前記第1陰極端子に接続された第3接点と、前記第2ノードに接続された第5接点および前記第2陽極端子に接続された第4接点との間に設けられ、前記第3接点と前記第4接点とを結ぶ状態と前記第3接点と前記第5接点とを結ぶ状態とのいずれか一方に切替可能な第2スイッチとを有することを特徴とする請求項1に記載の電動車両の電源装置。
The plurality of secondary battery modules
A first secondary battery module having a first anode terminal and a first cathode terminal,
It has a second secondary battery module having a second anode terminal and a second cathode terminal.
The second switch circuit is
The first circuit connecting the first node and the first anode terminal,
A second circuit connecting the second node and the second cathode terminal,
A first switch provided between the first contact connected to the first node and the second contact connected to the second anode terminal, and
A third contact connected to the first cathode terminal, a fifth contact connected to the second node, and a fourth contact connected to the second anode terminal are provided between the third contact and the third contact. The electric vehicle according to claim 1, further comprising a second switch capable of switching between a state of connecting the fourth contact and a state of connecting the third contact and the fifth contact. Power supply.
JP2021063432A 2016-12-13 2021-04-02 Power supply for electric vehicles Active JP7031775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021063432A JP7031775B2 (en) 2016-12-13 2021-04-02 Power supply for electric vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016240846A JP2018098892A (en) 2016-12-13 2016-12-13 Power supply device of electric vehicle
JP2021063432A JP7031775B2 (en) 2016-12-13 2021-04-02 Power supply for electric vehicles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016240846A Division JP2018098892A (en) 2016-12-13 2016-12-13 Power supply device of electric vehicle

Publications (2)

Publication Number Publication Date
JP2021106496A JP2021106496A (en) 2021-07-26
JP7031775B2 true JP7031775B2 (en) 2022-03-08

Family

ID=62257619

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016240846A Pending JP2018098892A (en) 2016-12-13 2016-12-13 Power supply device of electric vehicle
JP2021063432A Active JP7031775B2 (en) 2016-12-13 2021-04-02 Power supply for electric vehicles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016240846A Pending JP2018098892A (en) 2016-12-13 2016-12-13 Power supply device of electric vehicle

Country Status (4)

Country Link
JP (2) JP2018098892A (en)
CN (1) CN108215880A (en)
DE (1) DE102017221770B4 (en)
FR (1) FR3060231B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070293B2 (en) * 2018-09-27 2022-05-18 トヨタ自動車株式会社 Charging device
EP3664251B1 (en) * 2018-12-07 2021-03-03 Yazaki Corporation Power supply system
CN109703384B (en) * 2018-12-29 2023-08-29 苏州唯控汽车科技有限公司 Single-phase charging and three-phase inversion driving interlocking device of modularized vehicle battery system
JP7140007B2 (en) * 2019-03-12 2022-09-21 株式会社デンソー storage system
DE102019129705A1 (en) * 2019-11-05 2021-05-06 Bayerische Motoren Werke Aktiengesellschaft Multi-voltage storage system for an at least partially electrically powered vehicle
DE102020129138A1 (en) 2020-11-05 2022-05-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and circuit for matching an output filter of a DC intelligent energy storage system
CN117674337A (en) * 2022-08-31 2024-03-08 华为技术有限公司 Circuit system and foldable terminal
CN115966849B (en) * 2023-03-16 2023-05-12 成都大学 Modularized energy storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149018A (en) 2004-11-17 2006-06-08 Matsushita Electric Ind Co Ltd Controller for inverter equipped with accumulator
JP2014072992A (en) 2012-09-28 2014-04-21 Mitsubishi Motors Corp Chargeability determination device of battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053934B2 (en) * 2002-12-24 2008-02-27 東芝電池株式会社 Secondary battery charger and its charge control program
CN201766126U (en) * 2010-01-02 2011-03-16 丁云广 Rapid rechargeable battery
DE102011083020A1 (en) 2011-09-20 2013-03-21 Robert Bosch Gmbh Loading device, in particular for motor vehicles, methods and motor vehicle
CN102882321B (en) * 2012-11-02 2014-09-17 李天举 Electromotion and generation integrated unit and pure electric vehicle control system for vehicle
JP6183709B2 (en) 2013-12-24 2017-08-23 三菱自動車工業株式会社 Electric vehicle charging / discharging system
CN104092266A (en) * 2014-07-25 2014-10-08 李晚霞 Method and device for charging and discharging power batteries fast and safely
JP2016129480A (en) * 2015-01-06 2016-07-14 バンクガード株式会社 Secondary battery
DE102015006208A1 (en) 2015-05-13 2015-12-03 Daimler Ag Battery arrangement for a motor vehicle with electrical disconnect device and method for operating a battery assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149018A (en) 2004-11-17 2006-06-08 Matsushita Electric Ind Co Ltd Controller for inverter equipped with accumulator
JP2014072992A (en) 2012-09-28 2014-04-21 Mitsubishi Motors Corp Chargeability determination device of battery

Also Published As

Publication number Publication date
JP2021106496A (en) 2021-07-26
FR3060231A1 (en) 2018-06-15
JP2018098892A (en) 2018-06-21
DE102017221770A1 (en) 2018-06-14
CN108215880A (en) 2018-06-29
FR3060231B1 (en) 2023-04-14
DE102017221770B4 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
JP7031775B2 (en) Power supply for electric vehicles
JP6593363B2 (en) Power system
US10967746B2 (en) Vehicle
US8305045B2 (en) Charge control circuit, battery pack, and charging system
US9886802B2 (en) Vehicle power supply device and malfunction diagnosis method thereof
US9960612B2 (en) Charging and discharging system for a vehicle including a first fuse in the vehicle and a second fuse in a cable connected to the vehicle
US20120139480A1 (en) Charger and charging system
US11958409B2 (en) Vehicle and method of notifying charging information of vehicle
US11230199B2 (en) Motor-driven vehicle and control method for motor-driven vehicle
JP2014023231A (en) Onboard charge control unit
JP2016119788A (en) Battery system
CN110949154B (en) Charging device
JP6541310B2 (en) Module control device, balance correction system and storage system
JP6668210B2 (en) Power supply control device and power supply system
CN110816311A (en) Method for operating a battery pack system and electric vehicle
JP6048300B2 (en) Battery monitoring device and battery unit
JP6744786B2 (en) Power supply control device for electric vehicle
JP2019170092A (en) Vehicle power system
JP2020167027A (en) Power supply device
JP7159581B2 (en) Vehicle power system
JP7337567B2 (en) power supply
JP7111012B2 (en) power system
JP6879135B2 (en) Warm-up system
JP2021087280A (en) Battery control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R151 Written notification of patent or utility model registration

Ref document number: 7031775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151