JP7027843B2 - Manufacturing method of inductor element - Google Patents

Manufacturing method of inductor element Download PDF

Info

Publication number
JP7027843B2
JP7027843B2 JP2017229166A JP2017229166A JP7027843B2 JP 7027843 B2 JP7027843 B2 JP 7027843B2 JP 2017229166 A JP2017229166 A JP 2017229166A JP 2017229166 A JP2017229166 A JP 2017229166A JP 7027843 B2 JP7027843 B2 JP 7027843B2
Authority
JP
Japan
Prior art keywords
inductor element
manufacturing
thermosetting resin
preformed
insert member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017229166A
Other languages
Japanese (ja)
Other versions
JP2019102529A (en
Inventor
保英 山下
克志 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017229166A priority Critical patent/JP7027843B2/en
Publication of JP2019102529A publication Critical patent/JP2019102529A/en
Application granted granted Critical
Publication of JP7027843B2 publication Critical patent/JP7027843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Description

本発明は、インダクタ素子の製造方法に関する。 The present invention relates to a method for manufacturing an inductor element.

インダクタ素子の一例として、金属磁性粉に樹脂を加えて加圧成形して得られるコアの内部にコイルを埋設しているインダクタ素子が知られている。 As an example of an inductor element, an inductor element in which a coil is embedded inside a core obtained by adding a resin to a metallic magnetic powder and pressure-molding is known.

近年、コイル部品の大電流化が進み、コイルの直流重畳特性の向上が求められている。直流重畳特性の向上のためには、密度を高密度にすることが求められている。 In recent years, the current of coil components has been increasing, and it is required to improve the DC superimposition characteristics of the coil. In order to improve the DC superimposition characteristics, it is required to increase the density.

下記の特許文献1には、磁性粉末と熱硬化性樹脂とを混合し、加圧成形して2個の圧粉体を成形し、それらの圧粉体でコイル部を挟み込むように再加圧するとともに熱硬化を行うコイル部品の製造方法が記載されている。そして、それらの圧粉体は再加圧成形する際に圧粉体の形状が崩れない硬度の強硬度部と圧粉体の形状が崩れる硬度の弱硬度部を設け、再圧縮により弱硬度部を崩しながら成形を行っている。 In Patent Document 1 below, a magnetic powder and a thermosetting resin are mixed and pressure-molded to form two green compacts, which are repressurized so as to sandwich the coil portion with the green compacts. It also describes a method of manufacturing a coil component that is thermoset. Then, those green compacts are provided with a strong hardness portion having a hardness at which the shape of the green compact does not collapse during repressurization molding and a weak hardness portion having a hardness at which the shape of the green compact does not collapse, and the weak hardness portion is formed by recompression. Molding is performed while breaking down.

しかし、再加圧成形時に弱硬度部の形状が崩れやすいために十分な圧力伝達が行えず、特に圧粉体同士を接合させる部分の密度が低くなりやすい。すなわち、最終的に得られるインダクタ素子において、コアの密度ムラが生じやすい。その結果、直流重畳特性を低下させる傾向となる。 However, since the shape of the weak hardness portion tends to collapse during repressurization molding, sufficient pressure transmission cannot be performed, and in particular, the density of the portion where the green compacts are bonded tends to be low. That is, in the finally obtained inductor element, the density unevenness of the core tends to occur. As a result, the DC superimposition characteristic tends to be deteriorated.

さらに、密度を高くするために再加圧成形時の圧力を高くしようとすると、コイル被膜が破れたり、金型内壁と磁性粉末表面との擦れが発生したりして、耐電圧を低下させやすい。 Furthermore, if an attempt is made to increase the pressure during repressurization in order to increase the density, the coil coating may be torn or the inner wall of the mold may rub against the surface of the magnetic powder, which tends to reduce the withstand voltage. ..

特開2002-252120号公報Japanese Patent Application Laid-Open No. 2002-252120

本発明は、このような実状に鑑みてなされ、その目的は、耐電圧、インダクタンス、直流重畳特性および成形体抗折強度が優れたインダクタ素子の製造方法を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing an inductor element having excellent withstand voltage, inductance, DC superimposition characteristics and molded body bending strength.

上記の目的を達成するために、本発明に係るインダクタ素子の製造方法は、
コイル状に導体が巻回してある巻線部を有するインサート部材を準備する工程と、
磁性粉体および熱硬化性樹脂を含む顆粒を予備圧縮成形して複数の予備成形体を得る工程と、
前記インサート部材および前記複数の予備成形体を、軟化点以上かつ硬化開始温度以下の温度において本圧縮して一体化成形体を得る工程と、
前記一体化成形体を得る工程の後に、前記一体化成形体を前記熱硬化性樹脂の硬化開始温度よりも高い温度に本加熱してインダクタ素子を得る工程と、
を有する。
In order to achieve the above object, the method for manufacturing an inductor element according to the present invention is:
The process of preparing an insert member having a winding part in which a conductor is wound in a coil shape, and
The process of pre-compressing granules containing magnetic powder and thermosetting resin to obtain a plurality of preformed bodies, and
A step of mainly compressing the insert member and the plurality of preformed bodies at a temperature equal to or higher than the softening point and lower than the curing start temperature to obtain an integrated molded body.
After the step of obtaining the integrated molded body, a step of main heating the integrated molded body to a temperature higher than the curing start temperature of the thermosetting resin to obtain an inductor element.
Have.

上記の製造方法により製造されたインダクタ素子は、耐電圧、インダクタンス、直流重畳特性および成形体破壊荷重が全て優れる。 The inductor element manufactured by the above manufacturing method is excellent in withstand voltage, inductance, DC superimposition characteristics and molded body breaking load.

前記一体化成形体を得る工程は、前記インサート部材および前記複数の予備成形体を金型のキャビティ内に配置し、本圧縮することにより行われてもよい。 The step of obtaining the integrated molded body may be performed by arranging the insert member and the plurality of preformed bodies in the cavity of the mold and performing main compression.

前記複数の予備成形体を前記金型に配置する前に予備加熱してもよい。 The plurality of preformed bodies may be preheated before being placed in the mold.

前記インサート部材を前記金型に配置する前に予備加熱してもよい。 The insert member may be preheated before being placed in the mold.

前記一体化成形体を得る工程において、前記巻線部内の導体と前記予備成形体の隙間部に磁性粉体および熱硬化性樹脂を入り込ませてもよい。 In the step of obtaining the integrated molded body, the magnetic powder and the thermosetting resin may be inserted into the gap between the conductor in the winding portion and the preformed body.

前記磁性紛体および前記熱硬化性樹脂を含む前記顆粒を2.5×10~1×10MPaの圧力で予備圧縮成形して複数の予備成形体を得てもよい。 The granules containing the magnetic powder and the thermosetting resin may be preformed by precompression molding at a pressure of 2.5 × 10 2 to 1 × 10 3 MPa to obtain a plurality of preformed bodies.

前記本圧縮時の圧力が、前記予備圧縮成形時の圧力と同等以下であってもよい。 The pressure at the time of the main compression may be equal to or less than the pressure at the time of the precompression molding.

図1は本発明の一実施形態に係るインダクタ素子の製造方法により製造されるインダクタ素子の断面図である。FIG. 1 is a cross-sectional view of an inductor element manufactured by the method for manufacturing an inductor element according to an embodiment of the present invention. 図2は図1に示すインダクタ素子を製造する過程で用いる予備成形体およびインサート部材を表す斜視図である。FIG. 2 is a perspective view showing a preformed body and an insert member used in the process of manufacturing the inductor element shown in FIG. 1. 図3は図2に示すIII-III線に沿う断面図である。FIG. 3 is a cross-sectional view taken along the line III-III shown in FIG. 図4は本発明の他の実施形態に係るインダクタ素子の製造方法により製造されるインダクタ素子を表す断面図である。FIG. 4 is a cross-sectional view showing an inductor element manufactured by the method for manufacturing an inductor element according to another embodiment of the present invention. 図5は図4に示すインダクタ素子を製造する過程で用いる予備成形体およびインサート部材を表す斜視図である。FIG. 5 is a perspective view showing a preformed body and an insert member used in the process of manufacturing the inductor element shown in FIG. 図6は図5のVI-VI線に沿う断面図である。FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 図7は本発明の他の実施形態に係るインダクタ素子の製造方法により製造されるインダクタ素子を表す断面図である。FIG. 7 is a cross-sectional view showing an inductor element manufactured by the method for manufacturing an inductor element according to another embodiment of the present invention. 図8は図7に示すインダクタ素子を製造する過程で用いる予備成形体およびインサート部材を表す斜視図である。FIG. 8 is a perspective view showing a preformed body and an insert member used in the process of manufacturing the inductor element shown in FIG. 7. 図9は図8のIX-IX線に沿う断面図である。FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. 図10は本発明の他の実施形態に係るインダクタ素子の製造方法により製造されるインダクタ素子を表す断面図である。FIG. 10 is a cross-sectional view showing an inductor element manufactured by the method for manufacturing an inductor element according to another embodiment of the present invention. 図11は図10に示すインダクタ素子を製造する過程で用いる予備成形体およびインサート部材を表す斜視図である。FIG. 11 is a perspective view showing a preformed body and an insert member used in the process of manufacturing the inductor element shown in FIG. 図12は図11のXII―XII線に沿う断面図である。FIG. 12 is a cross-sectional view taken along the line XII-XII of FIG. 図13Aは本発明の実施例の製造工程を示すフロー図である。FIG. 13A is a flow chart showing a manufacturing process according to an embodiment of the present invention. 図13Bは本発明の比較例の製造工程を示すフロー図である。FIG. 13B is a flow chart showing a manufacturing process of a comparative example of the present invention. 図14は本発明の実施例および比較例の特性を表すグラフである。FIG. 14 is a graph showing the characteristics of Examples and Comparative Examples of the present invention. 図15は本発明の実施例および比較例の特性を表すグラフである。FIG. 15 is a graph showing the characteristics of Examples and Comparative Examples of the present invention.

以下、本発明を、図面に示す実施形態に基づき説明するが、本発明は下記の実施形態に限定されない。 Hereinafter, the present invention will be described based on the embodiments shown in the drawings, but the present invention is not limited to the following embodiments.

第1実施形態
図1に示すように、本発明の一実施形態におけるインダクタ素子の製造方法により製造されるインダクタ素子2は、巻線部4と、コア部6と、を有する。巻線部4では、導体5がコイル状に巻回してある。コア部6は、巻線部4の内周側に位置する内周部(中芯部とも言う)6aと、巻線部4の外周側に位置する外周部6bと、を有する。巻線部4を構成する導体5とコア部6の隙間部6cには、コア部6を構成する磁性体粉および熱硬化性樹脂が入り込んでいる。
First Embodiment As shown in FIG. 1, the inductor element 2 manufactured by the method for manufacturing an inductor element according to the embodiment of the present invention has a winding portion 4 and a core portion 6. In the winding portion 4, the conductor 5 is wound in a coil shape. The core portion 6 has an inner peripheral portion (also referred to as a core portion) 6a located on the inner peripheral side of the winding portion 4 and an outer peripheral portion 6b located on the outer peripheral side of the winding portion 4. The magnetic powder and the thermosetting resin constituting the core portion 6 are contained in the gap portion 6c between the conductor 5 constituting the winding portion 4 and the core portion 6.

本実施形態のインダクタ素子2は、コア部6の上面および下面がZ軸に対して略垂直であり、コア部6の側面は、X軸およびY軸を含む平面に対して略垂直となっている。また、巻線部4の巻軸はZ軸に対して略平行となっている。ただし、コア部6の形状は、図1の形状に限定されず、円柱形、楕円柱などであっても良い。 In the inductor element 2 of the present embodiment, the upper surface and the lower surface of the core portion 6 are substantially perpendicular to the Z axis, and the side surfaces of the core portion 6 are substantially perpendicular to the plane including the X axis and the Y axis. There is. Further, the winding axis of the winding portion 4 is substantially parallel to the Z axis. However, the shape of the core portion 6 is not limited to the shape shown in FIG. 1, and may be a cylindrical shape, an elliptical pillar, or the like.

本実施形態のインダクタ素子2のサイズは、特に限定されないが、例えば、リード部5a,5bを除く部分が、(2~17)mm×(2~17)mm×(1~7)mmの直方体または立方体に含まれるサイズである。なお、図1では、図2に示す巻線部4のリード部5a,5bの図示が省略してある。巻線部4を構成する導体4の両端に形成してあるリード部5a,5bは、図1に示すコア部6の外部に取り出されるようになっている。 The size of the inductor element 2 of the present embodiment is not particularly limited, but for example, the portion excluding the lead portions 5a and 5b is a rectangular parallelepiped having a size of (2 to 17) mm × (2 to 17) mm × (1 to 7) mm. Or the size included in the cube. In FIG. 1, the lead portions 5a and 5b of the winding portion 4 shown in FIG. 2 are not shown. The lead portions 5a and 5b formed at both ends of the conductor 4 constituting the winding portion 4 are taken out to the outside of the core portion 6 shown in FIG.

巻線部4を構成する導体(導線)5には、必要に応じて外周を絶縁被覆層で被覆してある。導体5としては、たとえばCu、Al、Fe、Ag、Au、あるいはこれらの金属を含む合金などで構成してある。絶縁被覆層は、たとえばポリウレタン、ポリアミドイミド、ポリイミド、ポリエステル、ポリエステル-イミド、ポリエステル-ナイロンなどで構成してある。導体5の横断面形状は、特に限定されず、円形、平角形状などが例示される。本実施形態では、導体5の横断面形状は円形としている。 The outer periphery of the conductor (conductor) 5 constituting the winding portion 4 is coated with an insulating coating layer, if necessary. The conductor 5 is made of, for example, Cu, Al, Fe, Ag, Au, or an alloy containing these metals. The insulating coating layer is composed of, for example, polyurethane, polyamide-imide, polyimide, polyester, polyester-imide, polyester-nylon and the like. The cross-sectional shape of the conductor 5 is not particularly limited, and examples thereof include a circular shape and a flat shape. In the present embodiment, the cross-sectional shape of the conductor 5 is circular.

コア部6は、磁性粉体および熱硬化性樹脂(バインダ)を有する。磁性粉体の材質としては、特に限定されないが、Mn-Zn、Ni-Cu-Znなどのフェライト、Fe-Si(鉄―シリコン)、センダスト(Fe-Si-Al;鉄-シリコン-アルミニウム)、Fe-Si-Cr(鉄-シリコン-クロム)、パーマロイ(Fe-Ni)、などの金属が例示される。磁性粉体の結晶構造には特に限定はなく、アモルファス、結晶質などが例示される。 The core portion 6 has a magnetic powder and a thermosetting resin (binder). The material of the magnetic powder is not particularly limited, but ferrite such as Mn-Zn and Ni-Cu-Zn, Fe-Si (iron-silicon), sendust (Fe-Si-Al; iron-silicon-aluminum), and the like. Examples of metals include Fe-Si-Cr (iron-silicon-chromium) and permalloy (Fe-Ni). The crystal structure of the magnetic powder is not particularly limited, and amorphous, crystalline and the like are exemplified.

熱硬化性樹脂の種類としては、特に限定されないが、たとえばエポキシ樹脂、ジアリルフタレート樹脂、フェノール樹脂、ポリイミド、ポリアミドイミド、シリコン樹脂、これらを組み合わせたものなどが例示される。 The type of the thermosetting resin is not particularly limited, and examples thereof include an epoxy resin, a diallyl phthalate resin, a phenol resin, a polyimide, a polyamide-imide, and a silicon resin, and a combination thereof.

熱硬化性樹脂の軟化点は好ましくは50℃~100℃である。これにより、十分な高密度の予備成形体を得ることができる。上記の観点から、熱硬化性樹脂の軟化点は、より好ましくは60℃~90℃である。室温で成形する予備成形体は軟化点以下で成形することでベトツキなどによる金型付着を抑制することができる。この観点から軟化点は室温以上であることが望ましい。 The softening point of the thermosetting resin is preferably 50 ° C to 100 ° C. This makes it possible to obtain a preformed body having a sufficiently high density. From the above viewpoint, the softening point of the thermosetting resin is more preferably 60 ° C. to 90 ° C. By molding the preformed body to be molded at room temperature below the softening point, it is possible to suppress the adhesion of the mold due to stickiness or the like. From this point of view, it is desirable that the softening point is at room temperature or higher.

また、熱硬化性樹脂の硬化開始温度は好ましくは100℃~250℃である。これにより、硬化開始温度を適性化することにより樹脂の架橋密度を上げるリフローなどに耐えうる高耐熱化をはかることができる。上記の観点から、熱硬化性樹脂の硬化開始温度は、より好ましくは150℃~220℃である。 The curing start temperature of the thermosetting resin is preferably 100 ° C to 250 ° C. As a result, it is possible to achieve high heat resistance that can withstand reflow or the like that increases the crosslink density of the resin by optimizing the curing start temperature. From the above viewpoint, the curing start temperature of the thermosetting resin is more preferably 150 ° C. to 220 ° C.

特に軟化温度、硬化開始温度に限定はないが、軟化温度と硬化開始温度の差が少ないと本加圧時の温度ばらつきが発生した場合一体化成形体の圧着状態や特性ばらつきが発生しやすい。このため、軟化温度と硬化開始温度の差が5℃以上であることが望ましい。 In particular, the softening temperature and the curing start temperature are not limited, but if the difference between the softening temperature and the curing start temperature is small, when the temperature variation during the main pressurization occurs, the crimping state and the characteristic variation of the integrated molded body are likely to occur. Therefore, it is desirable that the difference between the softening temperature and the curing start temperature is 5 ° C. or more.

熱硬化性樹脂の分子量は、通常、重量平均分子量Mwが300~10000程度である。上記の熱硬化性樹脂は単独で用いてもよく、また複数種の樹脂を用いてもよい。また、異なる種類の熱硬化性樹脂同士が架橋された構造を有する化合物を用いてもよい。 The molecular weight of the thermosetting resin is usually about 300 to 10,000 by weight average molecular weight Mw. The above thermosetting resin may be used alone or may use a plurality of types of resins. Further, a compound having a structure in which different types of thermosetting resins are crosslinked may be used.

次に、図1に示すインダクタ素子2の製造方法について図2および図3を用いて説明する。 Next, the method of manufacturing the inductor element 2 shown in FIG. 1 will be described with reference to FIGS. 2 and 3.

本発明の一実施形態におけるインダクタ素子の製造方法により製造されるインダクタ素子2は、2つの予備成形体60a,60bと、空芯コイルなどで構成される巻線部4を有するインサート部材と、を一体化することにより製造される。巻線部4を構成する導体5の両端は、リード部5a,5bとして、巻線部4の外側に引き出されている。端子(図示せず)はリード部5a,5bと本圧縮後に接続してもよいし、本圧縮前に予め接続しておいてもよい。 The inductor element 2 manufactured by the method for manufacturing an inductor element according to the embodiment of the present invention comprises two preformed bodies 60a and 60b and an insert member having a winding portion 4 composed of an air core coil or the like. Manufactured by integrating. Both ends of the conductor 5 constituting the winding portion 4 are drawn out to the outside of the winding portion 4 as lead portions 5a and 5b. The terminals (not shown) may be connected to the lead portions 5a and 5b after the main compression, or may be connected in advance before the main compression.

各予備成形体60a,60bには、それぞれ接合予定面70a,70bが形成してあり、それらが相互に突き合わされて接合され、図1に示す断続的な接合界面7となる。それぞれの接合予定面70a,70bには、それぞれ巻回部4の上半部および下半分を収容するための収容凹部90a,90bが形成してある。収容凹部90a,90bの大きさは、インサート部材としての巻線部4が、その内外周および巻軸方向端部が接触して入り込める程度の大きさである。 Planned joining surfaces 70a and 70b are formed on the preformed bodies 60a and 60b, respectively, and they are butted against each other and joined to form an intermittent joining interface 7 shown in FIG. The planned joining surfaces 70a and 70b are formed with accommodating recesses 90a and 90b for accommodating the upper half and the lower half of the winding portion 4, respectively. The size of the accommodating recesses 90a and 90b is such that the winding portion 4 as an insert member can be inserted into the winding portion 4 in contact with the inner peripheral periphery thereof and the end portion in the winding axis direction.

また、いずれか一方または双方の接合予定面70a,70bには、リード部5a,5bをコア部6の外側に引き出すための引出溝80が形成してある。なお、図2には一対のリード部5a,5bを記載しているが、図3では一対のリード部5a,5bを省略している。 Further, a drawer groove 80 for pulling out the lead portions 5a and 5b to the outside of the core portion 6 is formed on either one or both of the planned joining surfaces 70a and 70b. Although the pair of lead portions 5a and 5b are shown in FIG. 2, the pair of lead portions 5a and 5b are omitted in FIG.

まず、予備成形体60a,60bの原料となる顆粒を製造する。顆粒の製造方法には特に制限はない。たとえば磁性粉体に熱硬化性樹脂を添加し撹拌した後に乾燥させることで製造することができる。 First, granules used as raw materials for the preformed bodies 60a and 60b are produced. There are no particular restrictions on the method for producing granules. For example, it can be produced by adding a thermosetting resin to a magnetic powder, stirring it, and then drying it.

磁性粉体の粒径に特に制限はないが、例えば平均粒径が0.5~50μmの磁性粉体を用いることができる。樹脂としては、特に限定されないが、例えばエポキシ樹脂、ジアリルフタレート樹脂、フェノール樹脂、ポリイミド、ポリアミドイミド、シリコン樹脂、これらを組み合わせたものなどが例示される。また、磁性粉体と熱硬化性樹脂とを混合する前に、磁性粉体表面に絶縁被膜を形成してもよい。例えば、ゾルゲル法によりSiO膜である絶縁被膜を形成することができる。 The particle size of the magnetic powder is not particularly limited, but for example, a magnetic powder having an average particle size of 0.5 to 50 μm can be used. The resin is not particularly limited, and examples thereof include epoxy resin, diallyl phthalate resin, phenol resin, polyimide, polyamide-imide, silicon resin, and a combination thereof. Further, an insulating film may be formed on the surface of the magnetic powder before the magnetic powder and the thermosetting resin are mixed. For example, an insulating film which is a SiO 2 film can be formed by the sol-gel method.

また、磁性粉体に熱硬化性樹脂を添加し撹拌した後にメッシュを通過させることで粗大な顆粒を取り除いてもよい。また、熱硬化性樹脂は磁性粉体に添加する際に溶媒で希釈してもよい。溶媒としては、例えばケトン類等が用いられる。 Further, coarse granules may be removed by adding a thermosetting resin to the magnetic powder, stirring the mixture, and then passing the mixture through a mesh. Further, the thermosetting resin may be diluted with a solvent when it is added to the magnetic powder. As the solvent, for example, ketones and the like are used.

熱硬化性樹脂の含有量には特に制限はないが、磁性粉体100wt%に対して1.0~6.0wt%含有することが好ましい。熱硬化性樹脂の含有量を適量とすることにより、後述する本圧縮時に接合予定面70a,70bを接合しやすくなる。 The content of the thermosetting resin is not particularly limited, but it is preferably 1.0 to 6.0 wt% with respect to 100 wt% of the magnetic powder. By setting the content of the thermosetting resin to an appropriate amount, it becomes easy to join the planned joining surfaces 70a and 70b at the time of the main compression described later.

予備成形体60a,60bは、前記磁性粉体および前記熱硬化性樹脂を含む顆粒を第1金型のキャビティ内に充填し、予備圧縮成形して製造される。予備圧縮成形時の圧力は2.5×10~1×10MPa(2.5~10t/cm)である。また、予備成形体60a,60bの密度には特に制限はないが、たとえば、4.0~6.5 g/cmである。予備圧縮成形時の圧力を2.5×10~1×10MPaとすることで、後述する本圧縮後に生じる巻線部4の位置の歪みおよび/または巻線の形状の歪みを防止し、耐電圧、インダクタンスおよび直流重畳特性が全て優れたインダクタ素子を製造することができる。 The preformed bodies 60a and 60b are manufactured by filling the cavities of the first mold with the granules containing the magnetic powder and the thermosetting resin and pre-compressing them. The pressure during precompression molding is 2.5 × 10 2 to 1 × 10 3 MPa (2.5 to 10 t / cm 2 ). The densities of the preformed bodies 60a and 60b are not particularly limited, but are, for example, 4.0 to 6.5 g / cm 3 . By setting the pressure during precompression molding to 2.5 × 10 2 to 1 × 10 3 MPa, distortion of the position of the winding portion 4 and / or distortion of the shape of the winding caused after the main compression described later is prevented. It is possible to manufacture an inductor element having excellent withstand voltage, inductance and DC superimposition characteristics.

予備圧縮成形時の温度は特に限定されず、室温付近の温度で行われる。 The temperature at the time of precompression molding is not particularly limited, and is performed at a temperature near room temperature.

次に、得られた予備成形体60a,60bおよびインサート部材を図2および図3に示す態様で、予備成形体製造時とは別の第2金型のキャビティ内に配置し、熱硬化性樹脂の軟化点以上かつ硬化開始温度以下の温度において、本圧縮(圧着)を行うことで一体化成形体を得ることができる。 Next, the obtained preformed bodies 60a and 60b and the insert member are arranged in the cavity of the second mold different from that at the time of manufacturing the preformed body in the embodiment shown in FIGS. 2 and 3, and the thermosetting resin is placed. An integrated molded product can be obtained by performing the main compression (crimping) at a temperature equal to or higher than the softening point and lower than the curing start temperature.

なお、予備成形体およびインサート部材を第2金型のキャビティ内に配置する前または、予備成形体およびインサート部材を第2金型のキャビティ内に配置した後に、予備成形体およびインサート部材を予備加熱してもよい。特に、予備成形体およびインサート部材を第2金型のキャビティ内に配置する前に予備成形体およびインサート部材を予備加熱することにより、第2金型に配置してから予備成形体およびインサート部材を所定の温度まで上昇させる時間を短縮できるため、生産性が向上する。 The preformed body and the insert member are preheated before the preformed body and the insert member are arranged in the cavity of the second mold, or after the preformed body and the insert member are arranged in the cavity of the second mold. You may. In particular, by preheating the preformed body and the insert member before placing the preformed body and the insert member in the cavity of the second mold, the preformed body and the insert member are placed in the second mold and then the preformed body and the insert member are placed. Since the time for raising to a predetermined temperature can be shortened, productivity is improved.

なお、予備成形体のみ第2金型に配置する前に予備加熱して、インサート部材は第2金型に配置した後に予備加熱してもよい。さらに、インサート部材のみ第2金型に配置する前に予備加熱して、予備成形体は第2金型に配置した後に予備加熱してもよい。 It should be noted that only the preformed body may be preheated before being placed in the second mold, and the insert member may be preheated after being placed in the second mold. Further, only the insert member may be preheated before being placed in the second mold, and the preformed body may be preheated after being placed in the second mold.

本圧縮の温度は熱硬化性樹脂の軟化点より2℃以上高く、かつ、熱硬化性樹脂の硬化開始温度より2℃以上低いことが好ましい。これにより予備成形体が過剰に加熱し硬化開始してしまうことを防ぐことができる。上記の観点から、予備加熱の温度は熱硬化性樹脂の軟化点より5℃以上高く、熱硬化性樹脂の硬化開始温度より5℃以上低いことがより好ましい。 The temperature of this compression is preferably 2 ° C. or higher than the softening point of the thermosetting resin and 2 ° C. or higher lower than the curing start temperature of the thermosetting resin. This makes it possible to prevent the preformed body from being excessively heated and starting to cure. From the above viewpoint, the temperature of the preheating is more preferably 5 ° C. or higher than the softening point of the thermosetting resin and 5 ° C. or higher lower than the curing start temperature of the thermosetting resin.

本圧縮時の圧力には特に制限はないが、たとえば1×10~8×10MPa(1~8t/cm)である。また、本圧縮時の圧力は予備圧縮成形時の圧力(100%)に比較して、好ましくは、40~80%程度に低く、さらに好ましくは50~60%程度に低い。本圧縮時の圧力を低くすることで、本圧縮後に生じる巻線部4の位置の歪みおよび/または巻線の形状の歪みを防止し、予備圧縮成形時の圧力が本圧縮時の圧力と比べて大きいほど耐電圧特性が向上する傾向にある。 The pressure at the time of this compression is not particularly limited, but is, for example, 1 × 10 2 to 8 × 10 2 MPa (1 to 8 t / cm 2 ). Further, the pressure during the main compression is preferably as low as about 40 to 80%, more preferably as low as about 50 to 60%, as compared with the pressure at the time of precompression molding (100%). By lowering the pressure during the main compression, the distortion of the position of the winding portion 4 and / or the distortion of the shape of the winding caused after the main compression is prevented, and the pressure during the precompression molding is compared with the pressure during the main compression. The larger the value, the better the withstand voltage characteristics.

一体化成形体を得る工程において、巻線部内の導体と予備成形体の隙間部に磁性粉体および熱硬化性樹脂を入り込ませる。 In the process of obtaining the integrally molded body, the magnetic powder and the thermosetting resin are impregnated into the gap between the conductor and the preformed body in the winding portion.

次に、本圧縮後に第2金型から取り出した一体化成形体に対して本加熱を行うことで熱硬化性樹脂を完全硬化させてインダクタ素子2を得る。具体的には、第2金型から取り出した一体化成形体に対して、熱硬化性樹脂が硬化開始する温度よりも高い温度で本加熱することにより、熱硬化性樹脂を完全硬化させる。 Next, the heat-curable resin is completely cured by performing the main heating on the integrally molded body taken out from the second mold after the main compression to obtain the inductor element 2. Specifically, the thermosetting resin is completely cured by mainly heating the integrally molded body taken out from the second mold at a temperature higher than the temperature at which the thermosetting resin starts to cure.

本加熱の際の温度は、熱硬化性樹脂の硬化開始温度よりも10~100℃高いことが好ましい。これにより、リフローによる変形や熱によるインダクタンスの変化率を低下させることができる。上記の観点から、本加熱の際の温度は、熱硬化性樹脂の硬化開始温度よりも20~100℃高いことがより好ましい。 The temperature during the main heating is preferably 10 to 100 ° C. higher than the curing start temperature of the thermosetting resin. This makes it possible to reduce the rate of change in inductance due to deformation and heat due to reflow. From the above viewpoint, it is more preferable that the temperature at the time of the main heating is 20 to 100 ° C. higher than the curing start temperature of the thermosetting resin.

上記の製造方法で得られるインダクタ素子2は、接合界面7以外では、予備成形体60a,60bがそのまま残るため、巻線部4の位置の歪みおよび/または巻線の形状の歪みを防止し、コア部6を高密度に形成することができる。したがって、インダクタンスおよび直流重畳特性を向上させながら耐電圧も向上させることができる。また、本圧縮時に、予備圧縮成形時よりも低い圧力で圧着することで、接合予定面70a,70bおよびその近傍が部分的に流動して混じり合い、接合界面7が形成される。 In the inductor element 2 obtained by the above manufacturing method, the preformed bodies 60a and 60b remain as they are except for the bonding interface 7, so that distortion of the position of the winding portion 4 and / or distortion of the shape of the winding is prevented. The core portion 6 can be formed at a high density. Therefore, the withstand voltage can be improved while improving the inductance and the DC superimposition characteristic. Further, at the time of main compression, by crimping at a lower pressure than at the time of precompression molding, the planned joining surfaces 70a and 70b and their vicinity are partially fluidized and mixed, and the joining interface 7 is formed.

本実施形態では、最終的に得られるインダクタ素子2のコア部6について、均一かつ高密度で作製できる。その結果、従来のインダクタ素子よりもインダクタンスおよび直流重畳特性を向上させることができる。 In the present embodiment, the core portion 6 of the finally obtained inductor element 2 can be manufactured uniformly and at high density. As a result, the inductance and DC superimposition characteristics can be improved as compared with the conventional inductor element.

第2実施形態
以下、第2実施形態について図4~図6を用いて説明するが、第1実施形態と共通する点(共通する構成および作用効果など/以下同様)については説明を省略する。
2nd Embodiment Hereinafter, the 2nd embodiment will be described with reference to FIGS. 4 to 6, but the points common to the 1st embodiment (common configuration and action / effect, etc./same below) will be omitted.

図4に示すように、第2実施形態のインダクタ素子2Aは、第1実施形態のインダクタ素子2とは接合界面7の位置が異なる。 As shown in FIG. 4, the inductor element 2A of the second embodiment has a different position of the junction interface 7 from the inductor element 2 of the first embodiment.

第2実施形態のインダクタ素子2Aを製造する方法としては、たとえば、図5および図6に示すように、板形状の予備成形体60a1およびポット形状の予備成形体60b1を準備する方法がある。板形状の予備成形体60a1の接合予定面70a1と、ポット形状の予備成形体60b1の接合予定面70b1とが接合して、図4に示す接合界面7が断続的に形成される。また、接合界面7の位置の変化に伴い、図5に示すリード部5a,5bの位置が変化している。 As a method for manufacturing the inductor element 2A of the second embodiment, for example, as shown in FIGS. 5 and 6, there is a method of preparing a plate-shaped preformed body 60a1 and a pot-shaped preformed body 60b1. The planned joining surface 70a1 of the plate-shaped preformed body 60a1 and the planned joining surface 70b1 of the pot-shaped preformed body 60b1 are joined to intermittently form the joining interface 7 shown in FIG. Further, as the position of the bonding interface 7 changes, the positions of the lead portions 5a and 5b shown in FIG. 5 change.

第3実施形態
以下、第3実施形態について図7~図9を用いて説明するが、第1実施形態および第2実施形態と共通する点(共通する構成および作用効果など/以下同様)については説明を省略する。
3rd Embodiment Hereinafter, the 3rd embodiment will be described with reference to FIGS. 7 to 9, but the points common to the 1st embodiment and the 2nd embodiment (common configuration and action / effect, etc./same below) will be described. The explanation is omitted.

図7に示すように、第3実施形態のインダクタ素子の製造方法により製造されるインダクタ素子2Bでは、接合界面が7a1,7a2,7b1,7b2,7cと第1実施形態よりも多く存在する。具体的には、中芯部6a2と外周部6b2との間に断続的に接合界面7a2,7b2が形成され、外周部6b2の内部にも、Z軸方向に所定間隔で断続的に接合界面7a1,7b1,7cが形成されている。接合界面が多いほど直流重畳特性が向上する傾向にある。 As shown in FIG. 7, in the inductor element 2B manufactured by the method for manufacturing the inductor element of the third embodiment, the number of bonding interfaces is 7a1,7a2,7b1,7b2,7c, which is larger than that of the first embodiment. Specifically, the joining interface 7a2, 7b2 is intermittently formed between the core portion 6a2 and the outer peripheral portion 6b2, and the joining interface 7a1 is intermittently formed inside the outer peripheral portion 6b2 at predetermined intervals in the Z-axis direction. , 7b1,7c are formed. The more the junction interface, the better the DC superimposition characteristics tend to be.

第3実施形態のインダクタ素子2Bを製造する方法としては、たとえば、図8および図9に示すように、5個の予備成形体60c,60d,60e,60f,60gを準備する方法がある。板形状の予備成形体60cの接合予定面70cと、リング形状の予備成形体60dの接合予定面70d1とが接合して、図7に示す接合界面7a1が断続的に形成される。 As a method of manufacturing the inductor element 2B of the third embodiment, for example, as shown in FIGS. 8 and 9, there is a method of preparing five preformed bodies 60c, 60d, 60e, 60f, 60g. The planned joining surface 70c of the plate-shaped preformed body 60c and the planned joining surface 70d1 of the ring-shaped preformed body 60d are joined to intermittently form the joining interface 7a1 shown in FIG. 7.

図8に示す予備成形体60cの接合予定面70cと、円柱状の予備成形体60eの接合予定面70d2とが接合して、図7に示す接合界面7a2が断続的に形成される。図8に示すリング形状の予備成形体60dの接合予定面70eと、同じくリング形状の予備施成形体60fの接合予定面70gとが接合して、図7に示す接合界面7cが断続的に形成される。 The planned joining surface 70c of the preformed body 60c shown in FIG. 8 and the planned joining surface 70d2 of the columnar preformed body 60e are joined to intermittently form the joining interface 7a2 shown in FIG. 7. The planned joining surface 70e of the ring-shaped preformed body 60d shown in FIG. 8 and the planned joining surface 70g of the ring-shaped preformed body 60f are joined to intermittently form the joining interface 7c shown in FIG. Will be done.

図8に示すリング形状の予備施成形体60fの接合予定面70f1と、板形状の予備成形体60gの接合予定面70hとが接合して、図7に示す接合界面7b1が断続的に形成される。図8に示す円柱形状の予備成形体60eの接合予定面70f2と、板形状の予備成形体60gの接合予定面70hとが接合して、図7に示す接合界面7b2が断続的に形成される。 The planned joining surface 70f1 of the ring-shaped preformed body 60f shown in FIG. 8 and the planned joining surface 70h of the plate-shaped preformed body 60g are joined to intermittently form the joining interface 7b1 shown in FIG. To. The planned joining surface 70f2 of the cylindrical preformed body 60e shown in FIG. 8 and the planned joining surface 70h of the plate-shaped preformed body 60g are joined to intermittently form the joining interface 7b2 shown in FIG. ..

第4実施形態
以下、第4実施形態について図10~図12を用いて説明するが、第1実施形態~第3実施形態と共通する点については説明を省略する。
Fourth Embodiment Hereinafter, the fourth embodiment will be described with reference to FIGS. 10 to 12, but the points common to the first to third embodiments will be omitted.

図10に示すように、第4実施形態のインダクタ素子の製造方法により製造されるインダクタ素子2Cは、中芯部6a3と外周部6b3との間に接合界面7a3および7b3が断続的に形成されており、外周部6b3のZ軸方向の中間部内部にも接合界面7c3が断続的に形成されている。 As shown in FIG. 10, in the inductor element 2C manufactured by the method for manufacturing the inductor element of the fourth embodiment, the bonding interfaces 7a3 and 7b3 are intermittently formed between the core portion 6a3 and the outer peripheral portion 6b3. The bonding interface 7c3 is also intermittently formed inside the intermediate portion of the outer peripheral portion 6b3 in the Z-axis direction.

第4実施形態のインダクタ素子2Cを製造する方法としては、たとえば、図11および図12に示すように、3個の予備成形体60e2,60h,60iを準備する方法がある。そして、接合予定面70iと接合予定面70mとが接合して接合界面7c3が断続的に形成される。接合予定面70jと接合予定面70kとが接合して接合界面7a3が断続的に形成される。接合予定面70lと接合予定面70nとが接合して接合界面7b3が断続的に形成される。 As a method of manufacturing the inductor element 2C of the fourth embodiment, for example, as shown in FIGS. 11 and 12, there is a method of preparing three preformed bodies 60e2, 60h, 60i. Then, the planned joining surface 70i and the planned joining surface 70m are joined to form the joining interface 7c3 intermittently. The planned joining surface 70j and the planned joining surface 70k are joined to form a joining interface 7a3 intermittently. The planned joining surface 70l and the planned joining surface 70n are joined to form a joining interface 7b3 intermittently.

なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。 The present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples.

実施例1
実施例1では、図13Aに示すように、図2および図3に示す形状の予備成形体を予備圧縮成形にて作製し、その後、本圧縮し、図1に示す形状のインダクタ素子を得た。
Example 1
In Example 1, as shown in FIG. 13A, a preformed body having the shapes shown in FIGS. 2 and 3 was produced by precompression molding, and then main compression was performed to obtain an inductor element having the shape shown in FIG. ..

まず、第1金型のキャビティ内に充填する顆粒を準備した。磁性粉末としてFe-Si-Cr合金(平均粒径25μm)を用意し、磁性粉末表面にゾルゲル法を用いたSiO膜である絶縁被膜を形成した。上記磁性粉末にアセトンに希釈したエポキシ樹脂を、磁性粉末全体を100重量%として3重量%加え攪拌した。撹拌した後に、250ミクロンの目開きのメッシュをパスさせ、室温で24時間乾燥させ、第1金型のキャビティ内に充填する顆粒を得た。 First, granules to be filled in the cavity of the first mold were prepared. A Fe—Si—Cr alloy (average particle size 25 μm) was prepared as the magnetic powder, and an insulating film, which is a SiO 2 film, was formed on the surface of the magnetic powder using the sol-gel method. Epoxy resin diluted with acetone was added to the magnetic powder in an amount of 3% by weight based on 100% by weight of the entire magnetic powder, and the mixture was stirred. After stirring, a 250 micron open mesh was passed and dried at room temperature for 24 hours to obtain granules to be filled in the cavity of the first mold.

第1金型のキャビティ内に前記顆粒を充填し、予備圧縮成形を行い、図2および図3に示す形状の予備成形体を作製した。予備圧縮成形時の圧力は6t/cmであった。 The granules were filled in the cavity of the first mold and pre-compression molding was performed to prepare a pre-molded body having the shapes shown in FIGS. 2 and 3. The pressure at the time of precompression molding was 6 t / cm 2 .

次に、作製した予備成形体およびインサート部材を、予備圧縮成形に用いた第1金型とは別の第2金型のキャビティ内に配置した。キャビティ内部に、図2および図3に示す2個の予備成形体と、内径4mm、高さ3mmの巻線部を有するインサート部材と、を図2および図3に示す態様で配置した。 Next, the prepared premolded body and the insert member were placed in the cavity of the second mold different from the first mold used for the precompression molding. Inside the cavity, the two preformed bodies shown in FIGS. 2 and 3 and an insert member having a winding portion having an inner diameter of 4 mm and a height of 3 mm were arranged in the manner shown in FIGS. 2 and 3.

次に、予備成形体およびインサート部材を表1に示す温度とすると共に、図3のZ軸方向の上下から加圧して本圧縮して一体化成形体を得た。本圧縮時の成形圧力は1.5t/cmであった。なお、エポキシ樹脂の軟化点は95℃であり、硬化開始温度は110℃である。 Next, the temperature of the preformed body and the insert member was set to the temperature shown in Table 1, and pressure was applied from above and below in the Z-axis direction of FIG. 3 to perform main compression to obtain an integrated molded body. The molding pressure at the time of this compression was 1.5 t / cm 2 . The softening point of the epoxy resin is 95 ° C., and the curing start temperature is 110 ° C.

その後に、第2金型から一体化成形体を取り出し、200℃で1時間の本加熱を行い、前記エポキシ樹脂を硬化させ、表1に示す各実施例のインダクタ素子のサンプル(試料番号2)を得た。得られたコア部の寸法は、縦7mm×横7mm×高さ5.4mmであった。 After that, the integrated molded body was taken out from the second mold, and the main heating was performed at 200 ° C. for 1 hour to cure the epoxy resin, and a sample (sample number 2) of the inductor element of each example shown in Table 1 was obtained. Obtained. The dimensions of the obtained core portion were 7 mm in length × 7 mm in width × 5.4 mm in height.

このようにして得られたインダクタ素子のサンプルについて、インダクタンス、直流重畳特性および耐電圧および成形体破壊荷重を測定した。結果を表1に示す。 For the inductor element sample thus obtained, the inductance, DC superimposition characteristics, withstand voltage, and molded body fracture load were measured. The results are shown in Table 1.

インダクタンスの測定は、測定周波数100KHz、測定電圧0.5mVで、LCRメータ(ヒューレットパッカード(株)製)を用いて行った。 The inductance was measured using an LCR meter (manufactured by Hewlett-Packard Co., Ltd.) at a measurement frequency of 100 KHz and a measurement voltage of 0.5 mV.

直流重畳特性の測定は、各インダクタ素子のサンプルに直流電流を0から印加していき、電流0の時のインダクタンス(μH)に対して、80%に低下する時に流れる電流の値(アンペア)をIdc1とし、Idc1の数値で評価した。 To measure the DC superimposition characteristics, a DC current is applied from 0 to the sample of each inductor element, and the value (ampere) of the current flowing when the current drops to 80% with respect to the inductance (μH) when the current is 0. It was designated as Idc1 and evaluated by the numerical value of Idc1.

耐電圧の測定は、各インダクタ素子の側面と対向する側面との間にKEYSIGHT製 DC POWER SUPPLY および LCRメータを用いて電圧を印加し、0.5mAの電流が流れたときの電圧を耐電圧とした。 To measure the withstand voltage, apply a voltage between the side surface of each inductor element and the opposite side surface using a KEYSIGHT DC POWER SUPPLY and an LCR meter, and use the voltage when a current of 0.5 mA flows as the withstand voltage. did.

成形体破壊荷重の測定は、島津製作所製オートグラフAGS-5KNKを用いた。巻軸方向に垂直方向に、インダクタ素子を挟む状態での3点曲げ試験を行った。荷重をかけるプローブの速度は1/mmとした。。 An autograph AGS-5KNK manufactured by Shimadzu Corporation was used for measuring the fracture load of the molded body. A three-point bending test was performed with the inductor element sandwiched in the direction perpendicular to the winding axis direction. The speed of the probe to which the load was applied was set to 1 / mm. ..

比較例1
比較例1では、本圧縮の際の温度を85℃にした以外は実施例1と同様にして表1に示すインダクタ素子のサンプル(試料番号1)を得た。結果を表1に示す。
Comparative Example 1
In Comparative Example 1, a sample of the inductor element (Sample No. 1) shown in Table 1 was obtained in the same manner as in Example 1 except that the temperature at the time of this compression was set to 85 ° C. The results are shown in Table 1.

実施例2
実施例2では、熱硬化性樹脂をジアリルフタレート樹脂(DAP)に変えた以外は実施例1と同様にして表1に示すインダクタ素子のサンプル(試料番号4)を得た。結果を表1に示す。なお、DAPの軟化点は80℃であり、硬化開始温度は150℃である。
Example 2
In Example 2, a sample of the inductor element (Sample No. 4) shown in Table 1 was obtained in the same manner as in Example 1 except that the thermosetting resin was changed to diallyl phthalate resin (DAP). The results are shown in Table 1. The softening point of DAP is 80 ° C., and the curing start temperature is 150 ° C.

実施例3
実施例3では、予備成形体の予備加熱を、予備成形体を第2金型に配置する前に行った以外は実施例1と同様にしてインダクタ素子のサンプル(試料番号5)を得た。結果を表1に示す。
Example 3
In Example 3, a sample of the inductor element (Sample No. 5) was obtained in the same manner as in Example 1 except that the premolded body was preheated before the preformed body was placed in the second mold. The results are shown in Table 1.

実施例4
実施例4では、インサート部材の予備加熱を、インサート部材を第2金型に配置する前に行った以外は実施例1と同様にしてインダクタ素子のサンプル(試料番号6)を得た。結果を表1に示す。
Example 4
In Example 4, a sample of the inductor element (Sample No. 6) was obtained in the same manner as in Example 1 except that the insert member was preheated before the insert member was placed in the second mold. The results are shown in Table 1.

実施例5
実施例5では、予備成形体およびインサート部材の予備加熱を、予備成形体およびインサート部材を第2金型に配置する前に行った以外は実施例1と同様にしてインダクタ素子のサンプル(試料番号7)を得た。結果を表1に示す。
Example 5
In Example 5, the inductor element sample (sample number) is the same as in Example 1 except that the premolded body and the insert member are preheated before the premolded body and the insert member are placed in the second mold. 7) was obtained. The results are shown in Table 1.

比較例2
比較例2では、本圧縮と同時に表1に示す温度で1時間の本加熱を行い、エポキシ樹脂を硬化させた以外は実施例1と同様にして表1に示す比較例のインダクタ素子のサンプル(試料番号11)を得た。また、製造工程のフロー図を図13Bに示す。結果を表1に示す。
Comparative Example 2
In Comparative Example 2, a sample of the inductor element of Comparative Example shown in Table 1 was obtained in the same manner as in Example 1 except that the epoxy resin was cured by performing main heating at the temperature shown in Table 1 for 1 hour at the same time as the main compression. Sample number 11) was obtained. Further, a flow chart of the manufacturing process is shown in FIG. 13B. The results are shown in Table 1.

図14に、上記の実施例および比較例のインダクタンスに対する直流重畳特性の関係を表すグラフを示す。 FIG. 14 shows a graph showing the relationship between the DC superimposition characteristics and the inductances of the above-mentioned Examples and Comparative Examples.

図15に、上記の実施例および比較例の成形体破壊荷重に対する直流重畳特性の関係を表すグラフを示す。 FIG. 15 shows a graph showing the relationship between the DC superimposition characteristics and the fracture load of the molded product of the above-mentioned Examples and Comparative Examples.

Figure 0007027843000001
Figure 0007027843000001

表1、図14および図15より、軟化点以上かつ硬化開始温度以下の温度において本圧縮して一体化成形体を得ることにより得られたインダクタ素子(試料番号2、4~7)は、軟化点以下において本圧縮して一体化成形体を得ることにより得られたインダクタ素子(試料番号1)に比べて、耐電圧、インダクタンス、直流重畳特性および成形体破壊荷重が良好であることが確認できた。 From Table 1, FIG. 14 and FIG. 15, the inductor elements (sample numbers 2, 4 to 7) obtained by main compression at a temperature equal to or higher than the softening point and lower than the curing start temperature to obtain an integrated molded body have softening points. In the following, it was confirmed that the withstand voltage, the inductance, the DC superimposition characteristics, and the fracture load of the molded body were better than those of the inductor element (Sample No. 1) obtained by performing the present compression to obtain the integrated molded body.

表1より、本圧縮の後に本加熱して得られたインダクタ素子(試料番号2、4~7)は、本圧縮と同時に本加熱を行って得られたインダクタ素子(試料番号11)に比べて、耐電圧、インダクタンス、直流重畳特性および成形体破壊荷重が良好であることが確認できた。 From Table 1, the inductor element (Sample Nos. 2, 4 to 7) obtained by the main heating after the main compression is compared with the inductor element (Sample No. 11) obtained by the main heating at the same time as the main compression. It was confirmed that the withstand voltage, inductance, DC superimposition characteristics and molded body breaking load were good.

2,2A,2B,2C… インダクタ素子
4… 巻線部
5… 導体
5a,5b… リード部
6,6A,6B,6C… コア部
6a,6a1,6a2,6a3… 内周部
6b,6b1,6b2,6b3… 外周部
6c… 導体の隙間部
6d… 中間位置
7,7a1,7a2,7a3,7b1,7b2,7b3,7c,7c3… 接合界面
60a~60k… 予備成形体
70a~70n… 接合予定面
80… 引出溝
90a,90b… 収容凹部
2,2A, 2B, 2C ... Inductor element 4 ... Winding part 5 ... Conductor 5a, 5b ... Lead part 6,6A, 6B, 6C ... Core part 6a, 6a1, 6a2, 6a3 ... Inner peripheral part 6b, 6b1, 6b2 , 6b3 ... Outer peripheral part 6c ... Conductor gap 6d ... Intermediate position
7,7a1,7a2,7a3,7b1,7b2,7b3,7c, 7c3 ... Joining interface 60a to 60k ... Preformed body 70a to 70n ... Planned joining surface 80 ... Drawer groove 90a, 90b ... Accommodating recess

Claims (6)

コイル状に導体が巻回してある巻線部を有するインサート部材を準備する工程と、
磁性粉体および熱硬化性樹脂を含む顆粒を予備圧縮成形して複数の予備成形体を得る工程と、
前記インサート部材および前記複数の予備成形体を、軟化点以上かつ硬化開始温度以下の温度において本圧縮して一体化成形体を得る工程と、
前記一体化成形体を得る工程の後に、前記一体化成形体を前記熱硬化性樹脂の硬化開始温度よりも高い温度に本加熱してインダクタ素子を得る工程と、を有し、
前記本圧縮時の圧力が、前記予備圧縮成形時の圧力に比べて40~80%低いインダクタ素子の製造方法。
The process of preparing an insert member having a winding part in which a conductor is wound in a coil shape, and
The process of pre-compressing granules containing magnetic powder and thermosetting resin to obtain a plurality of preformed bodies, and
A step of mainly compressing the insert member and the plurality of preformed bodies at a temperature equal to or higher than the softening point and lower than the curing start temperature to obtain an integrated molded body.
After the step of obtaining the integrated molded body, the integrated molded body is mainly heated to a temperature higher than the curing start temperature of the thermosetting resin to obtain an inductor element .
A method for manufacturing an inductor element in which the pressure during main compression is 40 to 80% lower than the pressure during precompression molding .
前記一体化成形体を得る工程は、前記インサート部材および前記複数の予備成形体を金型のキャビティ内に配置し、本圧縮することにより行われる請求項1に記載のインダクタ素子の製造方法。 The method for manufacturing an inductor element according to claim 1, wherein the step of obtaining the integrated molded body is performed by arranging the insert member and the plurality of preformed bodies in a cavity of a mold and performing main compression. 前記複数の予備成形体を前記金型に配置する前に予備加熱する請求項2に記載のインダクタ素子の製造方法。 The method for manufacturing an inductor element according to claim 2, wherein the plurality of preformed bodies are preheated before being placed in the mold. 前記インサート部材を前記金型に配置する前に予備加熱する請求項2または3に記載のインダクタ素子の製造方法。 The method for manufacturing an inductor element according to claim 2 or 3, wherein the insert member is preheated before being placed in the mold. 前記一体化成形体を得る工程において、前記巻線部内の導体と前記予備成形体の隙間部に磁性粉体および熱硬化性樹脂を入り込ませる請求項1~4のいずれかに記載のインダクタ素子の製造方法。 The manufacture of the inductor element according to any one of claims 1 to 4, wherein in the step of obtaining the integrated molded body, the magnetic powder and the thermosetting resin are allowed to enter the gap between the conductor in the winding portion and the preformed body. Method. 前記磁性体および前記熱硬化性樹脂を含む前記顆粒を2.5×102~1×103MPaの圧力で予備圧縮成形して複数の予備成形体を得る請求項1~5のいずれかに記載のインダクタ素子の製造方法。
Any of claims 1 to 5 to obtain a plurality of preformed bodies by precompressing the granules containing the magnetic powder and the thermosetting resin at a pressure of 2.5 × 10 2 to 1 × 10 3 MPa. The method for manufacturing an inductor element according to.
JP2017229166A 2017-11-29 2017-11-29 Manufacturing method of inductor element Active JP7027843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017229166A JP7027843B2 (en) 2017-11-29 2017-11-29 Manufacturing method of inductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229166A JP7027843B2 (en) 2017-11-29 2017-11-29 Manufacturing method of inductor element

Publications (2)

Publication Number Publication Date
JP2019102529A JP2019102529A (en) 2019-06-24
JP7027843B2 true JP7027843B2 (en) 2022-03-02

Family

ID=66974121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229166A Active JP7027843B2 (en) 2017-11-29 2017-11-29 Manufacturing method of inductor element

Country Status (1)

Country Link
JP (1) JP7027843B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024093397A (en) * 2022-12-27 2024-07-09 株式会社トーキン Manufacturing method of coil component and coil component
CN117153539A (en) * 2023-06-07 2023-12-01 淮安顺络文盛电子有限公司 Inductance element and preparation method thereof
CN117038291A (en) * 2023-06-07 2023-11-10 淮安顺络文盛电子有限公司 Inductance element
CN116978668A (en) * 2023-06-07 2023-10-31 淮安顺络文盛电子有限公司 Inductance element and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305108A (en) 2000-04-28 2002-10-18 Matsushita Electric Ind Co Ltd Composite magnetic material, magnetic element and manufacturing method of them
JP2006228824A (en) 2005-02-15 2006-08-31 Tokyo Coil Engineering Kk Inductor and its manufacturing method
JP2013211331A (en) 2012-03-30 2013-10-10 Toko Inc Surface mount multiphase inductor and manufacturing method therefor
JP2016025179A (en) 2014-07-18 2016-02-08 東光株式会社 Manufacturing method of surface mounted inductor
JP2017135342A (en) 2016-01-29 2017-08-03 Ntn株式会社 Amorphous magnetic core, magnetic device, and method for manufacturing magnetic core

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305108A (en) 2000-04-28 2002-10-18 Matsushita Electric Ind Co Ltd Composite magnetic material, magnetic element and manufacturing method of them
JP2006228824A (en) 2005-02-15 2006-08-31 Tokyo Coil Engineering Kk Inductor and its manufacturing method
JP2013211331A (en) 2012-03-30 2013-10-10 Toko Inc Surface mount multiphase inductor and manufacturing method therefor
JP2016025179A (en) 2014-07-18 2016-02-08 東光株式会社 Manufacturing method of surface mounted inductor
JP2017135342A (en) 2016-01-29 2017-08-03 Ntn株式会社 Amorphous magnetic core, magnetic device, and method for manufacturing magnetic core

Also Published As

Publication number Publication date
JP2019102529A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP7027843B2 (en) Manufacturing method of inductor element
JP6256635B1 (en) Inductor element and method of manufacturing inductor element
CN101790766B (en) Coil component and method for manufacturing coil component
JP6062676B2 (en) Composite magnetic core and magnetic element
CN108806920B (en) Inductance element
JP2002057039A (en) Composite magnetic core
JPH04286305A (en) Inductor and manufacture thereof
US20230052178A1 (en) Inductor device and method of fabricating the same
JP2002313632A (en) Magnetic element and its manufacturing method
CN111816405B (en) Inductance element
JP6948300B2 (en) Reactor manufacturing method
CN106252055B (en) A kind of integrated inductance and preparation method thereof
JP6338350B2 (en) Inductor manufacturing method
JP3612028B2 (en) Coil parts manufacturing method
JP2021061376A (en) Coil component and manufacturing method thereof
JP6891623B2 (en) Inductor element
KR101736671B1 (en) Electronic component and electronic apparatus
JP2020053463A (en) Reactor
JPH0352204A (en) Inductance element and manufacture thereof
JP2012028546A (en) Method for manufacturing molded coil
WO2010123019A1 (en) Method for manufacturing inductors
WO2024142999A1 (en) Method for manufacturing coil component, and coil component
KR101667136B1 (en) Electronic component and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210617

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7027843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150