JP7026281B1 - High-density specific impulse propellant and its preparation method - Google Patents
High-density specific impulse propellant and its preparation method Download PDFInfo
- Publication number
- JP7026281B1 JP7026281B1 JP2021167530A JP2021167530A JP7026281B1 JP 7026281 B1 JP7026281 B1 JP 7026281B1 JP 2021167530 A JP2021167530 A JP 2021167530A JP 2021167530 A JP2021167530 A JP 2021167530A JP 7026281 B1 JP7026281 B1 JP 7026281B1
- Authority
- JP
- Japan
- Prior art keywords
- propellant
- preparation
- specific impulse
- density specific
- metal fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B33/00—Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
- C06B33/08—Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide with a nitrated organic compound
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B33/00—Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
- C06B33/06—Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide the material being an inorganic oxygen-halogen salt
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B33/00—Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
- C06B33/12—Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide the material being two or more oxygen-yielding compounds
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B33/00—Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
- C06B33/12—Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide the material being two or more oxygen-yielding compounds
- C06B33/14—Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide the material being two or more oxygen-yielding compounds at least one being an inorganic nitrogen-oxygen salt
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06D—MEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
- C06D5/00—Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
- C06D5/06—Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Powder Metallurgy (AREA)
Abstract
【課題】固体推進剤のエネルギー性能をさらに向上させる高密度比推力推進剤、及びその調製方法を提供する。【解決手段】主要成分として、質量百分率で、金属燃料:25%~40%、酸化剤:55%~70%、粘着剤:1%~5%を含む。付加製造プロセスにより金属燃料骨格を調製し、そして酸化剤を金属燃料骨格に充填して高密度比推力推進剤を調製する。この方法は、固体推進剤を微視的な規則正しい構造に設計すると同時に、固体推進剤における固体フィラーを構造材料に変換し、エネルギーを提供しながら一定の強度を有し、推進剤の構造完全性を維持し、理論密度比推力が510g・s/cm3を超える新しい固体推進剤を形成する。【選択図】なしPROBLEM TO BE SOLVED: To provide a high-density specific impulse propellant for further improving the energy performance of a solid propellant, and a method for preparing the same. SOLUTION: As a main component, a metal fuel: 25% to 40%, an oxidizing agent: 55% to 70%, and a pressure-sensitive adhesive: 1% to 5% are contained in a mass percentage. A metal fuel skeleton is prepared by an additional manufacturing process, and the metal fuel skeleton is filled with an oxidant to prepare a high-density specific impulse propellant. This method designs the solid propellant into a microscopically ordered structure while at the same time converting the solid filler in the solid propellant into a structural material, providing energy and having constant strength, and the structural completeness of the propellant. To form a new solid propellant with a theoretical density specific impulse exceeding 510 g · s / cm3. [Selection diagram] None
Description
本発明は、複合固体推進剤技術分野に関し、具体的に高密度比推力固体推進剤に関する。 The present invention relates to the technical field of composite solid propellants, and specifically to high density specific impulse solid propellants.
密度比推力は、固体推進剤のエネルギー特性を総合的に評価する指標パラメーターであり、高密度比推力推進剤は、高質量比のモーターの調製を実現し、従来の固体動力輸送能力を向上させることができる。現在、固体動力システム性能の飛躍を促進するために、各国が画期的な次世代高エネルギー固体推進剤の技術アプローチの研究や探索に多くの力を入れている。 Density Specific Impulse is an index parameter that comprehensively evaluates the energy characteristics of solid propellants, and high density specific impulse propellants realize the preparation of high mass ratio motors and improve conventional solid power transport capacity. be able to. Currently, each country is putting a lot of effort into researching and exploring technological approaches for groundbreaking next-generation high-energy solid-state propellants in order to promote the leap in solid-state power system performance.
CN106748600Bでは、エネルギッシュな粘着剤GAPと金属水素化物AlH3を用い、調製された推進剤の理論密度比推力が504g・s/cm3を超えている、AlH3を含む高理論比推力と高密度推進剤及びその調製方法が開示された。 In CN106748600B, the theoretical density specific impulse of the propellant prepared by using the energetic pressure-sensitive adhesive GAP and the metal hydride AlH 3 exceeds 504 g · s / cm 3 , and the high theoretical specific impulse and high density including AlH 3 . The propellant and its preparation method were disclosed.
現在、固体推進剤のエネルギー性能をさらに向上させる技術アプローチは、主に固体推進剤に新しい高エネルギー密度物質を加えるか、できる限り粘着剤の含有量を減らし、固体フィラーの含有量を増やすことである。一方、新しい高エネルギー密度物質の製造は困難でコストが高く、その技術的成熟度や安全性と実際の応用との間には大きなギャップがあり、かつ従来の固体推進剤成分との間に相容性問題があるため、多くの新しい高エネルギー密度物質は固体推進剤に用いられない。もう一方、エネルギー性能の上昇に伴い、推進剤の配合の組成はますます複雑になり、推進剤の調製、貯蔵、応用に多くの不安定な因素をもたらし、推進剤の安全性問題はますます顕著になり、推進剤の発展を妨げる大きな問題になっている。その次、固体推進剤グレインの構造完全性を確保するために、従来の固体推進剤における粘着剤の用量は約10%~25%である。より低い粘着剤含有量は、通常の混合、注入などのプロセスの要求を満たすことができない。 Currently, the technological approach to further improve the energy performance of solid propellants is mainly by adding new high energy density materials to solid propellants, or by reducing the content of tacky agents as much as possible and increasing the content of solid fillers. be. On the other hand, the production of new high energy density materials is difficult and costly, there is a large gap between their technological maturity and safety and their practical application, and there is a phase with conventional solid propellant components. Due to capacity issues, many new high energy density materials are not used in solid propellants. On the other hand, with increasing energy performance, the composition of propellant formulations becomes more and more complex, leading to many unstable factors in propellant preparation, storage and application, and propellant safety issues are increasing. It has become prominent and has become a major problem that hinders the development of propellants. Next, in order to ensure the structural integrity of the solid propellant grain, the dose of adhesive in conventional solid propellants is about 10% to 25%. Lower adhesive content cannot meet the requirements of processes such as normal mixing, infusion and the like.
エネルギッシュな材料の鈍感特性と高エネルギー特性の間の増大する矛盾に対処するために、固体推進剤の応用の新しい模式および新しい方法を開発する必要がある。 New embodiments and new methods of solid propellant application need to be developed to address the increasing contradiction between the insensitivity and high energy properties of energetic materials.
本発明の目的は、上記の欠点を克服し、新しい高密度比推力推進剤及びその調製方法を提供することにある。レーザー選択溶融成形技術により、固体推進剤における金属燃料を主骨格にプリント(造形)し、そして酸化剤と粘着剤を金属燃料骨格の空洞に充填して高密度比推力推進剤を調製し、理論密度比推力が510g・s/cm3を超える新しい固体推進剤を形成する。 An object of the present invention is to overcome the above-mentioned drawbacks and to provide a new high-density specific impulse propellant and a method for preparing the same. Using laser selective melt molding technology, the metal fuel in the solid propellant is printed on the main skeleton, and the oxidizer and adhesive are filled in the cavity of the metal fuel skeleton to prepare a high-density specific impulse propellant. A new solid propellant with a density specific impulse exceeding 510 g · s / cm 3 is formed.
上記の発明目的を実現するために、本発明は以下の技術形態を提供する。
質量百分率で、
金属燃料:25%~40%と、
酸化剤:55%~70%と、
粘着剤:1%~5%と、
を含み、
金属燃料は、付加製造方法で三次元空間格子構造の骨格にプリント(造形)され、酸化剤と粘着剤は骨格内部の充填物である新しい高密度比推力推進剤。
さらに、金属燃料はアルミニウム基合金粉末であり、アルミニウム基合金粉末に含まれる
アルミニウムの質量百分率が90%以上である。
さらに、金属燃料の三次元空間格子構造の骨格は複数の単位格子を含み、複数の単位格子同士は周期的な配列に配置され、単位格子は杆で囲まれた中空の多面体構造である。
さらに、杆の断面が円形であり、杆の長さが1~5mmであり、断面の直径が0.2mm~0.8mmである。
さらに、単位格子は、四面体、八面体、又は十二面体の1種又は複数種である。
さらに、酸化剤は、過塩素酸アンモニウムAP、過塩素酸マグネシウム、ジニトロアミドアンモニウムADN、又はヘキサニトロヘキサアザイソウルチタンCL-20の1種又は複数種である。
さらに、粘着剤は、フッ素ゴム、エチレン-酢酸エチレン共重合体EVA、ポリアクリレートゴム、シス型ブタジエンゴム、又は68#ワックスの1種又は複数種である。
以下のステップを含む前記新しい高密度比推力推進剤を調製する方法。
(1)レーザー選択溶融成形法により、金属燃料を三次元空間格子構造の骨格にプリント(造形)する。
(2)粘着剤および酸化剤をペースト状の材料にする。
(3)ステップ(2)で得られたペースト状の材料をステップ(1)で得られた三次元空間格子構造の骨格に加え、プレスして前記高密度比推力推進剤を得る。
さらに、ステップ(1)において、レーザー選択溶融成形プリント(造形)条件は、レーザー出力200~400W、スキャン速度600~1200mm/s、スキャン間隔0.05~0.1mm、スキャン層の厚さ0.03~0.05mmである。
さらに、ステップ(2)において、粘着剤および酸化剤をペースト状の材料にする方法は以下通りである、
(21)粘着剤を溶剤に1~3時間浸漬した後、完全に溶解するまで攪拌する。
(22)酸化剤をステップ(21)で得られた生成物に加え、溶剤が揮発するまで攪拌し、ペースト状の材料を得る。
さらに、溶剤は酢酸エチル、トルエン、又は石油エーテルの1種又は複数種である。
In order to realize the above-mentioned object of the invention, the present invention provides the following technical forms.
By mass percentage,
Metallic fuel: 25% -40%,
Oxidizing agent: 55% -70%,
Adhesive: 1% to 5%,
Including
The metal fuel is printed (modeled) on the skeleton of the three-dimensional space lattice structure by the additional manufacturing method, and the oxidizer and adhesive are new high-density specific impulse propellants that are the filler inside the skeleton.
Further, the metal fuel is an aluminum-based alloy powder, and the mass percentage of aluminum contained in the aluminum-based alloy powder is 90% or more.
Further, the skeleton of the three-dimensional spatial lattice structure of the metal fuel includes a plurality of unit lattices, the plurality of unit lattices are arranged in a periodic array, and the unit lattice is a hollow polyhedral structure surrounded by a rod.
Further, the cross section of the rod is circular, the length of the rod is 1 to 5 mm, and the diameter of the cross section is 0.2 mm to 0.8 mm.
Further, the unit cell is one or more of tetrahedron, octahedron, or dodecahedron.
Further, the oxidizing agent is one or more of ammonium perchlorate AP, magnesium perchlorate, dinitroamide ammonium ADN, or hexanitrohexaazia soul titanium CL-20.
Further, the pressure-sensitive adhesive is one or more of fluororubber, ethylene-ethylene acetate copolymer EVA, polyacrylate rubber, cis-type butadiene rubber, or 68 # wax.
A method of preparing the new high density specific impulse propellant comprising the following steps.
(1) The metal fuel is printed (modeled) on the skeleton of the three-dimensional space lattice structure by the laser selective melt molding method.
(2) The pressure-sensitive adhesive and the oxidizing agent are made into a paste-like material.
(3) The paste-like material obtained in step (2) is added to the skeleton of the three-dimensional spatial lattice structure obtained in step (1) and pressed to obtain the high-density specific impulse propellant.
Further, in step (1), the laser selective melt molding printing (modeling) conditions are: laser output 200 to 400 W, scan speed 600 to 1200 mm / s, scan interval 0.05 to 0.1 mm, and scan layer thickness 0. It is 03 to 0.05 mm.
Further, in step (2), the method of making the pressure-sensitive adhesive and the oxidizing agent into a paste-like material is as follows.
(21) The pressure-sensitive adhesive is immersed in a solvent for 1 to 3 hours, and then stirred until it is completely dissolved.
(22) An oxidizing agent is added to the product obtained in step (21), and the mixture is stirred until the solvent volatilizes to obtain a paste-like material.
Further, the solvent may be one or more of ethyl acetate, toluene, or petroleum ether.
本発明は従来技術に比べて以下の有益効果を有する。
(1)本発明の新しい高密度比推力推進剤及びその調製方法は、酸化剤および粘着剤を金属燃料骨格の空洞に充填し、従来の固体推進剤における粘着剤高分子ネットワークの代わりに金属燃料骨格を使用し、従来技術の限界を打ち破り、エネルギーを提供しながら一定の強度を有し、推進剤の構造完全性を維持し、固形含有量が100%に近く、密度比推力がより高く、理論密度比推力が510 g・s/cm3を超える新しい固体推進剤を形成する。
(2)本発明の新しい高密度比推力推進剤の調製方法は、レーザー選択溶融成形法により、金属燃料を三次元空間格子構造の骨格にプリント(造形)し、骨格に含まれる複数の単位格子の具体的なパラメーターを設計し、固体推進剤における固体フィラーを構造材料に変換し、固体推進剤を微視的な規則正しい構造に設計し、構造が均一で、性能が安定している。
(3)本発明の新しい高密度比推力推進剤は、還元剤(金属燃料)、酸化剤、および粘着剤のみを含み、硬化剤、抗老化剤などの他の成分を添加する必要がなく、配合は簡単であり、原材料は無毒又は毒性が低く、環境にやさしく、安全性が高い。
(4)本発明の新しい高密度比推力推進剤の調製方法は、混合、注入、硬化などのプロセスを必要とせず、調製プロセスは非常に簡略化され、プロセスのコストおよび調製時間は大幅に削減され、品質制御可能性が顕著に向上し、生産効率が向上した。
(5)本発明の新しい高密度比推力推進剤は、従来の固体動力のエネルギー限界を打ち破るのに有利であり、宇宙輸送において広い応用可能性がある。
The present invention has the following beneficial effects as compared with the prior art.
(1) The new high-density specific impulse propellant of the present invention and its preparation method fill the cavity of the metal fuel skeleton with an oxidizing agent and a pressure-sensitive agent, and replace the pressure-sensitive polymer network in the conventional solid propellant with a metal fuel. Using a skeleton, breaking the limits of prior art, having constant strength while providing energy, maintaining the structural integrity of the propellant, solid content close to 100%, higher density specific impulse, A new solid propellant with a theoretical density specific impulse exceeding 510 g · s / cm 3 is formed.
(2) In the method for preparing a new high-density specific impulse propellant of the present invention, a metal fuel is printed (formed) on a skeleton of a three-dimensional space lattice structure by a laser selective melt molding method, and a plurality of unit lattices contained in the skeleton are used. The specific parameters of the solid propellant are converted into structural materials, the solid propellant is designed into a microscopic regular structure, the structure is uniform and the performance is stable.
(3) The new high-density specific impulse propellant of the present invention contains only a reducing agent (metal fuel), an oxidizing agent, and a pressure-sensitive agent, and does not require the addition of other components such as a curing agent and an anti-aging agent. It is easy to formulate, the raw materials are non-toxic or low-toxic, environmentally friendly and safe.
(4) The new method for preparing a high-density specific impulse propellant of the present invention does not require processes such as mixing, injecting, and curing, the preparation process is greatly simplified, and the cost and preparation time of the process are greatly reduced. The quality controllability has been significantly improved, and the production efficiency has been improved.
(5) The new high-density specific impulse propellant of the present invention is advantageous in breaking the energy limit of conventional solid-state power, and has wide applicability in space transportation.
以下、本発明を詳しく説明し、本発明の特徴とメリットはこれらの説明によってより明白、明確になる。
ここでの「例示的」という用語は、「例、実施例として、又は説明的な」を意味する。ここで、「例示的」として説明されるすべての実施例は、他の実施例よりも優れていると解釈される必要はない。
Hereinafter, the present invention will be described in detail, and the features and merits of the present invention will be made clearer and clearer by these explanations.
The term "exemplary" here means "example, exemplary, or descriptive." Here, all embodiments described as "exemplary" need not be construed to be superior to other embodiments.
本発明の新しい高密度比推力推進剤は、質量百分率で、
金属燃料:25%~40%と、
酸化剤:55%~70%と、
粘着剤:1%~5%と、
を含み、
金属燃料は、付加製造方法で三次元空間格子構造の骨格にプリント(造形)され、酸化剤と粘着剤は骨格内部の充填物である。
The new high-density specific impulse propellant of the present invention is, by mass percentage,
Metallic fuel: 25% -40%,
Oxidizing agent: 55% -70%,
Adhesive: 1% to 5%,
Including
The metal fuel is printed (formed) on the skeleton of the three-dimensional spatial lattice structure by the additional manufacturing method, and the oxidizer and the adhesive are the fillers inside the skeleton.
さらに、金属燃料はアルミニウム基合金粉末であり、アルミニウム基合金粉末に含まれるアルミニウムの質量百分率が90%以上である。 Further, the metal fuel is an aluminum-based alloy powder, and the mass percentage of aluminum contained in the aluminum-based alloy powder is 90% or more.
さらに、金属燃料の三次元空間格子構造の骨格は複数の単位格子を含み、複数の単位格子同士は周期的な配列に配置され、単位格子は杆で囲まれた中空の多面体構造である。 Further, the skeleton of the three-dimensional spatial lattice structure of the metal fuel includes a plurality of unit lattices, the plurality of unit lattices are arranged in a periodic array, and the unit lattice is a hollow polyhedral structure surrounded by a 杆.
さらに、杆の断面が円形であり、杆の長さが1~5mmであり、断面の直径が0.2mm~0.8mmである。 Further, the cross section of the rod is circular, the length of the rod is 1 to 5 mm, and the diameter of the cross section is 0.2 mm to 0.8 mm.
さらに、単位格子は、四面体、八面体、又は十二面体の1種又は複数種である。 Further, the unit cell is one or more of tetrahedron, octahedron, or dodecahedron.
さらに、酸化剤は、過塩素酸アンモニウムAP、過塩素酸マグネシウム、ジニトロアミドアンモニウムADN、又はヘキサニトロヘキサアザイソウルチタンCL-20の1種又は複数種である。
さらに、粘着剤は、フッ素ゴム、エチレン-酢酸エチレン共重合体EVA、ポリアクリレートゴム、シス型ブタジエンゴム、又は68#ワックスの1種又は複数種である。
Further, the oxidizing agent is one or more of ammonium perchlorate AP, magnesium perchlorate, dinitroamide ammonium ADN, or hexanitrohexaazia soul titanium CL-20.
Further, the pressure-sensitive adhesive is one or more of fluororubber, ethylene-ethylene acetate copolymer EVA, polyacrylate rubber, cis-type butadiene rubber, or 68 # wax.
以下のステップを含む前記新しい高密度比推力推進剤を調製する方法。
(1)レーザー選択溶融成形法により、金属燃料を三次元空間格子構造の骨格にプリント(造形)する。
(2)粘着剤および酸化剤をペースト状の材料にする。
(3)ステップ(2)で得られたペースト状の材料をステップ(1)で得られた三次元空間格子構造の骨格に加え、プレスして前記高密度比推力推進剤を得る。
A method of preparing the new high density specific impulse propellant comprising the following steps.
(1) The metal fuel is printed (modeled) on the skeleton of the three-dimensional space lattice structure by the laser selective melt molding method.
(2) The pressure-sensitive adhesive and the oxidizing agent are made into a paste-like material.
(3) The paste-like material obtained in step (2) is added to the skeleton of the three-dimensional spatial lattice structure obtained in step (1) and pressed to obtain the high-density specific impulse propellant.
さらに、ステップ(1)において、レーザー選択溶融成形プリント(造形)条件は、レーザー出力200~400W、スキャン速度600~1200mm/s、スキャン間隔0.05~0.1mm、スキャン層の厚さ0.03~0.05mmである。 Further, in step (1), the laser selective melt molding printing (modeling) conditions are: laser output 200 to 400 W, scan speed 600 to 1200 mm / s, scan interval 0.05 to 0.1 mm, and scan layer thickness 0. It is 03 to 0.05 mm.
さらに、ステップ(2)において、粘着剤および酸化剤をペースト状の材料にする方法は以下通りである、
(21)粘着剤を溶剤に1~3時間浸漬した後、完全に溶解するまで攪拌する。
(22)酸化剤をステップ(21)で得られた生成物に加え、溶剤が揮発するまで攪拌し、ペースト状の材料を得る。
Further, in step (2), the method of making the pressure-sensitive adhesive and the oxidizing agent into a paste-like material is as follows.
(21) The pressure-sensitive adhesive is immersed in a solvent for 1 to 3 hours, and then stirred until it is completely dissolved.
(22) An oxidizing agent is added to the product obtained in step (21), and the mixture is stirred until the solvent volatilizes to obtain a paste-like material.
さらに、ステップ(22)の中において、秤量した粘着剤を適量の溶剤に入れ、2時間浸漬し、且つ、完全に溶解するまで超音波で攪拌する。その後、秤量した酸化剤を粘着剤溶
液に入れ、ビーカー内の溶剤が蒸発し、材料全体がペースト状態を形成するまで均一に攪拌する。
Further, in step (22), the weighed pressure-sensitive adhesive is placed in an appropriate amount of solvent, immersed for 2 hours, and stirred with ultrasonic waves until it is completely dissolved. Then, the weighed oxidant is put into the pressure-sensitive adhesive solution, and the solvent in the beaker evaporates, and the whole material is uniformly stirred until it forms a paste state.
さらに、溶剤は酢酸エチル、トルエン、又は石油エーテルの1種又は複数種である。 Further, the solvent may be one or more of ethyl acetate, toluene, or petroleum ether.
[実施例1]
[実施例2]
[実施例3]
[実施例4]
[実施例5]
実施例1~5では、付加製造プロセスにより金属燃料骨格を調製し、そして酸化剤を金属燃料骨格に充填するが、推進剤の固形含有量は100%に近い。実施例1~5で得られた推進剤の性能によれば、レーザー選択溶融成形法で得られた高密度比推力推進剤の理論密度比推力はいずれも510g・s/cm3を超え、従来の推進剤の密度比推力に比べて大きく向上し、従来の固体動力のエネルギー限界を打ち破り、従来の固体動力輸送能力を向上させるのに有利であり、宇宙輸送において広い応用可能性がある。 In Examples 1-5, the metal fuel skeleton is prepared by the addition manufacturing process and the metal fuel skeleton is filled with an oxidant, but the solid content of the propellant is close to 100%. According to the performance of the propellants obtained in Examples 1 to 5, the theoretical density specific impulses of the high-density specific impulse propellants obtained by the laser selective melt molding method all exceed 510 g · s / cm 3 , which is conventional. It is significantly improved compared to the density specific impulse of the propellant, which is advantageous for breaking the energy limit of the conventional solid power and improving the conventional solid power transport capacity, and has wide applicability in space transportation.
以上、具体的な実施形態および例示的な例により本発明を詳しく説明したが、これらの説明は本発明を制限するものと理解されるべきではない。当業者は、本発明の趣旨や範囲から逸脱することなく、本発明の技術形態及びその実施形態に対して様々な均等性置換、修
飾、又は改善を行うことが可能であり、これらはすべて本発明の範囲に入る。本発明の保護範囲は、添付の特許請求の範囲に準ずる。
本発明の明細書に詳しく記載されていないた内容は、当業者の周知の技術である。
The present invention has been described in detail above with reference to specific embodiments and exemplary examples, but these descriptions should not be understood to limit the invention. One of ordinary skill in the art can make various uniformity substitutions, modifications, or improvements to the technical embodiments and embodiments thereof of the present invention without departing from the spirit or scope of the present invention, all of which are the present invention. It falls within the scope of the invention. The scope of protection of the present invention is in accordance with the appended claims.
Contents not described in detail in the specification of the present invention are well-known techniques of those skilled in the art.
Claims (8)
金属燃料:25%~40%と、
酸化剤:55%~70%と、
粘着剤:1%~5%と、を含む高密度比推力推進剤を調製する方法であって、
以下のステップを含み、
(1)レーザー選択溶融成形法により、金属燃料を三次元空間格子構造の骨格にプリント(造形)するステップ、
(2)粘着剤および酸化剤をペースト状の材料にするステップ、
(3)ステップ(2)で得られたペースト状の材料をステップ(1)で得られた三次元空間格子構造の空洞に充填し、プレスして高密度比推力推進剤を得るステップ、
前記金属燃料の三次元空間格子構造の骨格は、複数の単位格子を含み、複数の単位格子同士は周期的な配列に配置され、前記単位格子は杆に囲まれた中空の多面体構造であり、
前記杆の断面が円形であり、杆の長さが1~5mmであり、断面の直径が0.2mm~0.8mmであることを特徴とする高密度比推力推進剤の調製方法。 By mass percentage,
Metallic fuel: 25% -40%,
Oxidizing agent: 55% -70%,
A method for preparing a high-density specific impulse propellant containing 1% to 5% of a pressure-sensitive adhesive.
Including the following steps
(1) A step of printing (modeling) metal fuel on the skeleton of a three-dimensional spatial lattice structure by a laser selective melt molding method.
(2) Steps to make adhesives and oxidizing agents into paste-like materials ,
(3) The step of filling the paste-like material obtained in step (2) into the cavity of the three-dimensional spatial lattice structure obtained in step (1) and pressing to obtain a high-density specific impulse propellant .
The skeleton of the three-dimensional space lattice structure of the metal fuel includes a plurality of unit lattices, the plurality of unit lattices are arranged in a periodic array, and the unit lattice is a hollow polyhedral structure surrounded by a 杆.
A method for preparing a high-density specific impulse propellant, characterized in that the cross section of the rod is circular, the length of the rod is 1 to 5 mm, and the diameter of the cross section is 0.2 mm to 0.8 mm.
する請求項1乃至請求項4のいずれか一項に記載の調製方法。 Claims 1 to 4 are characterized in that the pressure-sensitive adhesive is one or more of fluororubber, ethylene-ethylene acetate copolymer EVA, polyacrylate rubber, cis-type butadiene rubber, or 68 # wax. The preparation method according to any one of the above.
(22)酸化剤をステップ(21)で得られた生成物に加え、溶剤が揮発するまで攪拌し、ペースト状の材料を得るステップ The preparation method according to any one of claims 1 to 6 , wherein in the step (2), the method for making the pressure-sensitive adhesive and the oxidizing agent into a paste-like material is as follows. (21) The pressure-sensitive adhesive is immersed in a solvent for 1 to 3 hours and then stirred until it is completely dissolved. (22) An oxidizing agent is added to the product obtained in step (21), and the mixture is stirred until the solvent volatilizes. , Steps to obtain paste-like material
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110649581.1A CN113354494B (en) | 2021-06-10 | 2021-06-10 | High-density specific impulse propellant and preparation method thereof |
CN202110649581.1 | 2021-06-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7026281B1 true JP7026281B1 (en) | 2022-02-25 |
JP2022189688A JP2022189688A (en) | 2022-12-22 |
Family
ID=77533632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021167530A Active JP7026281B1 (en) | 2021-06-10 | 2021-10-12 | High-density specific impulse propellant and its preparation method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7026281B1 (en) |
CN (1) | CN113354494B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115784813A (en) * | 2022-11-25 | 2023-03-14 | 西安交通大学 | Mixing method and mixing system of composite solid propellant |
CN116789507A (en) * | 2023-06-21 | 2023-09-22 | 湖北航天化学技术研究所 | High-solid-content solid propellant and preparation method thereof |
CN116854551A (en) * | 2023-06-29 | 2023-10-10 | 武汉大学 | Solid working medium for improving laser micro-propulsion performance and preparation method and application thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114192801B (en) * | 2021-12-16 | 2024-02-20 | 沈阳航空航天大学 | Preparation method of three-dimensional double-communication structure composite material based on additive manufacturing |
CN115419517A (en) * | 2022-08-29 | 2022-12-02 | 华中科技大学 | Combustible energetic metal framework for energetic grain, grain and application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07133180A (en) * | 1993-11-09 | 1995-05-23 | Daicel Chem Ind Ltd | Gas generating agent composition |
US20170073280A1 (en) * | 2007-03-22 | 2017-03-16 | Ronald D. Jones | Additive Manufactured Thermoplastic-Aluminum Nanocomposite Hybrid Rocket Fuel Grain and Method of Manufacturing Same |
JP2017533131A (en) * | 2014-09-16 | 2017-11-09 | エアロジェット ロケットダイン インコーポレイテッド | Additive manufacturing using pressurized slurry supply |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10501385B1 (en) * | 2014-04-23 | 2019-12-10 | Saint Louis University | Nanocomposite enhanced fuel grains |
WO2018167603A1 (en) * | 2017-03-15 | 2018-09-20 | Indian Institute Of Science | Method of manufacturing composite solid propellant grains |
CN111559948B (en) * | 2020-05-20 | 2022-03-04 | 湖北三江航天江河化工科技有限公司 | Formula of 3D printing solid propellant/heat insulating layer and integrated preparation method thereof |
CN112521239B (en) * | 2020-12-07 | 2021-12-28 | 西安交通大学 | Additive manufacturing method and device for composite solid propellant formed by separating metal fuel and oxidant |
-
2021
- 2021-06-10 CN CN202110649581.1A patent/CN113354494B/en active Active
- 2021-10-12 JP JP2021167530A patent/JP7026281B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07133180A (en) * | 1993-11-09 | 1995-05-23 | Daicel Chem Ind Ltd | Gas generating agent composition |
US20170073280A1 (en) * | 2007-03-22 | 2017-03-16 | Ronald D. Jones | Additive Manufactured Thermoplastic-Aluminum Nanocomposite Hybrid Rocket Fuel Grain and Method of Manufacturing Same |
JP2017533131A (en) * | 2014-09-16 | 2017-11-09 | エアロジェット ロケットダイン インコーポレイテッド | Additive manufacturing using pressurized slurry supply |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115784813A (en) * | 2022-11-25 | 2023-03-14 | 西安交通大学 | Mixing method and mixing system of composite solid propellant |
CN115784813B (en) * | 2022-11-25 | 2024-04-16 | 西安交通大学 | Mixing method and mixing system for composite solid propellant |
CN116789507A (en) * | 2023-06-21 | 2023-09-22 | 湖北航天化学技术研究所 | High-solid-content solid propellant and preparation method thereof |
CN116854551A (en) * | 2023-06-29 | 2023-10-10 | 武汉大学 | Solid working medium for improving laser micro-propulsion performance and preparation method and application thereof |
CN116854551B (en) * | 2023-06-29 | 2024-03-29 | 武汉大学 | Solid working medium for improving laser micro-propulsion performance and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2022189688A (en) | 2022-12-22 |
CN113354494A (en) | 2021-09-07 |
CN113354494B (en) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7026281B1 (en) | High-density specific impulse propellant and its preparation method | |
US9242297B2 (en) | Process for producing porous sintered aluminum, and porous sintered aluminum | |
TWI454580B (en) | Method for manufacturing aluminum composite body having aluminum porous sintered body | |
WO2010116679A1 (en) | Process for producing porous sintered aluminum, and porous sintered aluminum | |
CN103107315A (en) | Nano silicon-carbon composite material and preparation method thereof | |
US20050229478A1 (en) | Electrochemically reacting composition and a process for the preparation thereof | |
CN103618073A (en) | Preparation method for silicon-carbon composite cathode material | |
CN1995438A (en) | Method for preparing elconite | |
JP2010236082A (en) | Method of producing aluminum porous sintered compact and aluminum porous sintered compact | |
CN103611943B (en) | A kind of preparation method of carbon-coated aluminum nanoparticles | |
CN102683649A (en) | Method for preparing lithium ion battery carbon silicon anode material | |
RU2012102072A (en) | METHOD FOR PRODUCING SOLID COMPOSITE ALUMINUM FUEL AND SOLID COMPOSITE ALUMINUM FUEL | |
WO2023197546A1 (en) | Thermoplastic composite solid propellant and preparation method therefor | |
CN109585783A (en) | A kind of wetting method of lithium ion battery and its pole piece | |
CN105499582A (en) | Preparation method of high-boron boronated stainless steel | |
CN104818400A (en) | Intermediate alloy material and preparation method thereof | |
FR2987488A1 (en) | PROCESS FOR MANUFACTURING NUCLEAR FUEL PELLETS WITH CONSUMABLE ABSORBERS AND SUBSTITUTED NUCLEAR FUEL PELLETS OBTAINED BY THIS METHOD. | |
Fielding et al. | Gas-cooled fast reactor fuel fabrication | |
JP5825311B2 (en) | Aluminum porous sintered body | |
CN111116280A (en) | Metal fuel propellant and preparation method and application thereof | |
CN111704516B (en) | Hydroxyl-terminated aluminum-free propellant and preparation method thereof | |
CN111875459A (en) | Pyrotechnic agent containing cesium nitrate salt and preparation method thereof | |
CN103708419A (en) | Method for preparing of high-activity LiH microspheres through wet process | |
RU2541265C1 (en) | Method of producing high-energy composite | |
CN113231635A (en) | Quick-degreasing titanium powder injection molding feed and titanium product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211013 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20211013 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20211223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7026281 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |