JP7025841B2 - Paint composition and multi-layer coating - Google Patents
Paint composition and multi-layer coating Download PDFInfo
- Publication number
- JP7025841B2 JP7025841B2 JP2017017365A JP2017017365A JP7025841B2 JP 7025841 B2 JP7025841 B2 JP 7025841B2 JP 2017017365 A JP2017017365 A JP 2017017365A JP 2017017365 A JP2017017365 A JP 2017017365A JP 7025841 B2 JP7025841 B2 JP 7025841B2
- Authority
- JP
- Japan
- Prior art keywords
- coating film
- resin
- coating
- undercoat
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
Description
本発明は、塗料組成物及び該塗料組成物から形成される塗膜を備える複層塗膜に関し、特には、断熱性に優れ且つ複層塗膜の光沢の低下を抑制できる塗膜を形成可能な塗料組成物に関するものである。 The present invention relates to a coating composition and a multi-layer coating film including a coating film formed from the coating composition, and in particular, can form a coating film having excellent heat insulating properties and capable of suppressing a decrease in gloss of the multi-layer coating film. It relates to a paint composition.
建築物の屋根や壁等に適用される塗膜には、断熱性等の特性が求められており、断熱効果を向上させる観点から、様々な塗料組成物や塗膜が提案されている。 The coating film applied to the roof or wall of a building is required to have characteristics such as heat insulating properties, and various coating compositions and coating films have been proposed from the viewpoint of improving the heat insulating effect.
特開2009-090527号公報(特許文献1)は、建築物外装面を構成する遮熱断熱積層体であって、外装面の屋内側から屋外側へ向かって、基材層(A)、結合材及び中空粒子を含有する下塗材により形成される断熱性下塗層(B)、有機質結合材及び粒子径0.01~5mmの有色粒子を含有する装飾性塗材により形成される装飾材層(C)を有し、前記装飾材層(C)における有色粒子として、赤外線反射性粉体により基体粒子が被覆された粒子及び/または赤外線反射性粉体の集合体からなる粒子を含むことを特徴とする遮熱断熱積層体を記載しており、これによって、建築物外装面の表面に対し、装飾性の高い仕上面を形成することができるとともに、建築物の温度上昇を抑制し、省エネルギーにも資する技術を提供することが可能であるとしている。 Japanese Unexamined Patent Publication No. 2009-090527 (Patent Document 1) is a heat-shielding and heat-insulating laminate constituting the exterior surface of a building, and the base material layer (A) is bonded from the indoor side to the outdoor side of the exterior surface. A heat insulating undercoat layer (B) formed by an undercoat material containing a material and hollow particles, a decorative material layer formed by an organic binder and a decorative coating material containing colored particles having a particle diameter of 0.01 to 5 mm. The colored particles having (C) and in the decorative material layer (C) include particles in which the substrate particles are coated with the infrared reflective powder and / or particles composed of an aggregate of the infrared reflective powder. The characteristic heat-shielding and heat-insulating laminated body is described, which makes it possible to form a highly decorative finished surface on the surface of the exterior surface of the building, suppress the temperature rise of the building, and save energy. It is possible to provide technology that also contributes to.
特開2014-233844号公報(特許文献2)は、建築物の外装面に形成される複層塗膜であって、ベース層(A)と、前記ベース層(A)上に形成される上塗層(B)と、を含み、前記ベース層(A)は、ベース塗料により形成され、前記ベース塗料は、中空部分を有する粒子と、樹脂と、を含み、前記中空部分を有する粒子は、赤外線反射性粉体で少なくとも表面の一部が被覆され、前記赤外線反射性粉体は、屈折率が1.7~3.0の金属酸化物を含有することを特徴とする複層塗膜を記載しており、これによって、建築物の外装面に形成され、従来よりも高い断熱性と遮熱性を兼ね備え、且つ、耐水付着性の良好な複層塗膜を提供できるとしている。 Japanese Patent Application Laid-Open No. 2014-233844 (Patent Document 2) is a multi-layer coating film formed on the exterior surface of a building, which is formed on a base layer (A) and the base layer (A). The base layer (A) includes a coating layer (B), the base layer (A) is formed of a base coating material, the base coating material contains particles having a hollow portion, and the particles having the hollow portion include particles. At least a part of the surface is covered with the infrared reflective powder, and the infrared reflective powder contains a metal oxide having a refractive index of 1.7 to 3.0, which is a multi-layer coating film. According to the description, it is possible to provide a multi-layer coating film which is formed on the exterior surface of a building, has higher heat insulating properties and heat insulating properties than conventional ones, and has good water adhesion resistance.
特許文献1及び2に記載されるように、塗膜に断熱性を付与するためには中空粒子を利用することが知られている。そして、断熱性塗膜を形成するための実際の塗料組成物においては、十分な断熱性を確保するため、通常、比較的粒子径の大きい中空粒子が配合されている。 As described in Patent Documents 1 and 2, it is known that hollow particles are used to impart heat insulating properties to a coating film. In an actual coating composition for forming a heat insulating coating film, hollow particles having a relatively large particle size are usually blended in order to secure sufficient heat insulating properties.
しかしながら、粒子径の大きい中空粒子を配合することによって優れた断熱性を塗膜に付与できるものの、塗膜表面に凹凸が生じ、外観上好ましくないという課題がある。特に、断熱性塗膜は下塗り塗膜として形成され、該下塗り塗膜上に上塗り塗膜を形成させる場合が多いため、このような複層塗膜を形成させると、上塗り塗膜の光沢が低下してしまうという問題がある。 However, although it is possible to impart excellent heat insulating properties to the coating film by blending hollow particles having a large particle size, there is a problem that the surface of the coating film becomes uneven, which is not preferable in terms of appearance. In particular, the heat insulating coating film is formed as an undercoat coating film, and in many cases, a topcoat coating film is formed on the undercoat coating film. Therefore, when such a multi-layer coating film is formed, the gloss of the topcoat coating film is lowered. There is a problem of doing it.
また、断熱性下塗り塗膜は、断熱性を向上させる観点から、粒子径の大きい中空粒子を配合することに加えて、その膜厚を大きくすることが一般的である。このため、下塗り塗り塗膜の断熱性を十分に確保した上で、その膜厚を小さくしようとすると、上述した下塗り塗膜の表面に凹凸が生じる問題やそれによる上塗り塗膜の光沢の低下の問題が顕著になる。 Further, from the viewpoint of improving the heat insulating property, the heat insulating undercoat film generally has a large film thickness in addition to blending hollow particles having a large particle size. Therefore, if an attempt is made to reduce the film thickness after sufficiently ensuring the heat insulating property of the undercoat coating film, the above-mentioned problem that the surface of the undercoat coating film becomes uneven and the gloss of the topcoat coating film is lowered due to it. The problem becomes noticeable.
そこで、本発明の目的は、上記従来技術の問題を解決し、断熱性に優れ且つ複層塗膜の光沢の低下を抑制できる塗膜を形成可能な塗料組成物を提供することにある。また、本発明の他の目的は、断熱性に優れ且つ光沢の低下が抑制された複層塗膜を提供することにある。 Therefore, an object of the present invention is to provide a coating composition capable of solving the above-mentioned problems of the prior art and forming a coating film having excellent heat insulating properties and capable of suppressing a decrease in gloss of a multi-layer coating film. Another object of the present invention is to provide a multi-layer coating film having excellent heat insulating properties and suppressed decrease in gloss.
そこで、本発明者は、上記目的を達成するために鋭意検討した結果、50%粒子径が特定の範囲内にある中空粒子を特定量配合させることによって、断熱性に優れ且つ複層塗膜の光沢の低下を抑制できる塗膜を形成可能な塗料組成物を提供できることを見出し、本発明を完成させるに至った。また、本発明者は、更に検討したところ、上述の塗料組成物であれば熱伝導率の低い塗膜を形成することができ、十分な断熱性を確保したまま、膜厚を小さくできることも見出した。 Therefore, as a result of diligent studies to achieve the above object, the present inventor has excellent heat insulating properties and a multi-layer coating material by blending a specific amount of hollow particles having a 50% particle size within a specific range. We have found that it is possible to provide a coating composition capable of forming a coating film capable of suppressing a decrease in gloss, and have completed the present invention. Further, as a result of further studies, the present inventor has found that the above-mentioned coating composition can form a coating film having a low thermal conductivity, and the film thickness can be reduced while ensuring sufficient heat insulating properties. rice field.
即ち、本発明の塗料組成物は、50%粒子径が10~35μmである中空粒子を含む塗料組成物であって、該塗料組成物における不揮発分中の中空粒子の割合が45~70体積%であることを特徴とする。 That is, the coating composition of the present invention is a coating composition containing hollow particles having a 50% particle diameter of 10 to 35 μm, and the proportion of hollow particles in the non-volatile content in the coating composition is 45 to 70% by volume. It is characterized by being.
本発明の塗料組成物の好適例においては、前記不揮発分の熱伝導率が0.22W/mK以下である。 In a preferred example of the coating composition of the present invention, the thermal conductivity of the non-volatile component is 0.22 W / mK or less.
本発明の塗料組成物の他の好適例においては、金属基材上に配置される下塗り塗膜を形成するために用いられる。 In another preferred example of the coating composition of the present invention, it is used to form an undercoat coating film to be placed on a metal substrate.
本発明の塗料組成物の他の好適例においては、防錆顔料を更に含む。 In another preferred example of the coating composition of the present invention, a rust preventive pigment is further contained.
本発明の塗料組成物の他の好適例においては、樹脂を更に含み、該樹脂が、エポキシ樹脂、ウレタン樹脂及びアルキッド樹脂からなる群から選択される少なくとも1種の樹脂を含む。 Another preferred example of the coating composition of the present invention further comprises a resin, wherein the resin comprises at least one resin selected from the group consisting of epoxy resins, urethane resins and alkyd resins.
本発明の複層塗膜は、50%粒子径が10~35μmである中空粒子を45~70体積%で含む下塗り塗膜と、該下塗り塗膜上に形成される上塗り塗膜とを備える複層塗膜であって、
前記下塗り塗膜は膜厚が50~200μmであり、前記上塗り塗膜は膜厚が20~100μmであり、前記下塗り塗膜が基材上に形成されていることを特徴とする。
The multi-layer coating film of the present invention includes an undercoat coating film containing 45 to 70% by volume of hollow particles having a 50% particle diameter of 10 to 35 μm, and a topcoat coating film formed on the undercoat coating film. It is a layer coating film
The undercoat film has a film thickness of 50 to 200 μm, the topcoat film has a film thickness of 20 to 100 μm, and the undercoat film is formed on a substrate.
本発明の複層塗膜の好適例において、前記下塗り塗膜は、熱伝導率が0.22W/mK以下である。 In a preferred example of the multilayer coating film of the present invention, the undercoat coating film has a thermal conductivity of 0.22 W / mK or less.
本発明の複層塗膜の他の好適例においては、前記下塗り塗膜及び前記上塗り塗膜が樹脂を含み、該樹脂が、エポキシ樹脂、ウレタン樹脂及びアルキッド樹脂からなる群から選択される少なくとも1種の樹脂を含む。 In another preferred example of the multilayer coating film of the present invention, the undercoat film and the topcoat film contain a resin, and the resin is selected from the group consisting of an epoxy resin, a urethane resin and an alkyd resin. Contains seed resin.
本発明の塗料組成物によれば、50%粒子径が10~35μmである中空粒子の割合を不揮発分中45~70体積%とすることで、断熱性に優れ且つ複層塗膜の光沢の低下を抑制できる塗膜を形成可能な塗料組成物を提供することができる。 According to the coating composition of the present invention, the proportion of hollow particles having a 50% particle diameter of 10 to 35 μm is 45 to 70% by volume in the non-volatile content, so that the heat insulating property is excellent and the gloss of the multi-layer coating film is glossy. It is possible to provide a coating composition capable of forming a coating film capable of suppressing deterioration.
また、本発明の複層塗膜によれば、50%粒子径が10~35μmである中空粒子の割合を下塗り塗膜中45~70体積%とすることで、断熱性に優れ且つ光沢の低下が抑制された複層塗膜を提供することができる。 Further, according to the multi-layer coating film of the present invention, by setting the proportion of hollow particles having a 50% particle diameter of 10 to 35 μm to 45 to 70% by volume in the undercoat coating film, the heat insulating property is excellent and the gloss is lowered. It is possible to provide a multi-layer coating film in which the amount of particles is suppressed.
<塗料組成物>
以下に、本発明の塗料組成物を詳細に説明する。本発明の塗料組成物は、50%粒子径が10~35μmである中空粒子を含む塗料組成物であって、該塗料組成物における不揮発分中の中空粒子の割合が45~70体積%であることを特徴とする。
<Paint composition>
Hereinafter, the coating composition of the present invention will be described in detail. The coating composition of the present invention is a coating composition containing hollow particles having a 50% particle diameter of 10 to 35 μm, and the proportion of the hollow particles in the non-volatile content in the coating composition is 45 to 70% by volume. It is characterized by that.
本発明の塗料組成物は、中空粒子を含むが、本発明において、中空粒子とは、粒子中に1つ以上の空洞を有する粒子である。中空粒子としては、球状中空粒子、繊維状中空粒子、チューブ状中空粒子、シート状中空粒子等が挙げられる。また、中空粒子は、材質により区別することもでき、例えば、樹脂等からなる有機素材の中空粒子、ガラス、シリカ、アルミナ、ジルコニア、カーボン、セラミック、火山性ガラス質等の無機素材からなる中空粒子が挙げられるが、これらの中でも、樹脂、ガラス、アルミナ、ジルコニア、セラミック等の材料からなる中空粒子が好ましい。これら中空粒子は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The coating composition of the present invention contains hollow particles, and in the present invention, the hollow particles are particles having one or more cavities in the particles. Examples of the hollow particles include spherical hollow particles, fibrous hollow particles, tubular hollow particles, sheet-shaped hollow particles, and the like. The hollow particles can also be distinguished by the material. For example, hollow particles made of an organic material such as resin, hollow particles made of an inorganic material such as glass, silica, alumina, zirconia, carbon, ceramic, and volcanic vitreous material. Among these, hollow particles made of a material such as resin, glass, alumina, zirconia, and ceramic are preferable. These hollow particles may be used alone or in combination of two or more.
本発明の塗料組成物において、中空粒子の50%粒子径は、10~35μmであり、15~30μmであることが好ましい。本発明の塗料組成物から形成される塗膜に断熱性を付与する観点から、中空粒子の50%粒子径は10μm以上である。また、本発明の塗料組成物から形成される塗膜の表面に凹凸が生じることを防ぎ、更にはこのような凹凸に起因する上塗り塗膜の光沢の低下を防ぐ観点から、中空粒子の50%粒子径は35μm以下である。また、上記中空粒子は、90%粒子径が60μm以下であることが好ましい。 In the coating composition of the present invention, the 50% particle size of the hollow particles is 10 to 35 μm, preferably 15 to 30 μm. From the viewpoint of imparting heat insulating properties to the coating film formed from the coating composition of the present invention, the 50% particle diameter of the hollow particles is 10 μm or more. Further, from the viewpoint of preventing unevenness from being generated on the surface of the coating film formed from the coating composition of the present invention and further preventing deterioration of the gloss of the topcoat coating film due to such unevenness, 50% of the hollow particles. The particle size is 35 μm or less. Further, the hollow particles preferably have a 90% particle diameter of 60 μm or less.
本発明において、50%粒子径は、体積基準粒度分布の50%粒子径(D50)を指し、90%粒子径は、体積基準粒度分布の90%粒子径(D90)を指し、粒度分布測定装置(例えばレーザ回折/散乱式粒度分布測定装置)を用いて測定される粒度分布から求めることができる。そして、本発明における粒子径は、レーザ回折・散乱法による球相当径で表される。 In the present invention, the 50% particle size refers to the 50% particle size (D 50 ) of the volume-based particle size distribution, and the 90% particle size refers to the 90% particle size (D 90 ) of the volume-based particle size distribution. It can be obtained from the particle size distribution measured using a measuring device (for example, a laser diffraction / scattering type particle size distribution measuring device). The particle size in the present invention is represented by the equivalent sphere diameter by the laser diffraction / scattering method.
上記中空粒子は、真密度が0.1~1.2g/cm3であることが好ましく、0.12~0.8g/cm3であることが更に好ましい。なお、真密度は、ピクノメーター(気相置換式真密度計、例えば、Micromeritics社製のAccuPycII1340)を用いて測定できる。 The hollow particles preferably have a true density of 0.1 to 1.2 g / cm 3 , and more preferably 0.12 to 0.8 g / cm 3 . The true density can be measured using a pycnometer (a gas phase substitution type true density meter, for example, AccuPycII1340 manufactured by Micromeritics).
上記中空粒子は、耐圧強度が2~200MPaであることが好ましい。耐圧強度は、ASTM D 3102-78で定義されており、グリセリンの中に中空粒子を適量入れ加圧し、10体積%破壊する時の圧力を指標として用いる。 The hollow particles preferably have a withstand voltage of 2 to 200 MPa. The compressive strength is defined by ASTM D 3102-78, and the pressure at the time of breaking 10% by volume by putting an appropriate amount of hollow particles in glycerin and pressurizing is used as an index.
本発明の塗料組成物において、不揮発分中の中空粒子の割合は、45~70体積%であり、50~68体積%であることが好ましい。本発明の塗料組成物に用いる中空粒子は粒子径が小さいため、本発明の塗料組成物から形成される塗膜に十分な断熱性を付与する観点から、塗料組成物における不揮発分中の中空粒子の割合は45体積%以上である。また、塗料組成物における不揮発分中の中空粒子の割合が70体積%を超えると、塗膜表面の凹凸が大きくなり、かつ、塗膜の耐食性や耐水性が低下するため好ましくない。 In the coating composition of the present invention, the proportion of hollow particles in the non-volatile content is 45 to 70% by volume, preferably 50 to 68% by volume. Since the hollow particles used in the coating composition of the present invention have a small particle size, the hollow particles in the non-volatile content in the coating composition are provided from the viewpoint of imparting sufficient heat insulating properties to the coating film formed from the coating composition of the present invention. The ratio of is 45% by volume or more. Further, when the ratio of the hollow particles in the non-volatile component in the coating composition exceeds 70% by volume, the unevenness of the coating film surface becomes large and the corrosion resistance and water resistance of the coating film are lowered, which is not preferable.
本発明の塗料組成物において、不揮発分とは、水や有機溶剤等の揮発する成分を除いた成分を指し、最終的に塗膜を形成することになる成分である。また、本発明の塗料組成物における不揮発分中の中空粒子の割合は、各成分の組成及び比重から計算により求めることができる。 In the coating composition of the present invention, the non-volatile component refers to a component excluding volatile components such as water and an organic solvent, and is a component that finally forms a coating film. Further, the ratio of hollow particles in the non-volatile component in the coating composition of the present invention can be obtained by calculation from the composition and specific gravity of each component.
本発明の塗料組成物は、通常、樹脂を含む。本発明に使用できる樹脂としては、特に限定されるものではなく、塗料業界において通常使用されている樹脂を例示することができ、具体的には、アクリル樹脂、シリコーン樹脂、アクリルシリコーン樹脂、スチレンアクリル共重合樹脂、ポリエステル樹脂、ふっ素樹脂、ロジン樹脂、石油樹脂、クマロン樹脂、フェノール樹脂、ウレタン樹脂、メラミン樹脂、尿素樹脂、エポキシ樹脂、セルロース樹脂、キシレン樹脂、アルキッド樹脂、脂肪族炭化水素樹脂、ブチラール樹脂、マレイン酸樹脂、フマル酸樹脂、ビニル樹脂、アミン樹脂、ケチミン樹脂等が挙げられる。これらの樹脂を一種単独で用いても良く、二種以上組み合わせて用いてもよい。これらの中でも、金属基材への優れた付着性、耐水性および耐食性の点から、エポキシ樹脂、ウレタン樹脂及びアルキッド樹脂が好ましい。 The coating composition of the present invention usually contains a resin. The resin that can be used in the present invention is not particularly limited, and examples thereof include resins that are usually used in the paint industry. Specifically, acrylic resin, silicone resin, acrylic silicone resin, and styrene acrylic. Copolymer resin, polyester resin, fluororesin, rosin resin, petroleum resin, kumaron resin, phenol resin, urethane resin, melamine resin, urea resin, epoxy resin, cellulose resin, xylene resin, alkyd resin, aliphatic hydrocarbon resin, butyral Examples thereof include resins, maleic acid resins, fumaric acid resins, vinyl resins, amine resins, ketimine resins and the like. These resins may be used alone or in combination of two or more. Among these, epoxy resin, urethane resin and alkyd resin are preferable from the viewpoint of excellent adhesion to a metal substrate, water resistance and corrosion resistance.
本発明の塗料組成物中において、樹脂の含有量は、35~60質量%であることが好ましい。 In the coating composition of the present invention, the content of the resin is preferably 35 to 60% by mass.
本発明の塗料組成物は、顔料を含むことができる。本発明に使用できる顔料としては、特に限定されるものではなく、塗料業界において通常使用されている顔料を使用できる。具体例としては、二酸化チタン、酸化鉄、カーボンブラック等の着色顔料、シリカ、タルク、マイカ、炭酸カルシウム、硫酸バリウム等の体質顔料、亜鉛、リン酸亜鉛、リン酸アルミニウム、トリポリリン酸アルミニウム、モリブデン酸亜鉛、メタホウ酸バリウム、ハイドロカルマイト等の防錆顔料、アルミニウム、ニッケル、クロム、錫、銅、銀、白金、金、ステンレス、ガラスフレーク等の光輝顔料等が挙げられる。これら顔料は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、本発明の塗料組成物が金属基材上に配置される下塗り塗膜を形成するために用いられる場合、本発明の塗料組成物は、防錆顔料を含むことが好ましい。 The coating composition of the present invention may contain a pigment. The pigment that can be used in the present invention is not particularly limited, and a pigment that is usually used in the paint industry can be used. Specific examples include coloring pigments such as titanium dioxide, iron oxide and carbon black, extender pigments such as silica, talc, mica, calcium carbonate and barium sulfate, zinc, zinc phosphate, aluminum phosphate, aluminum tripolyphosphate and molybdate. Examples thereof include rust preventive pigments such as zinc, barium metaborate, and hydrocarbumite, and bright pigments such as aluminum, nickel, chromium, tin, copper, silver, platinum, gold, stainless steel, and glass flakes. These pigments may be used alone or in combination of two or more. Further, when the coating composition of the present invention is used for forming an undercoat coating film to be arranged on a metal substrate, the coating composition of the present invention preferably contains a rust preventive pigment.
本発明の塗料組成物において、顔料の50%粒子径は、該塗料組成物から形成される塗膜の表面に凹凸が生じることを防ぎ、更にはこのような凹凸に起因する上塗り塗膜の光沢の低下を防ぐ観点から、1~35μmであることが好ましい。 In the coating composition of the present invention, the 50% particle size of the pigment prevents unevenness from occurring on the surface of the coating film formed from the coating composition, and further, the gloss of the topcoat coating film due to such unevenness. It is preferably 1 to 35 μm from the viewpoint of preventing a decrease in the amount of particles.
本発明の塗料組成物中において、顔料の含有量は、例えば0質量%を超え62質量%以下であることが好ましく、2~60質量%であることが更に好ましい。 In the coating composition of the present invention, the content of the pigment is preferably, for example, more than 0% by mass and 62% by mass or less, and more preferably 2 to 60% by mass.
本発明の塗料組成物は、塗膜形成時に樹脂を反応により硬化させる反応型の塗料組成物である場合、硬化剤を含むことができる。硬化剤としては、特に制限されるものではなく、公知の樹脂用の硬化剤を使用できる。具体例としては、脂肪族ポリアミン類、脂環族ポリアミン類、芳香族ポリアミン類、ポリアミドアミン類、ジイソシアネート類、イソシアヌレート類、並びにこれらの変性物等が挙げられる。本発明の塗料組成物中において、硬化剤の含有量は、例えば1~30質量%である。 When the coating composition of the present invention is a reactive coating composition that cures a resin by a reaction at the time of forming a coating film, it can contain a curing agent. The curing agent is not particularly limited, and a known curing agent for a resin can be used. Specific examples include aliphatic polyamines, alicyclic polyamines, aromatic polyamines, polyamide amines, diisocyanates, isocyanurates, and modified products thereof. In the coating composition of the present invention, the content of the curing agent is, for example, 1 to 30% by mass.
本発明の塗料組成物は、粘度を調整する等の目的で水や有機溶剤を含んでもよい。有機溶剤としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ケトン類、エステル類、エーテル類、アルコール系溶剤等が挙げられる。また、本発明の塗料組成物は、常温乾燥型塗料組成物である場合、環境に対する負荷が比較的少ない有機溶剤を含むことが好ましく、具体的にはJIS K 2256に規定される混合アニリン点又はアニリン点が12~70℃の範囲内にある弱溶剤、例えば、脂肪族系溶剤、ナフテン系溶剤、芳香族ナフサ等の炭化水素系有機溶剤が好適に挙げられる。これらの溶媒は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。例えば、これらの溶媒を用いて、塗料組成物中における不揮発分の含有量が58~80質量%となるように、本発明の塗料組成物を調製できる。 The coating composition of the present invention may contain water or an organic solvent for the purpose of adjusting the viscosity or the like. Examples of the organic solvent include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, ketones, esters, ethers, alcohol solvents and the like. Further, when the coating composition of the present invention is a room temperature drying type coating composition, it preferably contains an organic solvent having a relatively low load on the environment, and specifically, a mixed aniline point or a mixed aniline point specified in JIS K 2256. Preferable examples thereof include weak solvents having an aniline point in the range of 12 to 70 ° C., for example, hydrocarbon solvents such as aliphatic solvents, naphthen solvents, and aromatic naphtha. These solvents may be used alone or in combination of two or more. For example, using these solvents, the coating composition of the present invention can be prepared so that the content of the non-volatile content in the coating composition is 58 to 80% by mass.
本発明の塗料組成物には、上述した成分以外に、乾燥剤、酸化防止剤、反応触媒、分散剤、消泡剤、脱水剤、レベリング剤、沈降防止剤、ダレ止め剤、シランカップリング剤、皮張り防止剤、防藻剤、防カビ剤、防腐剤、紫外線吸収剤、光安定剤等を必要に応じて適宜配合してもよい。 In addition to the above-mentioned components, the coating composition of the present invention includes a desiccant, an antioxidant, a reaction catalyst, a dispersant, an antifoaming agent, a dehydrating agent, a leveling agent, an anti-settling agent, an anti-sagging agent, and a silane coupling agent. , Anti-skin agent, anti-algae agent, anti-fungal agent, preservative, ultraviolet absorber, light stabilizer and the like may be appropriately blended as needed.
本発明の塗料組成物は、必要に応じて適宜選択される各種成分を混合することによって調製できる。また、本発明の塗料組成物が2液反応型塗料組成物である場合、通常、樹脂を含む主剤と、硬化剤とを、塗装直前に混合させて調製される。主剤には、樹脂の他、中空粒子や必要に応じて適宜選択される各種成分を配合することができる。また、硬化剤についても、必要に応じて適宜選択される各種成分との混合物の形態で使用できる。なお、本発明の塗料組成物の粘度を調整するため、主剤と、硬化剤とを混合した後に、有機溶剤を更に加えてもよい。 The coating composition of the present invention can be prepared by mixing various components appropriately selected as necessary. When the coating composition of the present invention is a two-component reaction type coating composition, it is usually prepared by mixing a main agent containing a resin and a curing agent immediately before coating. In addition to the resin, hollow particles and various components appropriately selected as needed can be added to the main agent. Further, the curing agent can also be used in the form of a mixture with various components appropriately selected as needed. In order to adjust the viscosity of the coating composition of the present invention, an organic solvent may be further added after mixing the main agent and the curing agent.
本発明の塗料組成物は、後述するような建築物やその部材に配置される下塗り塗膜の形成に用いる観点から、常温乾燥型塗料組成物や反応型塗料組成物であることが好ましい。ここで、反応型塗料組成物としては、エポキシ樹脂を含む主剤と硬化剤としてポリアミン化合物とを含む2液型塗料組成物、不飽和カルボン酸と反応させたエポキシ樹脂を含む1液型塗料組成物(空気中の酸素による酸化重合によって硬化を起こす)、酸化架橋(重合)するアルキッド樹脂を含む1液型塗料組成物、空気中の湿気に反応するウレタン樹脂(例えばイソシアネート末端ウレタンプレポリマー)を含む1液型塗料組成物(いわゆる湿気硬化型)等が挙げられる。 The coating composition of the present invention is preferably a room temperature dry type coating composition or a reaction type coating composition from the viewpoint of being used for forming an undercoat coating film to be arranged on a building or a member thereof as described later. Here, as the reactive coating composition, a two-component coating composition containing a main agent containing an epoxy resin and a polyamine compound as a curing agent, and a one-component coating composition containing an epoxy resin reacted with an unsaturated carboxylic acid. (Curing by oxidative polymerization by oxygen in the air), a one-component paint composition containing an oxidatively crosslinked (polymerized) alkyd resin, and a urethane resin that reacts with moisture in the air (for example, an isocyanate-terminated urethane prepolymer). Examples thereof include a one-component paint composition (so-called moisture-curing type).
本発明の塗料組成物中において、不揮発分の熱伝導率は、0.22W/mK以下であることが好ましく、0.20W/mK以下であることが更に好ましい。不揮発分の熱伝導率が0.22W/mK以下であれば、断熱性を十分に確保した上で、膜厚を小さくすることができる。本発明の塗料組成物は、50%粒子径が10~35μmである中空粒子が不揮発分中45~70体積%で配合されており、上記特定した範囲の熱伝導率を容易に達成することができる。不揮発分の熱伝導率の下限について特に制限はないものの、0.05W/mK以上であることが好ましい。なお、不揮発分の熱伝導率の測定方法については、実施例において説明する。 In the coating composition of the present invention, the thermal conductivity of the non-volatile component is preferably 0.22 W / mK or less, more preferably 0.20 W / mK or less. When the thermal conductivity of the non-volatile component is 0.22 W / mK or less, the film thickness can be reduced while sufficiently ensuring the heat insulating property. In the coating composition of the present invention, hollow particles having a 50% particle diameter of 10 to 35 μm are blended in an amount of 45 to 70% by volume of the non-volatile content, and the thermal conductivity in the above-specified range can be easily achieved. can. Although the lower limit of the thermal conductivity of the non-volatile component is not particularly limited, it is preferably 0.05 W / mK or more. A method for measuring the thermal conductivity of the non-volatile component will be described in Examples.
本発明の塗料組成物は、せん断速度0.1s-1の粘度が0.1~10,000Pa・sであり、且つせん断速度1,000s-1の粘度が0.05~10Pa・sであることが好ましい。なお、本発明において、粘度はTAインスツルメンツ社製レオメーターARESを用い、液温を23℃に調整した後測定される。 The coating composition of the present invention has a viscosity of 0.1 s -1 and a viscosity of 0.1 to 10,000 Pa · s, and a shear rate of 1,000 s -1 has a viscosity of 0.05 to 10 Pa · s. Is preferable. In the present invention, the viscosity is measured by using a leometer ARES manufactured by TA Instruments Co., Ltd. after adjusting the liquid temperature to 23 ° C.
塗装方法は、特に限定されず、既知の塗装手段、例えば、刷毛塗装、ローラー塗装、コテ塗装、ヘラ塗装、スプレー塗装等が利用できるが、本発明の塗料組成物は、刷毛塗装やローラー塗装での使用に好適である。 The coating method is not particularly limited, and known coating means such as brush coating, roller coating, iron coating, spatula coating, spray coating and the like can be used, but the coating composition of the present invention is a brush coating or roller coating. Suitable for use.
また、本発明の塗料組成物により塗装できる基材としては、特に限定されるものではなく、例えば、鉄鋼、亜鉛めっき鋼(例えばトタン板)、錫めっき鋼(例えばブリキ板)、ステンレス鋼、マグネシウム合金、アルミニウム、アルミニウム合金等の金属基材、木材、石膏、珪酸カルシウム、ガラス、セラミック、コンクリート、セメント、モルタル、スレート等の無機系基材、アクリル樹脂、ポリ塩化ビニル、ポリカーボネート、ABS樹脂、ポリエチレンテレフタレート、ポリオレフィン等のプラスチック基材が挙げられる。これらの中でも、鋼材、アルミ材、木材、石膏ボード、モルタル、軽量気泡コンクリート、木繊維補強セメント板、繊維補強セメント板、繊維補強セメント・珪酸カルシウム板等の建築基材が好適に挙げられる。金属基材には、各種表面処理、例えば酸化処理が施された基材も含まれる。また、その表面が無機物で被覆されているようなプラスチック基材(例えば、ガラス質で被覆されたプラスチック基材)は、無機系基材に含まれる。なお、基材は、プライマー処理が施されていてもよいし、基材表面の少なくとも一部に旧塗膜(本発明の塗料組成物の塗装を行う前に既に形成されている塗膜)が存在していてもよい。 The base material that can be coated with the coating composition of the present invention is not particularly limited, and is, for example, steel, zinc-plated steel (for example, galvanized iron plate), tin-plated steel (for example, tin plate), stainless steel, and magnesium. Metallic base materials such as alloys, aluminum and aluminum alloys, inorganic base materials such as wood, gypsum, calcium silicate, glass, ceramics, concrete, cement, mortar and slate, acrylic resin, polyvinyl chloride, polycarbonate, ABS resin and polyethylene. Examples thereof include plastic substrates such as terephthalate and polyolefin. Among these, building base materials such as steel, aluminum, wood, gypsum board, mortar, lightweight bubble concrete, wood fiber reinforced cement board, fiber reinforced cement board, fiber reinforced cement and calcium silicate board are preferable. The metal substrate also includes a substrate that has been subjected to various surface treatments, for example, an oxidation treatment. Further, a plastic base material whose surface is coated with an inorganic substance (for example, a plastic base material coated with a glassy substance) is included in the inorganic base material. The substrate may be primer-treated, or an old coating film (a coating film already formed before coating the coating composition of the present invention) may be applied to at least a part of the surface of the substrate. It may exist.
本発明の塗料組成物により塗装できる基材としては、上述したように各種材質の基材が挙げられるが、その具体例としては、建築物(例えば住宅やビル、工場)やその部材(例えば屋根や壁)等が好適に挙げられる。 Examples of the base material that can be coated by the coating composition of the present invention include base materials made of various materials as described above, and specific examples thereof include buildings (for example, houses, buildings, factories) and their members (for example, roofs). And walls) and the like are preferable.
本発明の塗料組成物は、断熱性に優れ且つ複層塗膜の光沢の低下を抑制できるため、基材(特に建築物やその部材)上に配置される下塗り塗膜の形成のために好適に使用でき、また、防錆顔料を配合することで、金属基材上に配置される下塗り塗膜の形成のために好適に使用できる。 The coating composition of the present invention is suitable for forming an undercoat coating film to be placed on a base material (particularly a building or a member thereof) because it has excellent heat insulating properties and can suppress a decrease in gloss of a multi-layer coating film. Also, by blending a rust preventive pigment, it can be suitably used for forming an undercoat coating film to be arranged on a metal substrate.
<複層塗膜>
以下に、本発明の複層塗膜を詳細に説明する。本発明の複層塗膜は、50%粒子径が10~35μmである中空粒子を45~70体積%で含む下塗り塗膜と、該下塗り塗膜上に形成される上塗り塗膜とを備える複層塗膜であって、前記下塗り塗膜は膜厚が50~200μmであり、前記上塗り塗膜は膜厚が20~100μmであり、前記下塗り塗膜が基材上に形成されていることを特徴とする。本発明の複層塗膜は、50%粒子径が10~30μmである中空粒子を45~70体積%で含む下塗り塗膜を備えるため、断熱性に優れ且つ光沢の低下を抑制することができる。
<Multi-layer coating>
The multi-layer coating film of the present invention will be described in detail below. The multi-layer coating film of the present invention includes an undercoat coating film containing 45 to 70% by volume of hollow particles having a 50% particle diameter of 10 to 35 μm, and a topcoat coating film formed on the undercoat coating film. The layer coating film has a film thickness of 50 to 200 μm, the top coat film has a film thickness of 20 to 100 μm, and the undercoat film is formed on the substrate. It is a feature. Since the multi-layer coating film of the present invention includes an undercoat coating film containing 45 to 70% by volume of hollow particles having a 50% particle diameter of 10 to 30 μm, it is excellent in heat insulating properties and can suppress deterioration of gloss. ..
本発明の複層塗膜は、上述した本発明の塗料組成物における不揮発分の熱伝導率と同様の理由から、下塗り塗膜の熱伝導率が、0.22W/mK以下であることが好ましく、0.20W/mK以下であることが更に好ましく、また、下限について特に制限はないものの、0.05W/mK以上であることが好ましい。なお、下塗り塗膜の熱伝導率の測定方法については、実施例において説明する。 In the multi-layer coating film of the present invention, the thermal conductivity of the undercoat coating film is preferably 0.22 W / mK or less for the same reason as the thermal conductivity of the non-volatile component in the coating composition of the present invention described above. , 0.20 W / mK or less, and although there is no particular limitation on the lower limit, it is preferably 0.05 W / mK or more. The method for measuring the thermal conductivity of the undercoat coating film will be described in Examples.
本発明の複層塗膜において、下塗り塗膜は、上述した本発明の塗料組成物により形成できる塗膜であり、該下塗り塗膜中に含まれる中空粒子や、必要に応じて含まれる他の成分(樹脂、顔料等)は、上述した本発明の塗料組成物の説明において記載されたとおりである。 In the multi-layer coating film of the present invention, the undercoat coating film is a coating film that can be formed by the above-mentioned coating composition of the present invention, and hollow particles contained in the undercoat coating film and other components contained as necessary. The components (resin, pigment, etc.) are as described in the above-mentioned description of the coating composition of the present invention.
本発明の複層塗膜において、下塗り塗膜は、熱伝導性が低く、断熱性に優れるため、その膜厚を50~200μmの範囲、好ましくは70~150μmの範囲にすることが可能である。 In the multi-layer coating film of the present invention, the undercoat coating film has low thermal conductivity and excellent heat insulating properties, so that the film thickness can be in the range of 50 to 200 μm, preferably in the range of 70 to 150 μm. ..
本発明の複層塗膜において、下塗り塗膜は、基材上に形成されているが、該基材についても、上述した本発明の塗料組成物の説明において記載されたとおりである。 In the multi-layer coating film of the present invention, the undercoat coating film is formed on the base material, and the base material is also as described in the above-mentioned description of the coating composition of the present invention.
本発明の複層塗膜において、上塗り塗膜は、例えば下塗り塗膜を保護したり、美装仕上げを施したりするといった目的から形成されている塗膜であり、その膜厚は20~100μmの範囲に設定できる。 In the multi-layer coating film of the present invention, the topcoat coating film is a coating film formed for the purpose of protecting, for example, the undercoat coating film or giving a beautifying finish, and the film thickness is 20 to 100 μm. Can be set to a range.
本発明の複層塗膜において、上塗り塗膜は、通常、樹脂を含み、その具体例として、アクリル樹脂、シリコーン樹脂、アクリルシリコーン樹脂、スチレンアクリル共重合樹脂、ポリエステル樹脂、ふっ素樹脂、ロジン樹脂、石油樹脂、クマロン樹脂、フェノール樹脂、ウレタン樹脂、メラミン樹脂、尿素樹脂、エポキシ樹脂、セルロース樹脂、キシレン樹脂、アルキッド樹脂、脂肪族炭化水素樹脂、ブチラール樹脂、マレイン酸樹脂、フマル酸樹脂、ビニル樹脂、アミン樹脂、ケチミン樹脂等が挙げられる。これらの樹脂を一種単独で用いても良く、二種以上組み合わせて用いてもよい。また、本発明の複層塗膜においては、層間の付着性の観点から、下塗り塗膜及び上塗り塗膜が、エポキシ樹脂、ウレタン樹脂及びアルキッド樹脂からなる群から選択される少なくとも1種の樹脂を含むことが好ましい。 In the multi-layer coating film of the present invention, the top coat coating film usually contains a resin, and specific examples thereof include acrylic resin, silicone resin, acrylic silicone resin, styrene acrylic copolymer resin, polyester resin, fluororesin, and rosin resin. Petroleum resin, kumaron resin, phenol resin, urethane resin, melamine resin, urea resin, epoxy resin, cellulose resin, xylene resin, alkyd resin, aliphatic hydrocarbon resin, butyral resin, maleic acid resin, fumaric acid resin, vinyl resin, Examples thereof include amine resin and ketimine resin. These resins may be used alone or in combination of two or more. Further, in the multi-layer coating film of the present invention, from the viewpoint of adhesion between layers, at least one resin selected from the group consisting of epoxy resin, urethane resin and alkyd resin as the undercoat coating film and the topcoat coating film is used. It is preferable to include it.
上塗り塗膜の形成には、主溶媒として有機溶剤を用いる有機溶剤系塗料、主溶媒として水を用いる水系塗料、活性エネルギー線硬化型塗料等の従来から公知の各種塗料が利用可能である。上記塗料には、樹脂以外の成分として、硬化剤、着色剤、紫外線吸収剤、光安定剤、レオロジー調整剤、レベリング剤、表面張力調整剤、酸化防止剤、可塑剤、防錆剤、溶剤、充填剤、pH調整剤、消泡剤、荷電制御剤、光重合開始剤、光増感剤、重合禁止剤、応力緩和剤、浸透剤、導光材、光輝材、磁性材、蛍光体、ワックス等を必要に応じて配合してもよい。上記塗料は、必要に応じて適宜選択される各種成分を混合することによって、調製できる。 Various conventionally known paints such as an organic solvent-based paint using an organic solvent as a main solvent, a water-based paint using water as a main solvent, and an active energy ray-curable paint can be used for forming the top coat. In the above paints, as components other than the resin, a curing agent, a colorant, an ultraviolet absorber, a light stabilizer, a rheology adjuster, a leveling agent, a surface tension adjuster, an antioxidant, a plasticizer, a rust preventive, a solvent, etc. Filler, pH adjuster, defoaming agent, charge control agent, photopolymerization initiator, photosensitizer, polymerization inhibitor, stress relieving agent, penetrant, light guide material, bright material, magnetic material, phosphor, wax Etc. may be blended as needed. The paint can be prepared by mixing various components appropriately selected as needed.
上塗り塗膜の形成に用いる塗料の塗装方法は、既知の塗装手段、例えば、刷毛塗装、ローラー塗装、コテ塗装、ヘラ塗装、スプレー塗装等が利用できるが、本発明の塗料組成物は、刷毛塗装やローラー塗装での使用に好適である。 As a coating method of the paint used for forming the top coat, known coating means such as brush coating, roller coating, iron coating, spatula coating, spray coating and the like can be used, but the coating composition of the present invention is brush coating. Suitable for use in roller coating.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
[下塗り塗料の調製]
表1~2に示す配合処方に従い、主剤を調製し、塗装時に硬化剤と混合して、下塗り塗料を調製した。なお、実施例14~17については、1液型の塗料組成物であるため、表1に示す配合処方に従い、下塗り塗料を調製した。
[Preparation of undercoat paint]
A main agent was prepared according to the formulation shown in Tables 1 and 2, and mixed with a curing agent at the time of coating to prepare an undercoat paint. Since Examples 14 to 17 are one-component paint compositions, an undercoat paint was prepared according to the formulation shown in Table 1.
(注1)「JER 1001X70」:三菱化学社製、エポキシ樹脂のキシレン溶液、キシレンの混合アニリン点10℃、不揮発分70質量%
(注2)「エピクロン5920-70MS」:DIC社製、アルキルフェノールノボラック型エポキシ樹脂のミネラルスピリット溶液、ミネラルスピリットのアニリン点43℃、不揮発分70質量%
(注3)「アルキディア1334-EL」:DIC社製、アルキド樹脂のミネラルスピリット溶液、不揮発分50質量%
(注4)「スミジュールE21-1」:住化コベストロウレタン社製、湿気硬化ウレタン樹脂、不揮発分100質量%
(注5)「JR-806」:テイカ社製、酸化チタン
(注6)「K-WHITE#82」:テイカ社製、防錆顔料
(注7)「スーパーSS」:丸尾カルシウム社製、炭酸カルシウム
(注8)「タルクDN-2」:富士タルク社製、板状タルク
(注9)「ディスパロン4200-20」:楠本化成社製、ダレ止め剤
(注10)「ディスパロン6820-20M」:楠本化成社製、ダレ止め剤
(注11)「グラスバブルズ K20」:スリーエム社製、中空粒子(ガラス)、50%粒子径60μm、真密度0.2g/cm3
(注12)「グラスバブルズ S38」:スリーエム社製、中空粒子(ガラス)、50%粒子径40μm、真密度0.38g/cm3
(注13)「グラスバブルズ S22」:スリーエム社製、中空粒子(ガラス)、50%粒子径35μm、真密度0.22g/cm3
(注14)「グラスバブルズ iM16K」:スリーエム社製、中空粒子(ガラス)、50%粒子径20μm、真密度0.46g/cm3
(注15)「Sphericel 110P8」:ポッターズ・バロチーニ社製、中空粒子(ガラス)、50%粒子径10μm、真密度1.1g/cm3
(注16)「MFL-HD60CA」:松本油脂製薬社製、中空粒子(樹脂ビーズ)、50%粒子径60μm、真密度0.15g/cm3
(注17)「MFL-SEVEN」:松本油脂製薬社製、中空粒子(樹脂ビーズ)、50%粒子径25μm、真密度0.12g/cm3
(注18)「フローレンAC-901」:共栄社化学社製、消泡剤
(注19)「KBM403」:信越化学工業社製、シランカップリング剤、3-グリシドキシプロピルトリメトキシシラン
(注20)オクチル酸コバルトのミネラルスピリット溶液、Co量12%
(注21)メチルエチルケトンオキシム
(注22)「アディティブTI」:住化コベストロウレタン社製、脱水剤
(注23)「T-SOL 100」:エクソンモービル社製、混合アニリン点14℃
(注24)「トーマイド TXS-692」:T&K TOKA社製、ポリアミドアミンのキシレン溶液、不揮発分80質量%
(注25)「フジキュアー FXP-8088」:T&K TOKA社製、変性脂肪族ポリアミン、不揮発分100質量%
なお、表中、「中空粒子/不揮発分(体積%)」の項目は、不揮発分中における中空粒子の体積割合を示す。
(Note 1) "JER 1001X70": manufactured by Mitsubishi Chemical Corporation, xylene solution of epoxy resin, mixed aniline point of xylene at 10 ° C, non-volatile content 70% by mass
(Note 2) "Epiclon 5920-70MS": DIC Corporation, alkylphenol novolak type epoxy resin mineral spirit solution, mineral spirit aniline point 43 ° C, non-volatile content 70% by mass
(Note 3) "Alkydia 1334-EL": DIC Corporation, alkyd resin mineral spirit solution, non-volatile content 50% by mass
(Note 4) "Sumijour E21-1": manufactured by Sumika Covestro Urethane, moisture-curing urethane resin, non-volatile content 100% by mass
(Note 5) "JR-806": manufactured by TAYCA, titanium oxide (Note 6) "K-WHITE # 82": manufactured by TAYCA, rust preventive pigment (Note 7) "Super SS": manufactured by Maruo Calcium, carbonated Calcium (Note 8) "Tark DN-2": Made by Fuji Tark, Plate-shaped Talk (Note 9) "Disparon 4200-20": Made by Kusumoto Kasei Co., Ltd., Anti-sagging agent (Note 10) "Disparon 6820-20M": Kusumoto Kasei Co., Ltd., anti-corrosion agent (Note 11) "Glass Bubbles K20": 3M Co., Ltd., hollow particles (glass), 50% particle diameter 60 μm, true density 0.2 g / cm 3
(Note 12) "Glass Bubbles S38": 3M Ltd., hollow particles (glass), 50% particle diameter 40 μm, true density 0.38 g / cm 3
(Note 13) "Glass Bubbles S22": 3M Ltd., hollow particles (glass), 50% particle diameter 35 μm, true density 0.22 g / cm 3
(Note 14) "Glass Bubbles iM16K": 3M Ltd., hollow particles (glass), 50% particle diameter 20 μm, true density 0.46 g / cm 3
(Note 15) "Sphericel 110P8": Made by Potters Barocini, hollow particles (glass), 50% particle diameter 10 μm, true density 1.1 g / cm 3
(Note 16) "MFL-HD60CA": manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., hollow particles (resin beads), 50% particle diameter 60 μm, true density 0.15 g / cm 3
(Note 17) "MFL-SEVEN": manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., hollow particles (resin beads), 50% particle diameter 25 μm, true density 0.12 g / cm 3
(Note 18) "Floren AC-901": Kyoeisha Chemical Co., Ltd., antifoaming agent (Note 19) "KBM403": Shin-Etsu Chemical Co., Ltd., silane coupling agent, 3-glycidoxypropyltrimethoxysilane (Note 20) ) Mineral spirit solution of cobalt octylate, Co amount 12%
(Note 21) Methylethylketone oxime (Note 22) "Additive TI": manufactured by Sumika Covestro Urethane, dehydrating agent (Note 23) "T-SOL 100": manufactured by ExxonMobil, mixed aniline point 14 ° C.
(Note 24) "Tohmide TXS-692": T & K TOKA, xylene solution of polyamide amine, non-volatile content 80% by mass
(Note 25) "Fuji Cure FXP-8088": T & K TOKA, modified aliphatic polyamine, non-volatile content 100% by mass
In the table, the item "hollow particle / non-volatile content (volume%)" indicates the volume ratio of the hollow particle in the non-volatile content.
[試験]
熱伝導率、断熱性、光沢、耐食性及び耐水性について評価した。結果を表3~4に示す。
[test]
Thermal conductivity, heat insulation, gloss, corrosion resistance and water resistance were evaluated. The results are shown in Tables 3-4.
<熱伝導率の測定方法>
テフロン製の型に下塗り塗料を流し込み、23℃50%相対湿度にて72時間乾燥させて、50mm四方、1.5~2.5mm厚みの試験片を作製した。次いで、該試験片に対して、ASTM E 1530に基づく方法にて、熱伝導率を測定した。熱伝導率計は、アルバック理工社製、GH-1Sを用い、温度差24℃、測定温度50℃にて測定を行った。本願においては、この試験片の熱伝導率の値を「不揮発分の熱伝導率」及び「下塗り塗膜の熱伝導率」として扱う。なお、熱伝導率については、下記基準に従い評価を行い、熱伝導率の値(単位:W/mK)と共に表中に示す。
熱伝導率の値が0.22W/mK以下であれば、断熱性に優れた塗膜を形成することが可能である。
◎:0.20W/mK以下
○:0.22W/mK以下、0.20W/mKより大きい
×:0.22W/mKより大きい
<Measurement method of thermal conductivity>
The undercoat paint was poured into a Teflon mold and dried at 23 ° C. and 50% relative humidity for 72 hours to prepare a 50 mm square, 1.5 to 2.5 mm thick test piece. Then, the thermal conductivity of the test piece was measured by a method based on ASTM E 1530. As the thermal conductivity meter, GH-1S manufactured by ULVAC Riko Co., Ltd. was used, and the measurement was performed at a temperature difference of 24 ° C. and a measurement temperature of 50 ° C. In the present application, the value of the thermal conductivity of this test piece is treated as "the thermal conductivity of the non-volatile component" and "the thermal conductivity of the undercoat coating". The thermal conductivity is evaluated according to the following criteria and is shown in the table together with the value of the thermal conductivity (unit: W / mK).
When the value of thermal conductivity is 0.22 W / mK or less, it is possible to form a coating film having excellent heat insulating properties.
⊚: 0.20 W / mK or less ○: 0.22 W / mK or less, larger than 0.20 W / mK ×: greater than 0.22 W / mK
<断熱性の測定方法>
乾燥膜厚が200μmとなるようにエアスプレーにてアルミ板(150mm×150mm×0.8mm)に下塗り塗料を塗布し、23℃50%相対湿度にて7日間乾燥させ、塗膜を形成させた。この試験片を50℃に設定したホットプレート上に載せ、塗膜表面の温度を計測し、下記評価基準に従い評価した。なお、表中に記載の数値は、ブランク(未塗装片、即ちアルミ板そのもの)との温度差(ブランク-塗膜表面の温度)を示す。
エアコンの設定温度を1℃上げると、約10%の消費電力削減効果が得られることが知られているため、塗膜表面とブランクとの温度差が1.0℃以上である場合を良好な断熱性を有する塗膜として判断した。
○:1.0℃以上
×:1.0℃未満
<Measurement method of heat insulation>
An undercoat paint was applied to an aluminum plate (150 mm × 150 mm × 0.8 mm) by air spray so that the dry film thickness was 200 μm, and dried at 23 ° C. and 50% relative humidity for 7 days to form a coating film. .. This test piece was placed on a hot plate set at 50 ° C., the temperature of the coating film surface was measured, and the evaluation was performed according to the following evaluation criteria. The numerical values shown in the table indicate the temperature difference (blank-coating film surface temperature) from the blank (unpainted piece, that is, the aluminum plate itself).
It is known that when the set temperature of the air conditioner is raised by 1 ° C, a power consumption reduction effect of about 10% can be obtained. Therefore, it is good when the temperature difference between the coating film surface and the blank is 1.0 ° C or more. It was judged as a coating film having heat insulating properties.
◯: 1.0 ° C or higher ×: less than 1.0 ° C
<光沢度の測定方法>
隙間250μmのフィルムアプリケータを用いてガラス板(150mm×70mm×2mm)に下塗り塗料を塗布し、23℃50%相対湿度にて24時間乾燥させて、厚さ100±20μmの下塗り塗膜を形成させた。次いで、隙間150μmのフィルムアプリケータを用いて下塗り塗膜表面に弱溶剤形シリコーン樹脂系上塗り塗料(大日本塗料社製商品名「エコクールマイルドSi」)を塗布し、23℃50%相対湿度にて72時間乾燥させ、厚さ30±5μmの上塗り塗膜を形成させ、複層塗膜付き試験片を作製した。
上塗り塗膜の光沢度(20°及び60°)を光沢計を用いて測定し、下記評価基準に従い評価した。なお、表中、「上塗光沢A」の項目に20°光沢度の評価結果を示し、「上塗光沢B」の項目に60°光沢度の評価結果を示す。
(20°光沢度の評価基準)
◎:25以上
○:15以上、25未満
×:15未満
(60°光沢度の評価基準)
◎:72以上
○:62以上、72未満
×:62未満
<Measurement method of glossiness>
An undercoat paint is applied to a glass plate (150 mm × 70 mm × 2 mm) using a film applicator with a gap of 250 μm, and dried at 23 ° C. and 50% relative humidity for 24 hours to form an undercoat film with a thickness of 100 ± 20 μm. I let you. Next, a weak solvent type silicone resin-based topcoat paint (trade name "Eco Cool Mild Si" manufactured by Dai Nippon Toryo Co., Ltd.) was applied to the surface of the undercoat coating film using a film applicator with a gap of 150 μm at 23 ° C and 50% relative humidity. The film was dried for 72 hours to form a topcoat film having a thickness of 30 ± 5 μm, and a test piece with a multi-layer coating film was prepared.
The glossiness (20 ° and 60 °) of the topcoat coating film was measured using a gloss meter and evaluated according to the following evaluation criteria. In the table, the item "Topcoat gloss A" shows the evaluation result of 20 ° glossiness, and the item "Topcoat gloss B" shows the evaluation result of 60 ° glossiness.
(Evaluation criteria for 20 ° gloss)
⊚: 25 or more ○: 15 or more, less than 25 ×: less than 15 (60 ° glossiness evaluation standard)
⊚: 72 or more ○: 62 or more, less than 72 ×: less than 62
<耐食性の評価方法>
乾燥膜厚が100μmとなるようにエアスプレーにて軟鋼板(150mm×70mm×0.8mm)に下塗り塗料を塗布し、23℃50%相対湿度にて7日間乾燥させ、塗膜を形成させた。次いで、軟鋼板に達するまで塗膜を線状に切削し、この切削した試験片をJIS K 5600-7-9に規定される「サイクル腐食性試験・Dサイクル」に36サイクル供試させ、塗膜の状態を観察し、下記評価基準に従い、下塗り塗膜の耐食性を評価した。
○:切削部から2mm以上離れた試験片表面に、錆や膨れなどの異常がない
△:切削部から5mm以上離れた試験片表面に、錆や膨れなどの異常がない
×:切削部から5mm以上離れた試験片表面に、錆や膨れなどの異常がある
<Evaluation method of corrosion resistance>
An undercoat paint was applied to a mild steel plate (150 mm × 70 mm × 0.8 mm) by air spray so that the dry film thickness was 100 μm, and dried at 23 ° C. and 50% relative humidity for 7 days to form a coating film. .. Next, the coating film is cut linearly until it reaches the mild steel plate, and the cut test piece is subjected to 36 cycles of "Cycle Corrosion Test / D Cycle" specified in JIS K 5600-7-9 and coated. The state of the film was observed, and the corrosion resistance of the undercoat film was evaluated according to the following evaluation criteria.
◯: No abnormality such as rust or swelling on the surface of the test piece 2 mm or more away from the cutting part Δ: No abnormality such as rust or swelling on the surface of the test piece 5 mm or more away from the cutting part ×: 5 mm from the cutting part There are abnormalities such as rust and swelling on the surface of the test piece separated above.
<耐水性の評価方法>
乾燥膜厚が100μmとなるようにエアスプレーにて軟鋼板(150mm×70mm×0.8mm)に下塗り塗料を塗布し、23℃50%相対湿度にて7日間乾燥させ、塗膜を形成させた。この試験片を23℃の水道水に7日間浸漬させ、塗膜の状態を観察し、下記評価基準に従い、塗膜の耐水性を評価した。
○:異常なし
×:錆や膨れなどの異常がある
<Evaluation method of water resistance>
An undercoat paint was applied to a mild steel plate (150 mm × 70 mm × 0.8 mm) by air spray so that the dry film thickness was 100 μm, and dried at 23 ° C. and 50% relative humidity for 7 days to form a coating film. .. This test piece was immersed in tap water at 23 ° C. for 7 days, the state of the coating film was observed, and the water resistance of the coating film was evaluated according to the following evaluation criteria.
○: No abnormality ×: There is an abnormality such as rust or swelling
Claims (8)
前記下塗り塗膜は膜厚が70~150μmであり、前記上塗り塗膜は膜厚が20~100μmであり、前記下塗り塗膜が基材上に形成されていることを特徴とする複層塗膜。 An undercoat film containing 45 to 70% by volume of hollow particles having a 50% particle size of 10 to 35 μm and a true density of 0.1 to 0.8 g / cm 3 and formed on the undercoat film. It is a multi-layer coating film including a top coating film, and is a multi-layer coating film.
The undercoat coating film has a film thickness of 70 to 150 μm, the topcoat coating film has a film thickness of 20 to 100 μm, and the undercoat coating film is formed on a substrate. ..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017017365A JP7025841B2 (en) | 2017-02-02 | 2017-02-02 | Paint composition and multi-layer coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017017365A JP7025841B2 (en) | 2017-02-02 | 2017-02-02 | Paint composition and multi-layer coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018123251A JP2018123251A (en) | 2018-08-09 |
JP7025841B2 true JP7025841B2 (en) | 2022-02-25 |
Family
ID=63109394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017017365A Active JP7025841B2 (en) | 2017-02-02 | 2017-02-02 | Paint composition and multi-layer coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7025841B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7238348B2 (en) * | 2018-11-07 | 2023-03-14 | 凸版印刷株式会社 | makeup sheet |
KR102001039B1 (en) * | 2018-11-20 | 2019-07-17 | 가부시키가이샤 와코 | heat-resistance insulation composition for preventing phenomenon of heat island |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000095584A (en) | 1998-09-18 | 2000-04-04 | Kajima Corp | Prevention of cracking of concrete surface |
JP2000229386A (en) | 1999-02-09 | 2000-08-22 | Dainippon Printing Co Ltd | Insulated decorative sheet for exterior finish and insulated decorative member for exterior finish |
JP2000239577A (en) | 1999-02-17 | 2000-09-05 | Sharp Corp | Coating film structure and electronic equipment housing using the same |
WO2002083326A1 (en) | 2001-04-13 | 2002-10-24 | Kansai Paint Co., Ltd. | Method of finishing with heat insulation coating |
JP5255636B2 (en) | 2007-08-09 | 2013-08-07 | ネステク ソシエテ アノニム | Single unit for storing and weighing powder and mixing with diluent |
JP2014218786A (en) | 2013-05-01 | 2014-11-20 | ニチハ株式会社 | Building board and manufacturing method thereof |
JP2017179268A (en) | 2016-03-31 | 2017-10-05 | 日本ペイント株式会社 | Coating Composition |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05255636A (en) * | 1992-03-11 | 1993-10-05 | Origin Electric Co Ltd | Material having film excellent in adhesion |
JP4558282B2 (en) * | 2002-04-03 | 2010-10-06 | エスケー化研株式会社 | Method for forming heat insulating coating |
JP5049090B2 (en) * | 2007-10-06 | 2012-10-17 | エスケー化研株式会社 | Thermal insulation laminate |
JP5475917B1 (en) * | 2013-09-30 | 2014-04-16 | 大日本塗料株式会社 | Coating composition and coated article using the same |
JP6136861B2 (en) * | 2013-11-06 | 2017-05-31 | マツダ株式会社 | Formation method of heat insulation layer |
JP2016072388A (en) * | 2014-09-29 | 2016-05-09 | 豊田合成株式会社 | Method for manufacturing group iii nitride semiconductor light-emitting element |
-
2017
- 2017-02-02 JP JP2017017365A patent/JP7025841B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000095584A (en) | 1998-09-18 | 2000-04-04 | Kajima Corp | Prevention of cracking of concrete surface |
JP2000229386A (en) | 1999-02-09 | 2000-08-22 | Dainippon Printing Co Ltd | Insulated decorative sheet for exterior finish and insulated decorative member for exterior finish |
JP2000239577A (en) | 1999-02-17 | 2000-09-05 | Sharp Corp | Coating film structure and electronic equipment housing using the same |
WO2002083326A1 (en) | 2001-04-13 | 2002-10-24 | Kansai Paint Co., Ltd. | Method of finishing with heat insulation coating |
JP5255636B2 (en) | 2007-08-09 | 2013-08-07 | ネステク ソシエテ アノニム | Single unit for storing and weighing powder and mixing with diluent |
JP2014218786A (en) | 2013-05-01 | 2014-11-20 | ニチハ株式会社 | Building board and manufacturing method thereof |
JP2017179268A (en) | 2016-03-31 | 2017-10-05 | 日本ペイント株式会社 | Coating Composition |
Also Published As
Publication number | Publication date |
---|---|
JP2018123251A (en) | 2018-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8852333B2 (en) | Multi-functional environmental coating composition with mesoporous silica nanomaterials | |
US7897070B2 (en) | Amorphous silica coating for heat reflectivity and heat resistance | |
JP4274228B2 (en) | Coating film excellent in heat dissipation and formation method thereof | |
ES2687599T3 (en) | Coating composition with anticorrosive effect | |
MX2008013642A (en) | Thin chip resistant powder topcoats for steel. | |
KR101893380B1 (en) | Co-friendly protecting composition for surface-protecting concrete structure under harsh environment and method for finishing surface of concrete structure therewith | |
KR100503561B1 (en) | Paint composition for preventing corrosion and improving long-term duability of iron structure and process for forming an aluminum oxide coating layer using the same | |
RU2667546C2 (en) | Composition for heat-resistant powder coating, the method for its obtainment and application | |
KR102058903B1 (en) | Coating composition for thermal protection of concrete or steel structure and method of construction using the same | |
KR100942027B1 (en) | Aqueous painting composition and coating method for steel corrosion.concrete blocks neutralization prevention water proof using the same | |
JP7025841B2 (en) | Paint composition and multi-layer coating | |
JP6182686B1 (en) | Coating composition, coated body and method for producing the same | |
CA2593205A1 (en) | Slip-resistant coatings and substrates coated therewith | |
EP3802699B1 (en) | Particulate coating composition | |
JP2007177143A (en) | Heat-insulating coating material | |
JP6351896B2 (en) | Coating composition, coating film and coating method | |
JP2017064646A (en) | Method for manufacturing building material | |
JP5173121B2 (en) | Water-based coating composition | |
JP4458912B2 (en) | Method for forming a thermal barrier coating on an inorganic substrate | |
JPH03275774A (en) | Highly durable expansion-type fire-resisting coating material | |
US20180201792A1 (en) | Insulative and flame retardant paint primer for paint applications | |
JP2015124360A (en) | Far infrared reflective coating material, formation method of coating film, and coated article | |
JPS646235B2 (en) | ||
JP6178679B2 (en) | Railcar exterior with laminated coating | |
JP5564211B2 (en) | Film forming method and film forming body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201013 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20201208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7025841 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |