JP2015124360A - Far infrared reflective coating material, formation method of coating film, and coated article - Google Patents
Far infrared reflective coating material, formation method of coating film, and coated article Download PDFInfo
- Publication number
- JP2015124360A JP2015124360A JP2013271764A JP2013271764A JP2015124360A JP 2015124360 A JP2015124360 A JP 2015124360A JP 2013271764 A JP2013271764 A JP 2013271764A JP 2013271764 A JP2013271764 A JP 2013271764A JP 2015124360 A JP2015124360 A JP 2015124360A
- Authority
- JP
- Japan
- Prior art keywords
- far
- infrared reflective
- paint
- coating film
- pigment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
本発明は、遠赤外線反射性塗料、該遠赤外線反射性塗料を用いる塗膜形成方法、及び該塗膜形成方法によって得られる塗装物に関し、特には、遠赤外線を効果的に反射できる塗膜を形成可能な遠赤外線反射性塗料に関するものである。 The present invention relates to a far-infrared reflective coating, a coating film forming method using the far-infrared reflective coating, and a coated product obtained by the coating film forming method, in particular, a coating film that can effectively reflect far-infrared rays. The present invention relates to a far-infrared reflective paint that can be formed.
近年、省エネルギー化への意識の高まりや法規制の強化等により、環境への負荷を低減可能な塗料の開発が盛んに行われている。建築物に塗装する塗料においては、建物の屋根や外壁面に塗装し、建物内部への熱の流入量を削減可能な遮熱性塗料や断熱性塗料が広く研究され、実際に多くの物件で施工されている(例えば、非特許文献1参照)。遮熱性塗料は、高日射反射率塗料とも呼ばれ、太陽光のうち、近赤外線領域の光線を高反射することによって、塗膜延いては建物内部の温度上昇を抑制する(例えば、特許文献1参照)。 In recent years, paints that can reduce the burden on the environment have been actively developed due to increased awareness of energy conservation and stricter regulations. With regard to paints that are applied to buildings, heat-shielding paints and heat-insulating paints that can be applied to building roofs and exterior walls to reduce the inflow of heat into the building have been widely studied, and are actually applied to many properties. (For example, refer nonpatent literature 1). The heat-shielding paint is also called a high solar reflectance paint, and suppresses the temperature rise in the coating film and thus the inside of the building by highly reflecting light in the near infrared region of sunlight (for example, Patent Document 1). reference).
一方、建物内部からの省エネルギー化への取り組みについても行われており、熱を効果的に反射可能な塗料で壁面が塗装された居室では、一般的な塗料で塗装した場合と比べて暖房費の削減が可能になると報告されている(例えば、特許文献2参照)。 On the other hand, efforts are being made to save energy from the inside of buildings, and heating costs are lower in rooms where the walls are painted with paint that can effectively reflect heat compared to when painted with ordinary paint. It has been reported that reduction is possible (for example, see Patent Document 2).
しかしながら、建物内部での省エネルギー化への取り組みに関し、塗料を利用する技術は未だ研究段階にあり、改良の余地がある。実際、熱を効果的に反射可能であっても、美観に優れ快適な室内空間を提供できるような建築物内装材用塗料は報告されていない。例えば、特許文献2に記載されるペイント組成物では、白色アルミナを多量に配合する必要があるため、高熱反射率及び優れた塗膜外観の両立が困難である。 However, with regard to efforts to save energy inside the building, the technology using paint is still in the research stage and there is room for improvement. In fact, no paint for building interior materials has been reported that can provide a comfortable indoor space with excellent aesthetics even though it can effectively reflect heat. For example, in the paint composition described in Patent Document 2, since it is necessary to add a large amount of white alumina, it is difficult to achieve both a high thermal reflectance and an excellent coating film appearance.
そこで、本発明の目的は、遠赤外線を効果的に反射でき且つ外観が良好な塗膜を形成可能な遠赤外線反射性塗料を提供することにある。また、本発明の他の目的は、かかる遠赤外線反射性塗料を用いる塗膜形成方法及び該塗膜形成方法によって得られる塗装物を提供することにある。 Then, the objective of this invention is providing the far-infrared reflective coating material which can form the coating film which can reflect a far-infrared ray effectively, and has a favorable external appearance. Another object of the present invention is to provide a coating film forming method using such a far-infrared reflective coating and a coated product obtained by the coating film forming method.
本発明者は、上記目的を達成するために鋭意検討した結果、遠赤外線反射性顔料を塗料に配合すると共に、塗料の表面張力を20.0〜45.0mN/mの範囲内に調整することで、塗膜の遠赤外線反射率を高めることができることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventor blends a far-infrared reflective pigment into a paint and adjusts the surface tension of the paint within a range of 20.0 to 45.0 mN / m. Thus, it has been found that the far-infrared reflectance of the coating film can be increased, and the present invention has been completed.
即ち、本発明の遠赤外線反射性塗料は、遠赤外線反射性顔料を含む遠赤外線反射性塗料であって、該塗料の表面張力が20.0〜45.0mN/mの範囲内にあり、該塗料により形成される塗膜の遠赤外線反射率が20%以上であることを特徴とする。 That is, the far-infrared reflective paint of the present invention is a far-infrared reflective paint containing a far-infrared reflective pigment, and the surface tension of the paint is in the range of 20.0 to 45.0 mN / m, The far-infrared reflectance of the coating film formed from the paint is 20% or more.
本発明の遠赤外線反射性塗料の好適例においては、前記遠赤外線反射性顔料の含有量が5〜30質量%の範囲内にある。 In the suitable example of the far-infrared reflective paint of this invention, content of the said far-infrared reflective pigment exists in the range of 5-30 mass%.
本発明の遠赤外線反射性塗料の他の好適例において、前記塗料により形成される塗膜は、遠赤外線反射性顔料を含まない以外は同一の構成からなる塗膜との色差(ΔE)が5.0以下である。 In another preferred embodiment of the far-infrared reflective paint of the present invention, the paint film formed from the paint has a color difference (ΔE) of 5 from the paint film having the same structure except that it does not contain a far-infrared reflective pigment. 0.0 or less.
本発明の遠赤外線反射性塗料の他の好適例においては、前記遠赤外線反射性顔料が、アルミニウム、アルミナ、銀、銅、亜鉛、鉄、ステンレス及びジルコニアよりなる群から選択される少なくとも1種の顔料を含み、該顔料の50%平均粒子径が10μm〜90μmの範囲内にある。 In another preferred embodiment of the far-infrared reflective paint of the present invention, the far-infrared reflective pigment is at least one selected from the group consisting of aluminum, alumina, silver, copper, zinc, iron, stainless steel and zirconia. A pigment having a 50% average particle size in the range of 10 μm to 90 μm.
本発明の遠赤外線反射性塗料の他の好適例においては、更に、湿潤分散剤を含む。ここで、前記湿潤分散剤は、カルボキシル基、スルホン酸基、スルフィン酸基及びリン酸基よりなる群から選択される少なくとも1つの官能基を有する湿潤分散剤であることが好ましく、例えばステアリン酸が挙げられる。また、前記湿潤分散剤は、ノニオン性の湿潤分散剤であることも好ましい。 In another preferred embodiment of the far-infrared reflective paint of the present invention, it further contains a wetting and dispersing agent. Here, the wetting and dispersing agent is preferably a wetting and dispersing agent having at least one functional group selected from the group consisting of a carboxyl group, a sulfonic acid group, a sulfinic acid group, and a phosphoric acid group. Can be mentioned. The wetting and dispersing agent is preferably a nonionic wetting and dispersing agent.
また、本発明の塗膜形成方法は、上記の遠赤外線反射性塗料を建築物内装材に塗装して塗膜を形成する方法であって、前記建築物内装材が、石膏ボード、スレート板、フレキシブルボード、コンクリート、モルタル、壁紙、鉄、鋼板及び木材よりなる群から選択されることを特徴とし、更に、本発明の塗装物は、かかる塗膜形成方法によって得られることを特徴とする。 Further, the coating film forming method of the present invention is a method of forming a coating film by coating the far-infrared reflective paint on a building interior material, wherein the building interior material is a gypsum board, a slate plate, It is characterized in that it is selected from the group consisting of flexible board, concrete, mortar, wallpaper, iron, steel plate and wood, and further, the coated product of the present invention is obtained by such a coating film forming method.
本発明の遠赤外線反射性塗料によれば、遠赤外線を効果的に反射でき且つ外観が良好な塗膜を形成可能な遠赤外線反射性塗料を提供することができる。 According to the far-infrared reflective paint of the present invention, it is possible to provide a far-infrared reflective paint capable of effectively reflecting far-infrared rays and forming a coating film having a good appearance.
本発明の塗膜形成方法によれば、遠赤外線を効果的に反射でき且つ外観が良好な塗膜を形成することが可能である。 According to the coating film forming method of the present invention, it is possible to form a coating film that can effectively reflect far-infrared rays and has a good appearance.
本発明の塗装物によれば、遠赤外線を効果的に反射でき且つ外観が良好な塗膜を備える塗装物を提供することができる。 According to the coated object of the present invention, it is possible to provide a coated object that can effectively reflect far-infrared rays and has a coating film with a good appearance.
以下に、本発明の遠赤外線反射性塗料を詳細に説明する。本発明の遠赤外線反射性塗料は、遠赤外線反射性顔料を含む遠赤外線反射性塗料であって、該塗料の表面張力が20.0〜45.0mN/mの範囲内にあり、該塗料により形成される塗膜の遠赤外線反射率が20%以上であることを特徴とする。本発明の遠赤外線反射性塗料は、該塗料により形成される塗膜の遠赤外線反射率が20%以上であるため、遠赤外線を高度に反射することができ、建築物内部(例えば室内)の暖房効率を高め、暖房費を削減することができる。塗料の表面張力が20.0〜45.0mN/mの範囲内にあると、塗料中における遠赤外線反射性顔料の分散安定性が良好な状態を保てることから、塗膜乾燥時においても遠赤外線反射性顔料の塗膜内への潜り込みを防ぎ、遠赤外線反射性顔料が塗膜表面に均質に分布された塗膜が形成できる。これによって、塗膜の遠赤外線反射率を向上でき、20%以上の遠赤外線反射率を容易に実現することが可能となる。なお、一般的な塗料により形成される塗膜は、遠赤外線反射率が10〜15%程度である。 Below, the far-infrared reflective paint of this invention is demonstrated in detail. The far-infrared reflective paint of the present invention is a far-infrared reflective paint containing a far-infrared reflective pigment, and the surface tension of the paint is in the range of 20.0 to 45.0 mN / m. The far-infrared reflectance of the coating film to be formed is 20% or more. Since the far-infrared reflective paint of the present invention has a far-infrared reflectance of a coating film formed from the paint of 20% or more, it can highly reflect far-infrared rays and can be used inside a building (for example, indoors). Heating efficiency can be increased and heating costs can be reduced. When the surface tension of the paint is in the range of 20.0 to 45.0 mN / m, the far-infrared reflective pigment in the paint can maintain a good dispersion stability, so that the far-infrared light can be applied even when the coating film is dried. It is possible to prevent the reflection pigment from entering the coating film and to form a coating film in which the far-infrared reflective pigment is uniformly distributed on the coating film surface. Thereby, the far-infrared reflectance of the coating film can be improved, and a far-infrared reflectance of 20% or more can be easily realized. In addition, the coating film formed with a general coating material has a far-infrared reflectance of about 10 to 15%.
本発明の遠赤外線反射性塗料は、表面張力が20.0〜45.0mN/mの範囲内にあることを要し、20.0〜35.0mN/mの範囲内にあることが好ましく、23.0〜30.0mN/mの範囲内にあることが更に好ましい。なお、ここでいう表面張力とは、白金プレート法によって測定される20℃での表面張力であり、白金プレート法では、水の表面張力が72.8mN/mとなる。上述したように、塗料の表面張力が20.0〜45.0mN/mの範囲内にあると、遠赤外線反射性顔料を塗膜表面に効率良く分布させることができる。また、表面張力が20.0mN/m未満では、塗料調製時及び塗装時における泡の発生が多くなり、調色性及び塗装作業性が著しく低下すると共に、塗膜の塗膜外観が悪くなる。逆に、表面張力が45.0mN/mを超えると、顔料の濡れ性が悪くなり、調色性及び塗料の安定性が低下すると共に、遠赤外線反射性顔料が塗膜内部に潜り込みやすくなり、塗膜の遠赤外線反射率が低下する。 The far-infrared reflective coating of the present invention requires that the surface tension be in the range of 20.0 to 45.0 mN / m, and preferably in the range of 20.0 to 35.0 mN / m. More preferably, it is in the range of 23.0 to 30.0 mN / m. The surface tension referred to here is the surface tension at 20 ° C. measured by the platinum plate method. In the platinum plate method, the surface tension of water is 72.8 mN / m. As described above, when the surface tension of the coating material is in the range of 20.0 to 45.0 mN / m, the far-infrared reflective pigment can be efficiently distributed on the coating film surface. On the other hand, when the surface tension is less than 20.0 mN / m, the generation of bubbles during coating preparation and coating increases, and the toning property and coating workability are remarkably lowered, and the coating film appearance of the coating film is deteriorated. On the contrary, when the surface tension exceeds 45.0 mN / m, the wettability of the pigment is deteriorated, the toning property and the stability of the paint are lowered, and the far-infrared reflective pigment is liable to sink inside the coating film. The far-infrared reflectance of a coating film falls.
本発明の遠赤外線反射性塗料においては、例えば、溶媒、湿潤分散剤、表面調整剤等を添加したり、それらの添加量を調整したりすることによって、塗料の表面張力を適宜調整することができる。 In the far-infrared reflective paint of the present invention, for example, the surface tension of the paint can be appropriately adjusted by adding a solvent, a wetting and dispersing agent, a surface conditioner, or the like, or adjusting the amount of these additives. it can.
本発明の遠赤外線反射性塗料は、該塗料により形成される塗膜の遠赤外線反射率が20%以上であることを要し、22%以上であることが好ましく、例えば20〜40%の範囲内にある。遠赤外線反射率とは、波長3000nm〜30000nmの範囲の光の反射率であり、後述するように、塗膜の熱放射率から算出できる。ここでいう熱放射率とは、ある物体が熱放射で発する光のエネルギーと黒体が同じ温度で放射するエネルギーの比であり、DEVICES & SERVICES COMPANY製D and S AERD放射率計等の一般的な放射率計で測定できる。 The far-infrared reflective paint of the present invention requires that the far-infrared reflectivity of the coating film formed from the paint is 20% or more, preferably 22% or more, for example, in the range of 20 to 40%. Is in. The far-infrared reflectance is the reflectance of light in the wavelength range of 3000 nm to 30000 nm, and can be calculated from the thermal emissivity of the coating film, as will be described later. The thermal emissivity here is the ratio of the energy of light emitted from a certain object by thermal radiation and the energy of a black body radiating at the same temperature. It is a general example of a D and S AERD emissometer manufactured by DEVICES & SERVICES COMPANY. It can be measured with a simple emissometer.
(遠赤外線反射率の算出方法)
まず、乾燥膜厚50〜60μmの塗膜を備える試験片を用意し、放射率計を用いて熱放射率を測定する。ここで、塗膜を形成させる基材には、熱伝導率の高いブリキ板や鋼板等に乾燥膜厚20〜30μmの白色塗膜を形成したものが使用され、該白色塗膜の上に測定用塗膜を形成させる。
次に、以下の関係式(式1)〜(式4)に基づき、遠赤外線反射率(%)を算出する。
α+ρ+τ=1 (式1)
α=ε (式2)
ρ=1−ε (式3)
遠赤外線反射率(%) = ρ×100 (式4)
ここで、式1は、3000nm〜30000nmの範囲の波長の光が物体表面に入射したときの、光エネルギーの反射率(ρ)、光エネルギーの吸収率(α)、及び光エネルギーの透過率(τ)の関係を示す。また、キルヒホッフの法則より、放射率(ε)は吸収率(α)と等しいことが知られている(式2)。そして、乾燥膜厚が50〜60μmであれば、塗膜が十分に厚いため、透過率(τ)を0とみなすことができ、式3が導かれる。本発明においては、式3中、放射率(ε)が放射率計で測定される熱放射率であり、光エネルギーの反射率(ρ)が遠赤外線反射率に相当し、式4から遠赤外線反射率(%)を求めることができる。
(Far infrared reflectance calculation method)
First, a test piece provided with a coating film having a dry film thickness of 50 to 60 μm is prepared, and the thermal emissivity is measured using an emissometer. Here, the base material on which the coating film is formed is a tin plate or steel plate having a high thermal conductivity and a white coating film having a dry film thickness of 20 to 30 μm is used. A coating film is formed.
Next, the far-infrared reflectance (%) is calculated based on the following relational expressions (Expression 1) to (Expression 4).
α + ρ + τ = 1 (Formula 1)
α = ε (Formula 2)
ρ = 1−ε (Formula 3)
Far-infrared reflectance (%) = ρ × 100 (Formula 4)
Here, Equation 1 represents the reflectance (ρ) of light energy, the absorption rate (α) of light energy, and the transmittance of light energy when light having a wavelength in the range of 3000 nm to 30000 nm is incident on the object surface ( τ) is shown. Further, it is known from Kirchhoff's law that the emissivity (ε) is equal to the absorption rate (α) (Equation 2). And if dry film thickness is 50-60 micrometers, since a coating film is thick enough, the transmittance | permeability ((tau)) can be considered to be 0, and Formula 3 is guide | induced. In the present invention, in Equation 3, the emissivity (ε) is the thermal emissivity measured by the emissometer, the light energy reflectivity (ρ) corresponds to the far-infrared reflectivity, The reflectance (%) can be obtained.
遠赤外線反射率は、通常、遠赤外線反射性顔料の種類や量を選択することにより調整できるが、本発明においては、遠赤外線反射性顔料を塗料に配合すると共に、塗料の表面張力を20.0〜45.0mN/mの範囲内に調整することで、20%以上の遠赤外線反射率を容易に実現することができる。また、後述する湿潤分散剤を併用することで、遠赤外線反射率を更に高めることができる。 The far-infrared reflectance can usually be adjusted by selecting the type and amount of the far-infrared reflective pigment. In the present invention, the far-infrared reflective pigment is added to the paint, and the surface tension of the paint is set to 20. By adjusting it within the range of 0 to 45.0 mN / m, a far infrared reflectance of 20% or more can be easily realized. Moreover, a far-infrared reflectance can further be improved by using together the wet dispersing agent mentioned later.
本発明の遠赤外線反射性塗料に用いる遠赤外線反射性顔料は、遠赤外線を効果的に反射可能な顔料であり、遠赤外線を反射する特性のある金属材料及びセラミック材料が好適に使用される。遠赤外線反射性顔料の好適な具体例としては、アルミニウム、アルミナ、銀、銅、亜鉛、鉄、ステンレス、ジルコニア等が挙げられる。なお、遠赤外線反射性顔料は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The far-infrared reflective pigment used in the far-infrared reflective paint of the present invention is a pigment capable of effectively reflecting far-infrared rays, and a metal material and a ceramic material having a characteristic of reflecting far-infrared rays are preferably used. Specific examples of suitable far-infrared reflective pigments include aluminum, alumina, silver, copper, zinc, iron, stainless steel, and zirconia. In addition, a far-infrared reflective pigment may be used individually by 1 type, and may be used in combination of 2 or more type.
本発明の遠赤外線反射性塗料において、上記遠赤外線反射性顔料は、着色力が弱いものが好ましい。一般的には、遠赤外線反射性顔料として、白色度を付与する白色顔料や、メタリック感を付与する光輝顔料を用いることが多いが、本発明の遠赤外線反射性塗料の好適な実施態様の一つは、建築物内装部材用の塗料であることから、光輝感をあまり感じさせないような塗膜を形成することが好ましい。着色力の弱い遠赤外線反射性顔料としては、例えば、球状や微小板形状の顔料が好適に挙げられ、更に、該顔料の表面を酸化チタン、酸化ケイ素、酸化亜鉛、酸化マグネシウム、フッ化カルシウム、硫化亜鉛等で被覆したものが好ましい。 In the far-infrared reflective paint of the present invention, the far-infrared reflective pigment preferably has a weak coloring power. In general, as the far-infrared reflective pigment, a white pigment imparting whiteness or a bright pigment imparting a metallic feeling is often used, but one of the preferred embodiments of the far-infrared reflective paint of the present invention. First, since it is a paint for building interior members, it is preferable to form a coating film that does not give a sense of brightness. As the far-infrared reflective pigment having a weak coloring power, for example, a spherical or microplate-like pigment is preferably exemplified, and further, the surface of the pigment is made of titanium oxide, silicon oxide, zinc oxide, magnesium oxide, calcium fluoride, Those coated with zinc sulfide or the like are preferred.
本発明の遠赤外線反射性塗料において、上記遠赤外線反射性顔料は、50%平均粒子径が10μm〜90μmの範囲内にあることが好ましい。遠赤外線反射性顔料の50%平均粒子径が10μm未満では、塗膜形成時に遠赤外線反射性顔料が塗膜内部に潜り込みやすくなり、遠赤外線反射率が低くなる傾向にある。また、遠赤外線反射性顔料の50%平均粒子径が90μmを超えると、塗膜表面が粗くなり、塗膜外観が悪くなる場合がある。また、遠赤外線反射性顔料の50%平均粒子径が90μmを超えると、貯蔵時に遠赤外線反射性顔料が沈降しやすくなり、塗料の安定性が低下する場合がある。なお、50%平均粒子径は、レーザー回折式粒度分布計(例えば、マルバーン・マスターサイザー・2000(Malvern Mastersizer 2000))を使用して測定することができる。 In the far-infrared reflective paint of the present invention, the far-infrared reflective pigment preferably has a 50% average particle size in the range of 10 μm to 90 μm. When the 50% average particle diameter of the far-infrared reflective pigment is less than 10 μm, the far-infrared reflective pigment tends to sink into the interior of the coating film during formation of the coating film, and the far-infrared reflectance tends to be low. On the other hand, when the 50% average particle diameter of the far-infrared reflective pigment exceeds 90 μm, the coating film surface becomes rough and the coating film appearance may be deteriorated. If the 50% average particle diameter of the far-infrared reflective pigment exceeds 90 μm, the far-infrared reflective pigment tends to settle during storage, and the stability of the paint may be reduced. The 50% average particle size can be measured using a laser diffraction particle size distribution analyzer (for example, Malvern Mastersizer 2000).
本発明の遠赤外線反射性塗料中において、上記遠赤外線反射性顔料の含有量は5〜30質量%の範囲内にあることが好ましく、10〜20質量%であることが更に好ましい。該遠赤外線反射性顔料の含有量が5質量%未満では、遠赤外線反射効果が十分に得られない場合があり、一方、30質量%を超えると、塗料の安定性が低下すると共に、塗膜が透けやすくなり、隠蔽性が不十分になりやすい。 In the far-infrared reflective paint of the present invention, the content of the far-infrared reflective pigment is preferably in the range of 5 to 30% by mass, more preferably 10 to 20% by mass. When the content of the far-infrared reflective pigment is less than 5% by mass, the far-infrared reflective effect may not be sufficiently obtained. On the other hand, when the content exceeds 30% by mass, the stability of the paint is lowered and the coating film is coated. Tends to be transparent, and the concealability tends to be insufficient.
本発明の遠赤外線反射性塗料は、湿潤分散剤を更に含むことが好ましい。湿潤分散剤は、顔料の濡れ性及び分散性を向上できる配合剤である。遠赤外線反射性顔料は一般的に疎水性の高い無機材料であり、親水性の高い湿潤分散剤が該遠赤外線反射性顔料の表面に吸着することによって、遠赤外線反射性顔料の分散安定性が高まる。このため、遠赤外線反射性顔料をより効率良く塗膜表面に分布させることができ、塗膜の遠赤外線反射率を更に向上させることができる。なお、湿潤分散剤は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。本発明の遠赤外線反射性塗料中において、湿潤分散剤の含有量は0.01〜5質量%であることが好ましく、0.2〜2質量%であることが更に好ましい。該湿潤分散剤の含有量が0.01質量%未満では、湿潤分散剤が少なすぎるため、遠赤外線反射性顔料の濡れ性を十分に確保できない場合があり、塗膜形成時に遠赤外線反射性顔料が偏って存在しやすくなる。逆に、湿潤分散剤の含有量が5質量%を超えると、塗膜の耐水性が低下し且つ塗膜が汚れやすくなる場合がある。 The far-infrared reflective paint of the present invention preferably further contains a wetting and dispersing agent. The wetting and dispersing agent is a compounding agent that can improve the wettability and dispersibility of the pigment. The far-infrared reflective pigment is generally an inorganic material having high hydrophobicity, and the dispersion stability of the far-infrared reflective pigment is improved by adsorbing a highly hydrophilic wetting and dispersing agent on the surface of the far-infrared reflective pigment. Rise. For this reason, a far-infrared reflective pigment can be more efficiently distributed on the coating-film surface, and the far-infrared reflectance of a coating film can further be improved. In addition, a wet dispersing agent may be used individually by 1 type, and may be used in combination of 2 or more type. In the far-infrared reflective paint of the present invention, the content of the wetting and dispersing agent is preferably 0.01 to 5% by mass, and more preferably 0.2 to 2% by mass. If the content of the wetting and dispersing agent is less than 0.01% by mass, the amount of the wetting and dispersing agent is too small, so that the wettability of the far infrared reflecting pigment may not be sufficiently secured. Tends to exist biased. On the contrary, if the content of the wetting and dispersing agent exceeds 5% by mass, the water resistance of the coating film may be lowered and the coating film may be easily soiled.
上記湿潤分散剤としては、遠赤外線反射性顔料に対する選択性や遠赤外線反射性顔料の分散安定性向上の観点から、カルボキシル基、スルホン酸基、スルフィン酸基及びリン酸基よりなる群から選択される少なくとも1つの官能基を有する湿潤分散剤が好ましく、例えば、ポリカルボン酸ナトリウム塩、ポリカルボン酸アルキルアンモニウム塩、長鎖ポリエステルアマイド酸エステル、ステアリン酸等が挙げられる。また、本発明の遠赤外線反射性塗料によれば、後述するように着色顔料を含むことができ、ここで、着色顔料を混合して調色する場合、湿潤分散剤が着色顔料に表面吸着してしまい、遠赤外線反射性顔料の分散安定性が低下する恐れもある。着色顔料には酸性又は塩基性の顔料があるため、遠赤外線反射性顔料の分散安定性を効果的に向上させる観点から、ノニオン性の湿潤分散剤も好ましい。ノニオン性の湿潤分散剤としては、酸性基及び塩基性を有しない湿潤分散剤が挙げられ、例えば、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリエチレングリコールモノステアレート、ポリオキシエチレンノニルフェニルエーテル等が含まれる。 The wetting and dispersing agent is selected from the group consisting of a carboxyl group, a sulfonic acid group, a sulfinic acid group, and a phosphoric acid group from the viewpoint of selectivity to a far infrared reflective pigment and an improvement in dispersion stability of the far infrared reflective pigment. The wetting and dispersing agent having at least one functional group is preferable, and examples thereof include polycarboxylic acid sodium salt, polycarboxylic acid alkyl ammonium salt, long-chain polyester amide acid ester, and stearic acid. Further, according to the far-infrared reflective paint of the present invention, a color pigment can be included as described later. Here, when the color pigment is mixed and toned, the wetting and dispersing agent is adsorbed on the surface of the color pigment. As a result, the dispersion stability of the far-infrared reflective pigment may be lowered. Since the color pigment includes an acidic or basic pigment, a nonionic wetting and dispersing agent is also preferable from the viewpoint of effectively improving the dispersion stability of the far-infrared reflective pigment. Nonionic wetting and dispersing agents include wetting and dispersing agents having no acidic group and basicity, such as polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenyl ether, polyoxyethylene styryl phenyl ether, polyethylene glycol monostearate. Rate, polyoxyethylene nonylphenyl ether and the like.
上記湿潤分散剤は、市販品を好適に使用することができる。具体的には、BYK社製のDISPERBYK−110、111、164、167、192、共栄社製のフローレンG−900、NC−500等が挙げられる。 A commercially available product can be suitably used as the wetting and dispersing agent. Specific examples include DISPERBYK-110, 111, 164, 167, and 192 manufactured by BYK, and Floren G-900 and NC-500 manufactured by Kyoeisha.
本発明の遠赤外線反射性塗料は、遠赤外線反射性顔料以外の顔料成分を更に含むことができる。このような顔料成分としては、体質顔料、着色顔料等が挙げられる。体質顔料として、具体的には、硫酸バリウム、硫酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸、ケイ酸塩、酸化アルミニウム水和物、カリ長石、バライト粉、シリカ、タルク、マイカ、カオリンクレー、ガラスフレーク等が挙げられる。着色顔料には、有機顔料、無機顔料の両方を使用することができる。有用な有機顔料としては、例えば、モノアゾ、ジスアゾ、レーキアゾ、βナフトール、ナフトールAS、ベンゾイミダゾロン、縮合ジスアゾ、アゾ金属錯体顔料;例えば、フタロシアニン、キナクリドン、ペリレン、ペリノン、チオインジゴ、アンタントロン、アントラキノン、フラバントロン、インダントロン、イソビオラントロン、ピラントロン、ジオキサジン、キノフタロン、イソインドリノン、イソインドリンおよびジケトピロロピロール顔料等の多環式顔料;及びカーボンブラック等がある。無機顔料としては、例えば、二酸化チタン、硫化亜鉛、酸化鉄、酸化クロム、群青、ニッケルアンチモンチタン酸化物、クロムアンチモンチタン酸化物、酸化コバルト、コバルトとアルミニウムの混合酸化物、バナジン酸ビスマス、及び混合顔料等がある。遠赤外線反射性顔料以外の顔料成分は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。本発明の遠赤外線反射性塗料中において、遠赤外線反射性顔料以外の顔料成分の含有量は、特に限定されるものではないが、例えば0.1〜40質量%である。 The far-infrared reflective paint of the present invention can further contain a pigment component other than the far-infrared reflective pigment. Examples of such pigment components include extender pigments and colored pigments. Specific examples of extender pigments include barium sulfate, calcium sulfate, calcium carbonate, magnesium carbonate, silicic acid, silicate, aluminum oxide hydrate, potassium feldspar, barite powder, silica, talc, mica, kaolin clay, glass Flakes etc. are mentioned. As the coloring pigment, both organic pigments and inorganic pigments can be used. Useful organic pigments include, for example, monoazo, disazo, lake azo, β naphthol, naphthol AS, benzimidazolone, condensed disazo, azo metal complex pigments; And polycyclic pigments such as flavantron, indanthrone, isoviolanthrone, pyranthrone, dioxazine, quinophthalone, isoindolinone, isoindoline and diketopyrrolopyrrole pigments; and carbon black. Examples of inorganic pigments include titanium dioxide, zinc sulfide, iron oxide, chromium oxide, ultramarine, nickel antimony titanium oxide, chromium antimony titanium oxide, cobalt oxide, mixed oxide of cobalt and aluminum, bismuth vanadate, and mixed There are pigments. Pigment components other than the far-infrared reflective pigment may be used alone or in combination of two or more. In the far-infrared reflective paint of the present invention, the content of pigment components other than the far-infrared reflective pigment is not particularly limited, but is, for example, 0.1 to 40% by mass.
本発明の遠赤外線反射性塗料は、塗料業界において常用されるようなバインダー樹脂を含むことができる。上記バインダー樹脂としては、特に限定されるものではないが、例えば、アクリル樹脂、アクリル−スチレン系樹脂、アルキド樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン変性ポリエステル樹脂、シリコーン変性アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、シリケート樹脂、塩素系樹脂、フッ素系樹脂等がある。また、必要に応じて、メラミン樹脂等のアミノ樹脂や、イソシアナート、ブロックイソシアナート等を硬化剤として用いてもよい。本発明の遠赤外線反射性塗料中において、バインダー樹脂の含有量は、特に限定されるものではないが、例えば10〜60質量%である。なお、バインダー樹脂は、エマルションの形態で使用されてもよいし、溶液の形態で使用されてもよい。 The far-infrared reflective paint of the present invention can contain a binder resin as commonly used in the paint industry. The binder resin is not particularly limited. For example, acrylic resin, acrylic-styrene resin, alkyd resin, urethane resin, polyester resin, silicone-modified polyester resin, silicone-modified acrylic resin, epoxy resin, polycarbonate resin Silicate resin, chlorine resin, fluorine resin and the like. Moreover, you may use amino resins, such as a melamine resin, isocyanate, block isocyanate, etc. as a hardening | curing agent as needed. In the far-infrared reflective paint of the present invention, the content of the binder resin is not particularly limited, but is, for example, 10 to 60% by mass. In addition, binder resin may be used with the form of an emulsion and may be used with the form of a solution.
本発明の遠赤外線反射性塗料は、通常、上述の顔料や樹脂を分散させる媒体として、水や有機溶剤を含む。有機溶剤は、塗料業界において一般に使用されるものであれば特に限定されるものではなく、例えば、ソルベッソ100、ソルベッソ150等の芳香族炭化水素類や、酢酸エチル、酢酸ブチル等のエステル類や、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン等のケトン類や、ミネラルスピリット等の脂肪族系溶剤等が挙げられる。かかる媒体は、溶解性、蒸発速度、安全性等を考慮して、適宜選択される。顔料や樹脂を分散させるための媒体は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。本発明の遠赤外線反射性塗料中において、該媒体の含有量は、特に限定されるものではないが、例えば1〜40質量%である。 The far-infrared reflective paint of the present invention usually contains water or an organic solvent as a medium for dispersing the above-described pigment or resin. The organic solvent is not particularly limited as long as it is generally used in the paint industry, for example, aromatic hydrocarbons such as Solvesso 100 and Solvesso 150, esters such as ethyl acetate and butyl acetate, Examples thereof include ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone, and aliphatic solvents such as mineral spirits. Such a medium is appropriately selected in consideration of solubility, evaporation rate, safety, and the like. The medium for dispersing the pigment or resin may be used alone or in combination of two or more. In the far-infrared reflective paint of the present invention, the content of the medium is not particularly limited, but is, for example, 1 to 40% by mass.
本発明の遠赤外線反射性塗料には、レベリング剤、タレ止め・沈降防止剤、表面調整剤、粘性調整剤、消泡剤、防腐剤、ワックス、樹脂ビーズ、その他の塗膜形成成分等の添加剤を、本発明の目的を害しない範囲内で適宜選択して配合することもできる。これら添加剤としては、市販品を好適に使用することができる。 Addition of leveling agent, anti-sagging / anti-settling agent, surface adjusting agent, viscosity adjusting agent, antifoaming agent, preservative, wax, resin beads, and other coating film forming components to the far-infrared reflective coating of the present invention An agent can be appropriately selected and blended within a range that does not impair the object of the present invention. As these additives, commercially available products can be suitably used.
本発明の遠赤外線反射性塗料は、遠赤外線反射性顔料及び分散媒体と、必要に応じて適宜選択されるバインダー樹脂や各種添加剤を混合することにより調製できる。遠赤外線反射性顔料を塗料中に分散させるため、例えば、ローラーミル、ペイントシェーカー、ポットミル、ディスパー、サンドグラインドミル等の一般的な装置を使用できる。 The far-infrared reflective paint of the present invention can be prepared by mixing a far-infrared reflective pigment and a dispersion medium with a binder resin and various additives appropriately selected as necessary. In order to disperse the far-infrared reflective pigment in the paint, for example, a general apparatus such as a roller mill, a paint shaker, a pot mill, a disper, or a sand grind mill can be used.
本発明の遠赤外線反射性塗料により形成される塗膜は、遠赤外線反射性顔料を含まない以外は同一の構成からなる塗膜との色差(ΔE)が、5.0以下であることが好ましく、3.0以下であることが更に好ましい。ΔEを5.0以下に設計すれば、遠赤外線反射性顔料を含む塗料であっても、着色顔料等の着色剤を用いることによって一般的な塗料と同様に着色することが可能である。また、ΔEを5.0以下であれば、遠赤外線反射性塗料が塗料中に凝集することなく均質に分散されるため、撹拌効率や塗装効率が高く、塗装作業性も十分に得られる。なお、上記色差(ΔE)の下限は、低い程好ましく、例えば0.3であることが好ましい。また、表面張力を調整したり、湿潤分散剤を添加したりすることによって、遠赤外線反射性塗料を塗膜に均質に分布させることで、遠赤外線反射性顔料の添加量を減少させても高い遠赤外線反射率を確保できるため、ΔEを小さくすることができる。 The coating film formed from the far-infrared reflective paint of the present invention preferably has a color difference (ΔE) of 5.0 or less with respect to the coating film having the same structure except that it does not contain a far-infrared reflective pigment. More preferably, it is 3.0 or less. If ΔE is designed to be 5.0 or less, even a paint containing a far-infrared reflective pigment can be colored in the same manner as a general paint by using a colorant such as a color pigment. Further, if ΔE is 5.0 or less, the far-infrared reflective coating is uniformly dispersed without agglomeration in the coating, so that the stirring efficiency and the coating efficiency are high, and the coating workability is sufficiently obtained. The lower limit of the color difference (ΔE) is preferably as low as possible, for example 0.3. In addition, by adjusting the surface tension or adding a wetting and dispersing agent, the far-infrared reflective paint is uniformly distributed in the coating film, so that even if the amount of far-infrared reflective pigment added is reduced, it is high. Since the far-infrared reflectance can be secured, ΔE can be reduced.
なお、本発明において、色差(ΔE)とは、L*a*b*表色系の色差であり、色差計により求めることができる。なお、本発明では、塗膜をガラス板上に形成し、光源としてD65光源を用いる。また、「遠赤外線反射性顔料を含まない以外は同一の構成からなる塗膜」とは、遠赤外線反射性顔料を含まない以外は同一の構成からなる塗料により形成される塗膜である。例えば、比較例1の塗料は、実施例1の塗料に対する「遠赤外線反射性顔料を含まない以外は同一の構成からなる塗料」に相当する。 In the present invention, the color difference (ΔE) is a color difference of the L * a * b * color system and can be obtained by a color difference meter. In addition, in this invention, a coating film is formed on a glass plate and D65 light source is used as a light source. The “coating film having the same configuration except that it does not contain a far-infrared reflective pigment” is a coating film formed from a paint having the same configuration except that it does not contain a far-infrared reflective pigment. For example, the coating material of Comparative Example 1 corresponds to “a coating material having the same configuration except that the far-infrared reflective pigment is not included” with respect to the coating material of Example 1.
本発明の遠赤外線反射性塗料は、溶媒の種類に応じて様々な形態をとることが可能であり、水系塗料でも有機溶剤系塗料でもよい。なお、建築物の天井、内壁、床を塗装する観点から、溶解力の弱い有機溶剤を用いた弱溶剤塗料、又は有機溶剤の含有量が少ない水系塗料が好ましい。また、本発明の遠赤外線反射性塗料は、1液型の塗料でもよいし、硬化剤を用いた2液型の塗料でもよい。 The far-infrared reflective paint of the present invention can take various forms depending on the type of solvent, and may be a water-based paint or an organic solvent-based paint. In addition, from the viewpoint of painting the ceiling, inner wall, and floor of a building, a weak solvent paint using an organic solvent having a weak dissolving power, or an aqueous paint having a low content of the organic solvent is preferable. Further, the far-infrared reflective coating of the present invention may be a one-pack type paint or a two-pack type paint using a curing agent.
本発明の遠赤外線反射性塗料の塗布方法は、特に限定されるものではないが、例えば、浸漬、刷毛塗り、ローラー、ロールコーター、エアスプレー、エアレススプレー、カーテンフローコーター、ローラーカーテンコーター、ダイコーター等の一般的な塗布方法が可能である。塗布の対象に応じて、塗布方法は適宜選択される。 The application method of the far-infrared reflective paint of the present invention is not particularly limited, but for example, dipping, brush coating, roller, roll coater, air spray, airless spray, curtain flow coater, roller curtain coater, die coater General coating methods such as the above are possible. The application method is appropriately selected according to the application target.
本発明の遠赤外線反射性塗料は、遠赤外線を高度に反射することができるため、建築物の天井、内壁、床を塗装することによって、冬場の暖房費の節約や快適空間の創出を可能にする。このため、学校、病院や家等の建築物の内装材に塗装することが好ましく、該建築物内装材としては、石膏ボード、スレート板、フレキシブルボード、コンクリート、モルタル、壁紙、鉄、鋼板、木材等が挙げられる。なお、本発明の遠赤外線反射性塗料は、上記建築物内装材に直接塗布することも可能であるが、建築物内装材が既に塗膜を備える場合もあり、この場合は、該塗膜上に塗布すればよい。また、シーラー等の下塗り剤を塗装後に、本発明の遠赤外線反射性塗料を上塗り塗料として塗布してもよい。また、断熱構造を有する建築物の屋内に塗装する場合、熱が外部に逃げ難くなっており、本発明の遠赤外線反射性塗料によって得られる効果と相俟って、冬場の暖房効率を著しく向上させることができる。 The far-infrared reflective paint of the present invention can highly reflect far-infrared rays, so it is possible to save winter heating costs and create a comfortable space by painting the ceiling, inner wall, and floor of buildings. To do. For this reason, it is preferable to paint on interior materials of buildings such as schools, hospitals and houses, and examples of the interior materials of the buildings include gypsum board, slate plate, flexible board, concrete, mortar, wallpaper, iron, steel plate, wood Etc. The far-infrared reflective paint of the present invention can be directly applied to the building interior material, but the building interior material may already be provided with a coating film. What is necessary is just to apply | coat to. Further, after applying a primer such as a sealer, the far-infrared reflective paint of the present invention may be applied as a top coat. Also, when painting indoors of a building with a heat insulating structure, heat is difficult to escape to the outside, and combined with the effect obtained by the far infrared reflective paint of the present invention, the heating efficiency in winter is remarkably improved Can be made.
また、本発明の塗膜形成方法は、上述の遠赤外線反射性塗料を建築物内装材に塗装して塗膜を形成する方法であって、前記建築物内装材が、石膏ボード、スレート板、フレキシブルボード、コンクリート、モルタル、壁紙、鉄、鋼板及び木材よりなる群から選択されることを特徴とする。本発明の塗膜形成方法によれば、本発明の遠赤外線反射性塗料を建築物内装材に塗装するため、建築物内部の遠赤外線を効果的に反射できる。また、本発明の遠赤外線反射性塗料を用いているため、塗膜の外観も良好である。 The coating film forming method of the present invention is a method of forming a coating film by coating the far-infrared reflective paint described above on a building interior material, and the building interior material is a gypsum board, a slate plate, It is selected from the group consisting of flexible board, concrete, mortar, wallpaper, iron, steel plate and wood. According to the coating film forming method of the present invention, since the far-infrared reflective paint of the present invention is applied to the building interior material, the far-infrared rays inside the building can be effectively reflected. Moreover, since the far-infrared reflective paint of this invention is used, the external appearance of a coating film is also favorable.
本発明の塗装物は、建築物内装材と、該建築物内装材上に形成された塗膜とを備えており、上述の塗膜形成方法によって得られることを特徴とする。本発明の塗装物によれば、本発明の遠赤外線反射性塗料によって形成される塗膜によって、建築物内部の遠赤外線を効果的に反射できる。また、本発明の遠赤外線反射性塗料を用いているため、塗膜の外観も良好である。なお、本発明の遠赤外線反射性塗料によって形成される塗膜は、膜厚が例えば40〜70μmであり、塗膜中の遠赤外線反射性顔料の含有量は例えば10〜40質量%である。 The coated article of the present invention includes a building interior material and a coating film formed on the building interior material, and is obtained by the above-described coating film forming method. According to the coated object of the present invention, the far infrared rays inside the building can be effectively reflected by the coating film formed by the far infrared reflective paint of the present invention. Moreover, since the far-infrared reflective paint of this invention is used, the external appearance of a coating film is also favorable. In addition, the coating film formed with the far-infrared reflective paint of this invention is 40-70 micrometers in film thickness, for example, and the content of the far-infrared reflective pigment in a coating film is 10-40 mass%.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
<<実施例1〜16及び比較例1〜10>>
表1〜3に示す配合処方に従って、実施例1〜16及び比較例1〜10の塗料を調製したのち、下記の方法により、表面張力、遠赤外線反射率及び色差を測定し、塗膜外観を評価した。
<< Examples 1 to 16 and Comparative Examples 1 to 10 >>
After preparing the paints of Examples 1 to 16 and Comparative Examples 1 to 10 according to the formulation shown in Tables 1 to 3, the surface tension, far-infrared reflectance and color difference were measured by the following methods, and the coating film appearance was determined. evaluated.
<塗料の調製例>
最初に、樹脂の一部と、着色顔料、体質顔料、増粘剤、水、有機溶剤の一部とを混合し、該混合物をポットミルで分散させ、分散ペーストを作製する。続いて、分散ペーストをディスパー撹拌しながら、残りの樹脂、湿潤分散剤、揺変剤、消泡剤、遠赤外線反射性顔料、残りの水、溶剤を加え、塗料を調製する。なお、実施例1〜14、比較例1〜6及び比較例8〜10に記載の塗料は、水道水で希釈され、実施例15、16及び比較例7に記載の塗料はミネラルスピリットで希釈されている。
<Preparation example of paint>
First, a part of the resin is mixed with a part of the color pigment, extender pigment, thickener, water, and organic solvent, and the mixture is dispersed with a pot mill to prepare a dispersion paste. Subsequently, while the dispersion paste is stirred with a disper, the remaining resin, wetting and dispersing agent, thixotropic agent, antifoaming agent, far-infrared reflective pigment, remaining water and solvent are added to prepare a paint. In addition, the coating materials described in Examples 1 to 14, Comparative Examples 1 to 6 and Comparative Examples 8 to 10 are diluted with tap water, and the coating materials described in Examples 15 and 16 and Comparative Example 7 are diluted with mineral spirits. ing.
<表面張力の測定>
表面張力の測定には、協和界面科学(株)製の自動表面張力計CBVP−Z型を使用し、測定方法は白金プレート法であり、測定温度は20℃である。なお、白金プレート法とは、塗料中に白金プレートを浸し、その際に塗料中の液体がプレートを引っ張り込もうとする方向に発生する力を天秤で測定することで、表面張力を算出する方法である。結果を表1〜3に示す。
<Measurement of surface tension>
For measuring the surface tension, an automatic surface tension meter CBVP-Z type manufactured by Kyowa Interface Science Co., Ltd. is used, the measuring method is a platinum plate method, and the measuring temperature is 20 ° C. The platinum plate method is a method of calculating the surface tension by immersing the platinum plate in the paint and measuring the force generated in the direction in which the liquid in the paint tries to pull the plate with a balance. It is. The results are shown in Tables 1-3.
<遠赤外線反射率の測定>
・試験片の作製
ブリキ板(150mm×75mm×0.3mm)に、水系プライマーとして大日本塗料(株)社製ノボクリーンプライマーを乾燥膜厚が20〜30μmとなるように塗装し、その後、常温で1日間乾燥する。次いで、プライマー層上に測定用塗料をエアスプレー塗装し、常温で1日間乾燥し、試験片を作製する。
・遠赤外線反射率の測定
DEVICES & SERVICES COMPANY製D and S AERD 放射率計を使用して、試験片の熱放射率を測定し、上記関係式(式1)〜(式4)に基づき、遠赤外線反射率(%)を算出する。結果を表4〜6に示す。
<Measurement of far-infrared reflectance>
・ Preparation of test specimens A tin plate (150 mm x 75 mm x 0.3 mm) was coated with Novo Clean Primer manufactured by Dainippon Paint Co., Ltd. as a water-based primer so that the dry film thickness would be 20-30 μm. For 1 day. Next, a coating material for measurement is applied by air spray on the primer layer and dried at room temperature for 1 day to prepare a test piece.
・ Measurement of far-infrared reflectivity Using a D & S AERD emissometer manufactured by DEVICES & SERVICES COMPANY, the thermal emissivity of the test piece is measured, Infrared reflectance (%) is calculated. The results are shown in Tables 4-6.
<塗膜外観>
遠赤外線反射率の測定の際に作製した試験片の外観を以下の評価基準に基づいて目視評価した。結果を表4〜6に示す。
〇:塗膜表面に光輝感や凹凸感が見られず、美的外観に優れる。
△:塗膜表面にわずかな光輝感や凹凸感が確認される。
×:塗膜表面に著しい光輝感や凹凸感が確認される。
<Appearance of coating film>
The appearance of the test piece prepared at the time of measuring the far-infrared reflectance was visually evaluated based on the following evaluation criteria. The results are shown in Tables 4-6.
◯: No glitter or unevenness is seen on the coating film surface, and the aesthetic appearance is excellent.
(Triangle | delta): A slight glitter feeling and uneven | corrugated feeling are confirmed on the coating-film surface.
X: Remarkable glitter and unevenness are confirmed on the coating film surface.
<色差の測定>
10milアプリケーターを用いてガラス板に塗料を塗装し、23℃で24時間乾燥させ、乾燥塗膜の色をL*、a*、b*表色系で数値化する。結果を表4〜6に示す。更に、実施例1と比較例1、実施例2と比較例2、実施例3と比較例4、実施例5と比較例5、実施例6と比較例6及び実施例15と比較例7の色差ΔEを求める。色差計には、コニカ・ミノルタ社製CR−400を用いる。結果を表7に示す。
<Measurement of color difference>
The paint is applied to the glass plate using a 10 mil applicator, dried at 23 ° C. for 24 hours, and the color of the dried coating film is quantified in the L *, a *, b * color system. The results are shown in Tables 4-6. Furthermore, Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, Example 3 and Comparative Example 4, Example 5 and Comparative Example 5, Example 6 and Comparative Example 6, Example 15 and Comparative Example 7 A color difference ΔE is obtained. For the color difference meter, CR-400 manufactured by Konica Minolta is used. The results are shown in Table 7.
以下に、表1〜3中で使用される配合剤について説明する。
* バインダー樹脂A:DIC社製,ボンコート5400EF、アクリル−スチレン系樹脂の水系エマルション、不揮発分55質量%
* バインダー樹脂B:DIC社製,アクリディックA−1380、アクリル樹脂の有機溶剤系溶液、不揮発分55質量%
* 遠赤外線反射性顔料A:ECKART社製,IReflex 5000white、球状アルミニウム顔料、50%平均粒子径50μm
* 遠赤外線反射性顔料B:ECKART社製,Stapa Metallux 212、微小板形状アルミニウム顔料、平均粒子径54μm
* 遠赤外線反射性顔料C:東洋アルミニウム社製,RFA4000、微小板形状ステンレス顔料、平均粒子径30μm
* 着色顔料A:デュポン社製,Ti−Pure R−960
* 着色顔料B:山陽色素社製,EMACOL BLACK A822
* 着色顔料C:山陽色素社製,EMACOL BROWN 3109
* 着色顔料D:山陽色素社製,EMACOL OCHRE 3612
* 着色顔料E:山陽色素社製,EMACOL BLUE 3804
* 体質顔料A:竹原化学工業社製,サンライト SL−100
* 湿潤分散剤A:ビックケミー社製,BYK−192,ノニオン性湿潤分散剤
* 湿潤分散剤B:ビックケミー社製,BYK−111,酸基含有湿潤分散剤
* 増粘剤A:ローム&ハース社製,プライマルRM−6000
* 揺変剤A:楠本化成社製,ディスパロン6820−10M
* 消泡剤A:共栄社製,アクアレン810
* 消泡剤B:サンノプコ社製,ダッポー359
Below, the compounding agent used in Tables 1-3 is demonstrated.
* Binder resin A: manufactured by DIC, Boncoat 5400EF, water-based emulsion of acrylic-styrene resin, non-volatile content 55% by mass
* Binder resin B: manufactured by DIC, Acrydic A-1380, organic solvent-based solution of acrylic resin, non-volatile content 55% by mass
* Far-infrared reflective pigment A: manufactured by ECKART, IReflex 5000 white, spherical aluminum pigment, 50% average particle size 50 μm
* Far-infrared reflective pigment B: manufactured by ECKART, Stapa Metallux 212, fine plate-shaped aluminum pigment, average particle size 54 μm
* Far-infrared reflective pigment C: manufactured by Toyo Aluminum Co., Ltd., RFA4000, fine plate-shaped stainless steel pigment, average particle size 30 μm
* Coloring pigment A: Ti-Pure R-960, manufactured by DuPont
* Coloring pigment B: manufactured by Sanyo Dye Co., Ltd., EMACOL BLACK A822
* Coloring pigment C: Sanyo Color Co., Ltd., EMACOL BROWN 3109
* Coloring pigment D: Sanyo Color Co., Ltd., EMACOL OCHER 3612
* Coloring pigment E: Sanyo Color Co., Ltd., EMACOL BLUE 3804
* Extender pigment A: Sunlight SL-100, manufactured by Takehara Chemical Co., Ltd.
* Wetting and dispersing agent A: BYK-Chemie, BYK-192, nonionic wetting and dispersing agent * Wetting and dispersing B: BYK-Chemie, BYK-111, acid group-containing wetting and dispersing agent * Thickener A: Rohm & Haas , Primal RM-6000
* Thixotropic agent A: manufactured by Enomoto Kasei Co., Ltd., Disparon 6820-10M
* Defoaming agent A: Kyoeisha, Aqualen 810
* Defoaming agent B: manufactured by San Nopco, Dappo 359
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013271764A JP2015124360A (en) | 2013-12-27 | 2013-12-27 | Far infrared reflective coating material, formation method of coating film, and coated article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013271764A JP2015124360A (en) | 2013-12-27 | 2013-12-27 | Far infrared reflective coating material, formation method of coating film, and coated article |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015124360A true JP2015124360A (en) | 2015-07-06 |
Family
ID=53535305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013271764A Pending JP2015124360A (en) | 2013-12-27 | 2013-12-27 | Far infrared reflective coating material, formation method of coating film, and coated article |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015124360A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017122734A1 (en) * | 2016-01-13 | 2017-07-20 | 日本ペイントホールディングス株式会社 | Multi-layer coating film and method for forming multi-layer coating film |
JP6826742B1 (en) * | 2020-06-08 | 2021-02-10 | 株式会社 小林工業所 | Interior plaster wall material |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5446235A (en) * | 1977-09-20 | 1979-04-12 | Kansai Paint Co Ltd | Metallic finishing |
JP2004037768A (en) * | 2002-07-02 | 2004-02-05 | Kenji Saito | Ultraviolet ray and infrared ray shielding body |
JP2005213274A (en) * | 2004-01-27 | 2005-08-11 | Kansai Paint Co Ltd | Aqueous paint and method for preparing and applying the same |
JP2008221128A (en) * | 2007-03-13 | 2008-09-25 | Kansai Paint Co Ltd | Method for improving cissing resistance of coating film |
JP2009520844A (en) * | 2005-12-21 | 2009-05-28 | エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング | White pigment reflecting IR radiation, its manufacture and use |
WO2010047391A1 (en) * | 2008-10-23 | 2010-04-29 | 三菱化学株式会社 | Heat ray reflective film and laminated product thereof, and coating solution for forming heat ray reflective layer |
JP2012066578A (en) * | 2010-08-24 | 2012-04-05 | Aisin Chemical Co Ltd | Heat shield structure and heat shield coating composition |
WO2012105213A1 (en) * | 2011-02-03 | 2012-08-09 | ナガセケムテックス株式会社 | Infrared-reflecting substrate |
WO2012132500A1 (en) * | 2011-03-25 | 2012-10-04 | 富士フイルム株式会社 | Heat ray-shielding material |
JP2015074739A (en) * | 2013-10-10 | 2015-04-20 | パナソニックIpマネジメント株式会社 | Foamed plastic coating |
-
2013
- 2013-12-27 JP JP2013271764A patent/JP2015124360A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5446235A (en) * | 1977-09-20 | 1979-04-12 | Kansai Paint Co Ltd | Metallic finishing |
JP2004037768A (en) * | 2002-07-02 | 2004-02-05 | Kenji Saito | Ultraviolet ray and infrared ray shielding body |
JP2005213274A (en) * | 2004-01-27 | 2005-08-11 | Kansai Paint Co Ltd | Aqueous paint and method for preparing and applying the same |
JP2009520844A (en) * | 2005-12-21 | 2009-05-28 | エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング | White pigment reflecting IR radiation, its manufacture and use |
JP2008221128A (en) * | 2007-03-13 | 2008-09-25 | Kansai Paint Co Ltd | Method for improving cissing resistance of coating film |
WO2010047391A1 (en) * | 2008-10-23 | 2010-04-29 | 三菱化学株式会社 | Heat ray reflective film and laminated product thereof, and coating solution for forming heat ray reflective layer |
JP2012066578A (en) * | 2010-08-24 | 2012-04-05 | Aisin Chemical Co Ltd | Heat shield structure and heat shield coating composition |
WO2012105213A1 (en) * | 2011-02-03 | 2012-08-09 | ナガセケムテックス株式会社 | Infrared-reflecting substrate |
WO2012132500A1 (en) * | 2011-03-25 | 2012-10-04 | 富士フイルム株式会社 | Heat ray-shielding material |
JP2015074739A (en) * | 2013-10-10 | 2015-04-20 | パナソニックIpマネジメント株式会社 | Foamed plastic coating |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017122734A1 (en) * | 2016-01-13 | 2017-07-20 | 日本ペイントホールディングス株式会社 | Multi-layer coating film and method for forming multi-layer coating film |
JPWO2017122734A1 (en) * | 2016-01-13 | 2018-11-08 | 日本ペイントホールディングス株式会社 | Multi-layer coating film and method for forming multi-layer coating film |
US10722917B2 (en) | 2016-01-13 | 2020-07-28 | Nippon Paint Holdings Co., Ltd | Multi-layer coating film with high infrared-light reflectivity and high visible-light transmissivity and forming method thereof |
JP6826742B1 (en) * | 2020-06-08 | 2021-02-10 | 株式会社 小林工業所 | Interior plaster wall material |
JP2021193237A (en) * | 2020-06-08 | 2021-12-23 | 株式会社 小林工業所 | Wall plaster material for interior decoration |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6026938B2 (en) | Thermal barrier matte water-based coating composition and thermal barrier matte coating film forming method | |
KR101847604B1 (en) | Aqueous, heat reflective, heat insulation and thermal insulation paint with excellent UV blocking capacity and method for production thereof | |
WO2017028471A1 (en) | Water-based reflective heat-insulating faux stone texture coating system for construction and preparation method thereof | |
CN101870842B (en) | Aqueous cold pigment double-coat multifunctional thermal-insulation external wall paint and preparation method thereof | |
JP5470314B2 (en) | Water-based paint composition | |
JP6026933B2 (en) | Thermal barrier matte water-based coating composition and thermal barrier matte coating film forming method | |
TW200848169A (en) | Coating system exhibiting cool dark color | |
JP2007217586A (en) | Heat-insulating coating and heat-insulating material | |
CN104559502B (en) | Hide hot water-based paint compositions and hide hot coating film-forming methods | |
JP2007016558A (en) | Construction material board and manufacturing method therefor | |
CN104845428A (en) | Additive composition, thermal-insulation paint and application thereof | |
CN105086560A (en) | Thermal reflectivity, imitation stone effect coating system | |
JP5537759B2 (en) | Heat-reflective coating composition and coated article | |
CN102864884A (en) | Self-cleaning heat-insulation coating system for exterior wall | |
JP5923240B2 (en) | Coating material | |
JP5931344B2 (en) | Thermal radiation coating composition, thermal radiation coating material and method for producing thermal radiation coating material | |
JP6746417B2 (en) | Paint composition | |
JP2015124360A (en) | Far infrared reflective coating material, formation method of coating film, and coated article | |
JP2016211364A (en) | Waterproof structure, waterproofing method, and heat insulation material with heat shielding and waterproofing properties | |
JP2013147571A (en) | Heat-shielding coating | |
JP2006266042A (en) | Building material and its color tone changing method | |
JP2009034579A (en) | Heat ray highly reflecting coated material and coating method | |
JP5537817B2 (en) | Heat ray high reflection paint composition and heat ray high reflection paint | |
EP3257903B1 (en) | Ir reflective surface treatment | |
JP2012050938A (en) | Coating composition and coating film-forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20161013 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20161013 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171226 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180605 |