JP7021015B2 - Geothermal binary power generation system and its operation method - Google Patents

Geothermal binary power generation system and its operation method Download PDF

Info

Publication number
JP7021015B2
JP7021015B2 JP2018126139A JP2018126139A JP7021015B2 JP 7021015 B2 JP7021015 B2 JP 7021015B2 JP 2018126139 A JP2018126139 A JP 2018126139A JP 2018126139 A JP2018126139 A JP 2018126139A JP 7021015 B2 JP7021015 B2 JP 7021015B2
Authority
JP
Japan
Prior art keywords
pipe
geothermal
water
hot water
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018126139A
Other languages
Japanese (ja)
Other versions
JP2020002941A (en
Inventor
千人 長谷部
信雄 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018126139A priority Critical patent/JP7021015B2/en
Publication of JP2020002941A publication Critical patent/JP2020002941A/en
Application granted granted Critical
Publication of JP7021015B2 publication Critical patent/JP7021015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明の実施形態は、地熱を熱源とするバイナリ発電サイクルのシステムとその運転方法に関する。 An embodiment of the present invention relates to a system of a binary power generation cycle using geothermal heat as a heat source and an operation method thereof.

地熱発電は熱源となる地熱貯留層から蒸気や熱水を取り出し、取り出した熱を利用してタービンを稼動させ電力を得る発電方法である。地熱発電は、熱源の温度により、高温域の熱源の場合に採用される蒸気直接発電方式と、低温域の熱源の場合に採用されるバイナリサイクル方式に大別される。 Geothermal power generation is a power generation method in which steam or hot water is extracted from a geothermal reservoir that is a heat source, and the extracted heat is used to operate a turbine to obtain electric power. Geothermal power generation is roughly classified into a steam direct power generation method adopted in the case of a heat source in a high temperature region and a binary cycle method adopted in the case of a heat source in a low temperature region, depending on the temperature of the heat source.

バイナリサイクル方式はさらに、熱源の性状(熱水単相流か、また、熱水と蒸気の二相流の場合の蒸気乾き度等)により発電サイクルが選定される。 In the binary cycle method, the power generation cycle is further selected according to the properties of the heat source (hot water single-phase flow, steam dryness in the case of hot water and steam two-phase flow, etc.).

ここで熱源の性状が熱水と蒸気が混じりあう二相流である場合、発生した二相流は汽水分離器により蒸気と熱水に分離され、分離された蒸気を蒸発器で、熱水を予熱器で、それぞれ発電タービンの動力となる低沸点媒体と熱交換を行なわせ、熱交換により蒸発した低沸点媒体をもって発電を行なう方法などが知られている。なお、従来技術において、低沸点媒体との熱交換を終えた低温の熱水は直接還元井へ送られる。 Here, when the property of the heat source is a two-phase flow in which hot water and steam are mixed, the generated two-phase flow is separated into steam and hot water by a steam water separator, and the separated steam is separated into hot water by an evaporator. A method is known in which a preheater exchanges heat with a low-boiling medium that powers a power generation turbine, and generates power using the low-boiling medium evaporated by heat exchange. In the prior art, the low temperature hot water that has completed heat exchange with the low boiling point medium is directly sent to the reduction well.

特許第5763495号公報Japanese Patent No. 5763495 特許第5563854号公報Japanese Patent No. 5563854

二相流を熱源とする公知の技術においては、生産井から発生する二相流の流量および圧力の自然変動に対応できる汽水分離器を設計製作する必要がある。さらに、汽水分離器から発生する蒸発量および圧力は二相流の状態変化によって大きく変動する。すなわち蒸発器に流入する蒸気の流量と圧力が大きく変動することにより、発電出力が安定しない問題がある。また、その変動を許容する機器や配管、計器等の設計製作が求められることから、プラント建設時の機器設備費増加が問題となっている。 In a known technique using a two-phase flow as a heat source, it is necessary to design and manufacture a brackish water separator capable of responding to natural fluctuations in the flow rate and pressure of the two-phase flow generated from a production well. Furthermore, the amount of evaporation and pressure generated from the brackish water separator fluctuate greatly depending on the state change of the two-phase flow. That is, there is a problem that the power generation output is not stable due to a large fluctuation in the flow rate and pressure of the steam flowing into the evaporator. In addition, since it is required to design and manufacture equipment, piping, instruments, etc. that can tolerate the fluctuation, an increase in equipment cost at the time of plant construction has become a problem.

また、従来のバイナリ発電サイクルの場合には、熱交換を行った後に地下に還元する熱水の温度が低いために、地熱水中に含まれるシリカの溶解度が下がり、還元井にシリカスケールが発生しやすい。還元井が閉塞するとプラントの停止に直結することから、シリカスケールの問題はバイナリサイクル方式の最も大きなリスクの一つと考えられる。この課題の解決のため、従来技術では、シリカスケールの防止に薬注システムによる熱水のPHコントロール等の対応が行なわれており、ゆえにプラントの機器設備費や運転費の増加へとつながっている。 Further, in the case of the conventional binary power generation cycle, since the temperature of the hot water returned to the underground after heat exchange is low, the solubility of silica contained in the geothermal water decreases, and silica scale is generated in the reduction well. Cheap. Since the closure of the reduction well directly leads to the shutdown of the plant, the problem of silica scale is considered to be one of the greatest risks of the binary cycle method. In order to solve this problem, in the conventional technology, measures such as PH control of hot water by a chemical injection system are taken to prevent silica scale, which leads to an increase in plant equipment costs and operating costs. ..

本発明の実施形態は、地熱を利用するバイナリ発電サイクルにおいて、出力変動が少なく、コンパクトな設備を提供可能とすることを目的とする。 An object of the present invention is to make it possible to provide compact equipment with little output fluctuation in a binary power generation cycle using geothermal heat.

上記課題を解決するために、本発明の実施形態に係る地熱バイナリ発電システムは、地熱生産井から取り出される蒸気および熱水の二相流を取り出す地熱水供給配管と、前記地熱水供給配管から供給される蒸気および熱水の二相流を受け入れて二相状態で貯留する混合器と、前記混合器から熱水を取り出す熱水配管と、前記熱水配管を通じて前記混合器から取り出される熱水を熱源として水よりも低沸点の媒体を加熱して前記媒体を蒸発させる蒸発器と、前記蒸発器で放熱した前記熱水の一部を前記混合器に戻す熱水戻し配管と、前記蒸発器で放熱した前記熱水の一部を前記混合器に戻さずに還元井に還元する還元配管と、前記蒸発器で加熱されて蒸発した媒体によって駆動されるタービンと、前記タービンによって駆動される発電機と、前記タービンで仕事をした後の媒体を前記蒸発器に戻す媒体戻し配管と、前記混合器内の水位を計測する水位計と、前記還元配管に設けられた還元水量調節弁と、前記水位計で計測された前記混合器内の水位が所定の水位範囲に入るように前記還元水量調節弁の開度を調節する還元水量調節弁制御部と、を有すること、を特徴とする。 In order to solve the above problems, the geothermal binary power generation system according to the embodiment of the present invention has a geothermal water supply pipe for taking out a two-phase stream of steam and hot water taken out from a geothermal production well, and the geothermal water supply pipe. A mixer that accepts a two-phase flow of steam and hot water supplied from the mixer and stores it in a two-phase state, a hot water pipe that takes out hot water from the mixer, and heat taken out from the mixer through the hot water pipe. An evaporator that heats a medium having a boiling point lower than that of water using water as a heat source to evaporate the medium, a hot water return pipe that returns a part of the hot water radiated by the evaporator to the mixer, and the evaporation. A reduction pipe that returns a part of the hot water radiated by the vessel to the reduction well without returning it to the mixer, a turbine driven by a medium heated and evaporated by the evaporator, and a turbine driven by the turbine. A generator, a medium return pipe that returns the medium after working in the turbine to the evaporator, a water level gauge that measures the water level in the mixer, a reduced water amount control valve provided in the reduction pipe, and the like. It is characterized by having a reduced water amount control valve control unit that adjusts the opening degree of the reduced water amount control valve so that the water level in the mixer measured by the water level gauge falls within a predetermined water level range .

本発明の実施形態に係る地熱バイナリ発電システム運転方法は、地熱生産井から取り出される蒸気および熱水の二相流を取り出す地熱水供給配管と、前記地熱水供給配管から供給される蒸気および熱水の二相流を受け入れて二相状態で貯留する混合器と、前記混合器から熱水を取り出す熱水配管と、前記熱水配管を通じて前記混合器から取り出される熱水を熱源として水よりも低沸点の媒体を加熱して前記媒体を蒸発させる蒸発器と、前記蒸発器で放熱した前記熱水の一部を前記混合器に戻す熱水戻し配管と、前記蒸発器で放熱した前記熱水の一部を前記混合器に戻さずに還元井に還元する還元配管と、前記蒸発器で加熱されて蒸発した媒体によって駆動されるタービンと、前記タービンによって駆動される発電機と、前記タービンで仕事をした後の媒体を前記蒸発器に戻す媒体戻し配管と、前記還元配管に設けられた還元水量調節弁と、を有する地熱バイナリ発電システムの運転方法であって、前記混合器内の水位を計測する水位計測ステップと、前記水位計測ステップで計測される前記混合器内の水位が所定の水位範囲に入るように前記還元水量調節弁の開度を調節する還元水量調節弁開度調節ステップと、を有すること、を特徴とする。 The method for operating a geothermal binary power generation system according to an embodiment of the present invention includes a geothermal water supply pipe that takes out a two-phase stream of steam and hot water taken out from a geothermal production well, and steam and steam supplied from the geothermal water supply pipe. A mixer that accepts a two-phase flow of hot water and stores it in a two-phase state, a hot water pipe that takes out hot water from the mixer, and hot water taken out from the mixer through the hot water pipe as a heat source from water. An evaporator that heats a medium having a low boiling point to evaporate the medium, a hot water return pipe that returns a part of the hot water radiated by the evaporator to the mixer, and the heat radiated by the evaporator. A reduction pipe that returns a part of water to the reduction well without returning it to the mixer, a turbine driven by a medium heated and evaporated by the evaporator, a generator driven by the turbine, and the turbine. It is an operation method of a geothermal binary power generation system having a medium return pipe for returning the medium after work to the evaporator and a reduced water amount control valve provided in the reduction pipe, and the water level in the mixer. The water level measurement step for measuring the temperature and the reduction water amount control valve opening adjustment step for adjusting the opening degree of the reduced water amount control valve so that the water level in the mixer measured in the water level measurement step falls within a predetermined water level range. It is characterized by having and.

本発明の実施形態によれば、地熱を利用するバイナリ発電サイクルにおいて、出力変動が少なく、コンパクトな設備を提供可能とすることができる。 According to the embodiment of the present invention, it is possible to provide compact equipment with little output fluctuation in a binary power generation cycle using geothermal heat.

本発明の第1の実施形態に係る地熱バイナリ発電システムの構成を示す系統図である。It is a system diagram which shows the structure of the geothermal binary power generation system which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係る地熱バイナリ発電システムの構成を示す系統図である。It is a system diagram which shows the structure of the geothermal binary power generation system which concerns on the 2nd Embodiment of this invention.

以下、本発明に係る地熱バイナリ発電システムおよびその方法の実施形態について、図面を参照して説明する。ここで、互いに同一または類似の部分には共通の符号を付して、重複説明は省略する。 Hereinafter, embodiments of the geothermal binary power generation system and the method thereof according to the present invention will be described with reference to the drawings. Here, common reference numerals are given to parts that are the same as or similar to each other, and duplicate description is omitted.

[第1の実施形態]
図1は、本発明の第1の実施形態に係る地熱バイナリ発電システムの構成を示す系統図である。
[First Embodiment]
FIG. 1 is a system diagram showing a configuration of a geothermal binary power generation system according to the first embodiment of the present invention.

この地熱バイナリ発電システム11は、生産井(地熱生産井)12から、蒸気および熱水からなる二相流を取り出してその熱を低沸点媒体に伝え、その低沸点媒体によってタービン13を回転させ、それによって発電機14を回転させるシステムである。なお、図1で、蒸気および熱水の系統の配管を実線で示し、低沸点媒体の系統の配管を破線で示している。また、信号線は二点鎖線で示している。 In this geothermal binary power generation system 11, a two-phase stream composed of steam and hot water is taken out from a production well (geothermal production well) 12, the heat is transferred to a low boiling point medium, and the turbine 13 is rotated by the low boiling point medium. It is a system that rotates the generator 14 thereby. In FIG. 1, the piping of the steam and hot water system is shown by a solid line, and the piping of the low boiling point medium system is shown by a broken line. The signal line is indicated by a two-dot chain line.

生産井12から取り出された蒸気および熱水は、地熱水供給配管15を通じて混合器16に供給され、貯留される。地熱水供給配管15には地熱水供給調節弁40が配置されている。 The steam and hot water taken out from the production well 12 are supplied to the mixer 16 through the geothermal water supply pipe 15 and stored. A geothermal water supply control valve 40 is arranged in the geothermal water supply pipe 15.

混合器16内に貯留された熱水は、熱水配管17を通じて蒸発器18に送られる。熱水配管17には熱水ポンプ19が設けられ、熱水配管17内の熱水が昇圧される。混合器16内は蒸気および熱水が混合状態にあり、熱水配管17を通じて混合器16から取り出される熱水はほぼ飽和水の状態である。 The hot water stored in the mixer 16 is sent to the evaporator 18 through the hot water pipe 17. A hot water pump 19 is provided in the hot water pipe 17, and the hot water in the hot water pipe 17 is boosted. Steam and hot water are in a mixed state in the mixer 16, and the hot water taken out from the mixer 16 through the hot water pipe 17 is in a substantially saturated water state.

蒸発器18は、熱水配管17を通じて供給される熱水を熱源として低沸点媒体を蒸発させる非混合型の熱交換器である。低沸点媒体は、水よりも沸点が低い媒体であって、たとえば、フロンやエチレンである。 The evaporator 18 is a non-mixed heat exchanger that evaporates a low boiling point medium using hot water supplied through a hot water pipe 17 as a heat source. The low boiling point medium is a medium having a boiling point lower than that of water, such as chlorofluorocarbons and ethylene.

蒸発器18で蒸発した低沸点媒体によってタービン13が駆動され、タービン13によって発電機14が駆動される。 The turbine 13 is driven by the low boiling point medium vaporized by the evaporator 18, and the generator 14 is driven by the turbine 13.

タービン13で仕事をした後の低沸点媒体は、凝縮器21で凝縮して液化する。凝縮器21では、大気や冷却水などによって放熱する。凝縮器21で凝縮して液化した低沸点媒体は、媒体ポンプ22で昇圧され予熱器23へ送られる。予熱器23は、非混合型の熱交換器であって、蒸発器18で放熱した後の熱水の熱を低沸点媒体に伝えるものである。予熱器23で予熱された低沸点媒体は、媒体戻し配管20を経て蒸発器18へ送られる。 The low boiling point medium after working in the turbine 13 is condensed and liquefied in the condenser 21. The condenser 21 dissipates heat by the atmosphere, cooling water, or the like. The low boiling point medium condensed and liquefied by the condenser 21 is boosted by the medium pump 22 and sent to the preheater 23. The preheater 23 is a non-mixing type heat exchanger that transfers the heat of hot water after heat dissipation by the evaporator 18 to a low boiling point medium. The low boiling point medium preheated by the preheater 23 is sent to the evaporator 18 via the medium return pipe 20.

混合器16から熱水配管17を通じて取り出された熱水は、熱水ポンプ19で昇圧された後に、蒸発器18および予熱器23で放熱して比較的低温になる。予熱器23を出た比較的低温の熱水は、予熱器23の下流側で分岐して、一部が熱水戻し配管24を通して混合器16に戻される。予熱器23の下流側で分岐した残りの熱水は、還元配管30を通して還元井31に戻される。還元配管30には、還元水量調節弁32が配置されている。 The hot water taken out from the mixer 16 through the hot water pipe 17 is pressurized by the hot water pump 19 and then dissipated by the evaporator 18 and the preheater 23 to become relatively low temperature. The relatively low-temperature hot water that has left the preheater 23 branches on the downstream side of the preheater 23, and a part of the hot water is returned to the mixer 16 through the hot water return pipe 24. The remaining hot water branched on the downstream side of the preheater 23 is returned to the reduction well 31 through the reduction pipe 30. A reduction water amount control valve 32 is arranged in the reduction pipe 30.

混合器16の頂部にはガス放出管50が接続され、ガス放出管50にはガス放出弁51が設置されている。ガス放出管50の先端は大気に開放されている。ガス放出弁51は、通常時は閉じているが、混合器16内上部に腐食性不凝縮ガスなどの不凝縮ガスが溜まった時に開放して、混合器16内に不凝縮ガスが溜まらないようにする。 A gas discharge pipe 50 is connected to the top of the mixer 16, and a gas discharge valve 51 is installed in the gas discharge pipe 50. The tip of the gas discharge pipe 50 is open to the atmosphere. The gas discharge valve 51 is normally closed, but is opened when non-condensable gas such as corrosive non-condensable gas is accumulated in the upper part of the mixer 16 so that the non-condensable gas does not accumulate in the mixer 16. To.

混合器16内の水位を測定するために水位計45が設置され、混合器16内の圧力を測定するために圧力計46が設置されている。 A water level gauge 45 is installed to measure the water level in the mixer 16, and a pressure gauge 46 is installed to measure the pressure in the mixer 16.

還元水量調節弁32の開度は、水位計45によって測定された混合器16内の水位がほぼ一定となるように、具体的にはその水位が所定の水位範囲内に入るように、還元水量調節弁制御部47によって制御される。たとえば、混合器16内の水位が所定の水位範囲よりも低い時は、還元水量調節弁32の開度を下げて、還元配管30を流れる熱水の流量を下げ、より多くの熱水を、熱水戻し配管24を通じて混合器16内に戻すことにより、混合器16内の水位が上昇するように制御する。このようにして、生産井12から供給される二相流の圧力や乾き度(蒸気の質量割合)の変動にかかわらず、混合器16内の水位をほぼ一定に保つことができる。 The opening degree of the reduced water amount control valve 32 is such that the water level in the mixer 16 measured by the water level gauge 45 is substantially constant, specifically, the reduced water amount is within a predetermined water level range. It is controlled by the control valve control unit 47. For example, when the water level in the mixer 16 is lower than the predetermined water level range, the opening degree of the reduced water amount control valve 32 is lowered to reduce the flow rate of the hot water flowing through the reduction pipe 30, and more hot water is supplied. By returning the water to the inside of the mixer 16 through the hot water return pipe 24, the water level in the mixer 16 is controlled to rise. In this way, the water level in the mixer 16 can be kept substantially constant regardless of the fluctuation of the pressure of the two-phase flow supplied from the production well 12 and the dryness (mass ratio of steam).

地熱水供給調節弁40の開度は、圧力計46によって測定された混合器16内の圧力がほぼ一定となるように、具体的にはその圧力が所定の圧力範囲内に入るように、地熱水供給調節弁制御部48によって制御される。たとえば、混合器16内の圧力が所定の圧力範囲よりも低い時は、地熱水供給調節弁40の開度を上げて、地熱水供給配管15を通じて混合器16に供給される蒸気および熱水の流量を増やすことにより、混合器16内の圧力が上昇するように制御する。 The opening degree of the geothermal water supply control valve 40 is set so that the pressure in the mixer 16 measured by the pressure gauge 46 is substantially constant, specifically, the pressure is within a predetermined pressure range. It is controlled by the geothermal water supply control valve control unit 48. For example, when the pressure in the mixer 16 is lower than a predetermined pressure range, the opening degree of the geothermal water supply control valve 40 is increased to supply steam and heat to the mixer 16 through the geothermal water supply pipe 15. By increasing the flow rate of water, the pressure in the mixer 16 is controlled to increase.

地熱水供給配管15の地熱水供給調節弁40よりも上流側からバイパス配管52が分岐し、バイパス配管52の先端は還元井31に導かれている。バイパス配管52の途中にはバイパス弁53が設けられている。バイパス弁53は通常時は閉じているが、生産井12から地熱水供給配管15を通じて供給される蒸気および熱水が異常に増加した場合などに、生産井12から供給される蒸気および熱水の一部または全部を、混合器16などを通さずに還元井31に戻すことができる。 The bypass pipe 52 branches from the upstream side of the geothermal water supply control valve 40 of the geothermal water supply pipe 15, and the tip of the bypass pipe 52 is guided to the reduction well 31. A bypass valve 53 is provided in the middle of the bypass pipe 52. The bypass valve 53 is normally closed, but the steam and hot water supplied from the production well 12 are abnormally increased when the steam and hot water supplied from the production well 12 through the geothermal water supply pipe 15 are abnormally increased. Part or all of the above can be returned to the reduction well 31 without passing through the mixer 16 or the like.

この実施形態によれば、地熱水供給調節弁40の開度を調整することにより、混合器16内の圧力がほぼ一定に保たれる。その結果、混合器16内の飽和温度はほぼ一定であり、蒸発器18に供給される熱水の温度がほぼ一定となる。それにより、生産井12から供給される二相流の圧力や乾き度の変動にかかわらず、発電機14の出力をほぼ一定に保つことができる。なお、発電需要の増大に応じて発電機14の出力を高めるためには、混合器16内の圧力の設定値を高めて飽和水温度を高めにすることもできる。 According to this embodiment, the pressure in the mixer 16 is kept substantially constant by adjusting the opening degree of the geothermal water supply control valve 40. As a result, the saturation temperature in the mixer 16 is substantially constant, and the temperature of the hot water supplied to the evaporator 18 is substantially constant. Thereby, the output of the generator 14 can be kept substantially constant regardless of the fluctuation of the pressure and the dryness of the two-phase flow supplied from the production well 12. In order to increase the output of the generator 14 in response to an increase in power generation demand, it is possible to increase the set value of the pressure in the mixer 16 to increase the saturated water temperature.

この実施形態によれば、生産井12から供給される二相流の圧力や乾き度の変動にかかわらず、蒸発器18に供給される熱水の温度や流量を所望の値で安定させることができる。そのため、設計条件の範囲を比較的狭い範囲に限定した機器や配管、計器などの設計、製作、選定を行うことが可能となる。これにより、プラント建設時の機器設備費を低減することができる。また、発電出力が安定することから、電力系統の品質向上に寄与し、電力系統を安定化させるための設備コスト削減にも寄与する。 According to this embodiment, the temperature and flow rate of the hot water supplied to the evaporator 18 can be stabilized at a desired value regardless of the fluctuation of the pressure and the dryness of the two-phase flow supplied from the production well 12. can. Therefore, it is possible to design, manufacture, and select equipment, piping, instruments, etc. that limit the range of design conditions to a relatively narrow range. As a result, the equipment cost at the time of plant construction can be reduced. In addition, since the power generation output is stable, it contributes to the improvement of the quality of the electric power system and also contributes to the reduction of the equipment cost for stabilizing the electric power system.

また、ガス放出管50を通じて不凝縮ガスを排出することができるので、生産井12から供給される蒸気に含まれる硫化水素や二酸化炭素などの腐食性不凝縮ガスを取り除くことができる。そして、熱水が、循環するライン、すなわち、混合器16から、熱水配管17、熱水ポンプ19、蒸発器18、予熱器23、熱水戻し配管24を通って混合器16に戻る経路の各機器や配管で、硫化水素や二酸化炭素などの腐食性不凝縮ガスへの対応が不要であり、そのため、建設コストを削減することができる。 Further, since the non-condensable gas can be discharged through the gas discharge pipe 50, the corrosive non-condensable gas such as hydrogen sulfide and carbon dioxide contained in the steam supplied from the production well 12 can be removed. Then, the hot water circulates from the mixer 16, that is, through the hot water pipe 17, the hot water pump 19, the evaporator 18, the preheater 23, and the hot water return pipe 24, and returns to the mixer 16. It is not necessary to deal with corrosive non-condensable gases such as hydrogen sulfide and carbon dioxide in each device and piping, and therefore the construction cost can be reduced.

なお、図1に示す例では、蒸発器18と予熱器23とを別個に設けるものとしたが、変形例として、蒸発器18と予熱器23とを一体化した構成とすることもできる。その場合は、たとえば、蒸発器18と予熱器23とを一体化したものを蒸発器と呼ぶこともできる。 In the example shown in FIG. 1, the evaporator 18 and the preheater 23 are provided separately, but as a modification, the evaporator 18 and the preheater 23 may be integrated. In that case, for example, an evaporator in which the evaporator 18 and the preheater 23 are integrated can be called an evaporator.

また、上記説明では、還元水量調節弁制御部47が、水位計45の出力に応じて還元水量調節弁32の開度を自動的に調整するものとしたが、変形例として、作業員が、水位計45の出力の表示を見ながら還元水量調節弁32の開度を手動で調整することもできる。 Further, in the above description, the reduction water amount control valve control unit 47 automatically adjusts the opening degree of the reduction water amount control valve 32 according to the output of the water level gauge 45. It is also possible to manually adjust the opening degree of the reduced water amount control valve 32 while observing the display of the output of the water level gauge 45.

同様に、上記説明では、地熱水供給調節弁制御部48が、圧力計46の出力に応じて地熱水供給調節弁40の開度を自動的に調整するものとしたが、変形例として、作業員が、圧力計46の出力の表示を見ながら地熱水供給調節弁40の開度を手動で調整することもできる。 Similarly, in the above description, the geothermal water supply control valve control unit 48 automatically adjusts the opening degree of the geothermal water supply control valve 40 according to the output of the pressure gauge 46, but as a modification. The worker can also manually adjust the opening degree of the geothermal water supply control valve 40 while observing the display of the output of the pressure gauge 46.

[第2の実施形態]
図2は、本発明の第2の実施形態に係る地熱バイナリ発電システムの構成を示す系統図である。
[Second Embodiment]
FIG. 2 is a system diagram showing a configuration of a geothermal binary power generation system according to a second embodiment of the present invention.

この第2の実施形態は第1の実施形態の変形であって、還元配管30を通って還元井31に戻される還元水の温度が低い場合に還元井にシリカスケールが発生するのを防ぐために、還元配管加熱水配管60が設けられている。還元配管加熱水配管60は、地熱水供給配管15の途中の地熱水供給調節弁40よりも上流側から分岐して還元配管30に接続される。還元配管加熱水配管60には、還元配管加熱水弁61が設けられている。また、還元配管30内の還元水の温度を測定する温度計62が設置されている。さらに、温度計62の出力に応じて還元配管加熱水弁61を制御する還元配管加熱水弁制御部63が設けられている。 This second embodiment is a modification of the first embodiment, in order to prevent silica scale from being generated in the reduction well when the temperature of the reduced water returned to the reduction well 31 through the reduction pipe 30 is low. , The reduction pipe heating water pipe 60 is provided. The reduction pipe heating water pipe 60 branches from the upstream side of the geothermal water supply control valve 40 in the middle of the geothermal water supply pipe 15 and is connected to the reduction pipe 30. The reduction pipe heating water pipe 60 is provided with a reduction pipe heating water valve 61. Further, a thermometer 62 for measuring the temperature of the reduced water in the reducing pipe 30 is installed. Further, a reduction pipe heating water valve control unit 63 for controlling the reduction pipe heating water valve 61 according to the output of the thermometer 62 is provided.

その他の構成は第1の実施形態と同様である。 Other configurations are the same as those of the first embodiment.

温度計62で検出された還元配管30内の還元水の温度が所定の範囲よりも低下したとき、還元配管加熱水弁制御部63が還元配管加熱水弁61を開く。これにより、地熱水供給配管15を流れる蒸気および熱水の一部が加熱水配管60を通じて還元配管30内に流れ込む。これにより、還元配管30内の還元水の温度が上昇する。それにより、還元井31にシリカスケールが発生するのを防ぐことができる。 When the temperature of the reduced water in the reduction pipe 30 detected by the thermometer 62 drops below a predetermined range, the reduction pipe heating water valve control unit 63 opens the reduction pipe heating water valve 61. As a result, a part of the steam and hot water flowing through the geothermal water supply pipe 15 flows into the reduction pipe 30 through the heated water pipe 60. As a result, the temperature of the reduced water in the reducing pipe 30 rises. As a result, it is possible to prevent silica scale from being generated in the reduction well 31.

この第2の実施形態によれば、第1の実施形態と同様の効果を得ることができるだけでなく、シリカスケールを防ぐための薬剤注入や定期的な洗浄などの対策が不要であり、シリカスケールに起因するプラント停止を避けることができる。 According to this second embodiment, not only the same effect as that of the first embodiment can be obtained, but also measures such as chemical injection and periodic cleaning to prevent silica scale are not required, and silica scale is not required. It is possible to avoid plant shutdown due to.

ここで、地熱水供給配管15内を流れる蒸気および熱水の一部を、加熱水配管60を通じて還元配管30内に流すことは、地熱エネルギーの損失になる。そのため、加熱水配管60を流れる蒸気および熱水の流量は、還元井31でのシリカスケールを防ぐための最小限にすることが望ましい。そのためには、温度計62で検出される温度が適当な温度範囲に入るように還元配管加熱水弁61を制御するのが好ましい。 Here, flowing a part of the steam and hot water flowing in the geothermal water supply pipe 15 into the reduction pipe 30 through the heated water pipe 60 results in a loss of geothermal energy. Therefore, it is desirable that the flow rates of steam and hot water flowing through the heated water pipe 60 be minimized in order to prevent silica scale in the reduction well 31. For that purpose, it is preferable to control the reduction pipe heating water valve 61 so that the temperature detected by the thermometer 62 falls within an appropriate temperature range.

なお、還元配管加熱水弁61は、流量調整弁でもよいし、流量調整を行わない開閉弁でもよい。 The reduction pipe heating water valve 61 may be a flow rate adjusting valve or an on-off valve that does not adjust the flow rate.

また、還元配管加熱水弁61を還元配管加熱水弁制御部63によって自動で行う方法に代えて、操作員が温度計62の出力の表示を見て還元配管加熱水弁61を手動で操作してもよい。 Further, instead of the method of automatically performing the reduction pipe heating water valve 61 by the reduction pipe heating water valve control unit 63, the operator manually operates the reduction pipe heating water valve 61 by looking at the output display of the thermometer 62. You may.

[他の実施形態]
上記第1および第2の実施形態の説明では、還元水量調節弁制御部47、地熱水供給調節弁制御部48および還元配管加熱水弁制御部63は別個に設けるものとしたが、ハードウェアとしては、これらの制御部をまとめて、1個の制御装置の各機能として組み込んでもよい。
[Other embodiments]
In the description of the first and second embodiments, the reduction water amount control valve control unit 47, the geothermal water supply control valve control unit 48, and the reduction pipe heating water valve control unit 63 are separately provided, but hardware. These control units may be collectively incorporated as each function of one control device.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, changes, and combinations can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope of the invention described in the claims and the equivalent scope thereof, as are included in the scope and gist of the invention.

11…地熱バイナリ発電システム、 12…生産井(地熱生産井)、 13…タービン、 14…発電機、 15…地熱水供給配管、 16…混合器、 17…熱水配管、 18…蒸発器、 19…熱水ポンプ、 20…媒体戻し配管、 21…凝縮器、 22…媒体ポンプ、 23…予熱器、 24…熱水戻し配管、 30…還元配管、 31…還元井、 32…還元水量調節弁、 40…地熱水供給調節弁、 45…水位計、 46…圧力計、 47…還元水量調節弁制御部、 48…地熱水供給調節弁制御部、 50…ガス放出管、 51…ガス放出弁、 52…バイパス配管、 53…バイパス弁、 60…還元配管加熱水配管、 61…還元配管加熱水弁、 62…温度計、 63…還元配管加熱水弁制御部 11 ... Geothermal binary power generation system, 12 ... Production well (geothermal production well), 13 ... Turbine, 14 ... Generator, 15 ... Geothermal water supply pipe, 16 ... Mixer, 17 ... Hot water pipe, 18 ... Evaporator, 19 ... Hot water pump, 20 ... Medium return pipe, 21 ... Condenser, 22 ... Medium pump, 23 ... Preheater, 24 ... Hot water return pipe, 30 ... Reduction pipe, 31 ... Reduction well, 32 ... Reduced water amount control valve , 40 ... Geothermal water supply control valve, 45 ... Water level gauge, 46 ... Pressure gauge, 47 ... Reduced water amount control valve control unit, 48 ... Geothermal water supply control valve control unit, 50 ... Gas discharge pipe, 51 ... Gas discharge Valve, 52 ... Bypass pipe, 53 ... Bypass valve, 60 ... Reduction pipe heating water pipe, 61 ... Reduction pipe heating water valve, 62 ... Thermometer, 63 ... Reduction pipe heating water valve control unit

Claims (11)

地熱生産井から取り出される蒸気および熱水の二相流を取り出す地熱水供給配管と、
前記地熱水供給配管から供給される蒸気および熱水の二相流を受け入れて二相状態で貯留する混合器と、
前記混合器から熱水を取り出す熱水配管と、
前記熱水配管を通じて前記混合器から取り出される熱水を熱源として水よりも低沸点の媒体を加熱して前記媒体を蒸発させる蒸発器と、
前記蒸発器で放熱した前記熱水の一部を前記混合器に戻す熱水戻し配管と、
前記蒸発器で放熱した前記熱水の一部を前記混合器に戻さずに還元井に還元する還元配管と、
前記蒸発器で加熱されて蒸発した媒体によって駆動されるタービンと、
前記タービンによって駆動される発電機と、
前記タービンで仕事をした後の媒体を前記蒸発器に戻す媒体戻し配管と、
前記混合器内の水位を計測する水位計と、
前記還元配管に設けられた還元水量調節弁と、
前記水位計で計測された前記混合器内の水位が所定の水位範囲に入るように前記還元水量調節弁の開度を調節する還元水量調節弁制御部と、
を有すること、を特徴とする地熱バイナリ発電システム。
Geothermal water supply piping that takes out the two-phase flow of steam and hot water taken out from the geothermal production well,
A mixer that accepts the two-phase flow of steam and hot water supplied from the geothermal water supply pipe and stores them in a two-phase state.
A hot water pipe that takes out hot water from the mixer, and
An evaporator that heats a medium having a boiling point lower than that of water using hot water taken out from the mixer through the hot water pipe as a heat source to evaporate the medium.
A hot water return pipe that returns a part of the hot water radiated by the evaporator to the mixer, and
A reduction pipe that returns a part of the hot water radiated by the evaporator to the reduction well without returning it to the mixer, and
A turbine driven by a medium heated and evaporated by the evaporator,
The generator driven by the turbine and
A medium return pipe that returns the medium after working in the turbine to the evaporator, and
A water level gauge that measures the water level in the mixer, and
The reduced water amount control valve provided in the reduction pipe and
A reduced water amount control valve control unit that adjusts the opening degree of the reduced water amount control valve so that the water level in the mixer measured by the water level gauge falls within a predetermined water level range.
A geothermal binary power generation system, characterized by having.
前記混合器内の圧力を計測する圧力計と、 A pressure gauge that measures the pressure inside the mixer, and
前記地熱水供給配管に設けられた地熱水供給調節弁と、 The geothermal water supply control valve provided in the geothermal water supply pipe and
前記圧力計で計測された前記混合器内の圧力が所定の圧力範囲に入るように前記地熱水供給調節弁の開度を調節する地熱水供給調節弁制御部と、 A geothermal water supply control valve control unit that adjusts the opening degree of the geothermal water supply control valve so that the pressure in the mixer measured by the pressure gauge falls within a predetermined pressure range.
を有すること、を特徴とする請求項1に記載の地熱バイナリ発電システム。 The geothermal binary power generation system according to claim 1, wherein the system comprises.
地熱生産井から取り出される蒸気および熱水の二相流を取り出す地熱水供給配管と、
前記地熱水供給配管から供給される蒸気および熱水の二相流を受け入れて二相状態で貯留する混合器と、
前記混合器から熱水を取り出す熱水配管と、
前記熱水配管を通じて前記混合器から取り出される熱水を熱源として水よりも低沸点の媒体を加熱して前記媒体を蒸発させる蒸発器と、
前記蒸発器で放熱した前記熱水の一部を前記混合器に戻す熱水戻し配管と、
前記蒸発器で放熱した前記熱水の一部を前記混合器に戻さずに還元井に還元する還元配管と、
前記蒸発器で加熱されて蒸発した媒体によって駆動されるタービンと、
前記タービンによって駆動される発電機と、
前記タービンで仕事をした後の媒体を前記蒸発器に戻す媒体戻し配管と、
前記混合器内の圧力を計測する圧力計と、
前記地熱水供給配管に設けられた地熱水供給調節弁と、
前記圧力計で計測された前記混合器内の圧力が所定の圧力範囲に入るように前記地熱水供給調節弁の開度を調節する地熱水供給調節弁制御部と、
を有すること、を特徴とする地熱バイナリ発電システム。
Geothermal water supply piping that takes out the two-phase flow of steam and hot water taken out from the geothermal production well,
A mixer that accepts the two-phase flow of steam and hot water supplied from the geothermal water supply pipe and stores them in a two-phase state.
A hot water pipe that takes out hot water from the mixer, and
An evaporator that heats a medium having a boiling point lower than that of water using hot water taken out from the mixer through the hot water pipe as a heat source to evaporate the medium.
A hot water return pipe that returns a part of the hot water radiated by the evaporator to the mixer, and
A reduction pipe that returns a part of the hot water radiated by the evaporator to the reduction well without returning it to the mixer, and
A turbine driven by a medium heated and evaporated by the evaporator,
The generator driven by the turbine and
A medium return pipe that returns the medium after working in the turbine to the evaporator, and
A pressure gauge that measures the pressure inside the mixer, and
The geothermal water supply control valve provided in the geothermal water supply pipe and
A geothermal water supply control valve control unit that adjusts the opening degree of the geothermal water supply control valve so that the pressure in the mixer measured by the pressure gauge falls within a predetermined pressure range.
A geothermal binary power generation system, characterized by having.
前記地熱水供給調節弁よりも上流側で前記地熱水供給配管から分岐して前記還元配管に接続された還元配管加熱水配管と、
前記還元配管加熱水配管に設けられた還元配管加熱水弁と、
前記還元配管内の温度を計測する温度計と、
前記温度計で計測された前記還元配管内の温度が所定の温度よりも低下した時に前記還元配管加熱水弁を開くように制御する還元配管加熱水弁制御部と、
をさらに有すること、を特徴とする請求項2または3に記載の地熱バイナリ発電システム。
A reduction pipe heated water pipe that branches off from the geothermal water supply pipe on the upstream side of the geothermal water supply control valve and is connected to the reduction pipe.
The reduction pipe heating water valve provided in the reduction pipe heating water pipe,
A thermometer that measures the temperature inside the reduction pipe,
A reduction pipe heating water valve control unit that controls the opening of the reduction pipe heating water valve when the temperature inside the reduction pipe measured by the thermometer drops below a predetermined temperature.
The geothermal binary power generation system according to claim 2 or 3 , further comprising.
前記還元配管加熱水弁制御部は、前記温度計で計測された前記還元配管内の温度が所定の温度範囲に入るように前記還元配管加熱水弁を制御するものであること、を特徴とする請求項4に記載の地熱バイナリ発電システム。 The reduction pipe heating water valve control unit is characterized in that it controls the reduction pipe heating water valve so that the temperature in the reduction pipe measured by the thermometer falls within a predetermined temperature range. The geothermal binary power generation system according to claim 4. 前記蒸発器で放熱した後の前記熱水の余熱を利用して前記蒸発器に送られる前の前記媒体を予熱する予熱器をさらに有すること、を特徴とする請求項1ないし請求項5のいずれか一項に記載の地熱バイナリ発電システム。 Any of claims 1 to 5, further comprising a preheater for preheating the medium before being sent to the evaporator by utilizing the residual heat of the hot water after being dissipated by the evaporator. The geothermal binary power generation system described in the first paragraph. 前記熱水配管に設けられた熱水ポンプをさらに有すること、を特徴とする請求項1ないし請求項6のいずれか一項に記載の地熱バイナリ発電システム。 The geothermal binary power generation system according to any one of claims 1 to 6, further comprising a hot water pump provided in the hot water pipe. 前記タービンで仕事をした後の前記媒体を凝縮させる凝縮器と、
前記媒体戻し配管に設けられて、前記凝縮器で凝縮した前記媒体を昇圧して前記蒸発器に送る媒体ポンプと、
をさらに有すること、を特徴とする請求項1ないし請求項7のいずれか一項に記載の地熱バイナリ発電システム。
A condenser that condenses the medium after working in the turbine,
A medium pump provided in the medium return pipe, which boosts the medium condensed by the condenser and sends it to the evaporator.
The geothermal binary power generation system according to any one of claims 1 to 7, further comprising.
地熱生産井から取り出される蒸気および熱水の二相流を取り出す地熱水供給配管と、
前記地熱水供給配管から供給される蒸気および熱水の二相流を受け入れて二相状態で貯留する混合器と、
前記混合器から熱水を取り出す熱水配管と、
前記熱水配管を通じて前記混合器から取り出される熱水を熱源として水よりも低沸点の媒体を加熱して前記媒体を蒸発させる蒸発器と、
前記蒸発器で放熱した前記熱水の一部を前記混合器に戻す熱水戻し配管と、
前記蒸発器で放熱した前記熱水の一部を前記混合器に戻さずに還元井に還元する還元配管と、
前記蒸発器で加熱されて蒸発した媒体によって駆動されるタービンと、
前記タービンによって駆動される発電機と、
前記タービンで仕事をした後の媒体を前記蒸発器に戻す媒体戻し配管と、
前記還元配管に設けられた還元水量調節弁と、
を有する地熱バイナリ発電システムの運転方法であって、
前記混合器内の水位を計測する水位計測ステップと、
前記水位計測ステップで計測される前記混合器内の水位が所定の水位範囲に入るように前記還元水量調節弁の開度を調節する還元水量調節弁開度調節ステップと、
を有すること、を特徴とする地熱バイナリ発電システム運転方法。
Geothermal water supply piping that takes out the two-phase flow of steam and hot water taken out from the geothermal production well,
A mixer that accepts the two-phase flow of steam and hot water supplied from the geothermal water supply pipe and stores them in a two-phase state.
A hot water pipe that takes out hot water from the mixer, and
An evaporator that heats a medium having a boiling point lower than that of water using hot water taken out from the mixer through the hot water pipe as a heat source to evaporate the medium.
A hot water return pipe that returns a part of the hot water radiated by the evaporator to the mixer, and
A reduction pipe that returns a part of the hot water radiated by the evaporator to the reduction well without returning it to the mixer, and
A turbine driven by a medium heated and evaporated by the evaporator,
The generator driven by the turbine and
A medium return pipe that returns the medium after working in the turbine to the evaporator, and
The reduced water amount control valve provided in the reduction pipe and
Is a method of operating a geothermal binary power generation system that has
A water level measurement step for measuring the water level in the mixer, and
A reduction water amount control valve opening adjustment step that adjusts the opening degree of the reduction water amount control valve so that the water level in the mixer measured in the water level measurement step falls within a predetermined water level range.
A method of operating a geothermal binary power generation system, characterized by having.
地熱生産井から取り出される蒸気および熱水の二相流を取り出す地熱水供給配管と、
前記地熱水供給配管から供給される蒸気および熱水の二相流を受け入れて二相状態で貯留する混合器と、
前記混合器から熱水を取り出す熱水配管と、
前記熱水配管を通じて前記混合器から取り出される熱水を熱源として水よりも低沸点の媒体を加熱して前記媒体を蒸発させる蒸発器と、
前記蒸発器で放熱した前記熱水の一部を前記混合器に戻す熱水戻し配管と、
前記蒸発器で放熱した前記熱水の一部を前記混合器に戻さずに還元井に還元する還元配管と、
前記蒸発器で加熱されて蒸発した媒体によって駆動されるタービンと、
前記タービンによって駆動される発電機と、
前記タービンで仕事をした後の媒体を前記蒸発器に戻す媒体戻し配管と、
前記還元配管に設けられた還元水量調節弁と、
前記地熱水供給配管に設けられた地熱水供給調節弁と
を有する地熱バイナリ発電システムの運転方法であって、
前記混合器内の圧力を計測する圧力計測ステップと、
前記圧力計測ステップで計測された前記混合器内の圧力が所定の圧力範囲に入るように前記地熱水供給調節弁の開度を調節する地熱水供給調節弁開度調節ステップと、
を有する熱バイナリ発電システム運転方法。
Geothermal water supply piping that takes out the two-phase flow of steam and hot water taken out from the geothermal production well,
A mixer that accepts the two-phase flow of steam and hot water supplied from the geothermal water supply pipe and stores them in a two-phase state.
A hot water pipe that takes out hot water from the mixer, and
An evaporator that heats a medium having a boiling point lower than that of water using hot water taken out from the mixer through the hot water pipe as a heat source to evaporate the medium.
A hot water return pipe that returns a part of the hot water radiated by the evaporator to the mixer, and
A reduction pipe that returns a part of the hot water radiated by the evaporator to the reduction well without returning it to the mixer, and
A turbine driven by a medium heated and evaporated by the evaporator,
The generator driven by the turbine and
A medium return pipe that returns the medium after working in the turbine to the evaporator, and
The reduced water amount control valve provided in the reduction pipe and
With the geothermal water supply control valve provided in the geothermal water supply pipe
Is a method of operating a geothermal binary power generation system that has
A pressure measurement step for measuring the pressure in the mixer, and
A geothermal water supply control valve opening adjustment step that adjusts the opening degree of the geothermal water supply control valve so that the pressure in the mixer measured in the pressure measurement step falls within a predetermined pressure range.
Geothermal binary power generation system operating method.
請求項10に記載の地熱バイナリ発電システム運転方法であって、
前記地熱バイナリ発電システムは、
前記地熱水供給調節弁よりも上流側で前記地熱水供給配管から分岐して前記還元配管に接続された還元配管加熱水配管と、
前記還元配管加熱水配管に設けられた還元配管加熱水弁と、
をさらに有し、
当該地熱バイナリ発電システム運転方法は、
前記還元配管内の温度を計測する温度する還元配管内温度計測ステップと、
前記還元配管内温度計測ステップで計測された前記還元配管内の温度が所定の温度よりも低下した時に前記還元配管加熱水弁を開く還元配管加熱水弁開ステップと、
をさらに有すること、を特徴とする地熱バイナリ発電システム運転方法。
The method for operating a geothermal binary power generation system according to claim 10.
The geothermal binary power generation system is
A reduction pipe heated water pipe that branches off from the geothermal water supply pipe on the upstream side of the geothermal water supply control valve and is connected to the reduction pipe.
The reduction pipe heating water valve provided in the reduction pipe heating water pipe,
Have more
The operation method of the geothermal binary power generation system is
The temperature measurement step in the reduction pipe, which measures the temperature inside the reduction pipe,
A reduction pipe heating water valve opening step that opens the reduction pipe heating water valve when the temperature inside the reduction pipe measured in the reduction pipe temperature measurement step drops below a predetermined temperature.
A method of operating a geothermal binary power generation system, characterized by having more.
JP2018126139A 2018-07-02 2018-07-02 Geothermal binary power generation system and its operation method Active JP7021015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018126139A JP7021015B2 (en) 2018-07-02 2018-07-02 Geothermal binary power generation system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126139A JP7021015B2 (en) 2018-07-02 2018-07-02 Geothermal binary power generation system and its operation method

Publications (2)

Publication Number Publication Date
JP2020002941A JP2020002941A (en) 2020-01-09
JP7021015B2 true JP7021015B2 (en) 2022-02-16

Family

ID=69099429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126139A Active JP7021015B2 (en) 2018-07-02 2018-07-02 Geothermal binary power generation system and its operation method

Country Status (1)

Country Link
JP (1) JP7021015B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047422A (en) 2012-09-04 2014-03-17 Toshiba Corp Treatment device and treatment method
JP2014092040A (en) 2012-11-01 2014-05-19 Toshiba Corp Power generation system
JP2017145811A (en) 2016-02-19 2017-08-24 株式会社神戸製鋼所 Geothermal recovery device and method for operating the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133358A (en) * 1974-04-13 1975-10-22
JPH0742844B2 (en) * 1985-10-23 1995-05-15 株式会社東芝 Hot water turbine plant
JPH0830614B2 (en) * 1992-11-09 1996-03-27 工業技術院長 Method for adjusting temperature of working fluid supplied to geothermal system
KR101642096B1 (en) * 2014-12-05 2016-07-22 주식회사 이노지오테크놀로지 Hybrid geothermal heat co-generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047422A (en) 2012-09-04 2014-03-17 Toshiba Corp Treatment device and treatment method
JP2014092040A (en) 2012-11-01 2014-05-19 Toshiba Corp Power generation system
JP2017145811A (en) 2016-02-19 2017-08-24 株式会社神戸製鋼所 Geothermal recovery device and method for operating the same

Also Published As

Publication number Publication date
JP2020002941A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
CN103154444B (en) For the method and apparatus controlling thermal cycling process
JP6909216B2 (en) Control systems and methods for pressure drop stations
KR100735072B1 (en) Electric power-generating and desalination combined plant and operation method of the same
RU2538994C2 (en) Method of once-through steam generator operation at steam temperature over 650-c, and once-through steam generator
AU2012214955B2 (en) Method and apparatus of producing and utilizing thermal energy in a combined heat and power plant
JP7408601B2 (en) Method for adapting the output of steam turbine power generation equipment and steam turbine power generation equipment
JP6488171B2 (en) Exhaust heat recovery system and method of operating the exhaust heat recovery system
JP6029533B2 (en) Binary power generator operating method and binary power generator
KR102023093B1 (en) Working fluid Power generation plant and Controlling method thereof
JP7021015B2 (en) Geothermal binary power generation system and its operation method
US6851265B2 (en) Steam cooling control for a combined cycle power plant
US10196939B2 (en) Method for low load operation of a power plant with a once-through boiler
KR100767887B1 (en) Fuel gas moisturization system level control
JP5723220B2 (en) Power plant
US20160208656A1 (en) Operating method for an externally heated forced-flow steam generator
JP5792087B2 (en) Steam supply system and control method thereof
JP2020046127A (en) Heat exchanger and using method of the same
JP2012137450A (en) Cogeneration nuclear power generation system
JP6581396B2 (en) Binary power generation system and binary power generation method
JP2008096064A (en) Heat pump system for hot water supply
KR102006308B1 (en) Control Method of Organic Rankine Cycle Power System
KR102608690B1 (en) Steam heater control system and control method
KR101111704B1 (en) LNG regasification apparatus
KR101559728B1 (en) Cogeneration Plant Cooling System
KR102010145B1 (en) Supercritical CO2 Power generation plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220203

R150 Certificate of patent or registration of utility model

Ref document number: 7021015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150