JP7020750B2 - How to generate a target trajectory - Google Patents
How to generate a target trajectory Download PDFInfo
- Publication number
- JP7020750B2 JP7020750B2 JP2018161142A JP2018161142A JP7020750B2 JP 7020750 B2 JP7020750 B2 JP 7020750B2 JP 2018161142 A JP2018161142 A JP 2018161142A JP 2018161142 A JP2018161142 A JP 2018161142A JP 7020750 B2 JP7020750 B2 JP 7020750B2
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- target
- speed
- following vehicle
- locus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Traffic Control Systems (AREA)
Description
本発明は隊列走行において、後続車両が先行車両を追随走行(トラッキング)する際の目標軌跡の生成方法に関する。 The present invention relates to a method of generating a target trajectory when a following vehicle follows (tracks) a preceding vehicle in platooning.
トラックなどの複数の車両が隊列を組んで走行する隊列走行は自動運転走行が具現化される1つの形態と言われている。斯かる隊列走行における追随走行(トラッキング)は、先行する車両に対し後続車両の横偏差量を検出し、それを制御量として、横偏差量が十分に小さくなるように、自車両の操舵角を制御するものである。 The platooning in which a plurality of vehicles such as trucks run in a platoon is said to be one form in which autonomous driving is embodied. In the follow-up running (tracking) in such platooning, the lateral deviation amount of the following vehicle is detected with respect to the preceding vehicle, and the steering angle of the own vehicle is adjusted so that the lateral deviation amount is sufficiently reduced by using it as a control amount. It controls.
このような制御技術として、特許文献1では、自車両(後続車両)の前部に設置される検知装置を用い、自車両に先行する車両の後部に設置されるマーカーと先行する車両の後部車体両側端を検知するとともに、そのマーカーと車体両側端までの距離及び照射角度を検知し、この検知情報により前車両に対する自車両の横偏差を算出し、その結果に基づいて、自車両の目標位置を設定して前輪実舵角を制御することが開示されている。
As such a control technique,
特許文献2には、車車間通信により取得した先行する車両の舵角情報に基づいて自車両を先行車に追従させ、更に直進走行時の先行車両と自車両の舵角の差分を自車両の舵角中心とすることにより誤差が小さくなるように制御することが記載されている。
In
特許文献3には、自動運転にGPSからの自車位置情報を利用する提案がなされている。具体的には、MEMS慣性センサからの3軸角速度信号及び3軸加速度信号を慣性航法計算部で受け、この慣性航法計算部からの各出力とGPSセンサとタイヤ速度センサとステアリング角センサからの各出力とを減算して誤差を推定して補正することが記載されている。 Patent Document 3 proposes to use the vehicle position information from GPS for automatic driving. Specifically, the inertial navigation calculation unit receives the 3-axis angular speed signal and the 3-axis acceleration signal from the MEMS inertial sensor, and each output from the inertial navigation calculation unit, GPS sensor, tire speed sensor, and steering angle sensor. It is described that the error is estimated and corrected by subtracting the output.
また、特許文献4には、車両を自動運転する際の走行軌道の一部にクロソイド曲線を設定することが記載されている。このクロソイド曲線は一定の車速で一定の角速度で走行する車両が描く曲線であるため、高速道路の曲線部にも採用されている。 Further, Patent Document 4 describes that a clothoid curve is set in a part of a traveling track when the vehicle is automatically driven. Since this clothoid curve is a curve drawn by a vehicle traveling at a constant vehicle speed and a constant angular velocity, it is also used in the curved portion of a highway.
更に、自動運転における障害物回避や進路変更等に関する文献として、非特許文献1~3が挙げられる。
Further, non-patent
特許文献1に開示される内容は、検知装置を用いて先行する車両の後部に設置されるマーカーと後部車体両側端を検知するものであり、GPSとの関係が何ら記載されていない。特に先行車両が何らかの原因、例えば運転知識や運転技能の不足、交通環境の変動などで、不規則或いは不安定な走行を行った場合の後続車両の対処方法が不明である。
The content disclosed in
特許文献2に開示されるように、先行する車両の舵角情報を取得しても隊列走行を構成する各車両の操舵装置の仕様が異なったり、車両質量や軸距などの車両運動にかかわる諸元も異なると、先行車両の操舵情報をもとに算出した値は、自車両の横偏差とは等しくならないので、先行する車両に対する自車両の車両方向の横偏差が十分に小さくならないおそれがある。
As disclosed in
特許文献3には、GPSによる自車位置の精度を高める手法が記載されているが、算出した自車位置をどのように隊列走行の自動運転に活用するかについての記載はない。 Patent Document 3 describes a method for improving the accuracy of the own vehicle position by GPS, but does not describe how to utilize the calculated own vehicle position for automatic driving of platooning.
特許文献4は円弧形状からなる部分軌道にクロソイド曲線をつなげて曲線軌道をスムーズに連続させることを開示するのみで、GPS情報や隊列走行との関連性の示唆は何ら記載されていない。 Patent Document 4 only discloses that a clothoid curve is connected to a partial orbit having an arc shape to make the curved orbit smoothly continuous, and does not describe GPS information or suggestion of relevance to platooning.
また、非特許文献1~3のいずれも隊列走行特有の問題、即ち、先行車両の位置、方向を如何に後続車両に伝えるか、また先行車両の走行姿勢が後続車両へ悪影響がある場合に、どのようにしてそれを解消するかについて何ら解決するものではない。
In addition, all of
上記の課題を解決するため、本発明に係る目標軌跡の生成方法は、複数の車両が自動運転で曲線部分を隊列走行する際に、先行車両のGPS走行軌跡を後続車両に車車間通信で送信し、後続車両は受信した前記先行車両のGPS走行軌跡に基づいてリアルタイムで先行車軌跡の補間曲線を生成して、その補間曲線上に当該後続車両の到達目標点を定めて、その到達目標点と自車位置の間を緩和曲線でスムーズにつなぐようにした。 In order to solve the above-mentioned problems, the method for generating a target locus according to the present invention transmits the GPS travel locus of the preceding vehicle to the following vehicle by vehicle-to-vehicle communication when a plurality of vehicles are traveling in a platoon on a curved portion by automatic driving. Then, the following vehicle generates an interpolation curve of the preceding vehicle trajectory in real time based on the received GPS travel trajectory of the preceding vehicle, sets the arrival target point of the following vehicle on the interpolation curve, and determines the arrival target point. I tried to connect smoothly between the position of the vehicle and the position of the own vehicle with a relaxation curve.
ここで、先行車両とは隊列を構成する先頭の車両を意味し、例えば4台の車両で隊列を組む場合、2番~4番目の車両は全て後続車両であり、各後続車両毎に先行車両のGPS走行軌跡に基づいて目標軌跡が生成される。 Here, the preceding vehicle means the leading vehicle forming a platoon. For example, when forming a platoon with four vehicles, the second to fourth vehicles are all following vehicles, and each following vehicle is a preceding vehicle. A target locus is generated based on the GPS travel locus of.
特許文献1などでは直前の車両の後部に設置されるマーカーなどを検出するようにしているが、本発明にあっては3番目以降の車両も先行車両のGPS走行軌跡を基準として、他の後続車両の目標軌跡とは異なる独自の目標軌跡が生成される。
In
また、車速に対する操舵速度が速すぎると、ハンドル振動が生じるため、後続車両の目標軌跡を生成する際には、ハンドル振動が生じない条件で生成するのが好ましい。 Further, if the steering speed is too fast with respect to the vehicle speed, steering wheel vibration occurs. Therefore, when generating the target locus of the following vehicle, it is preferable to generate it under the condition that the steering wheel vibration does not occur.
本発明に係る目標軌跡の生成方法によれば、トラック等が隊列走行する場合に、先行車両が自由に走行経路を選択しても、後続車両はスムーズに先行車両に追随して走行することができる。 According to the method for generating a target trajectory according to the present invention, when a truck or the like travels in a platoon, the following vehicle can smoothly follow the preceding vehicle even if the preceding vehicle freely selects a traveling route. can.
また後続車両の目標軌跡の基準となるのが、先行技術で開示された先行車両の舵角情報ではなく、先行車両の走行軌跡自体であるので、後続する各車両は、先行車両に遅れることなくリアルタイムで目標軌跡を得ることができる。 Further, since the reference of the target trajectory of the following vehicle is not the steering angle information of the preceding vehicle disclosed in the prior art but the traveling trajectory of the preceding vehicle itself, each following vehicle does not lag behind the preceding vehicle. The target trajectory can be obtained in real time.
特にクロソイド曲線などの緩和曲線で補間することにより精度よく安定した追随走行できる目標軌跡を得ることができる。 In particular, by interpolating with a relaxation curve such as a clothoid curve, it is possible to obtain a target locus that can be accurately and stably followed.
図1に示すように、先行車両では取得したGPS情報(経度、緯度、方位)を平面直交座標に変換し、車車間通信(760MHz V2V 送信間隔0.1秒)にて後続の各車両に送信する。 As shown in FIG. 1, the preceding vehicle converts the acquired GPS information (longitude, latitude, direction) into plane orthogonal coordinates and transmits it to each following vehicle by vehicle-to-vehicle communication (760MHz V2V transmission interval 0.1 seconds).
これを受信した後続の各車両は自車両で取得したGPS情報(経度、緯度、方位)を平面直交座標に変換し、先行車両の座標と自車両の座標との間をクロソイド曲線でN点(x1,x2,...xn、y1,y2,...yn ,φ1,φ2,…φn、・・・ )補間し、N点の軌跡座標(x、y)と方位角(φ1)、曲率(ρ1)を求めて先行車目標軌跡(h:参照)とする。 Each subsequent vehicle that receives this converts the GPS information (longitude, latitude, azimuth) acquired by its own vehicle into plane orthogonal coordinates, and N points (N points) on a crossoid curve between the coordinates of the preceding vehicle and the coordinates of its own vehicle. x 1 , x 2 , ... x n, y 1 , y 2 , ... y n, φ 1 , φ 2 , ... φ n , ...) Interpolate and trace coordinates of point N (x, y) ), The azimuth angle (φ1), and the curvature (ρ1) are obtained and used as the target locus of the preceding vehicle (h: see).
後続の各車両は、先行車目標軌跡に対する追跡偏差(横偏差e2、角偏差e3)を検出し、後続車位置から先行車目標軌跡に至る追跡軌跡(後続車両のクロソイド補間経路)を算出し操舵角を導出する。 Each following vehicle detects the tracking deviation (lateral deviation e2, angle deviation e3) with respect to the target trajectory of the preceding vehicle, calculates the tracking trajectory (crossoid interpolation path of the following vehicle) from the position of the following vehicle to the target trajectory of the preceding vehicle, and steers. Derive the angle.
図2(a)に示すように、クロソイド曲線は車両が一定速度で走行している時にハンドルを一定の割合(角速度)で回したときに車が描く軌跡であり、線分(セグメント)P0-P1と軌跡の曲率半径との積が一定値になる。b)に線分(h)の曲率変化を示す、経路角がφo、φv、φuと連続変化して線分(h)の曲率が連続変化する。φ0が初期方向、φvは初期曲率を持つ円弧、φuは、これにクロソイド分が加わることによる接線角の増分である。 As shown in FIG. 2A, the clothoid curve is a locus drawn by the vehicle when the steering wheel is turned at a constant ratio (angle speed) when the vehicle is traveling at a constant speed, and is a line segment (segment) P 0 . -The product of P 1 and the radius of curvature of the locus becomes a constant value. The path angle continuously changes to φo, φv, and φu, which indicates the change in the curvature of the line segment (h) in b), and the curvature of the line segment (h) continuously changes. φ 0 is the initial direction, φ v is the arc having the initial curvature, and φ u is the increment of the tangential angle due to the addition of the clothoid component.
図2(c)は後続車両の1つから先行車両へのクロソイド補間を示したものであり、後続車両は経路角φoでPo(図3のP0と同じ)にいて、先行車両軌跡のP1(図3のP1と同じ)点に至ろうとするので、先行車両軌跡に対する後続車両の経路角偏差は「φ1-φ0」になり、位置偏差はLになる。 FIG. 2C shows clothoid interpolation from one of the following vehicles to the preceding vehicle. The following vehicle is at Po (same as P 0 in FIG. 3) at a path angle φo, and P1 of the preceding vehicle trajectory. Since it is about to reach the point (same as P1 in FIG. 3), the path angle deviation of the following vehicle with respect to the preceding vehicle trajectory is "φ1-φ0", and the position deviation is L.
上記の関係を図3に示している。図3(a)は(b)の一部拡大図、(b)は地球平面座標上で先行車両に追随する後続車の位置関係を示した図である。
横偏差e2と角偏差e3から先行車両の軌跡に流入する後続車両の曲率ρ2が決まる。即ち先行車両の軌跡点P1と後続車両の現在位置P0との位置偏差は式(1)で表され、角偏差e3はφ1i-φ2iである。この角偏差の積分式(2)から、後続車両の経路曲率(ρ2)が求められ、この式(2)がクロソイド補間式で、式(3)は三角関数式である。
The above relationship is shown in FIG. FIG. 3A is a partially enlarged view of FIG. 3B, and FIG. 3B is a diagram showing the positional relationship of the following vehicle following the preceding vehicle on the earth plane coordinates.
The curvature ρ2 of the following vehicle flowing into the trajectory of the preceding vehicle is determined from the lateral deviation e2 and the angular deviation e3. That is, the position deviation between the locus point P1 of the preceding vehicle and the current position P0 of the following vehicle is expressed by the equation ( 1 ), and the angle deviation e3 is φ 1i − φ 2i . From the integral equation (2) of this angular deviation, the path curvature (ρ2) of the following vehicle is obtained. This equation (2) is a clothoid interpolation equation, and the equation (3) is a trigonometric function equation.
先行車両の軌跡からの後続車両の目標軌跡の生成、後続車両の現在位置からの目標軌跡に流入する曲線共に、曲率が大きくなければ、経路長さを変数とするクロソイド曲線に限らず、時間を変数とする三角関数式や多項式曲線近似(最小二乗法、指数関数など)でもよい。 If the curvature is not large for both the generation of the target locus of the following vehicle from the locus of the preceding vehicle and the curve flowing into the target locus from the current position of the following vehicle, the time is not limited to the crossoid curve whose path length is a variable. It may be a triangular function expression as a variable or a polynomial curve approximation (minimum square method, exponential function, etc.).
図4は、曲率半径から実舵角を決める方法の説明図であり、前記で求めた後続車両の経路曲率(ρ2)から前輪実舵角を求め、その実舵角からハンドル角(操舵角)を求める。 FIG. 4 is an explanatory diagram of a method of determining the actual steering angle from the radius of curvature, the front wheel actual steering angle is obtained from the path curvature (ρ2) of the following vehicle obtained above, and the steering wheel angle (steering angle) is obtained from the actual steering angle. Ask.
具体的には、図4の左部分にハンドルを固定し車速一定で旋回する定常円旋回状態を示している。車両は円の中心回りに回転する公転と、自車両の重心回りに回転する自転を伴って旋回する。遠心力に釣り合う求心力を発生する必要から、前軸タイヤ、後軸タイヤが横滑りしてタイヤ横力(コーナリングフォース)を発生させる。 Specifically, a steady circular turning state in which the steering wheel is fixed to the left portion of FIG. 4 and the vehicle turns at a constant vehicle speed is shown. The vehicle turns with a revolution that rotates around the center of the circle and a rotation that rotates around the center of gravity of the own vehicle. Since it is necessary to generate a centripetal force that is commensurate with the centrifugal force, the front axle tire and the rear axle tire slip sideways to generate a tire lateral force (cornering force).
後軸タイヤを横滑りさせるために、車体横滑り角(β)が必要になる。そのため、旋回円に接する絶対速度(V)、前後速度(Vx)、横速度(Vy)の関係が生じる。GPSで計測される速度は絶対速度(V)であり、車両の車輪回転から計測される速度は前後速度(Vx)である。 The vehicle body skid angle (β) is required to skid the rear axle tires. Therefore, there is a relationship between the absolute speed (V), the front-back speed (Vx), and the lateral speed (Vy) in contact with the turning circle. The speed measured by GPS is the absolute speed (V), and the speed measured from the wheel rotation of the vehicle is the front-back speed (Vx).
車速が上昇すると、車両横加速度とタイヤ横力との関係から、横滑り角と回転半径が変化する。横滑り角の変化は式(4)になり、回転半径の変化は式(5)になり、曲率と実舵角の関係は式(6)になる。式(6)に操舵系のオーバーオールギヤレシオを乗ずるとハンドル角(操舵角)になる。
図5は、ハンドル振動を抑止する「車速と操舵速度の関係」を説明した図であり、(a)は操舵系の立体図、(b)は車両旋回の平面図である。
クロソイド曲線を辿るように速度制御、操舵制御すれば車両は円滑に走行する筈であるが、実舵輪の回転について、車速による回転速度と操舵による回転速度の関係に注意を要する。
5A and 5B are views for explaining the “relationship between vehicle speed and steering speed” that suppresses steering wheel vibration, FIG. 5A is a three-dimensional view of the steering system, and FIG. 5B is a plan view of vehicle turning.
The vehicle should run smoothly if the speed is controlled and the steering is controlled so as to follow the clothoid curve, but it is necessary to pay attention to the relationship between the rotation speed due to the vehicle speed and the rotation speed due to the steering regarding the rotation of the actual steering wheel.
立体図(a)において、ハンドル回転速度は、パワーステアリングのギヤ比がかかり、ピットマンアーム、ドラッグリンク、ステアリングアームを経由して、
右側のキングピン軸を中心とする右舵角(δr)になり、タイロッド、タイロッドアームを経由して、同様に、左側キングピン軸を中心とする左舵角(δl)になる。
In the three-dimensional view (a), the steering wheel rotation speed is applied to the gear ratio of the power steering, and is passed through the pitman arm, the drag link, and the steering arm.
The right steering angle (δr) is centered on the right kingpin axis, and the left steering angle (δl) is similarly centered on the left kingpin axis via the tie rod and tie rod arm.
平面図(b)の左前輪の回転速度を例に説明すると、車速による車輪速度(Vc)に操舵による車輪速度(Vs)が生じる。(基礎自動車工学(後期編)近藤政市、養賢堂、1967.4,p.116-117を参照)
車輪速度(Vc)と車輪速度(Vs)は逆方向なので、低車速状況下で高操舵速度を加えると、Vc-Vsが負になる条件が生じる。この条件下では、タイヤ接地面の摩擦がころがり摩擦ではなくすべり摩擦に変化して操舵振動が生じる。この関係の限界に入らないように車速と操舵速度の関係を式(7)により制御する。
Since the wheel speed (Vc) and the wheel speed (Vs) are in opposite directions, when a high steering speed is applied under a low vehicle speed condition, a condition that Vc-Vs becomes negative arises. Under this condition, the friction of the tire contact patch changes to sliding friction instead of rolling friction, and steering vibration occurs. The relationship between the vehicle speed and the steering speed is controlled by the equation (7) so as not to fall within the limit of this relationship.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018161142A JP7020750B2 (en) | 2018-08-30 | 2018-08-30 | How to generate a target trajectory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018161142A JP7020750B2 (en) | 2018-08-30 | 2018-08-30 | How to generate a target trajectory |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020035174A JP2020035174A (en) | 2020-03-05 |
JP7020750B2 true JP7020750B2 (en) | 2022-02-16 |
Family
ID=69668292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018161142A Active JP7020750B2 (en) | 2018-08-30 | 2018-08-30 | How to generate a target trajectory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7020750B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7347340B2 (en) * | 2020-06-08 | 2023-09-20 | いすゞ自動車株式会社 | Travel control equipment and vehicles |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000074935A (en) | 1998-08-28 | 2000-03-14 | Hino Motors Ltd | Estimation operation device for center-of-gravity moving speed of vehicle |
JP2002370665A (en) | 2001-06-14 | 2002-12-24 | Nissan Motor Co Ltd | Vehicular steering control device |
US20170089707A1 (en) | 2014-06-03 | 2017-03-30 | Here Global B.V. | Trail interpolation |
CN107830865A (en) | 2017-10-16 | 2018-03-23 | 东软集团股份有限公司 | A kind of vehicle target sorting technique, device, system and computer program product |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11144188A (en) * | 1997-11-05 | 1999-05-28 | Hitachi Ltd | On-vehicle beacon receiver |
-
2018
- 2018-08-30 JP JP2018161142A patent/JP7020750B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000074935A (en) | 1998-08-28 | 2000-03-14 | Hino Motors Ltd | Estimation operation device for center-of-gravity moving speed of vehicle |
JP2002370665A (en) | 2001-06-14 | 2002-12-24 | Nissan Motor Co Ltd | Vehicular steering control device |
US20170089707A1 (en) | 2014-06-03 | 2017-03-30 | Here Global B.V. | Trail interpolation |
CN107830865A (en) | 2017-10-16 | 2018-03-23 | 东软集团股份有限公司 | A kind of vehicle target sorting technique, device, system and computer program product |
Also Published As
Publication number | Publication date |
---|---|
JP2020035174A (en) | 2020-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9789905B2 (en) | Vehicle traveling control apparatus | |
CN101405174B (en) | Avoidance operation calculation device, avoidance control device, vehicle with each of the devices, avoidance operation calculation method, and avoidance control method | |
US9618938B2 (en) | Field-based torque steering control | |
WO2019082734A1 (en) | Vehicle control device | |
CN111247045A (en) | Vehicle control device | |
CN107128314A (en) | Enhanced vehicle lateral control for towing vehicle(Track follows/track holding/lane changing control) | |
CA3074414A1 (en) | Method for correcting position error and device for correcting position error in drive-assisted vehicle | |
EP1357013A1 (en) | System and method for using vehicle operator intent to adjust vehicle control system response | |
JP2019026099A (en) | Traveling control system of vehicle | |
WO2016110729A1 (en) | Target vehicle speed generation device and drive control device | |
US20140236412A1 (en) | Apparatus and method for automatically parking vehicle | |
CN113104037B (en) | Method and system for determining steering angle of vehicle steering wheel | |
WO2018173403A1 (en) | Vehicle control apparatus and vehicle control method | |
JP6642331B2 (en) | Driving support control device | |
JP2021169291A (en) | Drive assist device for vehicle | |
JP2022118550A (en) | Vehicle drive assist device | |
JP2019128929A (en) | Convoy travel tracking control method and device | |
JP7020750B2 (en) | How to generate a target trajectory | |
JP2018030412A (en) | Driving support control device | |
Hayakawa et al. | Driver-compatible steering system for wide speed-range path following | |
JP2001306146A (en) | Method for operating machine on prescribed running route and device executint the method | |
JP2006107027A (en) | Automatic guided vehicle | |
JP7268990B2 (en) | Vehicle automatic steering controller | |
CN108334074B (en) | Control system | |
JPS61278912A (en) | Method for guiding unmanned moving machine by spot following system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220131 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7020750 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |