JP2019128929A - Convoy travel tracking control method and device - Google Patents

Convoy travel tracking control method and device Download PDF

Info

Publication number
JP2019128929A
JP2019128929A JP2018021411A JP2018021411A JP2019128929A JP 2019128929 A JP2019128929 A JP 2019128929A JP 2018021411 A JP2018021411 A JP 2018021411A JP 2018021411 A JP2018021411 A JP 2018021411A JP 2019128929 A JP2019128929 A JP 2019128929A
Authority
JP
Japan
Prior art keywords
vehicle
following
control
distance
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018021411A
Other languages
Japanese (ja)
Other versions
JP7296064B2 (en
JP2019128929A5 (en
Inventor
陽一郎 本田
Yoichiro Honda
陽一郎 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018021411A priority Critical patent/JP7296064B2/en
Publication of JP2019128929A publication Critical patent/JP2019128929A/en
Publication of JP2019128929A5 publication Critical patent/JP2019128929A5/ja
Application granted granted Critical
Publication of JP7296064B2 publication Critical patent/JP7296064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a convoy travel tracking control method and device which suppress a value of lateral deviation occurring upon turning as a result of use of a path following control law in convoy travel tracking control which requires maintaining of an inter-vehicle distance.SOLUTION: This is attributable to use of azimuth deviation from a proceeding vehicle as a value of azimuth deviation in a control law. Providing azimuth deviation with a correction term in accordance with a turn curvature radius so that a path following control law works effectively while maintaining an inter-vehicle distance makes it possible to suppress lateral deviation in travelling with a minimum curvature radius of a highway main line. Moreover, more generally, velocity yaw angular velocity and position azimuth of the proceeding vehicle at a time point at which the proceeding vehicle has passed before a distance corresponding to the inter-vehicle distance are transmitted to the following vehicle, and the following vehicle is caused to trace a locus of the proceeding vehicle based on the path following control law to follow the proceeding vehicle.SELECTED DRAWING: Figure 1

Description

本発明は車両の隊列走行追従制御に於ける「path following 制御則」(非特許文献1)の応用に関する(図1参照)The present invention relates to an application of “path following control law” (Non-patent Document 1) in vehicle platooning follow-up control (see FIG. 1).

車両の隊列走行に於ける追従制御に「path following 制御則」として知られている制御則が応用されている(非特許文献2、3参照)。A control law known as a “path following control law” is applied to follow-up control in vehicle platooning (see Non-Patent Documents 2 and 3).

″A Stable Tracking Control Method for an Autonomous Mobile Robot″by Kanayama,Yutaka et al.,in Proc.IEEE International Conference on Robotics and Automation,pp.384−389,May 1990."A Stable Tracking Control Method for an Autonomous Mobile Robot" by Kanayama, Yutaka et al. , In Proc. IEEE International Conference on Robotics and Automation, pp. 384-389, May 1990. トラックのPath Following 制御に基く自動運転 深尾隆則 他 日本機械学会論文集(C編)77巻 783号(2011−11)Autonomous driving based on path-following control of trucks Takanori Fukao et al. Transactions of the Japan Society of Mechanical Engineers (C) Volume 77 Issue 783 (2011-11) トラックの隊列走行における制御技術 深尾隆則 他 システム/制御/情報 VoL.58,No.5 pp.175−180,2014Control Technology for Truck Convoy Takanori Fukao et al. System / Control / Information VoL. 58, no. 5 pp. 175-180, 2014

車間維持を必要をとする隊列走行追従制御に「path following 制御則」(式(1)(2))を応用する場合、制御則式(2)の方位角偏差の値として式(5)の定義に従って先行車と追従車との方位角偏差を用いると、旋回時に横偏差(式(4))が生じる。この横偏差を抑えることが本発明の課題である。

Figure 2019128929
When applying the "path following control law" (Equations (1) and (2)) to a row running follow-up control requiring maintenance between vehicles, the value of the azimuth angle deviation of the control law equation (2) is Using the azimuth deviation between the leading vehicle and the following vehicle according to the definition, a lateral deviation (equation (4)) occurs when turning. It is an object of the present invention to suppress this lateral deviation.
Figure 2019128929

式(1)及び(2)の制御則は式(6)及び(7)に示す非ホロノミックな拘束条件を持って走行する先行車の軌跡、即ち先行車の回転中心(重心)の軌跡を同じ非ホロノミックな拘束条件を持って走行する追従車即ち、追従車の回転中心(重心)が正確になぞることが出来る特性を有する。The control rules of equations (1) and (2) are the same as the trajectory of the preceding vehicle traveling with the non-holonomic constraint condition shown in equations (6) and (7), ie, the trajectory of the center of rotation (center of gravity) of the preceding vehicle It has a characteristic that it is possible to accurately trace the center of rotation (center of gravity) of a following vehicle which travels with nonholonomic constraint conditions, that is, the following vehicle.

従って、車間距離を維持しつつ先行車に追従させる隊列走行追従制御に於いては式(1)(2)に於ける縦偏差、横偏差及び方位角偏差の値として、先行車との偏差を用いるのではなく、先行車が車間距離Lだけ前に通過した点における先行車の位置方位角との偏差を用いることによりこの制御則の正確な追従特性が得られる。Therefore, in the formation traveling follow-up control that causes the preceding vehicle to follow while maintaining the inter-vehicle distance, the deviation from the preceding vehicle is used as the values of longitudinal deviation, lateral deviation, and azimuth deviation in Equations (1) and (2). An accurate tracking characteristic of this control law can be obtained by using the deviation from the position / azimuth angle of the preceding vehicle at the point where the preceding vehicle has passed by an inter-vehicle distance L, instead of using it.

旋回している先行車を、車間距離を維持して追従する場合に式(2)に於いて先行車との方位角偏差を制御量としてそのまま用いると必然的に横偏差を生じる。以下にその点を説明する。In the case where the leading vehicle which is turning is followed while maintaining the inter-vehicle distance, if the azimuth deviation from the leading vehicle is used as the control amount in the equation (2), a lateral deviation inevitably occurs. This will be described below.

定常旋回中には追従車のヨー角速度は先行車のヨー角速度と等しくなっているので、式(2)の第2項は0となっている。従って式(2)第2項の括弧中の2つの項の和は0であるが、車間距離を維持して旋回しているので先行車との方位角差が生じている。このため、方位角差が正(左旋回の場合)なら、負の横偏差、方位角差が負(右旋回の場合)なら、正の横偏差が生じることになる。During steady-state turning, the yaw angular velocity of the following vehicle is equal to the yaw angular velocity of the preceding vehicle, so the second term of equation (2) is zero. Therefore, although the sum of two terms in the parenthesis of the second term of the equation (2) is 0, the vehicle is turning with the distance between the vehicles maintained, so that an azimuth difference with the preceding vehicle occurs. Therefore, if the azimuth difference is positive (in the case of left turn), a negative lateral deviation occurs, and if the azimuth difference is negative (in the case of right turn), a positive lateral deviation occurs.

道路の曲率半径をR、車間距離(ここでは先行車と追従車の重心間距離)をLとし、L/R〈〈1の範囲を考えれば方位角偏差はL/Rであるから、式(2)の第2項の括弧中の2つの項の和が0であるとの条件から横偏差の値は式(8)で算出される。Assuming that the curvature radius of the road is R, the inter-vehicle distance (here, the distance between the center of gravity of the preceding vehicle and the following vehicle) is L, and the azimuth deviation is L / R considering the range of L / R From the condition that the sum of the two terms in the parenthesis of the second term of 2) is 0, the value of the lateral deviation is calculated by equation (8).

式(8)の分母の定数を大きくすると横偏差の値は小さくなるが、この定数を大きくすることに関して制御系の安定性の面からの制限がある。その点を次に説明する。Although increasing the constant of the denominator of equation (8) reduces the value of the lateral deviation, there is a limit in terms of control system stability in terms of increasing this constant. This will be described next.

図1に示す隊列走行追従制御系に於いて、車両の動的な特性(図(1)に於いて「車両直進運動」、「車両回転運動」、「速度制御装置」及び「舵角制御装置」の部分)を無視し速度一定として方位角偏差が微小な範囲で線形化すると図(1)の制御系のヨー回転運動系は2次系となり、その固有角周波数と減衰定数は式(9)に示される(非特許文献1)。In the row-following control system shown in FIG. 1, the dynamic characteristics of the vehicle (in FIG. (1), "straight-forward motion of the vehicle", "rotational motion of the vehicle", "speed control device" and "steering angle control device If the azimuthal angle deviation is linearized in a small range with the velocity constant and the constant angular velocity is constant, the yaw rotational motion system of the control system in Figure 1 becomes a second-order system, and its natural angular frequency and damping constant (Non-Patent Document 1).

一方速度一定として線形化した車両回転運動(ヨー回転運動)系も2次系とり、その固有角周波数は速度及び車両諸元より算出される。制御系の安定性の面から式(9)の固有角周波数を、この車両回転運動系の固有角周波数より十分小さくする必要があり、制御定数の値は制限される。On the other hand, a vehicle rotational motion (yaw rotational motion) system linearized with a constant speed is also a secondary system, and its natural angular frequency is calculated from the speed and vehicle specifications. From the viewpoint of the stability of the control system, the natural angular frequency of Equation (9) needs to be sufficiently smaller than the natural angular frequency of this vehicle rotational motion system, and the value of the control constant is limited.

又式(9)の減衰定数を1前後に選ぶとすればこの面からも制御定数の値が制限される。If the damping constant of the equation (9) is selected to be around 1, the value of the control constant is also limited from this aspect.

高速道路本線のようにその曲率半径が維持すべき車間距離より十分大である場合は、方位角偏差に対しL/R分の補正を行うことにより旋回中の横偏差をなくすことが出来、課題が解決される。曲率半径Rは速度とヨー角速度の比より得られるので補正項は式(2a)に示す形となる(解決策1)。If the curvature radius is sufficiently larger than the inter-vehicle distance to be maintained, as in the case of a highway main line, the lateral deviation during turning can be eliminated by correcting L / R for the azimuthal angle deviation. Is resolved. Since the radius of curvature R is obtained from the ratio of the velocity to the yaw angular velocity, the correction term has the form shown in equation (2a) (solution 1).

汎用的な解決策として、先行車が距離L前に通過した時点の速度ヨー角速度及び位置方位角データを追従車に渡す方法により制御則(1)(2)式の正確な追従特性を得ることが出来、本発明の課題が解決される(解決策2)。As a general-purpose solution, obtain accurate tracking characteristics of control law (1) (2) equation by passing speed yaw velocity and position azimuth angle data of preceding vehicle at distance L before passing to distance L And the problem of the present invention is solved (solution 2).

高速道路本線の最小曲率半径での隊列走行旋回に於いても横偏差が抑えられる(解決策1,解決策2)。The lateral deviation can be suppressed even in the platooning turn with the minimum curvature radius of the main highway (Solution 1, Solution 2).

車両の最小回転半径レベルの旋回に於いても、同程度の大きさの車両の軌跡をなぞり追従することが出来る(解決策2)。Even when the vehicle is turning at the minimum turning radius level, it is possible to follow the trajectory of the vehicle of the same size (Solution 2).

道路白線検出(非特許文献3参照)に依存しないので車線変更に対応出来る(解決策2)。Since it does not depend on road white line detection (refer to non-patent document 3), it is possible to cope with lane change (solution 2).

隊列走行追従制御系のブロック図を示す。追従車が先行車から速度ヨー角速度データを受け取り、先行車との偏差を検出して、path following 制御則により演算した操作量を速度制御装置及び舵角制御装置に与えて追従制御する制御系を示す。ここでの追従車は隊列走行に於ける次の後続車の先行車となる。  The block diagram of a row running follow-up control system is shown. A follow-up vehicle receives the speed and yaw angular velocity data from the preceding vehicle, detects the deviation from the preceding vehicle, and gives the speed control device and steering angle control device a control system that follows the control amount calculated by the path following control law. Show. The following vehicle is the preceding vehicle of the next following vehicle in formation. path following 制御則の制御量である縦偏差、横偏差及び方位角偏差の定義を示す。  path following Indicates the definition of longitudinal deviation, lateral deviation and azimuth deviation, which are control quantities of control law.

解決策1は割算演算と加算演算を追加することで既存の装置に組み込むことが出来る。微小な正の値を速度信号にバイアスする等、0割算を防ぐ手段を講じる。Solution 1 can be incorporated into existing equipment by adding division and addition operations. Take measures to prevent division by zero, such as biasing a small positive value to the velocity signal.

解決策2は先行車側で
(1)車間距離L[m]に対して余裕を持たせた距離、例えば30[m]の間を、一定距離間隔s[m]例えば0.05[m]毎に速度ヨー角速度及び位置方位角データを格納するバッファ、各速度ヨー角速度及び位置方位角データに対して各々 600の数値を格納するバッファを用意する。
(2)速度を積分して通過累積距離を得て、積分出力がs[m]となる毎に積分器をリセットし、その時点の速度ヨー角速度及び位置方位角データを各バッファの最前段の位置に格納しバッファを1段分シフトする、最後段のデータは捨てられる、又はサーキュラーシフトとしても良い。
(3)或る時間間隔で、例えば5[ms]毎に、追従車に(L/s)番目のバッファ上のデータ、即ち距離L前に通過した時点の速度ヨー角速度及び位置方位角データを追従車に送信する。
Solution 2 is on the preceding vehicle side. (1) A distance with a margin with respect to the inter-vehicle distance L [m], for example, 30 [m], a constant distance interval s [m], for example 0.05 [m] A buffer for storing speed yaw angular velocity and position azimuth angle data, and a buffer for storing 600 numerical values for each speed yaw angular velocity and position azimuth angle data are prepared.
(2) The velocity is integrated to obtain the cumulative distance, and the integrator is reset each time the integral output becomes s [m], and the velocity yaw angular velocity and position azimuth data at that time are the first stage of each buffer. The data is stored in the position and the buffer is shifted by one stage, the last stage data is discarded, or it may be a circular shift.
(3) At a certain time interval, for example, every 5 ms, the data on the (L / s) th buffer of the following vehicle, that is, the velocity yaw angular velocity and position azimuth data at the time of passing before the distance L Send to the following car.

追従車は
(4)先行車から送信された位置方位角データを用いて、偏差定義式(3)(4)(5)により偏差を算出し、同じく送信された速度ヨー角速度データと共に式(1)及び(2)の変数の数値を算出し更新する。
The following vehicle calculates deviation according to deviation definition equations (3), (4) and (5) using (4) position and azimuth angle data transmitted from the preceding vehicle, and together with the speed yaw angular velocity data transmitted in the same manner, ) And (2) are calculated and updated.

先行車側及び追従車で
(5)ヨー回転速度の検出はヨーレートセンサーで行うことが出来る。
(6)方位角検出はヨーレートセンサー出力の積分、磁気方位センサー出力、GPSドップラより得られる方位角を統合して算出することが出来る。
(7)位置検出は式(6)(7)の積分によって得られる値とGPS−RTK受信機より得られる位置データを統合して算出することが出来る。
(8)速度は車輪の回転より得られる速度信号、GPS ドップラより得られる速度データを統合して得られる。
On the leading vehicle side and following vehicle (5) The yaw rate can be detected by the yaw rate sensor.
(6) Azimuth angle detection can be calculated by integrating the yaw rate sensor output integration, the magnetic azimuth sensor output, and the azimuth angle obtained from GPS Doppler.
(7) The position detection can be calculated by unifying the values obtained by integration of the equations (6) and (7) and the position data obtained from the GPS-RTK receiver.
(8) The speed is obtained by integrating speed signals obtained from wheel rotation and speed data obtained from GPS Doppler.

トラック、バス等の隊列走行追従制御システム  Track and follow control system for trucks, buses, etc.

車間維持を必要をとする隊列走行追従制御に「path following制御則」(式(1)(2))を応用する場合、制御則式(2)の方位角偏差の値として式(5)の定義に従って先行車と追従車との方位角偏差を用いると、旋回時に横偏差(式(4))が生じる。この横偏差を抑えることが本発明の課題である。

Figure 2019128929
When applying the "path following control law" (Equations (1) and (2)) to a row running follow-up control requiring maintenance between vehicles, the value of the azimuthal angle deviation of the control law (2) is Using the azimuth deviation between the leading vehicle and the following vehicle according to the definition, a lateral deviation (equation (4)) occurs when turning. It is an object of the present invention to suppress this lateral deviation.
Figure 2019128929

Claims (4)

車間距離を維持し追従する車両の隊列走行追従制御に於いて、「path following 制御則」(図1及び式(1)(2))の式(2)に式(2a)に示す補正項を加えることにより、定常旋回中の横偏差(図2)を生じさせること無しに隊列走行追従を可能とする制御方法。The correction term shown in the equation (2a) in the equation (2) of the “path following control rule” (FIG. 1 and the equation (1) (2)) in the row running follow-up control of the vehicle maintaining and following the inter-vehicle distance A control method that enables formation traveling follow without adding lateral deviation during steady turn (Fig. 2). 車間距離を維持し追従する車両の隊列走行追従制御に於いて、「path following 制御則」(図1及び式(1)(2))の式(2)に式(2a)に示す補正項を加えることにより、定常旋回中の横偏差(図2)を生じさせること無しに隊列走行追従を可能とする制御装置。The correction term shown in the equation (2a) in the equation (2) of the “path following control rule” (FIG. 1 and the equation (1) (2)) in the row running follow-up control of the vehicle maintaining and following the inter-vehicle distance In addition, a control device that enables platooning follow-up without causing lateral deviation (FIG. 2) during steady turning. 「path following 制御則」を応用した車両の隊列走行追従制御に於いて、先行車が車間距離相当の距離前に通過した時点の速度ヨー角速度及び位置方位角データを追従車に送信し、追従車をその渡された速度ヨー角速度及び位置方位角に追従させることにより、車間距離を維持し先行車の軌跡をなぞり追従させることの出来る制御方法。  In the formation follow-up control of a vehicle applying the "path following control rule", the speed yaw angular velocity and position azimuth angle data at the time when the preceding vehicle passes a distance equivalent to the distance between vehicles is transmitted to the following vehicle A control method capable of maintaining the inter-vehicle distance and tracing the trajectory of a preceding vehicle by making the following velocity yaw angular velocity and position azimuth angle follow. 「path following 制御則」を応用した隊列走行追従制御に於いて、先行車が一定微小距離を進む毎にその時点の速度ヨー角速度及び位置方位角の値を保持格納し、追従車が維持すべき車間距離相当の距離前に先行車が通過した時点の速度ヨー角速度及び位置方位角データを或る時間刻みで追従車に送信し、追従車が上記制御則により先行車の軌跡をなぞり、追従することが出来るようにした制御装置。
Figure 2019128929
In formation control following control applying "path following control law", every time the preceding vehicle travels a fixed minute distance, the value of the speed yaw angular velocity and position azimuth angle at that time should be stored and stored, and the following vehicle should be maintained The speed yaw angular velocity and position azimuth angle data at the time when the preceding vehicle passed before the distance corresponding to the inter-vehicle distance is transmitted to the following vehicle at a certain time interval, and the following vehicle follows the locus of the preceding vehicle by following the above control law. Control device that can do that.
Figure 2019128929
JP2018021411A 2018-01-22 2018-01-22 Platoon follow-up control method Active JP7296064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018021411A JP7296064B2 (en) 2018-01-22 2018-01-22 Platoon follow-up control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021411A JP7296064B2 (en) 2018-01-22 2018-01-22 Platoon follow-up control method

Publications (3)

Publication Number Publication Date
JP2019128929A true JP2019128929A (en) 2019-08-01
JP2019128929A5 JP2019128929A5 (en) 2021-05-06
JP7296064B2 JP7296064B2 (en) 2023-06-22

Family

ID=67473152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021411A Active JP7296064B2 (en) 2018-01-22 2018-01-22 Platoon follow-up control method

Country Status (1)

Country Link
JP (1) JP7296064B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110850895A (en) * 2019-08-05 2020-02-28 中国第一汽车股份有限公司 Path tracking method, device, equipment and storage medium
CN111661048A (en) * 2020-06-10 2020-09-15 中车株洲电力机车有限公司 Multi-articulated vehicle and track following control method and system thereof
CN112925323A (en) * 2021-01-28 2021-06-08 北京科技大学 Rule-based mobile robot speed adjusting method and system
CN113353078A (en) * 2021-06-24 2021-09-07 中汽创智科技有限公司 Method and device for determining automatic following track without lane line

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1120499A (en) * 1997-06-27 1999-01-26 Mitsubishi Motors Corp Automatic follow up type traveling system
JP2010149636A (en) * 2008-12-24 2010-07-08 Equos Research Co Ltd Vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1120499A (en) * 1997-06-27 1999-01-26 Mitsubishi Motors Corp Automatic follow up type traveling system
JP2010149636A (en) * 2008-12-24 2010-07-08 Equos Research Co Ltd Vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUTAKA KANAYAMA, YOSHIHIKO KIMURA, FUMIO MIYAZAKI, TETSUO NOGUCHI: ""A Stable Tracking Control Method for an Autonomous Mobile Robot"", PROCEEDINGS., IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, JPN6022026528, 1990, ISSN: 0004816929 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110850895A (en) * 2019-08-05 2020-02-28 中国第一汽车股份有限公司 Path tracking method, device, equipment and storage medium
CN110850895B (en) * 2019-08-05 2023-04-07 中国第一汽车股份有限公司 Path tracking method, device, equipment and storage medium
CN111661048A (en) * 2020-06-10 2020-09-15 中车株洲电力机车有限公司 Multi-articulated vehicle and track following control method and system thereof
CN111661048B (en) * 2020-06-10 2023-04-07 中车株洲电力机车有限公司 Multi-articulated vehicle and track following control method and system thereof
CN112925323A (en) * 2021-01-28 2021-06-08 北京科技大学 Rule-based mobile robot speed adjusting method and system
CN112925323B (en) * 2021-01-28 2022-03-15 北京科技大学 Rule-based mobile robot speed adjusting method and system
CN113353078A (en) * 2021-06-24 2021-09-07 中汽创智科技有限公司 Method and device for determining automatic following track without lane line

Also Published As

Publication number Publication date
JP7296064B2 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP2019128929A (en) Convoy travel tracking control method and device
Dominguez et al. Comparison of lateral controllers for autonomous vehicle: Experimental results
CN105937912B (en) The map data processing device of vehicle
RU2692097C1 (en) Device and method for setting a position for stopping a vehicle
CN107132563B (en) Combined navigation method combining odometer and dual-antenna differential GNSS
CN107830865B (en) Vehicle target classification method, device, system and computer program product
CN108437972B (en) Trajectory tracking method and device based on position deviation
EP2715281A1 (en) Combined radar and gps localization system
CN111137298B (en) Vehicle automatic driving method, device, system and storage medium
CN111907516A (en) Full-automatic parking method and system
Rodriguez-Castaño et al. High-speed autonomous navigation system for heavy vehicles
Roselli et al. H∞ control with look-ahead for lane keeping in autonomous vehicles
CN104864867A (en) Method for correcting positioning error of vehicle in VSYR (vehicle speed and yaw rate) blind area by using GNSS (global navigation satellite system)
CN110855789B (en) Position relation determining method and device, storage medium and equipment
Zindler et al. Real-time ego-motion estimation using Lidar and a vehicle model based Extended Kalman Filter
KR102159360B1 (en) Apparatus and Method for Estimating Curvature
Choi et al. Human driver model and sliding mode control-road tracking capability of the vehicle model
Lin et al. Integrating odometry and inter-vehicular communication for adaptive cruise control with target detection loss
CN115542925A (en) Accurate deviation estimation method for transverse control of unmanned vehicle
JP7020750B2 (en) How to generate a target trajectory
KR101676145B1 (en) Curvature calculation device and curvature correction method
Kuyt et al. Mixed kinematics and camera based vehicle dynamic sideslip estimation for an rc scaled model
JP6717132B2 (en) Vehicle traveling control method and vehicle traveling control device
Song et al. Reliable positioning algorithm using two-stage adaptive filtering in GPS-denied environments
Luan et al. Design and field testing of a lane following control system with a camera based on t&c driver model

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210103

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7296064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150